linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30
  31#include <linux/clocksource.h>
  32#include <linux/interrupt.h>
  33#include <linux/kvm.h>
  34#include <linux/fs.h>
  35#include <linux/vmalloc.h>
  36#include <linux/module.h>
  37#include <linux/mman.h>
  38#include <linux/highmem.h>
  39#include <linux/iommu.h>
  40#include <linux/intel-iommu.h>
  41#include <linux/cpufreq.h>
  42#include <linux/user-return-notifier.h>
  43#include <linux/srcu.h>
  44#include <linux/slab.h>
  45#include <linux/perf_event.h>
  46#include <linux/uaccess.h>
  47#include <linux/hash.h>
  48#include <linux/pci.h>
  49#include <trace/events/kvm.h>
  50
  51#define CREATE_TRACE_POINTS
  52#include "trace.h"
  53
  54#include <asm/debugreg.h>
  55#include <asm/msr.h>
  56#include <asm/desc.h>
  57#include <asm/mtrr.h>
  58#include <asm/mce.h>
  59#include <asm/i387.h>
  60#include <asm/fpu-internal.h> /* Ugh! */
  61#include <asm/xcr.h>
  62#include <asm/pvclock.h>
  63#include <asm/div64.h>
  64
  65#define MAX_IO_MSRS 256
  66#define KVM_MAX_MCE_BANKS 32
  67#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  68
  69#define emul_to_vcpu(ctxt) \
  70        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  71
  72/* EFER defaults:
  73 * - enable syscall per default because its emulated by KVM
  74 * - enable LME and LMA per default on 64 bit KVM
  75 */
  76#ifdef CONFIG_X86_64
  77static
  78u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  79#else
  80static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  81#endif
  82
  83#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  84#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  85
  86static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  87static void process_nmi(struct kvm_vcpu *vcpu);
  88
  89struct kvm_x86_ops *kvm_x86_ops;
  90EXPORT_SYMBOL_GPL(kvm_x86_ops);
  91
  92static bool ignore_msrs = 0;
  93module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  94
  95bool kvm_has_tsc_control;
  96EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  97u32  kvm_max_guest_tsc_khz;
  98EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  99
 100/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 101static u32 tsc_tolerance_ppm = 250;
 102module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 103
 104#define KVM_NR_SHARED_MSRS 16
 105
 106struct kvm_shared_msrs_global {
 107        int nr;
 108        u32 msrs[KVM_NR_SHARED_MSRS];
 109};
 110
 111struct kvm_shared_msrs {
 112        struct user_return_notifier urn;
 113        bool registered;
 114        struct kvm_shared_msr_values {
 115                u64 host;
 116                u64 curr;
 117        } values[KVM_NR_SHARED_MSRS];
 118};
 119
 120static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 121static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
 122
 123struct kvm_stats_debugfs_item debugfs_entries[] = {
 124        { "pf_fixed", VCPU_STAT(pf_fixed) },
 125        { "pf_guest", VCPU_STAT(pf_guest) },
 126        { "tlb_flush", VCPU_STAT(tlb_flush) },
 127        { "invlpg", VCPU_STAT(invlpg) },
 128        { "exits", VCPU_STAT(exits) },
 129        { "io_exits", VCPU_STAT(io_exits) },
 130        { "mmio_exits", VCPU_STAT(mmio_exits) },
 131        { "signal_exits", VCPU_STAT(signal_exits) },
 132        { "irq_window", VCPU_STAT(irq_window_exits) },
 133        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 134        { "halt_exits", VCPU_STAT(halt_exits) },
 135        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 136        { "hypercalls", VCPU_STAT(hypercalls) },
 137        { "request_irq", VCPU_STAT(request_irq_exits) },
 138        { "irq_exits", VCPU_STAT(irq_exits) },
 139        { "host_state_reload", VCPU_STAT(host_state_reload) },
 140        { "efer_reload", VCPU_STAT(efer_reload) },
 141        { "fpu_reload", VCPU_STAT(fpu_reload) },
 142        { "insn_emulation", VCPU_STAT(insn_emulation) },
 143        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 144        { "irq_injections", VCPU_STAT(irq_injections) },
 145        { "nmi_injections", VCPU_STAT(nmi_injections) },
 146        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 147        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 148        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 149        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 150        { "mmu_flooded", VM_STAT(mmu_flooded) },
 151        { "mmu_recycled", VM_STAT(mmu_recycled) },
 152        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 153        { "mmu_unsync", VM_STAT(mmu_unsync) },
 154        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 155        { "largepages", VM_STAT(lpages) },
 156        { NULL }
 157};
 158
 159u64 __read_mostly host_xcr0;
 160
 161int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 162
 163static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 164{
 165        int i;
 166        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 167                vcpu->arch.apf.gfns[i] = ~0;
 168}
 169
 170static void kvm_on_user_return(struct user_return_notifier *urn)
 171{
 172        unsigned slot;
 173        struct kvm_shared_msrs *locals
 174                = container_of(urn, struct kvm_shared_msrs, urn);
 175        struct kvm_shared_msr_values *values;
 176
 177        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 178                values = &locals->values[slot];
 179                if (values->host != values->curr) {
 180                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 181                        values->curr = values->host;
 182                }
 183        }
 184        locals->registered = false;
 185        user_return_notifier_unregister(urn);
 186}
 187
 188static void shared_msr_update(unsigned slot, u32 msr)
 189{
 190        struct kvm_shared_msrs *smsr;
 191        u64 value;
 192
 193        smsr = &__get_cpu_var(shared_msrs);
 194        /* only read, and nobody should modify it at this time,
 195         * so don't need lock */
 196        if (slot >= shared_msrs_global.nr) {
 197                printk(KERN_ERR "kvm: invalid MSR slot!");
 198                return;
 199        }
 200        rdmsrl_safe(msr, &value);
 201        smsr->values[slot].host = value;
 202        smsr->values[slot].curr = value;
 203}
 204
 205void kvm_define_shared_msr(unsigned slot, u32 msr)
 206{
 207        if (slot >= shared_msrs_global.nr)
 208                shared_msrs_global.nr = slot + 1;
 209        shared_msrs_global.msrs[slot] = msr;
 210        /* we need ensured the shared_msr_global have been updated */
 211        smp_wmb();
 212}
 213EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 214
 215static void kvm_shared_msr_cpu_online(void)
 216{
 217        unsigned i;
 218
 219        for (i = 0; i < shared_msrs_global.nr; ++i)
 220                shared_msr_update(i, shared_msrs_global.msrs[i]);
 221}
 222
 223void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 224{
 225        struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
 226
 227        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 228                return;
 229        smsr->values[slot].curr = value;
 230        wrmsrl(shared_msrs_global.msrs[slot], value);
 231        if (!smsr->registered) {
 232                smsr->urn.on_user_return = kvm_on_user_return;
 233                user_return_notifier_register(&smsr->urn);
 234                smsr->registered = true;
 235        }
 236}
 237EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 238
 239static void drop_user_return_notifiers(void *ignore)
 240{
 241        struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
 242
 243        if (smsr->registered)
 244                kvm_on_user_return(&smsr->urn);
 245}
 246
 247u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 248{
 249        return vcpu->arch.apic_base;
 250}
 251EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 252
 253void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 254{
 255        /* TODO: reserve bits check */
 256        kvm_lapic_set_base(vcpu, data);
 257}
 258EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 259
 260#define EXCPT_BENIGN            0
 261#define EXCPT_CONTRIBUTORY      1
 262#define EXCPT_PF                2
 263
 264static int exception_class(int vector)
 265{
 266        switch (vector) {
 267        case PF_VECTOR:
 268                return EXCPT_PF;
 269        case DE_VECTOR:
 270        case TS_VECTOR:
 271        case NP_VECTOR:
 272        case SS_VECTOR:
 273        case GP_VECTOR:
 274                return EXCPT_CONTRIBUTORY;
 275        default:
 276                break;
 277        }
 278        return EXCPT_BENIGN;
 279}
 280
 281static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 282                unsigned nr, bool has_error, u32 error_code,
 283                bool reinject)
 284{
 285        u32 prev_nr;
 286        int class1, class2;
 287
 288        kvm_make_request(KVM_REQ_EVENT, vcpu);
 289
 290        if (!vcpu->arch.exception.pending) {
 291        queue:
 292                vcpu->arch.exception.pending = true;
 293                vcpu->arch.exception.has_error_code = has_error;
 294                vcpu->arch.exception.nr = nr;
 295                vcpu->arch.exception.error_code = error_code;
 296                vcpu->arch.exception.reinject = reinject;
 297                return;
 298        }
 299
 300        /* to check exception */
 301        prev_nr = vcpu->arch.exception.nr;
 302        if (prev_nr == DF_VECTOR) {
 303                /* triple fault -> shutdown */
 304                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 305                return;
 306        }
 307        class1 = exception_class(prev_nr);
 308        class2 = exception_class(nr);
 309        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 310                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 311                /* generate double fault per SDM Table 5-5 */
 312                vcpu->arch.exception.pending = true;
 313                vcpu->arch.exception.has_error_code = true;
 314                vcpu->arch.exception.nr = DF_VECTOR;
 315                vcpu->arch.exception.error_code = 0;
 316        } else
 317                /* replace previous exception with a new one in a hope
 318                   that instruction re-execution will regenerate lost
 319                   exception */
 320                goto queue;
 321}
 322
 323void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 324{
 325        kvm_multiple_exception(vcpu, nr, false, 0, false);
 326}
 327EXPORT_SYMBOL_GPL(kvm_queue_exception);
 328
 329void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 330{
 331        kvm_multiple_exception(vcpu, nr, false, 0, true);
 332}
 333EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 334
 335void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 336{
 337        if (err)
 338                kvm_inject_gp(vcpu, 0);
 339        else
 340                kvm_x86_ops->skip_emulated_instruction(vcpu);
 341}
 342EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 343
 344void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 345{
 346        ++vcpu->stat.pf_guest;
 347        vcpu->arch.cr2 = fault->address;
 348        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 349}
 350EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 351
 352void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 353{
 354        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 355                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 356        else
 357                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 358}
 359
 360void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 361{
 362        atomic_inc(&vcpu->arch.nmi_queued);
 363        kvm_make_request(KVM_REQ_NMI, vcpu);
 364}
 365EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 366
 367void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 368{
 369        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 370}
 371EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 372
 373void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 374{
 375        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 376}
 377EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 378
 379/*
 380 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 381 * a #GP and return false.
