linux/arch/mips/kernel/vpe.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
   3 *
   4 *  This program is free software; you can distribute it and/or modify it
   5 *  under the terms of the GNU General Public License (Version 2) as
   6 *  published by the Free Software Foundation.
   7 *
   8 *  This program is distributed in the hope it will be useful, but WITHOUT
   9 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11 *  for more details.
  12 *
  13 *  You should have received a copy of the GNU General Public License along
  14 *  with this program; if not, write to the Free Software Foundation, Inc.,
  15 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  16 */
  17
  18/*
  19 * VPE support module
  20 *
  21 * Provides support for loading a MIPS SP program on VPE1.
  22 * The SP environment is rather simple, no tlb's.  It needs to be relocatable
  23 * (or partially linked). You should initialise your stack in the startup
  24 * code. This loader looks for the symbol __start and sets up
  25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
  26 *
  27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
  28 * i.e cat spapp >/dev/vpe1.
  29 */
  30#include <linux/kernel.h>
  31#include <linux/device.h>
  32#include <linux/fs.h>
  33#include <linux/init.h>
  34#include <asm/uaccess.h>
  35#include <linux/slab.h>
  36#include <linux/list.h>
  37#include <linux/vmalloc.h>
  38#include <linux/elf.h>
  39#include <linux/seq_file.h>
  40#include <linux/syscalls.h>
  41#include <linux/moduleloader.h>
  42#include <linux/interrupt.h>
  43#include <linux/poll.h>
  44#include <linux/bootmem.h>
  45#include <asm/mipsregs.h>
  46#include <asm/mipsmtregs.h>
  47#include <asm/cacheflush.h>
  48#include <linux/atomic.h>
  49#include <asm/cpu.h>
  50#include <asm/mips_mt.h>
  51#include <asm/processor.h>
  52#include <asm/vpe.h>
  53
  54typedef void *vpe_handle;
  55
  56#ifndef ARCH_SHF_SMALL
  57#define ARCH_SHF_SMALL 0
  58#endif
  59
  60/* If this is set, the section belongs in the init part of the module */
  61#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  62
  63/*
  64 * The number of TCs and VPEs physically available on the core
  65 */
  66static int hw_tcs, hw_vpes;
  67static char module_name[] = "vpe";
  68static int major;
  69static const int minor = 1;     /* fixed for now  */
  70
  71/* grab the likely amount of memory we will need. */
  72#ifdef CONFIG_MIPS_VPE_LOADER_TOM
  73#define P_SIZE (2 * 1024 * 1024)
  74#else
  75/* add an overhead to the max kmalloc size for non-striped symbols/etc */
  76#define P_SIZE (256 * 1024)
  77#endif
  78
  79extern unsigned long physical_memsize;
  80
  81#define MAX_VPES 16
  82#define VPE_PATH_MAX 256
  83
  84enum vpe_state {
  85        VPE_STATE_UNUSED = 0,
  86        VPE_STATE_INUSE,
  87        VPE_STATE_RUNNING
  88};
  89
  90enum tc_state {
  91        TC_STATE_UNUSED = 0,
  92        TC_STATE_INUSE,
  93        TC_STATE_RUNNING,
  94        TC_STATE_DYNAMIC
  95};
  96
  97struct vpe {
  98        enum vpe_state state;
  99
 100        /* (device) minor associated with this vpe */
 101        int minor;
 102
 103        /* elfloader stuff */
 104        void *load_addr;
 105        unsigned long len;
 106        char *pbuffer;
 107        unsigned long plen;
 108        unsigned int uid, gid;
 109        char cwd[VPE_PATH_MAX];
 110
 111        unsigned long __start;
 112
 113        /* tc's associated with this vpe */
 114        struct list_head tc;
 115
 116        /* The list of vpe's */
 117        struct list_head list;
 118
 119        /* shared symbol address */
 120        void *shared_ptr;
 121
 122        /* the list of who wants to know when something major happens */
 123        struct list_head notify;
 124
 125        unsigned int ntcs;
 126};
 127
 128struct tc {
 129        enum tc_state state;
 130        int index;
 131
 132        struct vpe *pvpe;       /* parent VPE */
 133        struct list_head tc;    /* The list of TC's with this VPE */
 134        struct list_head list;  /* The global list of tc's */
 135};
 136
 137struct {
 138        spinlock_t vpe_list_lock;
 139        struct list_head vpe_list;      /* Virtual processing elements */
 140        spinlock_t tc_list_lock;
 141        struct list_head tc_list;       /* Thread contexts */
 142} vpecontrol = {
 143        .vpe_list_lock  = __SPIN_LOCK_UNLOCKED(vpe_list_lock),
 144        .vpe_list       = LIST_HEAD_INIT(vpecontrol.vpe_list),
 145        .tc_list_lock   = __SPIN_LOCK_UNLOCKED(tc_list_lock),
 146        .tc_list        = LIST_HEAD_INIT(vpecontrol.tc_list)
 147};
 148
 149static void release_progmem(void *ptr);
 150
 151/* get the vpe associated with this minor */
 152static struct vpe *get_vpe(int minor)
 153{
 154        struct vpe *res, *v;
 155
 156        if (!cpu_has_mipsmt)
 157                return NULL;
 158
 159        res = NULL;
 160        spin_lock(&vpecontrol.vpe_list_lock);
 161        list_for_each_entry(v, &vpecontrol.vpe_list, list) {
 162                if (v->minor == minor) {
 163                        res = v;
 164                        break;
 165                }
 166        }
 167        spin_unlock(&vpecontrol.vpe_list_lock);
 168
 169        return res;
 170}
 171
 172/* get the vpe associated with this minor */
 173static struct tc *get_tc(int index)
 174{
 175        struct tc *res, *t;
 176
 177        res = NULL;
 178        spin_lock(&vpecontrol.tc_list_lock);
 179        list_for_each_entry(t, &vpecontrol.tc_list, list) {
 180                if (t->index == index) {
 181                        res = t;
 182                        break;
 183                }
 184        }
 185        spin_unlock(&vpecontrol.tc_list_lock);
 186
 187        return res;
 188}
 189
 190/* allocate a vpe and associate it with this minor (or index) */
 191static struct vpe *alloc_vpe(int minor)
 192{
 193        struct vpe *v;
 194
 195        if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL)
 196                return NULL;
 197
 198        INIT_LIST_HEAD(&v->tc);
 199        spin_lock(&vpecontrol.vpe_list_lock);
 200        list_add_tail(&v->list, &vpecontrol.vpe_list);
 201        spin_unlock(&vpecontrol.vpe_list_lock);
 202
 203        INIT_LIST_HEAD(&v->notify);
