linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14
  15#include <asm/hpet.h>
  16#include <asm/timer.h>
  17#include <asm/vgtod.h>
  18#include <asm/time.h>
  19#include <asm/delay.h>
  20#include <asm/hypervisor.h>
  21#include <asm/nmi.h>
  22#include <asm/x86_init.h>
  23
  24unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  25EXPORT_SYMBOL(cpu_khz);
  26
  27unsigned int __read_mostly tsc_khz;
  28EXPORT_SYMBOL(tsc_khz);
  29
  30/*
  31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  32 */
  33static int __read_mostly tsc_unstable;
  34
  35/* native_sched_clock() is called before tsc_init(), so
  36   we must start with the TSC soft disabled to prevent
  37   erroneous rdtsc usage on !cpu_has_tsc processors */
  38static int __read_mostly tsc_disabled = -1;
  39
  40int tsc_clocksource_reliable;
  41/*
  42 * Scheduler clock - returns current time in nanosec units.
  43 */
  44u64 native_sched_clock(void)
  45{
  46        u64 this_offset;
  47
  48        /*
  49         * Fall back to jiffies if there's no TSC available:
  50         * ( But note that we still use it if the TSC is marked
  51         *   unstable. We do this because unlike Time Of Day,
  52         *   the scheduler clock tolerates small errors and it's
  53         *   very important for it to be as fast as the platform
  54         *   can achieve it. )
  55         */
  56        if (unlikely(tsc_disabled)) {
  57                /* No locking but a rare wrong value is not a big deal: */
  58                return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  59        }
  60
  61        /* read the Time Stamp Counter: */
  62        rdtscll(this_offset);
  63
  64        /* return the value in ns */
  65        return __cycles_2_ns(this_offset);
  66}
  67
  68/* We need to define a real function for sched_clock, to override the
  69   weak default version */
  70#ifdef CONFIG_PARAVIRT
  71unsigned long long sched_clock(void)
  72{
  73        return paravirt_sched_clock();
  74}
  75#else
  76unsigned long long
  77sched_clock(void) __attribute__((alias("native_sched_clock")));
  78#endif
  79
  80int check_tsc_unstable(void)
  81{
  82        return tsc_unstable;
  83}
  84EXPORT_SYMBOL_GPL(check_tsc_unstable);
  85
  86#ifdef CONFIG_X86_TSC
  87int __init notsc_setup(char *str)
  88{
  89        pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  90        tsc_disabled = 1;
  91        return 1;
  92}
  93#else
  94/*
  95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  96 * in cpu/common.c
  97 */
  98int __init notsc_setup(char *str)
  99{
 100        setup_clear_cpu_cap(X86_FEATURE_TSC);
 101        return 1;
 102}
 103#endif
 104
 105__setup("notsc", notsc_setup);
 106
 107static int no_sched_irq_time;
 108
 109static int __init tsc_setup(char *str)
 110{
 111        if (!strcmp(str, "reliable"))
 112                tsc_clocksource_reliable = 1;
 113        if (!strncmp(str, "noirqtime", 9))
 114                no_sched_irq_time = 1;
 115        return 1;
 116}
 117
 118__setup("tsc=", tsc_setup);
 119
 120#define MAX_RETRIES     5
 121#define SMI_TRESHOLD    50000
 122
 123/*
 124 * Read TSC and the reference counters. Take care of SMI disturbance
 125 */
 126static u64 tsc_read_refs(u64 *p, int hpet)
 127{
 128        u64 t1, t2;
 129        int i;
 130
 131        for (i = 0; i < MAX_RETRIES; i++) {
 132                t1 = get_cycles();
 133                if (hpet)
 134                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 135                else
 136                        *p = acpi_pm_read_early();
 137                t2 = get_cycles();
 138                if ((t2 - t1) < SMI_TRESHOLD)
 139                        return t2;
 140        }
 141        return ULLONG_MAX;
 142}
 143
 144/*
 145 * Calculate the TSC frequency from HPET reference
 146 */
 147static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 148{
 149        u64 tmp;
 150
 151        if (hpet2 < hpet1)
 152                hpet2 += 0x100000000ULL;
 153        hpet2 -= hpet1;