 382 */
 383bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 384{
 385        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 386                return true;
 387        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 388        return false;
 389}
 390EXPORT_SYMBOL_GPL(kvm_require_cpl);
 391
 392/*
 393 * This function will be used to read from the physical memory of the currently
 394 * running guest. The difference to kvm_read_guest_page is that this function
 395 * can read from guest physical or from the guest's guest physical memory.
 396 */
 397int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 398                            gfn_t ngfn, void *data, int offset, int len,
 399                            u32 access)
 400{
 401        gfn_t real_gfn;
 402        gpa_t ngpa;
 403
 404        ngpa     = gfn_to_gpa(ngfn);
 405        real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
 406        if (real_gfn == UNMAPPED_GVA)
 407                return -EFAULT;
 408
 409        real_gfn = gpa_to_gfn(real_gfn);
 410
 411        return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
 412}
 413EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 414
 415int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 416                               void *data, int offset, int len, u32 access)
 417{
 418        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 419                                       data, offset, len, access);
 420}
 421
 422/*
 423 * Load the pae pdptrs.  Return true is they are all valid.
 424 */
 425int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 426{
 427        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 428        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 429        int i;
 430        int ret;
 431        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 432
 433        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 434                                      offset * sizeof(u64), sizeof(pdpte),
 435                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 436        if (ret < 0) {
 437                ret = 0;
 438                goto out;
 439        }
 440        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 441                if (is_present_gpte(pdpte[i]) &&
 442                    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 443                        ret = 0;
 444                        goto out;
 445                }
 446        }
 447        ret = 1;
 448
 449        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 450        __set_bit(VCPU_EXREG_PDPTR,
 451                  (unsigned long *)&vcpu->arch.regs_avail);
 452        __set_bit(VCPU_EXREG_PDPTR,
 453                  (unsigned long *)&vcpu->arch.regs_dirty);
 454out:
 455
 456        return ret;
 457}
 458EXPORT_SYMBOL_GPL(load_pdptrs);
 459
 460static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 461{
 462        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 463        bool changed = true;
 464        int offset;
 465        gfn_t gfn;
 466        int r;
 467
 468        if (is_long_mode(vcpu) || !is_pae(vcpu))
 469                return false;
 470
 471        if (!test_bit(VCPU_EXREG_PDPTR,
 472                      (unsigned long *)&vcpu->arch.regs_avail))
 473                return true;
 474
 475        gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 476        offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 477        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 478                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 479        if (r < 0)
 480                goto out;
 481        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 482out:
 483
 484        return changed;
 485}
 486
 487int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 488{
 489        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 490        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 491                                    X86_CR0_CD | X86_CR0_NW;
 492
 493        cr0 |= X86_CR0_ET;
 494
 495#ifdef CONFIG_X86_64
 496        if (cr0 & 0xffffffff00000000UL)
 497                return 1;
 498#endif
 499
 500        cr0 &= ~CR0_RESERVED_BITS;
 501
 502        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 503                return 1;
 504
 505        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 506                return 1;
 507
 508        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 509#ifdef CONFIG_X86_64
 510                if ((vcpu->arch.efer & EFER_LME)) {
 511                        int cs_db, cs_l;
 512
 513                        if (!is_pae(vcpu))
 514                                return 1;
 515                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 516                        if (cs_l)
 517                                return 1;
 518                } else
 519#endif
 520                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 521                                                 kvm_read_cr3(vcpu)))
 522                        return 1;
 523        }
 524
 525        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 526                return 1;
 527
 528        kvm_x86_ops->set_cr0(vcpu, cr0);
 529
 530        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 531                kvm_clear_async_pf_completion_queue(vcpu);
 532                kvm_async_pf_hash_reset(vcpu);
 533        }
 534
 535        if ((cr0 ^ old_cr0) & update_bits)
 536                kvm_mmu_reset_context(vcpu);
 537        return 0;
 538}
 539EXPORT_SYMBOL_GPL(kvm_set_cr0);
 540
 541void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 542{
 543        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 544}
 545EXPORT_SYMBOL_GPL(kvm_lmsw);
 546
 547int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 548{
 549        u64 xcr0;
 550
 551        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 552        if (index != XCR_XFEATURE_ENABLED_MASK)
 553                return 1;
 554        xcr0 = xcr;
 555        if (kvm_x86_ops->get_cpl(vcpu) != 0)
 556                return 1;
 557        if (!(xcr0 & XSTATE_FP))
 558                return 1;
 559        if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 560                return 1;
 561        if (xcr0 & ~host_xcr0)
 562                return 1;
 563        vcpu->arch.xcr0 = xcr0;
 564        vcpu->guest_xcr0_loaded = 0;
 565        return 0;
 566}
 567
 568int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 569{
 570        if (__kvm_set_xcr(vcpu, index, xcr)) {
 571                kvm_inject_gp(vcpu, 0);
 572                return 1;
 573        }
 574        return 0;
 575}
 576EXPORT_SYMBOL_GPL(kvm_set_xcr);
 577
 578int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 579{
 580        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 581        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
 582                                   X86_CR4_PAE | X86_CR4_SMEP;
 583        if (cr4 & CR4_RESERVED_BITS)
 584                return 1;
 585
 586        if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 587                return 1;
 588
 589        if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
 590                return 1;
 591
 592        if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
 593                return 1;
 594
 595        if (is_long_mode(vcpu)) {
 596                if (!(cr4 & X86_CR4_PAE))
 597                        return 1;
 598        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 599                   && ((cr4 ^ old_cr4) & pdptr_bits)
 600                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 601                                   kvm_read_cr3(vcpu)))
 602                return 1;
 603
 604        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 605                if (!guest_cpuid_has_pcid(vcpu))
 606                        return 1;
 607
 608                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 609                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 610                        return 1;
 611        }
 612
 613        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 614                return 1;
 615
 616        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 617            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 618                kvm_mmu_reset_context(vcpu);
 619
 620        if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 621                kvm_update_cpuid(vcpu);
 622
 623        return 0;
 624}
 625EXPORT_SYMBOL_GPL(kvm_set_cr4);
 626
 627int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 628{
 629        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 630                kvm_mmu_sync_roots(vcpu);
 631                kvm_mmu_flush_tlb(vcpu);
 632                return 0;
 633        }
 634
 635        if (is_long_mode(vcpu)) {
 636                if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
 637                        if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
 638                                return 1;
 639                } else
 640                        if (cr3 & CR3_L_MODE_RESERVED_BITS)
 641                                return 1;
 642        } else {
 643                if (is_pae(vcpu)) {
 644                        if (cr3 & CR3_PAE_RESERVED_BITS)
 645                                return 1;
 646                        if (is_paging(vcpu) &&
 647                            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 648                                return 1;
 649                }
 650                /*
 651                 * We don't check reserved bits in nonpae mode, because
 652                 * this isn't enforced, and VMware depends on this.
 653                 */
 654        }
 655
 656        /*
 657         * Does the new cr3 value map to physical memory? (Note, we
 658         * catch an invalid cr3 even in real-mode, because it would
 659         * cause trouble later on when we turn on paging anyway.)
 660         *
 661         * A real CPU would silently accept an invalid cr3 and would
 662         * attempt to use it - with largely undefined (and often hard
 663         * to debug) behavior on the guest side.
 664         */
 665        if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 666                return 1;
 667        vcpu->arch.cr3 = cr3;
 668        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 669        vcpu->arch.mmu.new_cr3(vcpu);
 670        return 0;
 671}
 672EXPORT_SYMBOL_GPL(kvm_set_cr3);
 673
 674int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 675{
 676        if (cr8 & CR8_RESERVED_BITS)
 677                return 1;
 678        if (irqchip_in_kernel(vcpu->kvm))
 679                kvm_lapic_set_tpr(vcpu, cr8);
 680        else
 681                vcpu->arch.cr8 = cr8;
 682        return 0;
 683}
 684EXPORT_SYMBOL_GPL(kvm_set_cr8);
 685
 686unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 687{
 688        if (irqchip_in_kernel(vcpu->kvm))
 689                return kvm_lapic_get_cr8(vcpu);
 690        else
 691                return vcpu->arch.cr8;
 692}
 693EXPORT_SYMBOL_GPL(kvm_get_cr8);
 694
 695static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 696{
 697        unsigned long dr7;
 698
 699        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 700                dr7 = vcpu->arch.guest_debug_dr7;
 701        else
 702                dr7 = vcpu->arch.dr7;
 703        kvm_x86_ops->set_dr7(vcpu, dr7);
 704        vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
 705}
 706
 707static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 708{
 709        switch (dr) {
 710        case 0 ... 3:
 711                vcpu->arch.db[dr] = val;
 712                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 713                        vcpu->arch.eff_db[dr] = val;
 714                break;
 715        case 4:
 716                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 717                        return 1; /* #UD */
 718                /* fall through */
 719        case 6:
 720                if (val & 0xffffffff00000000ULL)
 721                        return -1; /* #GP */
 722                vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
 723                break;
 724        case 5:
 725                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 726                        return 1; /* #UD */
 727                /* fall through */
 728        default: /* 7 */
 729                if (val & 0xffffffff00000000ULL)
 730                        return -1; /* #GP */
 731                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 732                kvm_update_dr7(vcpu);
 733                break;
 734        }
 735
 736        return 0;
 737}
 738
 739int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 740{
 741        int res;
 742
 743        res = __kvm_set_dr(vcpu, dr, val);
 744        if (res > 0)
 745                kvm_queue_exception(vcpu, UD_VECTOR);
 746        else if (res < 0)
 747                kvm_inject_gp(vcpu, 0);
 748
 749        return res;
 750}
 751EXPORT_SYMBOL_GPL(kvm_set_dr);
 752
 753static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 754{
 755        switch (dr) {
 756        case 0 ... 3:
 757                *val = vcpu->arch.db[dr];
 758                break;
 759        case 4:
 760                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 761                        return 1;
 762                /* fall through */
 763        case 6:
 764                *val = vcpu->arch.dr6;
 765                break;
 766        case 5:
 767                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 768                        return 1;
 769                /* fall through */
 770        default: /* 7 */
 771                *val = vcpu->arch.dr7;
 772                break;
 773        }
 774
 775        return 0;
 776}
 777
 778int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 779{
 780        if (_kvm_get_dr(vcpu, dr, val)) {
 781                kvm_queue_exception(vcpu, UD_VECTOR);
 782                return 1;
 783        }
 784        return 0;
 785}
 786EXPORT_SYMBOL_GPL(kvm_get_dr);
 787
 788bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 789{
 790        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 791        u64 data;
 792        int err;
 793
 794        err = kvm_pmu_read_pmc(vcpu, ecx, &data);
 795        if (err)
 796                return err;
 797        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 798        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 799        return err;
 800}
 801EXPORT_SYMBOL_GPL(kvm_rdpmc);
 802
 803/*
 804 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 805 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 806 *
 807 * This list is modified at module load time to reflect the
 808 * capabilities of the host cpu. This capabilities test skips MSRs that are
 809 * kvm-specific. Those are put in the beginning of the list.