 204        v->minor = minor;
 205
 206        return v;
 207}
 208
 209/* allocate a tc. At startup only tc0 is running, all other can be halted. */
 210static struct tc *alloc_tc(int index)
 211{
 212        struct tc *tc;
 213
 214        if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL)
 215                goto out;
 216
 217        INIT_LIST_HEAD(&tc->tc);
 218        tc->index = index;
 219
 220        spin_lock(&vpecontrol.tc_list_lock);
 221        list_add_tail(&tc->list, &vpecontrol.tc_list);
 222        spin_unlock(&vpecontrol.tc_list_lock);
 223
 224out:
 225        return tc;
 226}
 227
 228/* clean up and free everything */
 229static void release_vpe(struct vpe *v)
 230{
 231        list_del(&v->list);
 232        if (v->load_addr)
 233                release_progmem(v);
 234        kfree(v);
 235}
 236
 237static void __maybe_unused dump_mtregs(void)
 238{
 239        unsigned long val;
 240
 241        val = read_c0_config3();
 242        printk("config3 0x%lx MT %ld\n", val,
 243               (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
 244
 245        val = read_c0_mvpcontrol();
 246        printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
 247               (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
 248               (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
 249               (val & MVPCONTROL_EVP));
 250
 251        val = read_c0_mvpconf0();
 252        printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
 253               (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
 254               val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
 255}
 256
 257/* Find some VPE program space  */
 258static void *alloc_progmem(unsigned long len)
 259{
 260        void *addr;
 261
 262#ifdef CONFIG_MIPS_VPE_LOADER_TOM
 263        /*
 264         * This means you must tell Linux to use less memory than you
 265         * physically have, for example by passing a mem= boot argument.
 266         */
 267        addr = pfn_to_kaddr(max_low_pfn);
 268        memset(addr, 0, len);
 269#else
 270        /* simple grab some mem for now */
 271        addr = kzalloc(len, GFP_KERNEL);
 272#endif
 273
 274        return addr;
 275}
 276
 277static void release_progmem(void *ptr)
 278{
 279#ifndef CONFIG_MIPS_VPE_LOADER_TOM
 280        kfree(ptr);
 281#endif
 282}
 283
 284/* Update size with this section: return offset. */
 285static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
 286{
 287        long ret;
 288
 289        ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
 290        *size = ret + sechdr->sh_size;
 291        return ret;
 292}
 293
 294/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
 295   might -- code, read-only data, read-write data, small data.  Tally
 296   sizes, and place the offsets into sh_entsize fields: high bit means it
 297   belongs in init. */
 298static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
 299                            Elf_Shdr * sechdrs, const char *secstrings)
 300{
 301        static unsigned long const masks[][2] = {
 302                /* NOTE: all executable code must be the first section
 303                 * in this array; otherwise modify the text_size
 304                 * finder in the two loops below */
 305                {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
 306                {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
 307                {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
 308                {ARCH_SHF_SMALL | SHF_ALLOC, 0}
 309        };
 310        unsigned int m, i;
 311
 312        for (i = 0; i < hdr->e_shnum; i++)
 313                sechdrs[i].sh_entsize = ~0UL;
 314
 315        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
 316                for (i = 0; i < hdr->e_shnum; ++i) {
 317                        Elf_Shdr *s = &sechdrs[i];
 318
 319                        //  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
 320                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
 321                            || (s->sh_flags & masks[m][1])
 322                            || s->sh_entsize != ~0UL)
 323                                continue;
 324                        s->sh_entsize =
 325                                get_offset((unsigned long *)&mod->core_size, s);
 326                }
 327
 328                if (m == 0)
 329                        mod->core_text_size = mod->core_size;
 330
 331        }
 332}
 333
 334
 335/* from module-elf32.c, but subverted a little */
 336
 337struct mips_hi16 {
 338        struct mips_hi16 *next;
 339        Elf32_Addr *addr;
 340        Elf32_Addr value;
 341};
 342
 343static struct mips_hi16 *mips_hi16_list;
 344static unsigned int gp_offs, gp_addr;
 345
 346static int apply_r_mips_none(struct module *me, uint32_t *location,
 347                             Elf32_Addr v)
 348{
 349        return 0;
 350}
 351
 352static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
 353                                Elf32_Addr v)
 354{
 355        int rel;
 356
 357        if( !(*location & 0xffff) ) {
 358                rel = (int)v - gp_addr;
 359        }
 360        else {
 361                /* .sbss + gp(relative) + offset */
 362                /* kludge! */
 363                rel =  (int)(short)((int)v + gp_offs +
 364                                    (int)(short)(*location & 0xffff) - gp_addr);
 365        }
 366
 367        if( (rel > 32768) || (rel < -32768) ) {
 368                printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
 369                       "relative address 0x%x out of range of gp register\n",
 370                       rel);
 371                return -ENOEXEC;
 372        }
 373
 374        *location = (*location & 0xffff0000) | (rel & 0xffff);
 375
 376        return 0;
 377}
 378
 379static int apply_r_mips_pc16(struct module *me, uint32_t *location,
 380                             Elf32_Addr v)
 381{
 382        int rel;
 383        rel = (((unsigned int)v - (unsigned int)location));
 384        rel >>= 2;              // because the offset is in _instructions_ not bytes.
 385        rel -= 1;               // and one instruction less due to the branch delay slot.