 154        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 155        do_div(tmp, 1000000);
 156        do_div(deltatsc, tmp);
 157
 158        return (unsigned long) deltatsc;
 159}
 160
 161/*
 162 * Calculate the TSC frequency from PMTimer reference
 163 */
 164static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 165{
 166        u64 tmp;
 167
 168        if (!pm1 && !pm2)
 169                return ULONG_MAX;
 170
 171        if (pm2 < pm1)
 172                pm2 += (u64)ACPI_PM_OVRRUN;
 173        pm2 -= pm1;
 174        tmp = pm2 * 1000000000LL;
 175        do_div(tmp, PMTMR_TICKS_PER_SEC);
 176        do_div(deltatsc, tmp);
 177
 178        return (unsigned long) deltatsc;
 179}
 180
 181#define CAL_MS          10
 182#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 183#define CAL_PIT_LOOPS   1000
 184
 185#define CAL2_MS         50
 186#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 187#define CAL2_PIT_LOOPS  5000
 188
 189
 190/*
 191 * Try to calibrate the TSC against the Programmable
 192 * Interrupt Timer and return the frequency of the TSC
 193 * in kHz.
 194 *
 195 * Return ULONG_MAX on failure to calibrate.
 196 */
 197static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 198{
 199        u64 tsc, t1, t2, delta;
 200        unsigned long tscmin, tscmax;
 201        int pitcnt;
 202
 203        /* Set the Gate high, disable speaker */
 204        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 205
 206        /*
 207         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 208         * count mode), binary count. Set the latch register to 50ms
 209         * (LSB then MSB) to begin countdown.
 210         */
 211        outb(0xb0, 0x43);
 212        outb(latch & 0xff, 0x42);
 213        outb(latch >> 8, 0x42);
 214
 215        tsc = t1 = t2 = get_cycles();
 216
 217        pitcnt = 0;
 218        tscmax = 0;
 219        tscmin = ULONG_MAX;
 220        while ((inb(0x61) & 0x20) == 0) {
 221                t2 = get_cycles();
 222                delta = t2 - tsc;
 223                tsc = t2;
 224                if ((unsigned long) delta < tscmin)
 225                        tscmin = (unsigned int) delta;
 226                if ((unsigned long) delta > tscmax)
 227                        tscmax = (unsigned int) delta;
 228                pitcnt++;
 229        }
 230
 231        /*
 232         * Sanity checks:
 233         *
 234         * If we were not able to read the PIT more than loopmin
 235         * times, then we have been hit by a massive SMI
 236         *
 237         * If the maximum is 10 times larger than the minimum,
 238         * then we got hit by an SMI as well.
 239         */
 240        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 241                return ULONG_MAX;
 242
 243        /* Calculate the PIT value */
 244        delta = t2 - t1;
 245        do_div(delta, ms);
 246        return delta;
 247}
 248
 249/*
 250 * This reads the current MSB of the PIT counter, and
 251 * checks if we are running on sufficiently fast and
 252 * non-virtualized hardware.
 253 *
 254 * Our expectations are:
 255 *
 256 *  - the PIT is running at roughly 1.19MHz
 257 *
 258 *  - each IO is going to take about 1us on real hardware,
 259 *    but we allow it to be much faster (by a factor of 10) or
 260 *    _slightly_ slower (ie we allow up to a 2us read+counter
 261 *    update - anything else implies a unacceptably slow CPU
 262 *    or PIT for the fast calibration to work.
 263 *
 264 *  - with 256 PIT ticks to read the value, we have 214us to
 265 *    see the same MSB (and overhead like doing a single TSC
 266 *    read per MSB value etc).
 267 *
 268 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 269 *    them each to take about a microsecond on real hardware.
 270 *    So we expect a count value of around 100. But we'll be
 271 *    generous, and accept anything over 50.
 272 *
 273 *  - if the PIT is stuck, and we see *many* more reads, we
 274 *    return early (and the next caller of pit_expect_msb()
 275 *    then consider it a failure when they don't see the
 276 *    next expected value).