 810 */
 811
 812#define KVM_SAVE_MSRS_BEGIN     10
 813static u32 msrs_to_save[] = {
 814        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 815        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 816        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 817        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 818        MSR_KVM_PV_EOI_EN,
 819        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 820        MSR_STAR,
 821#ifdef CONFIG_X86_64
 822        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 823#endif
 824        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
 825};
 826
 827static unsigned num_msrs_to_save;
 828
 829static const u32 emulated_msrs[] = {
 830        MSR_IA32_TSCDEADLINE,
 831        MSR_IA32_MISC_ENABLE,
 832        MSR_IA32_MCG_STATUS,
 833        MSR_IA32_MCG_CTL,
 834};
 835
 836static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 837{
 838        u64 old_efer = vcpu->arch.efer;
 839
 840        if (efer & efer_reserved_bits)
 841                return 1;
 842
 843        if (is_paging(vcpu)
 844            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 845                return 1;
 846
 847        if (efer & EFER_FFXSR) {
 848                struct kvm_cpuid_entry2 *feat;
 849
 850                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 851                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 852                        return 1;
 853        }
 854
 855        if (efer & EFER_SVME) {
 856                struct kvm_cpuid_entry2 *feat;
 857
 858                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 859                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 860                        return 1;
 861        }
 862
 863        efer &= ~EFER_LMA;
 864        efer |= vcpu->arch.efer & EFER_LMA;
 865
 866        kvm_x86_ops->set_efer(vcpu, efer);
 867
 868        vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
 869
 870        /* Update reserved bits */
 871        if ((efer ^ old_efer) & EFER_NX)
 872                kvm_mmu_reset_context(vcpu);
 873
 874        return 0;
 875}
 876
 877void kvm_enable_efer_bits(u64 mask)
 878{
 879       efer_reserved_bits &= ~mask;
 880}
 881EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 882
 883
 884/*
 885 * Writes msr value into into the appropriate "register".
 886 * Returns 0 on success, non-0 otherwise.
 887 * Assumes vcpu_load() was already called.
 888 */
 889int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 890{
 891        return kvm_x86_ops->set_msr(vcpu, msr_index, data);
 892}
 893
 894/*
 895 * Adapt set_msr() to msr_io()'s calling convention
 896 */
 897static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 898{
 899        return kvm_set_msr(vcpu, index, *data);
 900}
 901
 902static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 903{
 904        int version;
 905        int r;
 906        struct pvclock_wall_clock wc;
 907        struct timespec boot;
 908
 909        if (!wall_clock)
 910                return;
 911
 912        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
 913        if (r)
 914                return;
 915
 916        if (version & 1)
 917                ++version;  /* first time write, random junk */
 918
 919        ++version;
 920
 921        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 922
 923        /*
 924         * The guest calculates current wall clock time by adding
 925         * system time (updated by kvm_guest_time_update below) to the
 926         * wall clock specified here.  guest system time equals host
 927         * system time for us, thus we must fill in host boot time here.
 928         */
 929        getboottime(&boot);
 930
 931        if (kvm->arch.kvmclock_offset) {
 932                struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
 933                boot = timespec_sub(boot, ts);
 934        }
 935        wc.sec = boot.tv_sec;
 936        wc.nsec = boot.tv_nsec;
 937        wc.version = version;
 938
 939        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 940
 941        version++;
 942        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 943}
 944
 945static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 946{
 947        uint32_t quotient, remainder;
 948
 949        /* Don't try to replace with do_div(), this one calculates
 950         * "(dividend << 32) / divisor" */
 951        __asm__ ( "divl %4"
 952                  : "=a" (quotient), "=d" (remainder)
 953                  : "0" (0), "1" (dividend), "r" (divisor) );
 954        return quotient;
 955}
 956
 957static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
 958                               s8 *pshift, u32 *pmultiplier)
 959{
 960        uint64_t scaled64;
 961        int32_t  shift = 0;
 962        uint64_t tps64;
 963        uint32_t tps32;
 964
 965        tps64 = base_khz * 1000LL;
 966        scaled64 = scaled_khz * 1000LL;
 967        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
 968                tps64 >>= 1;
 969                shift--;
 970        }
 971
 972        tps32 = (uint32_t)tps64;
 973        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
 974                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
 975                        scaled64 >>= 1;
 976                else
 977                        tps32 <<= 1;
 978                shift++;
 979        }
 980
 981        *pshift = shift;
 982        *pmultiplier = div_frac(scaled64, tps32);
 983
 984        pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
 985                 __func__, base_khz, scaled_khz, shift, *pmultiplier);
 986}
 987
 988static inline u64 get_kernel_ns(void)
 989{
 990        struct timespec ts;
 991
 992        WARN_ON(preemptible());
 993        ktime_get_ts(&ts);
 994        monotonic_to_bootbased(&ts);
 995        return timespec_to_ns(&ts);
 996}
 997
 998static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
 999unsigned long max_tsc_khz;
1000
1001static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1002{
1003        return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1004                                   vcpu->arch.virtual_tsc_shift);
1005}
1006
1007static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1008{
1009        u64 v = (u64)khz * (1000000 + ppm);
1010        do_div(v, 1000000);
1011        return v;
1012}
1013
1014static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1015{
1016        u32 thresh_lo, thresh_hi;
1017        int use_scaling = 0;
1018
1019        /* Compute a scale to convert nanoseconds in TSC cycles */
1020        kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1021                           &vcpu->arch.virtual_tsc_shift,
1022                           &vcpu->arch.virtual_tsc_mult);
1023        vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1024
1025        /*
1026         * Compute the variation in TSC rate which is acceptable
1027         * within the range of tolerance and decide if the
1028         * rate being applied is within that bounds of the hardware
1029         * rate.  If so, no scaling or compensation need be done.
1030         */
1031        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1032        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1033        if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1034                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1035                use_scaling = 1;
1036        }
1037        kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1038}
1039
1040static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1041{
1042        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1043                                      vcpu->arch.virtual_tsc_mult,
1044                                      vcpu->arch.virtual_tsc_shift);
1045        tsc += vcpu->arch.this_tsc_write;
1046        return tsc;
1047}
1048
1049void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1050{
1051        struct kvm *kvm = vcpu->kvm;
1052        u64 offset, ns, elapsed;
1053        unsigned long flags;
1054        s64 usdiff;
1055
1056        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1057        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1058        ns = get_kernel_ns();
1059        elapsed = ns - kvm->arch.last_tsc_nsec;
1060
1061        /* n.b - signed multiplication and division required */
1062        usdiff = data - kvm->arch.last_tsc_write;
1063#ifdef CONFIG_X86_64
1064        usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1065#else
1066        /* do_div() only does unsigned */
1067        asm("idivl %2; xor %%edx, %%edx"
1068            : "=A"(usdiff)
1069            : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1070#endif
1071        do_div(elapsed, 1000);
1072        usdiff -= elapsed;
1073        if (usdiff < 0)
1074                usdiff = -usdiff;
1075
1076        /*
1077         * Special case: TSC write with a small delta (1 second) of virtual
1078         * cycle time against real time is interpreted as an attempt to
1079         * synchronize the CPU.
1080         *
1081         * For a reliable TSC, we can match TSC offsets, and for an unstable
1082         * TSC, we add elapsed time in this computation.  We could let the
1083         * compensation code attempt to catch up if we fall behind, but
1084         * it's better to try to match offsets from the beginning.
1085         */
1086        if (usdiff < USEC_PER_SEC &&
1087            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1088                if (!check_tsc_unstable()) {
1089                        offset = kvm->arch.cur_tsc_offset;
1090                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1091                } else {
1092                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1093                        data += delta;
1094                        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1095                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1096                }
1097        } else {
1098                /*
1099                 * We split periods of matched TSC writes into generations.
1100                 * For each generation, we track the original measured
1101                 * nanosecond time, offset, and write, so if TSCs are in
1102                 * sync, we can match exact offset, and if not, we can match
1103                 * exact software computation in compute_guest_tsc()
1104                 *
1105                 * These values are tracked in kvm->arch.cur_xxx variables.