 386
 387        if( (rel > 32768) || (rel < -32768) ) {
 388                printk(KERN_DEBUG "VPE loader: "
 389                       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
 390                return -ENOEXEC;
 391        }
 392
 393        *location = (*location & 0xffff0000) | (rel & 0xffff);
 394
 395        return 0;
 396}
 397
 398static int apply_r_mips_32(struct module *me, uint32_t *location,
 399                           Elf32_Addr v)
 400{
 401        *location += v;
 402
 403        return 0;
 404}
 405
 406static int apply_r_mips_26(struct module *me, uint32_t *location,
 407                           Elf32_Addr v)
 408{
 409        if (v % 4) {
 410                printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
 411                       " unaligned relocation\n");
 412                return -ENOEXEC;
 413        }
 414
 415/*
 416 * Not desperately convinced this is a good check of an overflow condition
 417 * anyway. But it gets in the way of handling undefined weak symbols which
 418 * we want to set to zero.
 419 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
 420 * printk(KERN_ERR
 421 * "module %s: relocation overflow\n",
 422 * me->name);
 423 * return -ENOEXEC;
 424 * }
 425 */
 426
 427        *location = (*location & ~0x03ffffff) |
 428                ((*location + (v >> 2)) & 0x03ffffff);
 429        return 0;
 430}
 431
 432static int apply_r_mips_hi16(struct module *me, uint32_t *location,
 433                             Elf32_Addr v)
 434{
 435        struct mips_hi16 *n;
 436
 437        /*
 438         * We cannot relocate this one now because we don't know the value of
 439         * the carry we need to add.  Save the information, and let LO16 do the
 440         * actual relocation.
 441         */
 442        n = kmalloc(sizeof *n, GFP_KERNEL);
 443        if (!n)
 444                return -ENOMEM;
 445
 446        n->addr = location;
 447        n->value = v;
 448        n->next = mips_hi16_list;
 449        mips_hi16_list = n;
 450
 451        return 0;
 452}
 453
 454static int apply_r_mips_lo16(struct module *me, uint32_t *location,
 455                             Elf32_Addr v)
 456{
 457        unsigned long insnlo = *location;
 458        Elf32_Addr val, vallo;
 459        struct mips_hi16 *l, *next;
 460
 461        /* Sign extend the addend we extract from the lo insn.  */
 462        vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
 463
 464        if (mips_hi16_list != NULL) {
 465
 466                l = mips_hi16_list;
 467                while (l != NULL) {
 468                        unsigned long insn;
 469
 470                        /*
 471                         * The value for the HI16 had best be the same.
 472                         */
 473                        if (v != l->value) {
 474                                printk(KERN_DEBUG "VPE loader: "
 475                                       "apply_r_mips_lo16/hi16: \t"
 476                                       "inconsistent value information\n");
 477                                goto out_free;
 478                        }
 479
 480                        /*
 481                         * Do the HI16 relocation.  Note that we actually don't
 482                         * need to know anything about the LO16 itself, except
 483                         * where to find the low 16 bits of the addend needed
 484                         * by the LO16.
 485                         */
 486                        insn = *l->addr;
 487                        val = ((insn & 0xffff) << 16) + vallo;
 488                        val += v;
 489
 490                        /*
 491                         * Account for the sign extension that will happen in
 492                         * the low bits.
 493                         */
 494                        val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
 495
 496                        insn = (insn & ~0xffff) | val;
 497                        *l->addr = insn;
 498
 499                        next = l->next;
 500                        kfree(l);
 501                        l = next;
 502                }
 503
 504                mips_hi16_list = NULL;
 505        }
 506
 507        /*
 508         * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
 509         */
 510        val = v + vallo;
 511        insnlo = (insnlo & ~0xffff) | (val & 0xffff);
 512        *location = insnlo;
 513
 514        return 0;
 515
 516out_free:
 517        while (l != NULL) {
 518                next = l->next;
 519                kfree(l);
 520                l = next;
 521        }
 522        mips_hi16_list = NULL;
 523
 524        return -ENOEXEC;
 525}
 526
 527static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
 528                                Elf32_Addr v) = {
 529        [R_MIPS_NONE]   = apply_r_mips_none,
 530        [R_MIPS_32]     = apply_r_mips_32,
 531        [R_MIPS_26]     = apply_r_mips_26,
 532        [R_MIPS_HI16]   = apply_r_mips_hi16,
 533        [R_MIPS_LO16]   = apply_r_mips_lo16,
 534        [R_MIPS_GPREL16] = apply_r_mips_gprel16,
 535        [R_MIPS_PC16] = apply_r_mips_pc16
 536};
 537
 538static char *rstrs[] = {
 539        [R_MIPS_NONE]   = "MIPS_NONE",
 540        [R_MIPS_32]     = "MIPS_32",
 541        [R_MIPS_26]     = "MIPS_26",
 542        [R_MIPS_HI16]   = "MIPS_HI16",
 543        [R_MIPS_LO16]   = "MIPS_LO16",
 544        [R_MIPS_GPREL16] = "MIPS_GPREL16",
 545        [R_MIPS_PC16] = "MIPS_PC16"
 546};
 547
 548static int apply_relocations(Elf32_Shdr *sechdrs,
 549                      const char *strtab,
 550                      unsigned int symindex,
 551                      unsigned int relsec,
 552                      struct module *me)
 553{
 554        Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
 555        Elf32_Sym *sym;
 556        uint32_t *location;
 557        unsigned int i;
 558        Elf32_Addr v;
 559        int res;
 560
 561        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 562                Elf32_Word r_info = rel[i].r_info;
 563
 564                /* This is where to make the change */
 565                location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
 566                        + rel[i].r_offset;
 567                /* This is the symbol it is referring to */
 568                sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
 569                        + ELF32_R_SYM(r_info);
 570
 571                if (!sym->st_value) {
 572                        printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
 573                               me->name, strtab + sym->st_name);
 574                        /* just print the warning, dont barf */
 575                }
 576
 577                v = sym->st_value;
 578
 579                res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
 580                if( res ) {
 581                        char *r = rstrs[ELF32_R_TYPE(r_info)];
 582                        printk(KERN_WARNING "VPE loader: .text+0x%x "
 583                               "relocation type %s for symbol \"%s\" failed\n",
 584                               rel[i].r_offset, r ? r : "UNKNOWN",
 585                               strtab + sym->st_name);
 586                        return res;
 587                }
 588        }
 589
 590        return 0;
 591}
 592
 593static inline void save_gp_address(unsigned int secbase, unsigned int rel)
 594{
 595        gp_addr = secbase + rel;
 596        gp_offs = gp_addr - (secbase & 0xffff0000);
 597}
 598/* end module-elf32.c */
 599
 600
 601
 602/* Change all symbols so that sh_value encodes the pointer directly. */
 603static void simplify_symbols(Elf_Shdr * sechdrs,
 604                            unsigned int symindex,
 605                            const char *strtab,
 606                            const char *secstrings,
 607                            unsigned int nsecs, struct module *mod)
 608{
 609        Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
 610        unsigned long secbase, bssbase = 0;
 611        unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
 612        int size;
 613
 614        /* find the .bss section for COMMON symbols */
 615        for (i = 0; i < nsecs; i++) {
 616                if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
 617                        bssbase = sechdrs[i].sh_addr;
 618                        break;
 619                }
 620        }
 621
 622        for (i = 1; i < n; i++) {
 623                switch (sym[i].st_shndx) {
 624                case SHN_COMMON:
 625                        /* Allocate space for the symbol in the .bss section.