 277 *
 278 * These expectations mean that we know that we have seen the
 279 * transition from one expected value to another with a fairly
 280 * high accuracy, and we didn't miss any events. We can thus
 281 * use the TSC value at the transitions to calculate a pretty
 282 * good value for the TSC frequencty.
 283 */
 284static inline int pit_verify_msb(unsigned char val)
 285{
 286        /* Ignore LSB */
 287        inb(0x42);
 288        return inb(0x42) == val;
 289}
 290
 291static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 292{
 293        int count;
 294        u64 tsc = 0, prev_tsc = 0;
 295
 296        for (count = 0; count < 50000; count++) {
 297                if (!pit_verify_msb(val))
 298                        break;
 299                prev_tsc = tsc;
 300                tsc = get_cycles();
 301        }
 302        *deltap = get_cycles() - prev_tsc;
 303        *tscp = tsc;
 304
 305        /*
 306         * We require _some_ success, but the quality control
 307         * will be based on the error terms on the TSC values.
 308         */
 309        return count > 5;
 310}
 311
 312/*
 313 * How many MSB values do we want to see? We aim for
 314 * a maximum error rate of 500ppm (in practice the
 315 * real error is much smaller), but refuse to spend
 316 * more than 50ms on it.
 317 */
 318#define MAX_QUICK_PIT_MS 50
 319#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 320
 321static unsigned long quick_pit_calibrate(void)
 322{
 323        int i;
 324        u64 tsc, delta;
 325        unsigned long d1, d2;
 326
 327        /* Set the Gate high, disable speaker */
 328        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 329
 330        /*
 331         * Counter 2, mode 0 (one-shot), binary count
 332         *
 333         * NOTE! Mode 2 decrements by two (and then the
 334         * output is flipped each time, giving the same
 335         * final output frequency as a decrement-by-one),
 336         * so mode 0 is much better when looking at the
 337         * individual counts.
 338         */
 339        outb(0xb0, 0x43);
 340
 341        /* Start at 0xffff */
 342        outb(0xff, 0x42);
 343        outb(0xff, 0x42);
 344
 345        /*
 346         * The PIT starts counting at the next edge, so we
 347         * need to delay for a microsecond. The easiest way
 348         * to do that is to just read back the 16-bit counter
 349         * once from the PIT.
 350         */
 351        pit_verify_msb(0);
 352
 353        if (pit_expect_msb(0xff, &tsc, &d1)) {
 354                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 355                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 356                                break;
 357
 358                        /*
 359                         * Iterate until the error is less than 500 ppm
 360                         */
 361                        delta -= tsc;
 362                        if (d1+d2 >= delta >> 11)
 363                                continue;
 364
 365                        /*
 366                         * Check the PIT one more time to verify that
 367                         * all TSC reads were stable wrt the PIT.
 368                         *
 369                         * This also guarantees serialization of the
 370                         * last cycle read ('d2') in pit_expect_msb.
 371                         */
 372                        if (!pit_verify_msb(0xfe - i))
 373                                break;
 374                        goto success;
 375                }
 376        }
 377        pr_err("Fast TSC calibration failed\n");
 378        return 0;
 379
 380success:
 381        /*
 382         * Ok, if we get here, then we've seen the
 383         * MSB of the PIT decrement 'i' times, and the
 384         * error has shrunk to less than 500 ppm.
 385         *
 386         * As a result, we can depend on there not being
 387         * any odd delays anywhere, and the TSC reads are
 388         * reliable (within the error).