1106                 */
1107                kvm->arch.cur_tsc_generation++;
1108                kvm->arch.cur_tsc_nsec = ns;
1109                kvm->arch.cur_tsc_write = data;
1110                kvm->arch.cur_tsc_offset = offset;
1111                pr_debug("kvm: new tsc generation %u, clock %llu\n",
1112                         kvm->arch.cur_tsc_generation, data);
1113        }
1114
1115        /*
1116         * We also track th most recent recorded KHZ, write and time to
1117         * allow the matching interval to be extended at each write.
1118         */
1119        kvm->arch.last_tsc_nsec = ns;
1120        kvm->arch.last_tsc_write = data;
1121        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1122
1123        /* Reset of TSC must disable overshoot protection below */
1124        vcpu->arch.hv_clock.tsc_timestamp = 0;
1125        vcpu->arch.last_guest_tsc = data;
1126
1127        /* Keep track of which generation this VCPU has synchronized to */
1128        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1129        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1130        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1131
1132        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1133        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1134}
1135
1136EXPORT_SYMBOL_GPL(kvm_write_tsc);
1137
1138static int kvm_guest_time_update(struct kvm_vcpu *v)
1139{
1140        unsigned long flags;
1141        struct kvm_vcpu_arch *vcpu = &v->arch;
1142        void *shared_kaddr;
1143        unsigned long this_tsc_khz;
1144        s64 kernel_ns, max_kernel_ns;
1145        u64 tsc_timestamp;
1146        u8 pvclock_flags;
1147
1148        /* Keep irq disabled to prevent changes to the clock */
1149        local_irq_save(flags);
1150        tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1151        kernel_ns = get_kernel_ns();
1152        this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1153        if (unlikely(this_tsc_khz == 0)) {
1154                local_irq_restore(flags);
1155                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1156                return 1;
1157        }
1158
1159        /*
1160         * We may have to catch up the TSC to match elapsed wall clock
1161         * time for two reasons, even if kvmclock is used.
1162         *   1) CPU could have been running below the maximum TSC rate
1163         *   2) Broken TSC compensation resets the base at each VCPU
1164         *      entry to avoid unknown leaps of TSC even when running
1165         *      again on the same CPU.  This may cause apparent elapsed
1166         *      time to disappear, and the guest to stand still or run
1167         *      very slowly.
1168         */
1169        if (vcpu->tsc_catchup) {
1170                u64 tsc = compute_guest_tsc(v, kernel_ns);
1171                if (tsc > tsc_timestamp) {
1172                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1173                        tsc_timestamp = tsc;
1174                }
1175        }
1176
1177        local_irq_restore(flags);
1178
1179        if (!vcpu->time_page)
1180                return 0;
1181
1182        /*
1183         * Time as measured by the TSC may go backwards when resetting the base
1184         * tsc_timestamp.  The reason for this is that the TSC resolution is
1185         * higher than the resolution of the other clock scales.  Thus, many
1186         * possible measurments of the TSC correspond to one measurement of any
1187         * other clock, and so a spread of values is possible.  This is not a
1188         * problem for the computation of the nanosecond clock; with TSC rates
1189         * around 1GHZ, there can only be a few cycles which correspond to one
1190         * nanosecond value, and any path through this code will inevitably
1191         * take longer than that.  However, with the kernel_ns value itself,
1192         * the precision may be much lower, down to HZ granularity.  If the
1193         * first sampling of TSC against kernel_ns ends in the low part of the
1194         * range, and the second in the high end of the range, we can get:
1195         *
1196         * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1197         *
1198         * As the sampling errors potentially range in the thousands of cycles,
1199         * it is possible such a time value has already been observed by the
1200         * guest.  To protect against this, we must compute the system time as
1201         * observed by the guest and ensure the new system time is greater.
1202         */
1203        max_kernel_ns = 0;
1204        if (vcpu->hv_clock.tsc_timestamp) {
1205                max_kernel_ns = vcpu->last_guest_tsc -
1206                                vcpu->hv_clock.tsc_timestamp;
1207                max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1208                                    vcpu->hv_clock.tsc_to_system_mul,
1209                                    vcpu->hv_clock.tsc_shift);
1210                max_kernel_ns += vcpu->last_kernel_ns;
1211        }
1212
1213        if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1214                kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1215                                   &vcpu->hv_clock.tsc_shift,
1216                                   &vcpu->hv_clock.tsc_to_system_mul);
1217                vcpu->hw_tsc_khz = this_tsc_khz;
1218        }
1219
1220        if (max_kernel_ns > kernel_ns)
1221                kernel_ns = max_kernel_ns;
1222
1223        /* With all the info we got, fill in the values */
1224        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1225        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1226        vcpu->last_kernel_ns = kernel_ns;
1227        vcpu->last_guest_tsc = tsc_timestamp;
1228
1229        pvclock_flags = 0;
1230        if (vcpu->pvclock_set_guest_stopped_request) {
1231                pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1232                vcpu->pvclock_set_guest_stopped_request = false;
1233        }
1234
1235        vcpu->hv_clock.flags = pvclock_flags;
1236
1237        /*
1238         * The interface expects us to write an even number signaling that the
1239         * update is finished. Since the guest won't see the intermediate
1240         * state, we just increase by 2 at the end.
1241         */
1242        vcpu->hv_clock.version += 2;
1243
1244        shared_kaddr = kmap_atomic(vcpu->time_page);
1245
1246        memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1247               sizeof(vcpu->hv_clock));
1248
1249        kunmap_atomic(shared_kaddr);
1250
1251        mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1252        return 0;
1253}
1254
1255static bool msr_mtrr_valid(unsigned msr)
1256{
1257        switch (msr) {
1258        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1259        case MSR_MTRRfix64K_00000:
1260        case MSR_MTRRfix16K_80000:
1261        case MSR_MTRRfix16K_A0000:
1262        case MSR_MTRRfix4K_C0000:
1263        case MSR_MTRRfix4K_C8000:
1264        case MSR_MTRRfix4K_D0000:
1265        case MSR_MTRRfix4K_D8000:
1266        case MSR_MTRRfix4K_E0000:
1267        case MSR_MTRRfix4K_E8000:
1268        case MSR_MTRRfix4K_F0000:
1269        case MSR_MTRRfix4K_F8000:
1270        case MSR_MTRRdefType:
1271        case MSR_IA32_CR_PAT:
1272                return true;
1273        case 0x2f8:
1274                return true;
1275        }
1276        return false;
1277}
1278
1279static bool valid_pat_type(unsigned t)
1280{
1281        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1282}
1283
1284static bool valid_mtrr_type(unsigned t)
1285{
1286        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1287}
1288
1289static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1290{
1291        int i;
1292
1293        if (!msr_mtrr_valid(msr))
1294                return false;
1295
1296        if (msr == MSR_IA32_CR_PAT) {
1297                for (i = 0; i < 8; i++)
1298                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
1299                                return false;
1300                return true;
1301        } else if (msr == MSR_MTRRdefType) {
1302                if (data & ~0xcff)
1303                        return false;
1304                return valid_mtrr_type(data & 0xff);
1305        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1306                for (i = 0; i < 8 ; i++)
1307                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1308                                return false;
1309                return true;
1310        }
1311
1312        /* variable MTRRs */
1313        return valid_mtrr_type(data & 0xff);
1314}
1315
1316static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1317{
1318        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1319
1320        if (!mtrr_valid(vcpu, msr, data))
1321                return 1;
1322
1323        if (msr == MSR_MTRRdefType) {
1324                vcpu->arch.mtrr_state.def_type = data;
1325                vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1326        } else if (msr == MSR_MTRRfix64K_00000)
1327                p[0] = data;
1328        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1329                p[1 + msr - MSR_MTRRfix16K_80000] = data;
1330        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1331                p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1332        else if (msr == MSR_IA32_CR_PAT)
1333                vcpu->arch.pat = data;
1334        else {  /* Variable MTRRs */
1335                int idx, is_mtrr_mask;
1336                u64 *pt;
1337
1338                idx = (msr - 0x200) / 2;
1339                is_mtrr_mask = msr - 0x200 - 2 * idx;
1340                if (!is_mtrr_mask)
1341                        pt =
1342                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1343                else
1344                        pt =
1345                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1346                *pt = data;
1347        }
1348
1349        kvm_mmu_reset_context(vcpu);
1350        return 0;
1351}
1352
1353static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1354{
1355        u64 mcg_cap = vcpu->arch.mcg_cap;
1356        unsigned bank_num = mcg_cap & 0xff;
1357
1358        switch (msr) {
1359        case MSR_IA32_MCG_STATUS:
1360                vcpu->arch.mcg_status = data;
1361                break;
1362        case MSR_IA32_MCG_CTL:
1363                if (!(mcg_cap & MCG_CTL_P))
1364                        return 1;
1365                if (data != 0 && data != ~(u64)0)
1366                        return -1;
1367                vcpu->arch.mcg_ctl = data;
1368                break;
1369        default:
1370                if (msr >= MSR_IA32_MC0_CTL &&
1371                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1372                        u32 offset = msr - MSR_IA32_MC0_CTL;
1373                        /* only 0 or all 1s can be written to IA32_MCi_CTL
1374                         * some Linux kernels though clear bit 10 in bank 4 to
1375                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1376                         * this to avoid an uncatched #GP in the guest
1377                         */
1378                        if ((offset & 0x3) == 0 &&
1379                            data != 0 && (data | (1 << 10)) != ~(u64)0)
1380                                return -1;
1381                        vcpu->arch.mce_banks[offset] = data;
1382                        break;
1383                }
1384                return 1;
1385        }
1386        return 0;
1387}
1388
1389static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1390{
1391        struct kvm *kvm = vcpu->kvm;
1392        int lm = is_long_mode(vcpu);
1393        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1394                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1395        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1396                : kvm->arch.xen_hvm_config.blob_size_32;
