1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23#undef DEBUG
24
25#include <linux/errno.h>
26#include <linux/sched.h>
27#include <linux/kernel.h>
28#include <linux/mm.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/vmalloc.h>
32#include <linux/smp.h>
33#include <linux/stddef.h>
34#include <linux/unistd.h>
35#include <linux/numa.h>
36#include <linux/mutex.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/pid_namespace.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
42
43#include <asm/io.h>
44#include <asm/mmu_context.h>
45#include <asm/spu.h>
46#include <asm/spu_csa.h>
47#include <asm/spu_priv1.h>
48#include "spufs.h"
49#define CREATE_TRACE_POINTS
50#include "sputrace.h"
51
52struct spu_prio_array {
53 DECLARE_BITMAP(bitmap, MAX_PRIO);
54 struct list_head runq[MAX_PRIO];
55 spinlock_t runq_lock;
56 int nr_waiting;
57};
58
59static unsigned long spu_avenrun[3];
60static struct spu_prio_array *spu_prio;
61static struct task_struct *spusched_task;
62static struct timer_list spusched_timer;
63static struct timer_list spuloadavg_timer;
64
65
66
67
68#define NORMAL_PRIO 120
69
70
71
72
73
74#define SPUSCHED_TICK (10)
75
76
77
78
79
80
81
82#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
83#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
84
85#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
86#define SCALE_PRIO(x, prio) \
87 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
88
89
90
91
92
93
94
95
96
97void spu_set_timeslice(struct spu_context *ctx)
98{
99 if (ctx->prio < NORMAL_PRIO)
100 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
101 else
102 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
103}
104
105
106
107
108void __spu_update_sched_info(struct spu_context *ctx)
109{
110
111
112
113
114 BUG_ON(!list_empty(&ctx->rq));
115
116
117
118
119
120
121 ctx->tid = current->pid;
122
123
124
125
126
127
128
129 if (rt_prio(current->prio))
130 ctx->prio = current->prio;
131 else
132 ctx->prio = current->static_prio;
133 ctx->policy = current->policy;
134
135
136
137
138
139
140
141
142
143 cpumask_copy(&ctx->cpus_allowed, tsk_cpus_allowed(current));
144
145
146 ctx->last_ran = raw_smp_processor_id();
147}
148
149void spu_update_sched_info(struct spu_context *ctx)
150{
151 int node;
152
153 if (ctx->state == SPU_STATE_RUNNABLE) {
154 node = ctx->spu->node;
155
156
157
158
159 mutex_lock(&cbe_spu_info[node].list_mutex);
160 __spu_update_sched_info(ctx);
161 mutex_unlock(&cbe_spu_info[node].list_mutex);
162 } else {
163 __spu_update_sched_info(ctx);
164 }
165}
166
167static int __node_allowed(struct spu_context *ctx, int node)
168{
169 if (nr_cpus_node(node)) {
170 const struct cpumask *mask = cpumask_of_node(node);
171
172 if (cpumask_intersects(mask, &ctx->cpus_allowed))
173 return 1;
174 }
175
176 return 0;
177}
178
179static int node_allowed(struct spu_context *ctx, int node)
180{
181 int rval;
182
183 spin_lock(&spu_prio->runq_lock);
184 rval = __node_allowed(ctx, node);
185 spin_unlock(&spu_prio->runq_lock);
186
187 return rval;
188}
189
190void do_notify_spus_active(void)
191{
192 int node;
193
194
195
196
197
198
199
200 for_each_online_node(node) {
201 struct spu *spu;
202
203 mutex_lock(&cbe_spu_info[node].list_mutex);
204 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
205 if (spu->alloc_state != SPU_FREE) {
206 struct spu_context *ctx = spu->ctx;
207 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
208 &ctx->sched_flags);
209 mb();
210 wake_up_all(&ctx->stop_wq);
211 }