 626                           st_value is currently size.
 627                           We want it to have the address of the symbol. */
 628
 629                        size = sym[i].st_value;
 630                        sym[i].st_value = bssbase;
 631
 632                        bssbase += size;
 633                        break;
 634
 635                case SHN_ABS:
 636                        /* Don't need to do anything */
 637                        break;
 638
 639                case SHN_UNDEF:
 640                        /* ret = -ENOENT; */
 641                        break;
 642
 643                case SHN_MIPS_SCOMMON:
 644                        printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON "
 645                               "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
 646                               sym[i].st_shndx);
 647                        // .sbss section
 648                        break;
 649
 650                default:
 651                        secbase = sechdrs[sym[i].st_shndx].sh_addr;
 652
 653                        if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
 654                                save_gp_address(secbase, sym[i].st_value);
 655                        }
 656
 657                        sym[i].st_value += secbase;
 658                        break;
 659                }
 660        }
 661}
 662
 663#ifdef DEBUG_ELFLOADER
 664static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
 665                            const char *strtab, struct module *mod)
 666{
 667        Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
 668        unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
 669
 670        printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
 671        for (i = 1; i < n; i++) {
 672                printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
 673                       strtab + sym[i].st_name, sym[i].st_value);
 674        }
 675}
 676#endif
 677
 678/* We are prepared so configure and start the VPE... */
 679static int vpe_run(struct vpe * v)
 680{
 681        unsigned long flags, val, dmt_flag;
 682        struct vpe_notifications *n;
 683        unsigned int vpeflags;
 684        struct tc *t;
 685
 686        /* check we are the Master VPE */
 687        local_irq_save(flags);
 688        val = read_c0_vpeconf0();
 689        if (!(val & VPECONF0_MVP)) {
 690                printk(KERN_WARNING
 691                       "VPE loader: only Master VPE's are allowed to configure MT\n");
 692                local_irq_restore(flags);
 693
 694                return -1;
 695        }
 696
 697        dmt_flag = dmt();
 698        vpeflags = dvpe();
 699
 700        if (!list_empty(&v->tc)) {
 701                if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
 702                        evpe(vpeflags);
 703                        emt(dmt_flag);
 704                        local_irq_restore(flags);
 705
 706                        printk(KERN_WARNING
 707                               "VPE loader: TC %d is already in use.\n",
 708                               t->index);
 709                        return -ENOEXEC;
 710                }
 711        } else {
 712                evpe(vpeflags);
 713                emt(dmt_flag);
 714                local_irq_restore(flags);
 715
 716                printk(KERN_WARNING
 717                       "VPE loader: No TC's associated with VPE %d\n",
 718                       v->minor);
 719
 720                return -ENOEXEC;
 721        }
 722
 723        /* Put MVPE's into 'configuration state' */
 724        set_c0_mvpcontrol(MVPCONTROL_VPC);
 725
 726        settc(t->index);
 727
 728        /* should check it is halted, and not activated */
 729        if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
 730                evpe(vpeflags);
 731                emt(dmt_flag);
 732                local_irq_restore(flags);
 733
 734                printk(KERN_WARNING "VPE loader: TC %d is already active!\n",
 735                       t->index);
 736
 737                return -ENOEXEC;
 738        }
 739
 740        /* Write the address we want it to start running from in the TCPC register. */
 741        write_tc_c0_tcrestart((unsigned long)v->__start);
 742        write_tc_c0_tccontext((unsigned long)0);
 743
 744        /*
 745         * Mark the TC as activated, not interrupt exempt and not dynamically
 746         * allocatable
 747         */
 748        val = read_tc_c0_tcstatus();
 749        val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
 750        write_tc_c0_tcstatus(val);
 751
 752        write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
 753
 754        /*
 755         * The sde-kit passes 'memsize' to __start in $a3, so set something
 756         * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
 757         * DFLT_HEAP_SIZE when you compile your program
 758         */
 759        mttgpr(6, v->ntcs);
 760        mttgpr(7, physical_memsize);
 761
 762        /* set up VPE1 */
 763        /*
 764         * bind the TC to VPE 1 as late as possible so we only have the final
 765         * VPE registers to set up, and so an EJTAG probe can trigger on it
 766         */
 767        write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
 768
 769        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
 770
 771        back_to_back_c0_hazard();
 772
 773        /* Set up the XTC bit in vpeconf0 to point at our tc */
 774        write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
 775                              | (t->index << VPECONF0_XTC_SHIFT));
 776
 777        back_to_back_c0_hazard();
 778
 779        /* enable this VPE */
 780        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
 781
 782        /* clear out any left overs from a previous program */
 783        write_vpe_c0_status(0);
 784        write_vpe_c0_cause(0);
 785
 786        /* take system out of configuration state */
 787        clear_c0_mvpcontrol(MVPCONTROL_VPC);
 788
 789        /*
 790         * SMTC/SMVP kernels manage VPE enable independently,
 791         * but uniprocessor kernels need to turn it on, even
 792         * if that wasn't the pre-dvpe() state.