1397        u32 page_num = data & ~PAGE_MASK;
1398        u64 page_addr = data & PAGE_MASK;
1399        u8 *page;
1400        int r;
1401
1402        r = -E2BIG;
1403        if (page_num >= blob_size)
1404                goto out;
1405        r = -ENOMEM;
1406        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1407        if (IS_ERR(page)) {
1408                r = PTR_ERR(page);
1409                goto out;
1410        }
1411        if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1412                goto out_free;
1413        r = 0;
1414out_free:
1415        kfree(page);
1416out:
1417        return r;
1418}
1419
1420static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1421{
1422        return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1423}
1424
1425static bool kvm_hv_msr_partition_wide(u32 msr)
1426{
1427        bool r = false;
1428        switch (msr) {
1429        case HV_X64_MSR_GUEST_OS_ID:
1430        case HV_X64_MSR_HYPERCALL:
1431                r = true;
1432                break;
1433        }
1434
1435        return r;
1436}
1437
1438static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1439{
1440        struct kvm *kvm = vcpu->kvm;
1441
1442        switch (msr) {
1443        case HV_X64_MSR_GUEST_OS_ID:
1444                kvm->arch.hv_guest_os_id = data;
1445                /* setting guest os id to zero disables hypercall page */
1446                if (!kvm->arch.hv_guest_os_id)
1447                        kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1448                break;
1449        case HV_X64_MSR_HYPERCALL: {
1450                u64 gfn;
1451                unsigned long addr;
1452                u8 instructions[4];
1453
1454                /* if guest os id is not set hypercall should remain disabled */
1455                if (!kvm->arch.hv_guest_os_id)
1456                        break;
1457                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1458                        kvm->arch.hv_hypercall = data;
1459                        break;
1460                }
1461                gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1462                addr = gfn_to_hva(kvm, gfn);
1463                if (kvm_is_error_hva(addr))
1464                        return 1;
1465                kvm_x86_ops->patch_hypercall(vcpu, instructions);
1466                ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1467                if (__copy_to_user((void __user *)addr, instructions, 4))
1468                        return 1;
1469                kvm->arch.hv_hypercall = data;
1470                break;
1471        }
1472        default:
1473                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1474                            "data 0x%llx\n", msr, data);
1475                return 1;
1476        }
1477        return 0;
1478}
1479
1480static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1481{
1482        switch (msr) {
1483        case HV_X64_MSR_APIC_ASSIST_PAGE: {
1484                unsigned long addr;
1485
1486                if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1487                        vcpu->arch.hv_vapic = data;
1488                        break;
1489                }
1490                addr = gfn_to_hva(vcpu->kvm, data >>
1491                                  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1492                if (kvm_is_error_hva(addr))
1493                        return 1;
1494                if (__clear_user((void __user *)addr, PAGE_SIZE))
1495                        return 1;
1496                vcpu->arch.hv_vapic = data;
1497                break;
1498        }
1499        case HV_X64_MSR_EOI:
1500                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1501        case HV_X64_MSR_ICR:
1502                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1503        case HV_X64_MSR_TPR:
1504                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1505        default:
1506                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1507                            "data 0x%llx\n", msr, data);
1508                return 1;
1509        }
1510
1511        return 0;
1512}
1513
1514static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1515{
1516        gpa_t gpa = data & ~0x3f;
1517
1518        /* Bits 2:5 are reserved, Should be zero */
1519        if (data & 0x3c)
1520                return 1;
1521
1522        vcpu->arch.apf.msr_val = data;
1523
1524        if (!(data & KVM_ASYNC_PF_ENABLED)) {
1525                kvm_clear_async_pf_completion_queue(vcpu);
1526                kvm_async_pf_hash_reset(vcpu);
1527                return 0;
1528        }
1529
1530        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1531                return 1;
1532
1533        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1534        kvm_async_pf_wakeup_all(vcpu);
1535        return 0;
1536}
1537
1538static void kvmclock_reset(struct kvm_vcpu *vcpu)
1539{
1540        if (vcpu->arch.time_page) {
1541                kvm_release_page_dirty(vcpu->arch.time_page);
1542                vcpu->arch.time_page = NULL;
1543        }
1544}
1545
1546static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1547{
1548        u64 delta;
1549
1550        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1551                return;
1552
1553        delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1554        vcpu->arch.st.last_steal = current->sched_info.run_delay;
1555        vcpu->arch.st.accum_steal = delta;
1556}
1557
1558static void record_steal_time(struct kvm_vcpu *vcpu)
1559{
1560        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1561                return;
1562
1563        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1564                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1565                return;
1566
1567        vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1568        vcpu->arch.st.steal.version += 2;
1569        vcpu->arch.st.accum_steal = 0;
1570
1571        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1572                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1573}
1574
1575int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1576{
1577        bool pr = false;
1578
1579        switch (msr) {
1580        case MSR_EFER:
1581                return set_efer(vcpu, data);
1582        case MSR_K7_HWCR:
1583                data &= ~(u64)0x40;     /* ignore flush filter disable */
1584                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1585                data &= ~(u64)0x8;      /* ignore TLB cache disable */
1586                if (data != 0) {
1587                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1588                                    data);
1589                        return 1;
1590                }
1591                break;
1592        case MSR_FAM10H_MMIO_CONF_BASE:
1593                if (data != 0) {
1594                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1595                                    "0x%llx\n", data);
1596                        return 1;
1597                }
1598                break;
1599        case MSR_AMD64_NB_CFG:
1600                break;
1601        case MSR_IA32_DEBUGCTLMSR:
1602                if (!data) {
1603                        /* We support the non-activated case already */
1604                        break;
1605                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1606                        /* Values other than LBR and BTF are vendor-specific,
1607                           thus reserved and should throw a #GP */
1608                        return 1;
1609                }
1610                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1611                            __func__, data);
1612                break;
1613        case MSR_IA32_UCODE_REV:
1614        case MSR_IA32_UCODE_WRITE:
1615        case MSR_VM_HSAVE_PA:
1616        case MSR_AMD64_PATCH_LOADER:
1617                break;
1618        case 0x200 ... 0x2ff:
1619                return set_msr_mtrr(vcpu, msr, data);
1620        case MSR_IA32_APICBASE:
1621                kvm_set_apic_base(vcpu, data);
1622                break;
1623        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1624                return kvm_x2apic_msr_write(vcpu, msr, data);
1625        case MSR_IA32_TSCDEADLINE:
1626                kvm_set_lapic_tscdeadline_msr(vcpu, data);
1627                break;
1628        case MSR_IA32_MISC_ENABLE:
1629                vcpu->arch.ia32_misc_enable_msr = data;
1630                break;
1631        case MSR_KVM_WALL_CLOCK_NEW:
1632        case MSR_KVM_WALL_CLOCK:
1633                vcpu->kvm->arch.wall_clock = data;
1634                kvm_write_wall_clock(vcpu->kvm, data);
1635                break;
1636        case MSR_KVM_SYSTEM_TIME_NEW:
1637        case MSR_KVM_SYSTEM_TIME: {
1638                kvmclock_reset(vcpu);
1639
1640                vcpu->arch.time = data;
1641                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1642
1643                /* we verify if the enable bit is set... */
1644                if (!(data & 1))
1645                        break;
1646
1647                /* ...but clean it before doing the actual write */
1648                vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1649
1650                vcpu->arch.time_page =
1651                                gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1652
1653                if (is_error_page(vcpu->arch.time_page))
1654                        vcpu->arch.time_page = NULL;
1655
1656                break;
1657        }
1658        case MSR_KVM_ASYNC_PF_EN:
1659                if (kvm_pv_enable_async_pf(vcpu, data))
1660                        return 1;
1661                break;
1662        case MSR_KVM_STEAL_TIME:
1663
1664                if (unlikely(!sched_info_on()))
1665                        return 1;
1666
1667                if (data & KVM_STEAL_RESERVED_MASK)
1668                        return 1;
1669
1670                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1671                                                        data & KVM_STEAL_VALID_BITS))
1672                        return 1;
1673
1674                vcpu->arch.st.msr_val = data;
1675
1676                if (!(data & KVM_MSR_ENABLED))
1677                        break;
1678
1679                vcpu->arch.st.last_steal = current->sched_info.run_delay;
1680
1681                preempt_disable();
1682                accumulate_steal_time(vcpu);
1683                preempt_enable();
1684
1685                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1686
1687                break;
1688        case MSR_KVM_PV_EOI_EN:
1689                if (kvm_lapic_enable_pv_eoi(vcpu, data))
1690                        return 1;
1691                break;
1692
1693        case MSR_IA32_MCG_CTL:
1694        case MSR_IA32_MCG_STATUS:
1695        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1696                return set_msr_mce(vcpu, msr, data);
1697
1698        /* Performance counters are not protected by a CPUID bit,
1699         * so we should check all of them in the generic path for the sake of
1700         * cross vendor migration.
1701         * Writing a zero into the event select MSRs disables them,
1702         * which we perfectly emulate ;-). Any other value should be at least
1703         * reported, some guests depend on them.
1704         */
1705        case MSR_K7_EVNTSEL0:
1706        case MSR_K7_EVNTSEL1:
1707        case MSR_K7_EVNTSEL2:
1708        case MSR_K7_EVNTSEL3:
1709                if (data != 0)
1710                        vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1711                                    "0x%x data 0x%llx\n", msr, data);
1712                break;
1713        /* at least RHEL 4 unconditionally writes to the perfctr registers,
1714         * so we ignore writes to make it happy.