212 }
213 mutex_unlock(&cbe_spu_info[node].list_mutex);
214 }
215}
216
217
218
219
220
221
222static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
223{
224 spu_context_trace(spu_bind_context__enter, ctx, spu);
225
226 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
227
228 if (ctx->flags & SPU_CREATE_NOSCHED)
229 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
230
231 ctx->stats.slb_flt_base = spu->stats.slb_flt;
232 ctx->stats.class2_intr_base = spu->stats.class2_intr;
233
234 spu_associate_mm(spu, ctx->owner);
235
236 spin_lock_irq(&spu->register_lock);
237 spu->ctx = ctx;
238 spu->flags = 0;
239 ctx->spu = spu;
240 ctx->ops = &spu_hw_ops;
241 spu->pid = current->pid;
242 spu->tgid = current->tgid;
243 spu->ibox_callback = spufs_ibox_callback;
244 spu->wbox_callback = spufs_wbox_callback;
245 spu->stop_callback = spufs_stop_callback;
246 spu->mfc_callback = spufs_mfc_callback;
247 spin_unlock_irq(&spu->register_lock);
248
249 spu_unmap_mappings(ctx);
250
251 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
252 spu_restore(&ctx->csa, spu);
253 spu->timestamp = jiffies;
254 spu_switch_notify(spu, ctx);
255 ctx->state = SPU_STATE_RUNNABLE;
256
257 spuctx_switch_state(ctx, SPU_UTIL_USER);
258}
259
260
261
262
263static inline int sched_spu(struct spu *spu)
264{
265 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
266
267 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
268}
269
270static void aff_merge_remaining_ctxs(struct spu_gang *gang)
271{
272 struct spu_context *ctx;
273
274 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
275 if (list_empty(&ctx->aff_list))
276 list_add(&ctx->aff_list, &gang->aff_list_head);
277 }
278 gang->aff_flags |= AFF_MERGED;
279}
280
281static void aff_set_offsets(struct spu_gang *gang)
282{
283 struct spu_context *ctx;
284 int offset;
285
286 offset = -1;
287 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
288 aff_list) {
289 if (&ctx->aff_list == &gang->aff_list_head)
290 break;
291 ctx->aff_offset = offset--;
292 }
293
294 offset = 0;
295 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
296 if (&ctx->aff_list == &gang->aff_list_head)
297 break;
298 ctx->aff_offset = offset++;
299 }
300
301 gang->aff_flags |= AFF_OFFSETS_SET;
302}
303
304static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
305 int group_size, int lowest_offset)
306{
307 struct spu *spu;
308 int node, n;
309
310
311
312
313
314 node = cpu_to_node(raw_smp_processor_id());
315 for (n = 0; n < MAX_NUMNODES; n++, node++) {
316
317
318
319
320
321
322
323
324
325 int available_spus;
326
327 node = (node < MAX_NUMNODES) ? node : 0;
328 if (!node_allowed(ctx, node))
329 continue;
330
331 available_spus = 0;
332 mutex_lock(&cbe_spu_info[node].list_mutex);
333 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
334 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
335 && spu->ctx->gang->aff_ref_spu)
336 available_spus -= spu->ctx->gang->contexts;
337 available_spus++;
338 }
339 if (available_spus < ctx->gang->contexts) {
340 mutex_unlock(&cbe_spu_info[node].list_mutex);
341 continue;
342 }
343
344 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
345 if ((!mem_aff || spu->has_mem_affinity) &&
346 sched_spu(spu)) {
347 mutex_unlock(&cbe_spu_info[node].list_mutex);
348 return spu;
349 }
350 }
351 mutex_unlock(&cbe_spu_info[node].list_mutex);
352 }
353 return NULL;
354}
355
356static void aff_set_ref_point_location(struct spu_gang *gang)
357{
358 int mem_aff, gs, lowest_offset;