 389         *
 390         * kHz = ticks / time-in-seconds / 1000;
 391         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 392         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 393         */
 394        delta *= PIT_TICK_RATE;
 395        do_div(delta, i*256*1000);
 396        pr_info("Fast TSC calibration using PIT\n");
 397        return delta;
 398}
 399
 400/**
 401 * native_calibrate_tsc - calibrate the tsc on boot
 402 */
 403unsigned long native_calibrate_tsc(void)
 404{
 405        u64 tsc1, tsc2, delta, ref1, ref2;
 406        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 407        unsigned long flags, latch, ms, fast_calibrate;
 408        int hpet = is_hpet_enabled(), i, loopmin;
 409
 410        local_irq_save(flags);
 411        fast_calibrate = quick_pit_calibrate();
 412        local_irq_restore(flags);
 413        if (fast_calibrate)
 414                return fast_calibrate;
 415
 416        /*
 417         * Run 5 calibration loops to get the lowest frequency value
 418         * (the best estimate). We use two different calibration modes
 419         * here:
 420         *
 421         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 422         * load a timeout of 50ms. We read the time right after we
 423         * started the timer and wait until the PIT count down reaches
 424         * zero. In each wait loop iteration we read the TSC and check
 425         * the delta to the previous read. We keep track of the min
 426         * and max values of that delta. The delta is mostly defined
 427         * by the IO time of the PIT access, so we can detect when a
 428         * SMI/SMM disturbance happened between the two reads. If the
 429         * maximum time is significantly larger than the minimum time,
 430         * then we discard the result and have another try.
 431         *
 432         * 2) Reference counter. If available we use the HPET or the
 433         * PMTIMER as a reference to check the sanity of that value.
 434         * We use separate TSC readouts and check inside of the
 435         * reference read for a SMI/SMM disturbance. We dicard
 436         * disturbed values here as well. We do that around the PIT
 437         * calibration delay loop as we have to wait for a certain
 438         * amount of time anyway.
 439         */
 440
 441        /* Preset PIT loop values */
 442        latch = CAL_LATCH;
 443        ms = CAL_MS;
 444        loopmin = CAL_PIT_LOOPS;
 445
 446        for (i = 0; i < 3; i++) {
 447                unsigned long tsc_pit_khz;
 448
 449                /*
 450                 * Read the start value and the reference count of
 451                 * hpet/pmtimer when available. Then do the PIT
 452                 * calibration, which will take at least 50ms, and
 453                 * read the end value.
 454                 */
 455                local_irq_save(flags);
 456                tsc1 = tsc_read_refs(&ref1, hpet);
 457                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 458                tsc2 = tsc_read_refs(&ref2, hpet);
 459                local_irq_restore(flags);
 460
 461                /* Pick the lowest PIT TSC calibration so far */
 462                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 463
 464                /* hpet or pmtimer available ? */
 465                if (ref1 == ref2)
 466                        continue;
 467
 468                /* Check, whether the sampling was disturbed by an SMI */
 469                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 470                        continue;
 471
 472                tsc2 = (tsc2 - tsc1) * 1000000LL;
 473                if (hpet)
 474                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 475                else
 476                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 477
 478                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 479
 480                /* Check the reference deviation */
 481                delta = ((u64) tsc_pit_min) * 100;
 482                do_div(delta, tsc_ref_min);
 483
 484                /*
 485                 * If both calibration results are inside a 10% window
 486                 * then we can be sure, that the calibration
 487                 * succeeded. We break out of the loop right away. We
 488                 * use the reference value, as it is more precise.
 489                 */
 490                if (delta >= 90 && delta <= 110) {
 491                        pr_info("PIT calibration matches %s. %d loops\n",
 492                                hpet ? "HPET" : "PMTIMER", i + 1);
 493                        return tsc_ref_min;
 494                }
 495
 496                /*
 497                 * Check whether PIT failed more than once. This
 498                 * happens in virtualized environments. We need to
 499                 * give the virtual PC a slightly longer timeframe for
 500                 * the HPET/PMTIMER to make the result precise.
 501                 */
 502                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 503                        latch = CAL2_LATCH;
 504                        ms = CAL2_MS;
 505                        loopmin = CAL2_PIT_LOOPS;
 506                }
 507        }
 508
 509        /*
 510         * Now check the results.