1715         */
1716        case MSR_K7_PERFCTR0:
1717        case MSR_K7_PERFCTR1:
1718        case MSR_K7_PERFCTR2:
1719        case MSR_K7_PERFCTR3:
1720                vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1721                            "0x%x data 0x%llx\n", msr, data);
1722                break;
1723        case MSR_P6_PERFCTR0:
1724        case MSR_P6_PERFCTR1:
1725                pr = true;
1726        case MSR_P6_EVNTSEL0:
1727        case MSR_P6_EVNTSEL1:
1728                if (kvm_pmu_msr(vcpu, msr))
1729                        return kvm_pmu_set_msr(vcpu, msr, data);
1730
1731                if (pr || data != 0)
1732                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1733                                    "0x%x data 0x%llx\n", msr, data);
1734                break;
1735        case MSR_K7_CLK_CTL:
1736                /*
1737                 * Ignore all writes to this no longer documented MSR.
1738                 * Writes are only relevant for old K7 processors,
1739                 * all pre-dating SVM, but a recommended workaround from
1740                 * AMD for these chips. It is possible to specify the
1741                 * affected processor models on the command line, hence
1742                 * the need to ignore the workaround.
1743                 */
1744                break;
1745        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1746                if (kvm_hv_msr_partition_wide(msr)) {
1747                        int r;
1748                        mutex_lock(&vcpu->kvm->lock);
1749                        r = set_msr_hyperv_pw(vcpu, msr, data);
1750                        mutex_unlock(&vcpu->kvm->lock);
1751                        return r;
1752                } else
1753                        return set_msr_hyperv(vcpu, msr, data);
1754                break;
1755        case MSR_IA32_BBL_CR_CTL3:
1756                /* Drop writes to this legacy MSR -- see rdmsr
1757                 * counterpart for further detail.
1758                 */
1759                vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1760                break;
1761        case MSR_AMD64_OSVW_ID_LENGTH:
1762                if (!guest_cpuid_has_osvw(vcpu))
1763                        return 1;
1764                vcpu->arch.osvw.length = data;
1765                break;
1766        case MSR_AMD64_OSVW_STATUS:
1767                if (!guest_cpuid_has_osvw(vcpu))
1768                        return 1;
1769                vcpu->arch.osvw.status = data;
1770                break;
1771        default:
1772                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1773                        return xen_hvm_config(vcpu, data);
1774                if (kvm_pmu_msr(vcpu, msr))
1775                        return kvm_pmu_set_msr(vcpu, msr, data);
1776                if (!ignore_msrs) {
1777                        vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1778                                    msr, data);
1779                        return 1;
1780                } else {
1781                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1782                                    msr, data);
1783                        break;
1784                }
1785        }
1786        return 0;
1787}
1788EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1789
1790
1791/*
1792 * Reads an msr value (of 'msr_index') into 'pdata'.
1793 * Returns 0 on success, non-0 otherwise.
1794 * Assumes vcpu_load() was already called.
1795 */
1796int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1797{
1798        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1799}
1800
1801static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1802{
1803        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1804
1805        if (!msr_mtrr_valid(msr))
1806                return 1;
1807
1808        if (msr == MSR_MTRRdefType)
1809                *pdata = vcpu->arch.mtrr_state.def_type +
1810                         (vcpu->arch.mtrr_state.enabled << 10);
1811        else if (msr == MSR_MTRRfix64K_00000)
1812                *pdata = p[0];
1813        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1814                *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1815        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1816                *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1817        else if (msr == MSR_IA32_CR_PAT)
1818                *pdata = vcpu->arch.pat;
1819        else {  /* Variable MTRRs */
1820                int idx, is_mtrr_mask;
1821                u64 *pt;
1822
1823                idx = (msr - 0x200) / 2;
1824                is_mtrr_mask = msr - 0x200 - 2 * idx;
1825                if (!is_mtrr_mask)
1826                        pt =
1827                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1828                else
1829                        pt =
1830                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1831                *pdata = *pt;
1832        }
1833
1834        return 0;
1835}
1836
1837static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1838{
1839        u64 data;
1840        u64 mcg_cap = vcpu->arch.mcg_cap;
1841        unsigned bank_num = mcg_cap & 0xff;
1842
1843        switch (msr) {
1844        case MSR_IA32_P5_MC_ADDR:
1845        case MSR_IA32_P5_MC_TYPE:
1846                data = 0;
1847                break;
1848        case MSR_IA32_MCG_CAP:
1849                data = vcpu->arch.mcg_cap;
1850                break;
1851        case MSR_IA32_MCG_CTL:
1852                if (!(mcg_cap & MCG_CTL_P))
1853                        return 1;
1854                data = vcpu->arch.mcg_ctl;
1855                break;
1856        case MSR_IA32_MCG_STATUS:
1857                data = vcpu->arch.mcg_status;
1858                break;
1859        default:
1860                if (msr >= MSR_IA32_MC0_CTL &&
1861                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1862                        u32 offset = msr - MSR_IA32_MC0_CTL;
1863                        data = vcpu->arch.mce_banks[offset];
1864                        break;
1865                }
1866                return 1;
1867        }
1868        *pdata = data;
1869        return 0;
1870}
1871
1872static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1873{
1874        u64 data = 0;
1875        struct kvm *kvm = vcpu->kvm;
1876
1877        switch (msr) {
1878        case HV_X64_MSR_GUEST_OS_ID:
1879                data = kvm->arch.hv_guest_os_id;
1880                break;
1881        case HV_X64_MSR_HYPERCALL:
1882                data = kvm->arch.hv_hypercall;
1883                break;
1884        default:
1885                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1886                return 1;
1887        }
1888
1889        *pdata = data;
1890        return 0;
1891}
1892
1893static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1894{
1895        u64 data = 0;
1896
1897        switch (msr) {
1898        case HV_X64_MSR_VP_INDEX: {
1899                int r;
1900                struct kvm_vcpu *v;
1901                kvm_for_each_vcpu(r, v, vcpu->kvm)
1902                        if (v == vcpu)
1903                                data = r;
1904                break;
1905        }
1906        case HV_X64_MSR_EOI:
1907                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1908        case HV_X64_MSR_ICR:
1909                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1910        case HV_X64_MSR_TPR:
1911                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1912        case HV_X64_MSR_APIC_ASSIST_PAGE:
1913                data = vcpu->arch.hv_vapic;
1914                break;
1915        default:
1916                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1917                return 1;
1918        }
1919        *pdata = data;
1920        return 0;
1921}
1922
1923int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1924{
1925        u64 data;
1926
1927        switch (msr) {
1928        case MSR_IA32_PLATFORM_ID:
1929        case MSR_IA32_EBL_CR_POWERON:
1930        case MSR_IA32_DEBUGCTLMSR:
1931        case MSR_IA32_LASTBRANCHFROMIP:
1932        case MSR_IA32_LASTBRANCHTOIP:
1933        case MSR_IA32_LASTINTFROMIP:
1934        case MSR_IA32_LASTINTTOIP:
1935        case MSR_K8_SYSCFG:
1936        case MSR_K7_HWCR:
1937        case MSR_VM_HSAVE_PA:
1938        case MSR_K7_EVNTSEL0:
1939        case MSR_K7_PERFCTR0:
1940        case MSR_K8_INT_PENDING_MSG:
1941        case MSR_AMD64_NB_CFG:
1942        case MSR_FAM10H_MMIO_CONF_BASE:
1943                data = 0;
1944                break;
1945        case MSR_P6_PERFCTR0:
1946        case MSR_P6_PERFCTR1:
1947        case MSR_P6_EVNTSEL0:
1948        case MSR_P6_EVNTSEL1:
1949                if (kvm_pmu_msr(vcpu, msr))
1950                        return kvm_pmu_get_msr(vcpu, msr, pdata);
1951                data = 0;
1952                break;
1953        case MSR_IA32_UCODE_REV:
1954                data = 0x100000000ULL;
1955                break;
1956        case MSR_MTRRcap:
1957                data = 0x500 | KVM_NR_VAR_MTRR;
1958                break;
1959        case 0x200 ... 0x2ff:
1960                return get_msr_mtrr(vcpu, msr, pdata);
1961        case 0xcd: /* fsb frequency */
1962                data = 3;
1963                break;
1964                /*
1965                 * MSR_EBC_FREQUENCY_ID
1966                 * Conservative value valid for even the basic CPU models.
1967                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1968                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1969                 * and 266MHz for model 3, or 4. Set Core Clock
1970                 * Frequency to System Bus Frequency Ratio to 1 (bits
1971                 * 31:24) even though these are only valid for CPU
1972                 * models > 2, however guests may end up dividing or
1973                 * multiplying by zero otherwise.
1974                 */
1975        case MSR_EBC_FREQUENCY_ID:
1976                data = 1 << 24;
1977                break;
1978        case MSR_IA32_APICBASE:
1979                data = kvm_get_apic_base(vcpu);
1980                break;
1981        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1982                return kvm_x2apic_msr_read(vcpu, msr, pdata);
1983                break;
1984        case MSR_IA32_TSCDEADLINE:
1985                data = kvm_get_lapic_tscdeadline_msr(vcpu);
1986                break;
1987        case MSR_IA32_MISC_ENABLE:
1988                data = vcpu->arch.ia32_misc_enable_msr;
1989                break;
1990        case MSR_IA32_PERF_STATUS:
1991                /* TSC increment by tick */
1992                data = 1000ULL;
1993                /* CPU multiplier */
1994                data |= (((uint64_t)4ULL) << 40);
1995                break;
1996        case MSR_EFER:
1997                data = vcpu->arch.efer;
1998                break;
1999        case MSR_KVM_WALL_CLOCK:
2000        case MSR_KVM_WALL_CLOCK_NEW:
2001                data = vcpu->kvm->arch.wall_clock;
2002                break;
2003        case MSR_KVM_SYSTEM_TIME:
2004        case MSR_KVM_SYSTEM_TIME_NEW:
2005                data = vcpu->arch.time;
2006                break;
2007        case MSR_KVM_ASYNC_PF_EN:
2008                data = vcpu->arch.apf.msr_val;
2009                break;
2010        case MSR_KVM_STEAL_TIME:
2011                data = vcpu->arch.st.msr_val;
2012                break;
2013        case MSR_KVM_PV_EOI_EN:
2014                data = vcpu->arch.pv_eoi.msr_val;
2015                break;
2016        case MSR_IA32_P5_MC_ADDR:
2017        case MSR_IA32_P5_MC_TYPE:
2018        case MSR_IA32_MCG_CAP:
2019        case MSR_IA32_MCG_CTL:
2020        case MSR_IA32_MCG_STATUS:
2021        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2022                return get_msr_mce(vcpu, msr, pdata);
2023        case MSR_K7_CLK_CTL:
2024                /*
2025                 * Provide expected ramp-up count for K7. All other
2026                 * are set to zero, indicating minimum divisors for
2027                 * every field.