359 struct spu_context *ctx;
360 struct spu *tmp;
361
362 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
363 lowest_offset = 0;
364 gs = 0;
365
366 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
367 gs++;
368
369 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
370 aff_list) {
371 if (&ctx->aff_list == &gang->aff_list_head)
372 break;
373 lowest_offset = ctx->aff_offset;
374 }
375
376 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
377 lowest_offset);
378}
379
380static struct spu *ctx_location(struct spu *ref, int offset, int node)
381{
382 struct spu *spu;
383
384 spu = NULL;
385 if (offset >= 0) {
386 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
387 BUG_ON(spu->node != node);
388 if (offset == 0)
389 break;
390 if (sched_spu(spu))
391 offset--;
392 }
393 } else {
394 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
395 BUG_ON(spu->node != node);
396 if (offset == 0)
397 break;
398 if (sched_spu(spu))
399 offset++;
400 }
401 }
402
403 return spu;
404}
405
406
407
408
409
410static int has_affinity(struct spu_context *ctx)
411{
412 struct spu_gang *gang = ctx->gang;
413
414 if (list_empty(&ctx->aff_list))
415 return 0;
416
417 if (atomic_read(&ctx->gang->aff_sched_count) == 0)
418 ctx->gang->aff_ref_spu = NULL;
419
420 if (!gang->aff_ref_spu) {
421 if (!(gang->aff_flags & AFF_MERGED))
422 aff_merge_remaining_ctxs(gang);
423 if (!(gang->aff_flags & AFF_OFFSETS_SET))
424 aff_set_offsets(gang);
425 aff_set_ref_point_location(gang);
426 }
427
428 return gang->aff_ref_spu != NULL;
429}
430
431
432
433
434
435
436static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
437{
438 u32 status;
439
440 spu_context_trace(spu_unbind_context__enter, ctx, spu);
441
442 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
443
444 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
445 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
446
447 if (ctx->gang)
448
449
450
451
452
453 atomic_dec_if_positive(&ctx->gang->aff_sched_count);
454
455 spu_switch_notify(spu, NULL);
456 spu_unmap_mappings(ctx);
457 spu_save(&ctx->csa, spu);
458 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
459
460 spin_lock_irq(&spu->register_lock);
461 spu->timestamp = jiffies;
462 ctx->state = SPU_STATE_SAVED;
463 spu->ibox_callback = NULL;
464 spu->wbox_callback = NULL;
465 spu->stop_callback = NULL;
466 spu->mfc_callback = NULL;
467 spu->pid = 0;
468 spu->tgid = 0;
469 ctx->ops = &spu_backing_ops;
470 spu->flags = 0;
471 spu->ctx = NULL;
472 spin_unlock_irq(&spu->register_lock);
473
474 spu_associate_mm(spu, NULL);
475
476 ctx->stats.slb_flt +=
477 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
478 ctx->stats.class2_intr +=
479 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
480
481
482 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
483 ctx->spu = NULL;
484
485 if (spu_stopped(ctx, &status))
486 wake_up_all(&ctx->stop_wq);
487}
488
489
490
491
492
493static void __spu_add_to_rq(struct spu_context *ctx)
494{
495
496
497
498
499
500
501
502
503
504
505
506
507
508 if (list_empty(&ctx->rq)) {
509 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
510 set_bit(ctx->prio, spu_prio->bitmap);
511 if (!spu_prio->nr_waiting++)
512 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
513 }
514}
515
516static void spu_add_to_rq(struct spu_context *ctx)
517{
518 spin_lock(&spu_prio->runq_lock);
519 __spu_add_to_rq(ctx);
520 spin_unlock(&spu_prio->runq_lock);
521}
522
523static void __spu_del_from_rq(struct spu_context *ctx)