 511         */
 512        if (tsc_pit_min == ULONG_MAX) {
 513                /* PIT gave no useful value */
 514                pr_warn("Unable to calibrate against PIT\n");
 515
 516                /* We don't have an alternative source, disable TSC */
 517                if (!hpet && !ref1 && !ref2) {
 518                        pr_notice("No reference (HPET/PMTIMER) available\n");
 519                        return 0;
 520                }
 521
 522                /* The alternative source failed as well, disable TSC */
 523                if (tsc_ref_min == ULONG_MAX) {
 524                        pr_warn("HPET/PMTIMER calibration failed\n");
 525                        return 0;
 526                }
 527
 528                /* Use the alternative source */
 529                pr_info("using %s reference calibration\n",
 530                        hpet ? "HPET" : "PMTIMER");
 531
 532                return tsc_ref_min;
 533        }
 534
 535        /* We don't have an alternative source, use the PIT calibration value */
 536        if (!hpet && !ref1 && !ref2) {
 537                pr_info("Using PIT calibration value\n");
 538                return tsc_pit_min;
 539        }
 540
 541        /* The alternative source failed, use the PIT calibration value */
 542        if (tsc_ref_min == ULONG_MAX) {
 543                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 544                return tsc_pit_min;
 545        }
 546
 547        /*
 548         * The calibration values differ too much. In doubt, we use
 549         * the PIT value as we know that there are PMTIMERs around
 550         * running at double speed. At least we let the user know:
 551         */
 552        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 553                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 554        pr_info("Using PIT calibration value\n");
 555        return tsc_pit_min;
 556}
 557
 558int recalibrate_cpu_khz(void)
 559{
 560#ifndef CONFIG_SMP
 561        unsigned long cpu_khz_old = cpu_khz;
 562
 563        if (cpu_has_tsc) {
 564                tsc_khz = x86_platform.calibrate_tsc();
 565                cpu_khz = tsc_khz;
 566                cpu_data(0).loops_per_jiffy =
 567                        cpufreq_scale(cpu_data(0).loops_per_jiffy,
 568                                        cpu_khz_old, cpu_khz);
 569                return 0;
 570        } else
 571                return -ENODEV;
 572#else
 573        return -ENODEV;
 574#endif
 575}
 576
 577EXPORT_SYMBOL(recalibrate_cpu_khz);
 578
 579
 580/* Accelerators for sched_clock()
 581 * convert from cycles(64bits) => nanoseconds (64bits)
 582 *  basic equation:
 583 *              ns = cycles / (freq / ns_per_sec)
 584 *              ns = cycles * (ns_per_sec / freq)
 585 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 586 *              ns = cycles * (10^6 / cpu_khz)
 587 *
 588 *      Then we use scaling math (suggested by george@mvista.com) to get:
 589 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 590 *              ns = cycles * cyc2ns_scale / SC
 591 *
 592 *      And since SC is a constant power of two, we can convert the div
 593 *  into a shift.
 594 *
 595 *  We can use khz divisor instead of mhz to keep a better precision, since
 596 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 597 *  (mathieu.desnoyers@polymtl.ca)
 598 *
 599 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 600 */
 601
 602DEFINE_PER_CPU(unsigned long, cyc2ns);
 603DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
 604
 605static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 606{
 607        unsigned long long tsc_now, ns_now, *offset;
 608        unsigned long flags, *scale;
 609
 610        local_irq_save(flags);
 611        sched_clock_idle_sleep_event();
 612
 613        scale = &per_cpu(cyc2ns, cpu);
 614        offset = &per_cpu(cyc2ns_offset, cpu);
 615
 616        rdtscll(tsc_now);
 617        ns_now = __cycles_2_ns(tsc_now);
 618
 619        if (cpu_khz) {
 620                *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
 621                *offset = ns_now - mult_frac(tsc_now, *scale,
 622                                             (1UL << CYC2NS_SCALE_FACTOR));
 623        }
 624
 625        sched_clock_idle_wakeup_event(0);
 626        local_irq_restore(flags);
 627}
 628
 629static unsigned long long cyc2ns_suspend;
 630
 631void tsc_save_sched_clock_state(void)
 632{
 633        if (!sched_clock_stable)
 634                return;
 635
 636        cyc2ns_suspend = sched_clock();
 637}
 638
 639/*
 640 * Even on processors with invariant TSC, TSC gets reset in some the
 641 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 642 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 643 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 644 * that sched_clock() continues from the point where it was left off during
 645 * suspend.