2028                 *
2029                 * This prevents guest kernels on AMD host with CPU
2030                 * type 6, model 8 and higher from exploding due to
2031                 * the rdmsr failing.
2032                 */
2033                data = 0x20000000;
2034                break;
2035        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2036                if (kvm_hv_msr_partition_wide(msr)) {
2037                        int r;
2038                        mutex_lock(&vcpu->kvm->lock);
2039                        r = get_msr_hyperv_pw(vcpu, msr, pdata);
2040                        mutex_unlock(&vcpu->kvm->lock);
2041                        return r;
2042                } else
2043                        return get_msr_hyperv(vcpu, msr, pdata);
2044                break;
2045        case MSR_IA32_BBL_CR_CTL3:
2046                /* This legacy MSR exists but isn't fully documented in current
2047                 * silicon.  It is however accessed by winxp in very narrow
2048                 * scenarios where it sets bit #19, itself documented as
2049                 * a "reserved" bit.  Best effort attempt to source coherent
2050                 * read data here should the balance of the register be
2051                 * interpreted by the guest:
2052                 *
2053                 * L2 cache control register 3: 64GB range, 256KB size,
2054                 * enabled, latency 0x1, configured
2055                 */
2056                data = 0xbe702111;
2057                break;
2058        case MSR_AMD64_OSVW_ID_LENGTH:
2059                if (!guest_cpuid_has_osvw(vcpu))
2060                        return 1;
2061                data = vcpu->arch.osvw.length;
2062                break;
2063        case MSR_AMD64_OSVW_STATUS:
2064                if (!guest_cpuid_has_osvw(vcpu))
2065                        return 1;
2066                data = vcpu->arch.osvw.status;
2067                break;
2068        default:
2069                if (kvm_pmu_msr(vcpu, msr))
2070                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2071                if (!ignore_msrs) {
2072                        vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2073                        return 1;
2074                } else {
2075                        vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2076                        data = 0;
2077                }
2078                break;
2079        }
2080        *pdata = data;
2081        return 0;
2082}
2083EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2084
2085/*
2086 * Read or write a bunch of msrs. All parameters are kernel addresses.
2087 *
2088 * @return number of msrs set successfully.
2089 */
2090static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2091                    struct kvm_msr_entry *entries,
2092                    int (*do_msr)(struct kvm_vcpu *vcpu,
2093                                  unsigned index, u64 *data))
2094{
2095        int i, idx;
2096
2097        idx = srcu_read_lock(&vcpu->kvm->srcu);
2098        for (i = 0; i < msrs->nmsrs; ++i)
2099                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2100                        break;
2101        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2102
2103        return i;
2104}
2105
2106/*
2107 * Read or write a bunch of msrs. Parameters are user addresses.
2108 *
2109 * @return number of msrs set successfully.
2110 */
2111static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2112                  int (*do_msr)(struct kvm_vcpu *vcpu,
2113                                unsigned index, u64 *data),
2114                  int writeback)
2115{
2116        struct kvm_msrs msrs;
2117        struct kvm_msr_entry *entries;
2118        int r, n;
2119        unsigned size;
2120
2121        r = -EFAULT;
2122        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2123                goto out;
2124
2125        r = -E2BIG;
2126        if (msrs.nmsrs >= MAX_IO_MSRS)
2127                goto out;
2128
2129        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2130        entries = memdup_user(user_msrs->entries, size);
2131        if (IS_ERR(entries)) {
2132                r = PTR_ERR(entries);
2133                goto out;
2134        }
2135
2136        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2137        if (r < 0)
2138                goto out_free;
2139
2140        r = -EFAULT;
2141        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2142                goto out_free;
2143
2144        r = n;
2145
2146out_free:
2147        kfree(entries);
2148out:
2149        return r;
2150}
2151
2152int kvm_dev_ioctl_check_extension(long ext)
2153{
2154        int r;
2155
2156        switch (ext) {
2157        case KVM_CAP_IRQCHIP:
2158        case KVM_CAP_HLT:
2159        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2160        case KVM_CAP_SET_TSS_ADDR:
2161        case KVM_CAP_EXT_CPUID:
2162        case KVM_CAP_CLOCKSOURCE:
2163        case KVM_CAP_PIT:
2164        case KVM_CAP_NOP_IO_DELAY:
2165        case KVM_CAP_MP_STATE:
2166        case KVM_CAP_SYNC_MMU:
2167        case KVM_CAP_USER_NMI:
2168        case KVM_CAP_REINJECT_CONTROL:
2169        case KVM_CAP_IRQ_INJECT_STATUS:
2170        case KVM_CAP_ASSIGN_DEV_IRQ:
2171        case KVM_CAP_IRQFD:
2172        case KVM_CAP_IOEVENTFD:
2173        case KVM_CAP_PIT2:
2174        case KVM_CAP_PIT_STATE2:
2175        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2176        case KVM_CAP_XEN_HVM:
2177        case KVM_CAP_ADJUST_CLOCK:
2178        case KVM_CAP_VCPU_EVENTS:
2179        case KVM_CAP_HYPERV:
2180        case KVM_CAP_HYPERV_VAPIC:
2181        case KVM_CAP_HYPERV_SPIN:
2182        case KVM_CAP_PCI_SEGMENT:
2183        case KVM_CAP_DEBUGREGS:
2184        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2185        case KVM_CAP_XSAVE:
2186        case KVM_CAP_ASYNC_PF:
2187        case KVM_CAP_GET_TSC_KHZ:
2188        case KVM_CAP_PCI_2_3:
2189        case KVM_CAP_KVMCLOCK_CTRL:
2190        case KVM_CAP_READONLY_MEM:
2191        case KVM_CAP_IRQFD_RESAMPLE:
2192                r = 1;
2193                break;
2194        case KVM_CAP_COALESCED_MMIO:
2195                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2196                break;
2197        case KVM_CAP_VAPIC:
2198                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2199                break;
2200        case KVM_CAP_NR_VCPUS:
2201                r = KVM_SOFT_MAX_VCPUS;
2202                break;
2203        case KVM_CAP_MAX_VCPUS:
2204                r = KVM_MAX_VCPUS;
2205                break;
2206        case KVM_CAP_NR_MEMSLOTS:
2207                r = KVM_MEMORY_SLOTS;
2208                break;
2209        case KVM_CAP_PV_MMU:    /* obsolete */
2210                r = 0;
2211                break;
2212        case KVM_CAP_IOMMU:
2213                r = iommu_present(&pci_bus_type);
2214                break;
2215        case KVM_CAP_MCE:
2216                r = KVM_MAX_MCE_BANKS;
2217                break;
2218        case KVM_CAP_XCRS:
2219                r = cpu_has_xsave;
2220                break;
2221        case KVM_CAP_TSC_CONTROL:
2222                r = kvm_has_tsc_control;
2223                break;
2224        case KVM_CAP_TSC_DEADLINE_TIMER:
2225                r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2226                break;
2227        default:
2228                r = 0;
2229                break;
2230        }
2231        return r;
2232
2233}
2234
2235long kvm_arch_dev_ioctl(struct file *filp,
2236                        unsigned int ioctl, unsigned long arg)
2237{
2238        void __user *argp = (void __user *)arg;
2239        long r;
2240
2241        switch (ioctl) {
2242        case KVM_GET_MSR_INDEX_LIST: {
2243                struct kvm_msr_list __user *user_msr_list = argp;
2244                struct kvm_msr_list msr_list;
2245                unsigned n;
2246
2247                r = -EFAULT;
2248                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2249                        goto out;
2250                n = msr_list.nmsrs;
2251                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2252                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2253                        goto out;
2254                r = -E2BIG;
2255                if (n < msr_list.nmsrs)
2256                        goto out;
2257                r = -EFAULT;
2258                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2259                                 num_msrs_to_save * sizeof(u32)))
2260                        goto out;
2261                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2262                                 &emulated_msrs,
2263                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2264                        goto out;
2265                r = 0;
2266                break;
2267        }
2268        case KVM_GET_SUPPORTED_CPUID: {
2269                struct kvm_cpuid2 __user *cpuid_arg = argp;
2270                struct kvm_cpuid2 cpuid;
2271
2272                r = -EFAULT;
2273                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2274                        goto out;
2275                r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2276                                                      cpuid_arg->entries);
2277                if (r)
2278                        goto out;
2279
2280                r = -EFAULT;
2281                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2282                        goto out;
2283                r = 0;
2284                break;
2285        }
2286        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2287                u64 mce_cap;
2288
2289                mce_cap = KVM_MCE_CAP_SUPPORTED;
2290                r = -EFAULT;
2291                if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2292                        goto out;
2293                r = 0;
2294                break;
2295        }
2296        default:
2297                r = -EINVAL;
2298        }
2299out:
2300        return r;
2301}
2302
2303static void wbinvd_ipi(void *garbage)
2304{
2305        wbinvd();
2306}
2307
2308static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2309{
2310        return vcpu->kvm->arch.iommu_domain &&
2311                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2312}
2313
2314void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2315{
2316        /* Address WBINVD may be executed by guest */
2317        if (need_emulate_wbinvd(vcpu)) {
2318                if (kvm_x86_ops->has_wbinvd_exit())
2319                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2320                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2321                        smp_call_function_single(vcpu->cpu,
2322                                        wbinvd_ipi, NULL, 1);
2323        }
2324
2325        kvm_x86_ops->vcpu_load(vcpu, cpu);
2326
2327        /* Apply any externally detected TSC adjustments (due to suspend) */
2328        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2329                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2330                vcpu->arch.tsc_offset_adjustment = 0;
2331                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2332        }
2333
2334        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2335                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2336                                native_read_tsc() - vcpu->arch.last_host_tsc;
2337                if (tsc_delta < 0)
2338                        mark_tsc_unstable("KVM discovered backwards TSC");
2339                if (check_tsc_unstable()) {