524{
525 int prio = ctx->prio;
526
527 if (!list_empty(&ctx->rq)) {
528 if (!--spu_prio->nr_waiting)
529 del_timer(&spusched_timer);
530 list_del_init(&ctx->rq);
531
532 if (list_empty(&spu_prio->runq[prio]))
533 clear_bit(prio, spu_prio->bitmap);
534 }
535}
536
537void spu_del_from_rq(struct spu_context *ctx)
538{
539 spin_lock(&spu_prio->runq_lock);
540 __spu_del_from_rq(ctx);
541 spin_unlock(&spu_prio->runq_lock);
542}
543
544static void spu_prio_wait(struct spu_context *ctx)
545{
546 DEFINE_WAIT(wait);
547
548
549
550
551
552
553 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
554
555 spin_lock(&spu_prio->runq_lock);
556 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
557 if (!signal_pending(current)) {
558 __spu_add_to_rq(ctx);
559 spin_unlock(&spu_prio->runq_lock);
560 mutex_unlock(&ctx->state_mutex);
561 schedule();
562 mutex_lock(&ctx->state_mutex);
563 spin_lock(&spu_prio->runq_lock);
564 __spu_del_from_rq(ctx);
565 }
566 spin_unlock(&spu_prio->runq_lock);
567 __set_current_state(TASK_RUNNING);
568 remove_wait_queue(&ctx->stop_wq, &wait);
569}
570
571static struct spu *spu_get_idle(struct spu_context *ctx)
572{
573 struct spu *spu, *aff_ref_spu;
574 int node, n;
575
576 spu_context_nospu_trace(spu_get_idle__enter, ctx);
577
578 if (ctx->gang) {
579 mutex_lock(&ctx->gang->aff_mutex);
580 if (has_affinity(ctx)) {
581 aff_ref_spu = ctx->gang->aff_ref_spu;
582 atomic_inc(&ctx->gang->aff_sched_count);
583 mutex_unlock(&ctx->gang->aff_mutex);
584 node = aff_ref_spu->node;
585
586 mutex_lock(&cbe_spu_info[node].list_mutex);
587 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
588 if (spu && spu->alloc_state == SPU_FREE)
589 goto found;
590 mutex_unlock(&cbe_spu_info[node].list_mutex);
591
592 atomic_dec(&ctx->gang->aff_sched_count);
593 goto not_found;
594 }
595 mutex_unlock(&ctx->gang->aff_mutex);
596 }
597 node = cpu_to_node(raw_smp_processor_id());
598 for (n = 0; n < MAX_NUMNODES; n++, node++) {
599 node = (node < MAX_NUMNODES) ? node : 0;
600 if (!node_allowed(ctx, node))
601 continue;
602
603 mutex_lock(&cbe_spu_info[node].list_mutex);
604 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
605 if (spu->alloc_state == SPU_FREE)
606 goto found;
607 }
608 mutex_unlock(&cbe_spu_info[node].list_mutex);
609 }
610
611 not_found:
612 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
613 return NULL;
614
615 found:
616 spu->alloc_state = SPU_USED;
617 mutex_unlock(&cbe_spu_info[node].list_mutex);
618 spu_context_trace(spu_get_idle__found, ctx, spu);
619 spu_init_channels(spu);
620 return spu;
621}
622
623
624
625
626
627
628
629static struct spu *find_victim(struct spu_context *ctx)
630{
631 struct spu_context *victim = NULL;
632 struct spu *spu;
633 int node, n;
634
635 spu_context_nospu_trace(spu_find_victim__enter, ctx);
636
637
638
639
640
641
642
643
644 restart:
645 node = cpu_to_node(raw_smp_processor_id());
646 for (n = 0; n < MAX_NUMNODES; n++, node++) {
647 node = (node < MAX_NUMNODES) ? node : 0;
648 if (!node_allowed(ctx, node))
649 continue;
650
651 mutex_lock(&cbe_spu_info[node].list_mutex);
652 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
653 struct spu_context *tmp = spu->ctx;
654
655 if (tmp && tmp->prio > ctx->prio &&
656 !(tmp->flags & SPU_CREATE_NOSCHED) &&
657 (!victim || tmp->prio > victim->prio)) {
658 victim = spu->ctx;
659 }
660 }
661 if (victim)
662 get_spu_context(victim);
663 mutex_unlock(&cbe_spu_info[node].list_mutex);
664
665 if (victim) {
666
667
668
669
670
671