 646 */
 647void tsc_restore_sched_clock_state(void)
 648{
 649        unsigned long long offset;
 650        unsigned long flags;
 651        int cpu;
 652
 653        if (!sched_clock_stable)
 654                return;
 655
 656        local_irq_save(flags);
 657
 658        __this_cpu_write(cyc2ns_offset, 0);
 659        offset = cyc2ns_suspend - sched_clock();
 660
 661        for_each_possible_cpu(cpu)
 662                per_cpu(cyc2ns_offset, cpu) = offset;
 663
 664        local_irq_restore(flags);
 665}
 666
 667#ifdef CONFIG_CPU_FREQ
 668
 669/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 670 * changes.
 671 *
 672 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 673 * not that important because current Opteron setups do not support
 674 * scaling on SMP anyroads.
 675 *
 676 * Should fix up last_tsc too. Currently gettimeofday in the
 677 * first tick after the change will be slightly wrong.
 678 */
 679
 680static unsigned int  ref_freq;
 681static unsigned long loops_per_jiffy_ref;
 682static unsigned long tsc_khz_ref;
 683
 684static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 685                                void *data)
 686{
 687        struct cpufreq_freqs *freq = data;
 688        unsigned long *lpj;
 689
 690        if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 691                return 0;
 692
 693        lpj = &boot_cpu_data.loops_per_jiffy;
 694#ifdef CONFIG_SMP
 695        if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 696                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 697#endif
 698
 699        if (!ref_freq) {
 700                ref_freq = freq->old;
 701                loops_per_jiffy_ref = *lpj;
 702                tsc_khz_ref = tsc_khz;
 703        }
 704        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 705                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
 706                        (val == CPUFREQ_RESUMECHANGE)) {
 707                *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 708
 709                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 710                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 711                        mark_tsc_unstable("cpufreq changes");
 712        }
 713
 714        set_cyc2ns_scale(tsc_khz, freq->cpu);
 715
 716        return 0;
 717}
 718
 719static struct notifier_block time_cpufreq_notifier_block = {
 720        .notifier_call  = time_cpufreq_notifier
 721};
 722
 723static int __init cpufreq_tsc(void)
 724{
 725        if (!cpu_has_tsc)
 726                return 0;
 727        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 728                return 0;
 729        cpufreq_register_notifier(&time_cpufreq_notifier_block,
 730                                CPUFREQ_TRANSITION_NOTIFIER);
 731        return 0;
 732}
 733
 734core_initcall(cpufreq_tsc);
 735
 736#endif /* CONFIG_CPU_FREQ */
 737
 738/* clocksource code */
 739
 740static struct clocksource clocksource_tsc;
 741
 742/*
 743 * We compare the TSC to the cycle_last value in the clocksource
 744 * structure to avoid a nasty time-warp. This can be observed in a
 745 * very small window right after one CPU updated cycle_last under
 746 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 747 * is smaller than the cycle_last reference value due to a TSC which
 748 * is slighty behind. This delta is nowhere else observable, but in
 749 * that case it results in a forward time jump in the range of hours
 750 * due to the unsigned delta calculation of the time keeping core
 751 * code, which is necessary to support wrapping clocksources like pm
 752 * timer.
 753 */
 754static cycle_t read_tsc(struct clocksource *cs)
 755{
 756        cycle_t ret = (cycle_t)get_cycles();
 757
 758        return ret >= clocksource_tsc.cycle_last ?