 793         */
 794#ifdef CONFIG_SMP
 795        evpe(vpeflags);
 796#else
 797        evpe(EVPE_ENABLE);
 798#endif
 799        emt(dmt_flag);
 800        local_irq_restore(flags);
 801
 802        list_for_each_entry(n, &v->notify, list)
 803                n->start(minor);
 804
 805        return 0;
 806}
 807
 808static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
 809                                      unsigned int symindex, const char *strtab,
 810                                      struct module *mod)
 811{
 812        Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
 813        unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
 814
 815        for (i = 1; i < n; i++) {
 816                if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
 817                        v->__start = sym[i].st_value;
 818                }
 819
 820                if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
 821                        v->shared_ptr = (void *)sym[i].st_value;
 822                }
 823        }
 824
 825        if ( (v->__start == 0) || (v->shared_ptr == NULL))
 826                return -1;
 827
 828        return 0;
 829}
 830
 831/*
 832 * Allocates a VPE with some program code space(the load address), copies the
 833 * contents of the program (p)buffer performing relocatations/etc, free's it
 834 * when finished.
 835 */
 836static int vpe_elfload(struct vpe * v)
 837{
 838        Elf_Ehdr *hdr;
 839        Elf_Shdr *sechdrs;
 840        long err = 0;
 841        char *secstrings, *strtab = NULL;
 842        unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
 843        struct module mod;      // so we can re-use the relocations code
 844
 845        memset(&mod, 0, sizeof(struct module));
 846        strcpy(mod.name, "VPE loader");
 847
 848        hdr = (Elf_Ehdr *) v->pbuffer;
 849        len = v->plen;
 850
 851        /* Sanity checks against insmoding binaries or wrong arch,
 852           weird elf version */
 853        if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
 854            || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
 855            || !elf_check_arch(hdr)
 856            || hdr->e_shentsize != sizeof(*sechdrs)) {
 857                printk(KERN_WARNING
 858                       "VPE loader: program wrong arch or weird elf version\n");
 859
 860                return -ENOEXEC;
 861        }
 862
 863        if (hdr->e_type == ET_REL)
 864                relocate = 1;
 865
 866        if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
 867                printk(KERN_ERR "VPE loader: program length %u truncated\n",
 868                       len);
 869
 870                return -ENOEXEC;
 871        }
 872
 873        /* Convenience variables */
 874        sechdrs = (void *)hdr + hdr->e_shoff;
 875        secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
 876        sechdrs[0].sh_addr = 0;
 877
 878        /* And these should exist, but gcc whinges if we don't init them */
 879        symindex = strindex = 0;
 880
 881        if (relocate) {
 882                for (i = 1; i < hdr->e_shnum; i++) {
 883                        if (sechdrs[i].sh_type != SHT_NOBITS
 884                            && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
 885                                printk(KERN_ERR "VPE program length %u truncated\n",
 886                                       len);
 887                                return -ENOEXEC;
 888                        }
 889
 890                        /* Mark all sections sh_addr with their address in the
 891                           temporary image. */
 892                        sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
 893
 894                        /* Internal symbols and strings. */
 895                        if (sechdrs[i].sh_type == SHT_SYMTAB) {
 896                                symindex = i;
 897                                strindex = sechdrs[i].sh_link;
 898                                strtab = (char *)hdr + sechdrs[strindex].sh_offset;
 899                        }
 900                }
 901                layout_sections(&mod, hdr, sechdrs, secstrings);
 902        }
 903
 904        v->load_addr = alloc_progmem(mod.core_size);
 905        if (!v->load_addr)
 906                return -ENOMEM;
 907
 908        pr_info("VPE loader: loading to %p\n", v->load_addr);
 909
 910        if (relocate) {
 911                for (i = 0; i < hdr->e_shnum; i++) {
 912                        void *dest;
 913
 914                        if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 915                                continue;
 916
 917                        dest = v->load_addr + sechdrs[i].sh_entsize;
 918
 919                        if (sechdrs[i].sh_type != SHT_NOBITS)
 920                                memcpy(dest, (void *)sechdrs[i].sh_addr,
 921                                       sechdrs[i].sh_size);
 922                        /* Update sh_addr to point to copy in image. */
 923                        sechdrs[i].sh_addr = (unsigned long)dest;
 924
 925                        printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
 926                               secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
 927                }
 928
 929                /* Fix up syms, so that st_value is a pointer to location. */
 930                simplify_symbols(sechdrs, symindex, strtab, secstrings,
 931                                 hdr->e_shnum, &mod);
 932
 933                /* Now do relocations. */
 934                for (i = 1; i < hdr->e_shnum; i++) {
 935                        const char *strtab = (char *)sechdrs[strindex].sh_addr;
 936                        unsigned int info = sechdrs[i].sh_info;
 937
 938                        /* Not a valid relocation section? */
 939                        if (info >= hdr->e_shnum)
 940                                continue;
 941
 942                        /* Don't bother with non-allocated sections */
 943                        if (!(sechdrs[info].sh_flags & SHF_ALLOC))
 944                                continue;
 945
 946                        if (sechdrs[i].sh_type == SHT_REL)
 947                                err = apply_relocations(sechdrs, strtab, symindex, i,
 948                                                        &mod);
 949                        else if (sechdrs[i].sh_type == SHT_RELA)
 950                                err = apply_relocate_add(sechdrs, strtab, symindex, i,
 951                                                         &mod);
 952                        if (err < 0)
 953                                return err;
 954
 955                }
 956        } else {