672
673
674
675
676 if (!mutex_trylock(&victim->state_mutex)) {
677 put_spu_context(victim);
678 victim = NULL;
679 goto restart;
680 }
681
682 spu = victim->spu;
683 if (!spu || victim->prio <= ctx->prio) {
684
685
686
687
688
689 mutex_unlock(&victim->state_mutex);
690 put_spu_context(victim);
691 victim = NULL;
692 goto restart;
693 }
694
695 spu_context_trace(__spu_deactivate__unload, ctx, spu);
696
697 mutex_lock(&cbe_spu_info[node].list_mutex);
698 cbe_spu_info[node].nr_active--;
699 spu_unbind_context(spu, victim);
700 mutex_unlock(&cbe_spu_info[node].list_mutex);
701
702 victim->stats.invol_ctx_switch++;
703 spu->stats.invol_ctx_switch++;
704 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
705 spu_add_to_rq(victim);
706
707 mutex_unlock(&victim->state_mutex);
708 put_spu_context(victim);
709
710 return spu;
711 }
712 }
713
714 return NULL;
715}
716
717static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
718{
719 int node = spu->node;
720 int success = 0;
721
722 spu_set_timeslice(ctx);
723
724 mutex_lock(&cbe_spu_info[node].list_mutex);
725 if (spu->ctx == NULL) {
726 spu_bind_context(spu, ctx);
727 cbe_spu_info[node].nr_active++;
728 spu->alloc_state = SPU_USED;
729 success = 1;
730 }
731 mutex_unlock(&cbe_spu_info[node].list_mutex);
732
733 if (success)
734 wake_up_all(&ctx->run_wq);
735 else
736 spu_add_to_rq(ctx);
737}
738
739static void spu_schedule(struct spu *spu, struct spu_context *ctx)
740{
741
742
743 mutex_lock(&ctx->state_mutex);
744 if (ctx->state == SPU_STATE_SAVED)
745 __spu_schedule(spu, ctx);
746 spu_release(ctx);
747}
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
763 int free_spu)
764{
765 int node = spu->node;
766
767 mutex_lock(&cbe_spu_info[node].list_mutex);
768 cbe_spu_info[node].nr_active--;
769 if (free_spu)
770 spu->alloc_state = SPU_FREE;
771 spu_unbind_context(spu, ctx);
772 ctx->stats.invol_ctx_switch++;
773 spu->stats.invol_ctx_switch++;
774 mutex_unlock(&cbe_spu_info[node].list_mutex);
775}
776
777
778
779
780
781
782
783
784
785
786int spu_activate(struct spu_context *ctx, unsigned long flags)
787{
788 struct spu *spu;
789
790
791
792
793
794
795
796 if (ctx->spu)
797 return 0;
798
799spu_activate_top:
800 if (signal_pending(current))
801 return -ERESTARTSYS;
802
803 spu = spu_get_idle(ctx);
804
805
806
807
808 if (!spu && rt_prio(ctx->prio))
809 spu = find_victim(ctx);
810 if (spu) {
811 unsigned long runcntl;
812
813 runcntl = ctx->ops->runcntl_read(ctx);
814 __spu_schedule(spu, ctx);
815 if (runcntl & SPU_RUNCNTL_RUNNABLE)
816 spuctx_switch_state(ctx, SPU_UTIL_USER);
817
818 return 0;
819 }
820
821 if (ctx->flags & SPU_CREATE_NOSCHED) {
822 spu_prio_wait(ctx);
823 goto spu_activate_top;
824 }
825
826 spu_add_to_rq(ctx);
827
828 return 0;
829}
830
831
832
833
834
835
836
837static struct spu_context *grab_runnable_context(int prio, int node)
838{
839 struct spu_context *ctx;
840 int best;
841
842 spin_lock(&spu_prio->runq_lock);
843 best = find_first_bit(spu_prio->bitmap, prio);
844 while (best < prio) {
845 struct list_head *rq = &spu_prio->runq[best];
846
847 list_for_each_entry(ctx, rq, rq) {
848
849 if (__node_allowed(ctx, node)) {
850 __spu_del_from_rq(ctx);
851 goto found;
852 }
853 }
854 best++;
855 }
856 ctx = NULL;
857 found:
858 spin_unlock(&spu_prio->runq_lock);
859 return ctx;
860}
861
862static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
863{
864 struct spu *spu = ctx->spu;
865 struct spu_context *new = NULL;
866
867 if (spu) {