 759                ret : clocksource_tsc.cycle_last;
 760}
 761
 762static void resume_tsc(struct clocksource *cs)
 763{
 764        clocksource_tsc.cycle_last = 0;
 765}
 766
 767static struct clocksource clocksource_tsc = {
 768        .name                   = "tsc",
 769        .rating                 = 300,
 770        .read                   = read_tsc,
 771        .resume                 = resume_tsc,
 772        .mask                   = CLOCKSOURCE_MASK(64),
 773        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
 774                                  CLOCK_SOURCE_MUST_VERIFY,
 775#ifdef CONFIG_X86_64
 776        .archdata               = { .vclock_mode = VCLOCK_TSC },
 777#endif
 778};
 779
 780void mark_tsc_unstable(char *reason)
 781{
 782        if (!tsc_unstable) {
 783                tsc_unstable = 1;
 784                sched_clock_stable = 0;
 785                disable_sched_clock_irqtime();
 786                pr_info("Marking TSC unstable due to %s\n", reason);
 787                /* Change only the rating, when not registered */
 788                if (clocksource_tsc.mult)
 789                        clocksource_mark_unstable(&clocksource_tsc);
 790                else {
 791                        clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
 792                        clocksource_tsc.rating = 0;
 793                }
 794        }
 795}
 796
 797EXPORT_SYMBOL_GPL(mark_tsc_unstable);
 798
 799static void __init check_system_tsc_reliable(void)
 800{
 801#ifdef CONFIG_MGEODE_LX
 802        /* RTSC counts during suspend */
 803#define RTSC_SUSP 0x100
 804        unsigned long res_low, res_high;
 805
 806        rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
 807        /* Geode_LX - the OLPC CPU has a very reliable TSC */
 808        if (res_low & RTSC_SUSP)
 809                tsc_clocksource_reliable = 1;
 810#endif
 811        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
 812                tsc_clocksource_reliable = 1;
 813}
 814
 815/*
 816 * Make an educated guess if the TSC is trustworthy and synchronized
 817 * over all CPUs.
 818 */
 819__cpuinit int unsynchronized_tsc(void)
 820{
 821        if (!cpu_has_tsc || tsc_unstable)
 822                return 1;
 823
 824#ifdef CONFIG_SMP
 825        if (apic_is_clustered_box())
 826                return 1;
 827#endif
 828
 829        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 830                return 0;
 831
 832        if (tsc_clocksource_reliable)
 833                return 0;
 834        /*
 835         * Intel systems are normally all synchronized.
 836         * Exceptions must mark TSC as unstable:
 837         */
 838        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
 839                /* assume multi socket systems are not synchronized: */
 840                if (num_possible_cpus() > 1)
 841                        return 1;
 842        }
 843
 844        return 0;
 845}
 846
 847
 848static void tsc_refine_calibration_work(struct work_struct *work);
 849static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
 850/**
 851 * tsc_refine_calibration_work - Further refine tsc freq calibration
 852 * @work - ignored.
 853 *
 854 * This functions uses delayed work over a period of a
 855 * second to further refine the TSC freq value. Since this is
 856 * timer based, instead of loop based, we don't block the boot
 857 * process while this longer calibration is done.
 858 *
 859 * If there are any calibration anomalies (too many SMIs, etc),
 860 * or the refined calibration is off by 1% of the fast early
 861 * calibration, we throw out the new calibration and use the
 862 * early calibration.
 863 */
 864static void tsc_refine_calibration_work(struct work_struct *work)
 865{
 866        static u64 tsc_start = -1, ref_start;
 867        static int hpet;
 868        u64 tsc_stop, ref_stop, delta;
 869        unsigned long freq;
 870
 871        /* Don't bother refining TSC on unstable systems */
 872        if (check_tsc_unstable())
 873                goto out;
 874
 875        /*
 876         * Since the work is started early in boot, we may be
 877         * delayed the first time we expire. So set the workqueue
 878         * again once we know timers are working.
 879         */
 880        if (tsc_start == -1) {
 881                /*
 882                 * Only set hpet once, to avoid mixing hardware
 883                 * if the hpet becomes enabled later.