 957                struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff);
 958
 959                for (i = 0; i < hdr->e_phnum; i++) {
 960                        if (phdr->p_type == PT_LOAD) {
 961                                memcpy((void *)phdr->p_paddr,
 962                                       (char *)hdr + phdr->p_offset,
 963                                       phdr->p_filesz);
 964                                memset((void *)phdr->p_paddr + phdr->p_filesz,
 965                                       0, phdr->p_memsz - phdr->p_filesz);
 966                    }
 967                    phdr++;
 968                }
 969
 970                for (i = 0; i < hdr->e_shnum; i++) {
 971                        /* Internal symbols and strings. */
 972                        if (sechdrs[i].sh_type == SHT_SYMTAB) {
 973                                symindex = i;
 974                                strindex = sechdrs[i].sh_link;
 975                                strtab = (char *)hdr + sechdrs[strindex].sh_offset;
 976
 977                                /* mark the symtab's address for when we try to find the
 978                                   magic symbols */
 979                                sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
 980                        }
 981                }
 982        }
 983
 984        /* make sure it's physically written out */
 985        flush_icache_range((unsigned long)v->load_addr,
 986                           (unsigned long)v->load_addr + v->len);
 987
 988        if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
 989                if (v->__start == 0) {
 990                        printk(KERN_WARNING "VPE loader: program does not contain "
 991                               "a __start symbol\n");
 992                        return -ENOEXEC;
 993                }
 994
 995                if (v->shared_ptr == NULL)
 996                        printk(KERN_WARNING "VPE loader: "
 997                               "program does not contain vpe_shared symbol.\n"
 998                               " Unable to use AMVP (AP/SP) facilities.\n");
 999        }
1000
1001        printk(" elf loaded\n");
1002        return 0;
1003}
1004
1005static void cleanup_tc(struct tc *tc)
1006{
1007        unsigned long flags;
1008        unsigned int mtflags, vpflags;
1009        int tmp;
1010
1011        local_irq_save(flags);
1012        mtflags = dmt();
1013        vpflags = dvpe();
1014        /* Put MVPE's into 'configuration state' */
1015        set_c0_mvpcontrol(MVPCONTROL_VPC);
1016
1017        settc(tc->index);
1018        tmp = read_tc_c0_tcstatus();
1019
1020        /* mark not allocated and not dynamically allocatable */
1021        tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1022        tmp |= TCSTATUS_IXMT;   /* interrupt exempt */
1023        write_tc_c0_tcstatus(tmp);
1024
1025        write_tc_c0_tchalt(TCHALT_H);
1026        mips_ihb();
1027
1028        /* bind it to anything other than VPE1 */
1029//      write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1030
1031        clear_c0_mvpcontrol(MVPCONTROL_VPC);
1032        evpe(vpflags);
1033        emt(mtflags);
1034        local_irq_restore(flags);
1035}
1036
1037static int getcwd(char *buff, int size)
1038{
1039        mm_segment_t old_fs;
1040        int ret;
1041
1042        old_fs = get_fs();
1043        set_fs(KERNEL_DS);
1044
1045        ret = sys_getcwd(buff, size);
1046
1047        set_fs(old_fs);
1048
1049        return ret;
1050}
1051
1052/* checks VPE is unused and gets ready to load program  */
1053static int vpe_open(struct inode *inode, struct file *filp)
1054{
1055        enum vpe_state state;
1056        struct vpe_notifications *not;
1057        struct vpe *v;
1058        int ret;
1059
1060        if (minor != iminor(inode)) {
1061                /* assume only 1 device at the moment. */
1062                pr_warning("VPE loader: only vpe1 is supported\n");
1063
1064                return -ENODEV;
1065        }
1066
1067        if ((v = get_vpe(tclimit)) == NULL) {
1068                pr_warning("VPE loader: unable to get vpe\n");
1069
1070                return -ENODEV;
1071        }
1072
1073        state = xchg(&v->state, VPE_STATE_INUSE);
1074        if (state != VPE_STATE_UNUSED) {
1075                printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1076
1077                list_for_each_entry(not, &v->notify, list) {
1078                        not->stop(tclimit);
1079                }
1080
1081                release_progmem(v->load_addr);
1082                cleanup_tc(get_tc(tclimit));
1083        }
1084
1085        /* this of-course trashes what was there before... */
1086        v->pbuffer = vmalloc(P_SIZE);
1087        if (!v->pbuffer) {
1088                pr_warning("VPE loader: unable to allocate memory\n");
1089                return -ENOMEM;
1090        }
1091        v->plen = P_SIZE;
1092        v->load_addr = NULL;
1093        v->len = 0;
1094
1095        v->uid = filp->f_cred->fsuid;
1096        v->gid = filp->f_cred->fsgid;
1097
1098        v->cwd[0] = 0;
1099        ret = getcwd(v->cwd, VPE_PATH_MAX);
1100        if (ret < 0)
1101                printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1102
1103        v->shared_ptr = NULL;
1104        v->__start = 0;
1105
1106        return 0;
1107}
1108
1109static int vpe_release(struct inode *inode, struct file *filp)
1110{
1111        struct vpe *v;
1112        Elf_Ehdr *hdr;
1113        int ret = 0;
1114
1115        v = get_vpe(tclimit);
1116        if (v == NULL)
1117                return -ENODEV;
1118
1119        hdr = (Elf_Ehdr *) v->pbuffer;
1120        if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) {
1121                if (vpe_elfload(v) >= 0) {
1122                        vpe_run(v);
1123                } else {
1124                        printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1125                        ret = -ENOEXEC;
1126                }
1127        } else {
1128                printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1129                ret = -ENOEXEC;
1130        }
1131
1132        /* It's good to be able to run the SP and if it chokes have a look at
1133           the /dev/rt?. But if we reset the pointer to the shared struct we
1134           lose what has happened. So perhaps if garbage is sent to the vpe
1135           device, use it as a trigger for the reset. Hopefully a nice
1136           executable will be along shortly. */
1137        if (ret < 0)
1138                v->shared_ptr = NULL;
1139
1140        vfree(v->pbuffer);
1141        v->plen = 0;
1142
1143        return ret;
1144}
1145
1146static ssize_t vpe_write(struct file *file, const char __user * buffer,
1147                         size_t count, loff_t * ppos)