868 new = grab_runnable_context(max_prio, spu->node);
869 if (new || force) {
870 spu_unschedule(spu, ctx, new == NULL);
871 if (new) {
872 if (new->flags & SPU_CREATE_NOSCHED)
873 wake_up(&new->stop_wq);
874 else {
875 spu_release(ctx);
876 spu_schedule(spu, new);
877
878
879 mutex_lock(&ctx->state_mutex);
880 }
881 }
882 }
883 }
884
885 return new != NULL;
886}
887
888
889
890
891
892
893
894
895void spu_deactivate(struct spu_context *ctx)
896{
897 spu_context_nospu_trace(spu_deactivate__enter, ctx);
898 __spu_deactivate(ctx, 1, MAX_PRIO);
899}
900
901
902
903
904
905
906
907
908
909void spu_yield(struct spu_context *ctx)
910{
911 spu_context_nospu_trace(spu_yield__enter, ctx);
912 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
913 mutex_lock(&ctx->state_mutex);
914 __spu_deactivate(ctx, 0, MAX_PRIO);
915 mutex_unlock(&ctx->state_mutex);
916 }
917}
918
919static noinline void spusched_tick(struct spu_context *ctx)
920{
921 struct spu_context *new = NULL;
922 struct spu *spu = NULL;
923
924 if (spu_acquire(ctx))
925 BUG();
926
927 if (ctx->state != SPU_STATE_RUNNABLE)
928 goto out;
929 if (ctx->flags & SPU_CREATE_NOSCHED)
930 goto out;
931 if (ctx->policy == SCHED_FIFO)
932 goto out;
933
934 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
935 goto out;
936
937 spu = ctx->spu;
938
939 spu_context_trace(spusched_tick__preempt, ctx, spu);
940
941 new = grab_runnable_context(ctx->prio + 1, spu->node);
942 if (new) {
943 spu_unschedule(spu, ctx, 0);
944 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
945 spu_add_to_rq(ctx);
946 } else {
947 spu_context_nospu_trace(spusched_tick__newslice, ctx);
948 if (!ctx->time_slice)
949 ctx->time_slice++;
950 }
951out:
952 spu_release(ctx);
953
954 if (new)
955 spu_schedule(spu, new);
956}
957
958
959
960
961
962
963
964
965
966
967static unsigned long count_active_contexts(void)
968{
969 int nr_active = 0, node;
970
971 for (node = 0; node < MAX_NUMNODES; node++)
972 nr_active += cbe_spu_info[node].nr_active;
973 nr_active += spu_prio->nr_waiting;
974
975 return nr_active;
976}
977
978
979
980
981
982
983
984static void spu_calc_load(void)
985{
986 unsigned long active_tasks;
987
988 active_tasks = count_active_contexts() * FIXED_1;
989 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
990 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
991 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
992}
993
994static void spusched_wake(unsigned long data)
995{
996 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
997 wake_up_process(spusched_task);
998}
999
1000static void spuloadavg_wake(unsigned long data)
1001{
1002 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1003 spu_calc_load();
1004}
1005
1006static int spusched_thread(void *unused)
1007{
1008 struct spu *spu;
1009 int node;
1010
1011 while (!kthread_should_stop()) {
1012 set_current_state(TASK_INTERRUPTIBLE);
1013 schedule();
1014 for (node = 0; node < MAX_NUMNODES; node++) {
1015 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1016
1017 mutex_lock(mtx);
1018 list_for_each_entry(spu, &cbe_spu_info[node].spus,
1019 cbe_list) {
1020 struct spu_context *ctx = spu->ctx;
1021
1022 if (ctx) {
1023 get_spu_context(ctx);
1024 mutex_unlock(mtx);
1025 spusched_tick(ctx);
1026 mutex_lock(mtx);
1027 put_spu_context(ctx);
1028 }
1029 }
1030 mutex_unlock(mtx);
1031 }
1032 }
1033
1034 return 0;
1035}
1036
1037void spuctx_switch_state(struct spu_context *ctx,
1038 enum spu_utilization_state new_state)
1039{
1040 unsigned long long curtime;