 884                 */
 885                hpet = is_hpet_enabled();
 886                schedule_delayed_work(&tsc_irqwork, HZ);
 887                tsc_start = tsc_read_refs(&ref_start, hpet);
 888                return;
 889        }
 890
 891        tsc_stop = tsc_read_refs(&ref_stop, hpet);
 892
 893        /* hpet or pmtimer available ? */
 894        if (ref_start == ref_stop)
 895                goto out;
 896
 897        /* Check, whether the sampling was disturbed by an SMI */
 898        if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
 899                goto out;
 900
 901        delta = tsc_stop - tsc_start;
 902        delta *= 1000000LL;
 903        if (hpet)
 904                freq = calc_hpet_ref(delta, ref_start, ref_stop);
 905        else
 906                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
 907
 908        /* Make sure we're within 1% */
 909        if (abs(tsc_khz - freq) > tsc_khz/100)
 910                goto out;
 911
 912        tsc_khz = freq;
 913        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
 914                (unsigned long)tsc_khz / 1000,
 915                (unsigned long)tsc_khz % 1000);
 916
 917out:
 918        clocksource_register_khz(&clocksource_tsc, tsc_khz);
 919}
 920
 921
 922static int __init init_tsc_clocksource(void)
 923{
 924        if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
 925                return 0;
 926
 927        if (tsc_clocksource_reliable)
 928                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
 929        /* lower the rating if we already know its unstable: */
 930        if (check_tsc_unstable()) {
 931                clocksource_tsc.rating = 0;
 932                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
 933        }
 934
 935        /*
 936         * Trust the results of the earlier calibration on systems
 937         * exporting a reliable TSC.
 938         */
 939        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
 940                clocksource_register_khz(&clocksource_tsc, tsc_khz);
 941                return 0;
 942        }
 943
 944        schedule_delayed_work(&tsc_irqwork, 0);
 945        return 0;
 946}
 947/*
 948 * We use device_initcall here, to ensure we run after the hpet
 949 * is fully initialized, which may occur at fs_initcall time.
 950 */
 951device_initcall(init_tsc_clocksource);
 952
 953void __init tsc_init(void)
 954{
 955        u64 lpj;
 956        int cpu;
 957
 958        x86_init.timers.tsc_pre_init();
 959
 960        if (!cpu_has_tsc)
 961                return;
 962
 963        tsc_khz = x86_platform.calibrate_tsc();
 964        cpu_khz = tsc_khz;
 965
 966        if (!tsc_khz) {
 967                mark_tsc_unstable("could not calculate TSC khz");
 968                return;
 969        }
 970
 971        pr_info("Detected %lu.%03lu MHz processor\n",
 972                (unsigned long)cpu_khz / 1000,
 973                (unsigned long)cpu_khz % 1000);
 974
 975        /*
 976         * Secondary CPUs do not run through tsc_init(), so set up
 977         * all the scale factors for all CPUs, assuming the same
 978         * speed as the bootup CPU. (cpufreq notifiers will fix this
 979         * up if their speed diverges)
 980         */
 981        for_each_possible_cpu(cpu)
 982                set_cyc2ns_scale(cpu_khz, cpu);
 983
 984        if (tsc_disabled > 0)
 985                return;
 986
 987        /* now allow native_sched_clock() to use rdtsc */
 988        tsc_disabled = 0;
 989
 990        if (!no_sched_irq_time)
 991                enable_sched_clock_irqtime();
 992
 993        lpj = ((u64)tsc_khz * 1000);
 994        do_div(lpj, HZ);
 995        lpj_fine = lpj;
 996
 997        use_tsc_delay();
 998
 999        if (unsynchronized_tsc())
1000                mark_tsc_unstable("TSCs unsynchronized");
1001
1002        check_system_tsc_reliable();
1003}
1004
1005#ifdef CONFIG_SMP
1006/*
1007 * If we have a constant TSC and are using the TSC for the delay loop,
1008 * we can skip clock calibration if another cpu in the same socket has already
1009 * been calibrated. This assumes that CONSTANT_TSC applies to all
1010 * cpus in the socket - this should be a safe assumption.
1011 */
1012unsigned long __cpuinit calibrate_delay_is_known(void)
1013{
1014        int i, cpu = smp_processor_id();
1015
1016        if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1017                return 0;
1018
1019        for_each_online_cpu(i)
1020                if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1021                        return cpu_data(i).loops_per_jiffy;
1022        return 0;
1023}
1024#endif
1025