1148{
1149        size_t ret = count;
1150        struct vpe *v;
1151
1152        if (iminor(file->f_path.dentry->d_inode) != minor)
1153                return -ENODEV;
1154
1155        v = get_vpe(tclimit);
1156        if (v == NULL)
1157                return -ENODEV;
1158
1159        if ((count + v->len) > v->plen) {
1160                printk(KERN_WARNING
1161                       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1162                return -ENOMEM;
1163        }
1164
1165        count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1166        if (!count)
1167                return -EFAULT;
1168
1169        v->len += count;
1170        return ret;
1171}
1172
1173static const struct file_operations vpe_fops = {
1174        .owner = THIS_MODULE,
1175        .open = vpe_open,
1176        .release = vpe_release,
1177        .write = vpe_write,
1178        .llseek = noop_llseek,
1179};
1180
1181/* module wrapper entry points */
1182/* give me a vpe */
1183vpe_handle vpe_alloc(void)
1184{
1185        int i;
1186        struct vpe *v;
1187
1188        /* find a vpe */
1189        for (i = 1; i < MAX_VPES; i++) {
1190                if ((v = get_vpe(i)) != NULL) {
1191                        v->state = VPE_STATE_INUSE;
1192                        return v;
1193                }
1194        }
1195        return NULL;
1196}
1197
1198EXPORT_SYMBOL(vpe_alloc);
1199
1200/* start running from here */
1201int vpe_start(vpe_handle vpe, unsigned long start)
1202{
1203        struct vpe *v = vpe;
1204
1205        v->__start = start;
1206        return vpe_run(v);
1207}
1208
1209EXPORT_SYMBOL(vpe_start);
1210
1211/* halt it for now */
1212int vpe_stop(vpe_handle vpe)
1213{
1214        struct vpe *v = vpe;
1215        struct tc *t;
1216        unsigned int evpe_flags;
1217
1218        evpe_flags = dvpe();
1219
1220        if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1221
1222                settc(t->index);
1223                write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1224        }
1225
1226        evpe(evpe_flags);
1227
1228        return 0;
1229}
1230
1231EXPORT_SYMBOL(vpe_stop);
1232
1233/* I've done with it thank you */
1234int vpe_free(vpe_handle vpe)
1235{
1236        struct vpe *v = vpe;
1237        struct tc *t;
1238        unsigned int evpe_flags;
1239
1240        if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1241                return -ENOEXEC;
1242        }
1243
1244        evpe_flags = dvpe();
1245
1246        /* Put MVPE's into 'configuration state' */
1247        set_c0_mvpcontrol(MVPCONTROL_VPC);
1248
1249        settc(t->index);
1250        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1251
1252        /* halt the TC */
1253        write_tc_c0_tchalt(TCHALT_H);
1254        mips_ihb();
1255
1256        /* mark the TC unallocated */
1257        write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1258
1259        v->state = VPE_STATE_UNUSED;
1260
1261        clear_c0_mvpcontrol(MVPCONTROL_VPC);
1262        evpe(evpe_flags);
1263
1264        return 0;
1265}
1266
1267EXPORT_SYMBOL(vpe_free);
1268
1269void *vpe_get_shared(int index)
1270{
1271        struct vpe *v;
1272
1273        if ((v = get_vpe(index)) == NULL)
1274                return NULL;
1275
1276        return v->shared_ptr;
1277}
1278
1279EXPORT_SYMBOL(vpe_get_shared);
1280
1281int vpe_getuid(int index)
1282{
1283        struct vpe *v;
1284
1285        if ((v = get_vpe(index)) == NULL)
1286                return -1;
1287
1288        return v->uid;
1289}
1290
1291EXPORT_SYMBOL(vpe_getuid);
1292
1293int vpe_getgid(int index)
1294{
1295        struct vpe *v;
1296
1297        if ((v = get_vpe(index)) == NULL)
1298                return -1;
1299
1300        return v->gid;
1301}
1302
1303EXPORT_SYMBOL(vpe_getgid);
1304
1305int vpe_notify(int index, struct vpe_notifications *notify)
1306{
1307        struct vpe *v;
1308
1309        if ((v = get_vpe(index)) == NULL)
1310                return -1;
1311
1312        list_add(&notify->list, &v->notify);
1313        return 0;
1314}
1315
1316EXPORT_SYMBOL(vpe_notify);
1317
1318char *vpe_getcwd(int index)
1319{
1320        struct vpe *v;
1321
1322        if ((v = get_vpe(index)) == NULL)
1323                return NULL;
1324
1325        return v->cwd;
1326}
1327
1328EXPORT_SYMBOL(vpe_getcwd);
1329
1330static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
1331                          const char *buf, size_t len)
1332{
1333        struct vpe *vpe = get_vpe(tclimit);
1334        struct vpe_notifications *not;
1335
1336        list_for_each_entry(not, &vpe->notify, list) {
1337                not->stop(tclimit);
1338        }
1339
1340        release_progmem(vpe->load_addr);
1341        cleanup_tc(get_tc(tclimit));
1342        vpe_stop(vpe);
1343        vpe_free(vpe);
1344
1345        return len;
1346}
1347
1348static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr,
1349                         char *buf)
1350{
1351        struct vpe *vpe = get_vpe(tclimit);
1352
1353        return sprintf(buf, "%d\n", vpe->ntcs);
1354}
1355
1356static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr,
1357                          const char *buf, size_t len)
1358{
1359        struct vpe *vpe = get_vpe(tclimit);
1360        unsigned long new;
1361        char *endp;
1362
1363        new = simple_strtoul(buf, &endp, 0);
1364        if (endp == buf)
1365                goto out_einval;
1366
1367        if (new == 0 || new > (hw_tcs - tclimit))
1368                goto out_einval;
1369
1370        vpe->ntcs = new;
1371
1372        return len;
1373
1374out_einval:
1375        return -EINVAL;
1376}
1377
1378static struct device_attribute vpe_class_attributes[] = {
1379        __ATTR(kill, S_IWUSR, NULL, store_kill),
1380        __ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs),
1381        {}
1382};
1383
1384static void vpe_device_release(struct device *cd)
1385{
1386        kfree(cd);
1387}
1388
1389struct class vpe_class = {
1390        .name = "vpe",
1391        .owner = THIS_MODULE,
1392        .dev_release = vpe_device_release,
1393        .dev_attrs = vpe_class_attributes,
1394};
1395
1396struct device vpe_device;
1397
1398static int __init vpe_module_init(void)
1399{
1400        unsigned int mtflags, vpflags;
1401        unsigned long flags, val;
1402        struct vpe *v = NULL;
1403        struct tc *t;
1404        int tc, err;
1405
1406        if (!cpu_has_mipsmt) {
1407                printk("VPE loader: not a MIPS MT capable processor\n");
1408                return -ENODEV;
1409        }
1410
1411        if (vpelimit == 0) {
1412                printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
1413                       "initializing VPE loader.\nPass maxvpes=<n> argument as "