1041 signed long long delta;
1042 struct timespec ts;
1043 struct spu *spu;
1044 enum spu_utilization_state old_state;
1045 int node;
1046
1047 ktime_get_ts(&ts);
1048 curtime = timespec_to_ns(&ts);
1049 delta = curtime - ctx->stats.tstamp;
1050
1051 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1052 WARN_ON(delta < 0);
1053
1054 spu = ctx->spu;
1055 old_state = ctx->stats.util_state;
1056 ctx->stats.util_state = new_state;
1057 ctx->stats.tstamp = curtime;
1058
1059
1060
1061
1062 if (spu) {
1063 ctx->stats.times[old_state] += delta;
1064 spu->stats.times[old_state] += delta;
1065 spu->stats.util_state = new_state;
1066 spu->stats.tstamp = curtime;
1067 node = spu->node;
1068 if (old_state == SPU_UTIL_USER)
1069 atomic_dec(&cbe_spu_info[node].busy_spus);
1070 if (new_state == SPU_UTIL_USER)
1071 atomic_inc(&cbe_spu_info[node].busy_spus);
1072 }
1073}
1074
1075#define LOAD_INT(x) ((x) >> FSHIFT)
1076#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1077
1078static int show_spu_loadavg(struct seq_file *s, void *private)
1079{
1080 int a, b, c;
1081
1082 a = spu_avenrun[0] + (FIXED_1/200);
1083 b = spu_avenrun[1] + (FIXED_1/200);
1084 c = spu_avenrun[2] + (FIXED_1/200);
1085
1086
1087
1088
1089
1090
1091 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1092 LOAD_INT(a), LOAD_FRAC(a),
1093 LOAD_INT(b), LOAD_FRAC(b),
1094 LOAD_INT(c), LOAD_FRAC(c),
1095 count_active_contexts(),
1096 atomic_read(&nr_spu_contexts),
1097 current->nsproxy->pid_ns->last_pid);
1098 return 0;
1099}
1100
1101static int spu_loadavg_open(struct inode *inode, struct file *file)
1102{
1103 return single_open(file, show_spu_loadavg, NULL);
1104}
1105
1106static const struct file_operations spu_loadavg_fops = {
1107 .open = spu_loadavg_open,
1108 .read = seq_read,
1109 .llseek = seq_lseek,
1110 .release = single_release,
1111};
1112
1113int __init spu_sched_init(void)
1114{
1115 struct proc_dir_entry *entry;
1116 int err = -ENOMEM, i;
1117
1118 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1119 if (!spu_prio)
1120 goto out;
1121
1122 for (i = 0; i < MAX_PRIO; i++) {
1123 INIT_LIST_HEAD(&spu_prio->runq[i]);
1124 __clear_bit(i, spu_prio->bitmap);
1125 }
1126 spin_lock_init(&spu_prio->runq_lock);
1127
1128 setup_timer(&spusched_timer, spusched_wake, 0);
1129 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1130
1131 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1132 if (IS_ERR(spusched_task)) {
1133 err = PTR_ERR(spusched_task);
1134 goto out_free_spu_prio;
1135 }
1136
1137 mod_timer(&spuloadavg_timer, 0);
1138
1139 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1140 if (!entry)
1141 goto out_stop_kthread;
1142
1143 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1144 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1145 return 0;
1146
1147 out_stop_kthread:
1148 kthread_stop(spusched_task);
1149 out_free_spu_prio:
1150 kfree(spu_prio);
1151 out:
1152 return err;
1153}
1154
1155void spu_sched_exit(void)
1156{
1157 struct spu *spu;
1158 int node;
1159
1160 remove_proc_entry("spu_loadavg", NULL);
1161
1162 del_timer_sync(&spusched_timer);
1163 del_timer_sync(&spuloadavg_timer);
1164 kthread_stop(spusched_task);
1165
1166 for (node = 0; node < MAX_NUMNODES; node++) {
1167 mutex_lock(&cbe_spu_info[node].list_mutex);
1168 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1169 if (spu->alloc_state != SPU_FREE)
1170 spu->alloc_state = SPU_FREE;
1171 mutex_unlock(&cbe_spu_info[node].list_mutex);
1172 }
1173 kfree(spu_prio);
1174}
1175