1414                       "kernel argument\n");
1415
1416                return -ENODEV;
1417        }
1418
1419        if (tclimit == 0) {
1420                printk(KERN_WARNING "No TCs reserved for AP/SP, not "
1421                       "initializing VPE loader.\nPass maxtcs=<n> argument as "
1422                       "kernel argument\n");
1423
1424                return -ENODEV;
1425        }
1426
1427        major = register_chrdev(0, module_name, &vpe_fops);
1428        if (major < 0) {
1429                printk("VPE loader: unable to register character device\n");
1430                return major;
1431        }
1432
1433        err = class_register(&vpe_class);
1434        if (err) {
1435                printk(KERN_ERR "vpe_class registration failed\n");
1436                goto out_chrdev;
1437        }
1438
1439        device_initialize(&vpe_device);
1440        vpe_device.class        = &vpe_class,
1441        vpe_device.parent       = NULL,
1442        dev_set_name(&vpe_device, "vpe1");
1443        vpe_device.devt = MKDEV(major, minor);
1444        err = device_add(&vpe_device);
1445        if (err) {
1446                printk(KERN_ERR "Adding vpe_device failed\n");
1447                goto out_class;
1448        }
1449
1450        local_irq_save(flags);
1451        mtflags = dmt();
1452        vpflags = dvpe();
1453
1454        /* Put MVPE's into 'configuration state' */
1455        set_c0_mvpcontrol(MVPCONTROL_VPC);
1456
1457        /* dump_mtregs(); */
1458
1459        val = read_c0_mvpconf0();
1460        hw_tcs = (val & MVPCONF0_PTC) + 1;
1461        hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
1462
1463        for (tc = tclimit; tc < hw_tcs; tc++) {
1464                /*
1465                 * Must re-enable multithreading temporarily or in case we
1466                 * reschedule send IPIs or similar we might hang.
1467                 */
1468                clear_c0_mvpcontrol(MVPCONTROL_VPC);
1469                evpe(vpflags);
1470                emt(mtflags);
1471                local_irq_restore(flags);
1472                t = alloc_tc(tc);
1473                if (!t) {
1474                        err = -ENOMEM;
1475                        goto out;
1476                }
1477
1478                local_irq_save(flags);
1479                mtflags = dmt();
1480                vpflags = dvpe();
1481                set_c0_mvpcontrol(MVPCONTROL_VPC);
1482
1483                /* VPE's */
1484                if (tc < hw_tcs) {
1485                        settc(tc);
1486
1487                        if ((v = alloc_vpe(tc)) == NULL) {
1488                                printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1489
1490                                goto out_reenable;
1491                        }
1492
1493                        v->ntcs = hw_tcs - tclimit;
1494
1495                        /* add the tc to the list of this vpe's tc's. */
1496                        list_add(&t->tc, &v->tc);
1497
1498                        /* deactivate all but vpe0 */
1499                        if (tc >= tclimit) {
1500                                unsigned long tmp = read_vpe_c0_vpeconf0();
1501
1502                                tmp &= ~VPECONF0_VPA;
1503
1504                                /* master VPE */
1505                                tmp |= VPECONF0_MVP;
1506                                write_vpe_c0_vpeconf0(tmp);
1507                        }
1508
1509                        /* disable multi-threading with TC's */
1510                        write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1511
1512                        if (tc >= vpelimit) {
1513                                /*
1514                                 * Set config to be the same as vpe0,
1515                                 * particularly kseg0 coherency alg
1516                                 */
1517                                write_vpe_c0_config(read_c0_config());
1518                        }
1519                }
1520
1521                /* TC's */
1522                t->pvpe = v;    /* set the parent vpe */
1523
1524                if (tc >= tclimit) {
1525                        unsigned long tmp;
1526
1527                        settc(tc);
1528
1529                        /* Any TC that is bound to VPE0 gets left as is - in case
1530                           we are running SMTC on VPE0. A TC that is bound to any
1531                           other VPE gets bound to VPE0, ideally I'd like to make
1532                           it homeless but it doesn't appear to let me bind a TC
1533                           to a non-existent VPE. Which is perfectly reasonable.
1534
1535                           The (un)bound state is visible to an EJTAG probe so may
1536                           notify GDB...
1537                        */
1538
1539                        if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1540                                /* tc is bound >vpe0 */
1541                                write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1542
1543                                t->pvpe = get_vpe(0);   /* set the parent vpe */
1544                        }
1545
1546                        /* halt the TC */
1547                        write_tc_c0_tchalt(TCHALT_H);
1548                        mips_ihb();
1549
1550                        tmp = read_tc_c0_tcstatus();
1551
1552                        /* mark not activated and not dynamically allocatable */
1553                        tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1554                        tmp |= TCSTATUS_IXMT;   /* interrupt exempt */
1555                        write_tc_c0_tcstatus(tmp);
1556                }
1557        }
1558
1559out_reenable:
1560        /* release config state */
1561        clear_c0_mvpcontrol(MVPCONTROL_VPC);
1562
1563        evpe(vpflags);
1564        emt(mtflags);
1565        local_irq_restore(flags);
1566
1567        return 0;
1568
1569out_class:
1570        class_unregister(&vpe_class);
1571out_chrdev:
1572        unregister_chrdev(major, module_name);
1573
1574out:
1575        return err;
1576}
1577
1578static void __exit vpe_module_exit(void)
1579{
1580        struct vpe *v, *n;
1581
1582        device_del(&vpe_device);
1583        unregister_chrdev(major, module_name);
1584
1585        /* No locking needed here */
1586        list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1587                if (v->state != VPE_STATE_UNUSED)
1588                        release_vpe(v);
1589        }
1590}
1591
1592module_init(vpe_module_init);
1593module_exit(vpe_module_exit);
1594MODULE_DESCRIPTION("MIPS VPE Loader");
1595MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1596MODULE_LICENSE("GPL");
1597