2340                        u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2341                                                vcpu->arch.last_guest_tsc);
2342                        kvm_x86_ops->write_tsc_offset(vcpu, offset);
2343                        vcpu->arch.tsc_catchup = 1;
2344                }
2345                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2346                if (vcpu->cpu != cpu)
2347                        kvm_migrate_timers(vcpu);
2348                vcpu->cpu = cpu;
2349        }
2350
2351        accumulate_steal_time(vcpu);
2352        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2353}
2354
2355void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2356{
2357        kvm_x86_ops->vcpu_put(vcpu);
2358        kvm_put_guest_fpu(vcpu);
2359        vcpu->arch.last_host_tsc = native_read_tsc();
2360}
2361
2362static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2363                                    struct kvm_lapic_state *s)
2364{
2365        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2366
2367        return 0;
2368}
2369
2370static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2371                                    struct kvm_lapic_state *s)
2372{
2373        kvm_apic_post_state_restore(vcpu, s);
2374        update_cr8_intercept(vcpu);
2375
2376        return 0;
2377}
2378
2379static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2380                                    struct kvm_interrupt *irq)
2381{
2382        if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2383                return -EINVAL;
2384        if (irqchip_in_kernel(vcpu->kvm))
2385                return -ENXIO;
2386
2387        kvm_queue_interrupt(vcpu, irq->irq, false);
2388        kvm_make_request(KVM_REQ_EVENT, vcpu);
2389
2390        return 0;
2391}
2392
2393static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2394{
2395        kvm_inject_nmi(vcpu);
2396
2397        return 0;
2398}
2399
2400static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2401                                           struct kvm_tpr_access_ctl *tac)
2402{
2403        if (tac->flags)
2404                return -EINVAL;
2405        vcpu->arch.tpr_access_reporting = !!tac->enabled;
2406        return 0;
2407}
2408
2409static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2410                                        u64 mcg_cap)
2411{
2412        int r;
2413        unsigned bank_num = mcg_cap & 0xff, bank;
2414
2415        r = -EINVAL;
2416        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2417                goto out;
2418        if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2419                goto out;
2420        r = 0;
2421        vcpu->arch.mcg_cap = mcg_cap;
2422        /* Init IA32_MCG_CTL to all 1s */
2423        if (mcg_cap & MCG_CTL_P)
2424                vcpu->arch.mcg_ctl = ~(u64)0;
2425        /* Init IA32_MCi_CTL to all 1s */
2426        for (bank = 0; bank < bank_num; bank++)
2427                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2428out:
2429        return r;
2430}
2431
2432static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2433                                      struct kvm_x86_mce *mce)
2434{
2435        u64 mcg_cap = vcpu->arch.mcg_cap;
2436        unsigned bank_num = mcg_cap & 0xff;
2437        u64 *banks = vcpu->arch.mce_banks;
2438
2439        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2440                return -EINVAL;
2441        /*
2442         * if IA32_MCG_CTL is not all 1s, the uncorrected error
2443         * reporting is disabled
2444         */
2445        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2446            vcpu->arch.mcg_ctl != ~(u64)0)
2447                return 0;
2448        banks += 4 * mce->bank;
2449        /*
2450         * if IA32_MCi_CTL is not all 1s, the uncorrected error
2451         * reporting is disabled for the bank
2452         */
2453        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2454                return 0;
2455        if (mce->status & MCI_STATUS_UC) {
2456                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2457                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2458                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2459                        return 0;
2460                }
2461                if (banks[1] & MCI_STATUS_VAL)
2462                        mce->status |= MCI_STATUS_OVER;
2463                banks[2] = mce->addr;
2464                banks[3] = mce->misc;
2465                vcpu->arch.mcg_status = mce->mcg_status;
2466                banks[1] = mce->status;
2467                kvm_queue_exception(vcpu, MC_VECTOR);
2468        } else if (!(banks[1] & MCI_STATUS_VAL)
2469                   || !(banks[1] & MCI_STATUS_UC)) {
2470                if (banks[1] & MCI_STATUS_VAL)
2471                        mce->status |= MCI_STATUS_OVER;
2472                banks[2] = mce->addr;
2473                banks[3] = mce->misc;
2474                banks[1] = mce->status;
2475        } else
2476                banks[1] |= MCI_STATUS_OVER;
2477        return 0;
2478}
2479
2480static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2481                                               struct kvm_vcpu_events *events)
2482{
2483        process_nmi(vcpu);
2484        events->exception.injected =
2485                vcpu->arch.exception.pending &&
2486                !kvm_exception_is_soft(vcpu->arch.exception.nr);
2487        events->exception.nr = vcpu->arch.exception.nr;
2488        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2489        events->exception.pad = 0;
2490        events->exception.error_code = vcpu->arch.exception.error_code;
2491
2492        events->interrupt.injected =
2493                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2494        events->interrupt.nr = vcpu->arch.interrupt.nr;
2495        events->interrupt.soft = 0;
2496        events->interrupt.shadow =
2497                kvm_x86_ops->get_interrupt_shadow(vcpu,
2498                        KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2499
2500        events->nmi.injected = vcpu->arch.nmi_injected;
2501        events->nmi.pending = vcpu->arch.nmi_pending != 0;
2502        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2503        events->nmi.pad = 0;
2504
2505        events->sipi_vector = vcpu->arch.sipi_vector;
2506
2507        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2508                         | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2509                         | KVM_VCPUEVENT_VALID_SHADOW);
2510        memset(&events->reserved, 0, sizeof(events->reserved));
2511}
2512
2513static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2514                                              struct kvm_vcpu_events *events)
2515{
2516        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2517                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2518                              | KVM_VCPUEVENT_VALID_SHADOW))
2519                return -EINVAL;
2520
2521        process_nmi(vcpu);
2522        vcpu->arch.exception.pending = events->exception.injected;
2523        vcpu->arch.exception.nr = events->exception.nr;
2524        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2525        vcpu->arch.exception.error_code = events->exception.error_code;
2526
2527        vcpu->arch.interrupt.pending = events->interrupt.injected;
2528        vcpu->arch.interrupt.nr = events->interrupt.nr;
2529        vcpu->arch.interrupt.soft = events->interrupt.soft;
2530        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2531                kvm_x86_ops->set_interrupt_shadow(vcpu,
2532                                                  events->interrupt.shadow);
2533
2534        vcpu->arch.nmi_injected = events->nmi.injected;
2535        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2536                vcpu->arch.nmi_pending = events->nmi.pending;
2537        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2538
2539        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2540                vcpu->arch.sipi_vector = events->sipi_vector;
2541
2542        kvm_make_request(KVM_REQ_EVENT, vcpu);
2543
2544        return 0;
2545}
2546
2547static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2548                                             struct kvm_debugregs *dbgregs)
2549{
2550        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2551        dbgregs->dr6 = vcpu->arch.dr6;
2552        dbgregs->dr7 = vcpu->arch.dr7;
2553        dbgregs->flags = 0;
2554        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2555}
2556
2557static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2558                                            struct kvm_debugregs *dbgregs)
2559{
2560        if (dbgregs->flags)
2561                return -EINVAL;
2562
2563        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2564        vcpu->arch.dr6 = dbgregs->dr6;
2565        vcpu->arch.dr7 = dbgregs->dr7;
2566
2567        return 0;
2568}
2569
2570static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2571                                         struct kvm_xsave *guest_xsave)
2572{
2573        if (cpu_has_xsave)
2574                memcpy(guest_xsave->region,
2575                        &vcpu->arch.guest_fpu.state->xsave,
2576                        xstate_size);
2577        else {
2578                memcpy(guest_xsave->region,
2579                        &vcpu->arch.guest_fpu.state->fxsave,
2580                        sizeof(struct i387_fxsave_struct));
2581                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2582                        XSTATE_FPSSE;
2583        }
2584}
2585
2586static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2587                                        struct kvm_xsave *guest_xsave)
2588{
2589        u64 xstate_bv =
2590                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2591
2592        if (cpu_has_xsave)
2593                memcpy(&vcpu->arch.guest_fpu.state->xsave,
2594                        guest_xsave->region, xstate_size);
2595        else {
2596                if (xstate_bv & ~XSTATE_FPSSE)
2597                        return -EINVAL;
2598                memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2599                        guest_xsave->region, sizeof(struct i387_fxsave_struct));
2600        }
2601        return 0;
2602}
2603
2604static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2605                                        struct kvm_xcrs *guest_xcrs)
2606{
2607        if (!cpu_has_xsave) {
2608                guest_xcrs->nr_xcrs = 0;
2609                return;
2610        }
2611
2612        guest_xcrs->nr_xcrs = 1;
2613        guest_xcrs->flags = 0;
2614        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2615        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2616}
2617
2618static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2619                                       struct kvm_xcrs *guest_xcrs)
2620{
2621        int i, r = 0;
2622
2623        if (!cpu_has_xsave)
2624                return -EINVAL;
2625
2626        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2627                return -EINVAL;
2628
2629        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2630                /* Only support XCR0 currently */
2631                if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2632                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2633                                guest_xcrs->xcrs[0].value);
2634                        break;
2635                }
2636        if (r)
2637                r = -EINVAL;
2638        return r;
2639}
2640
2641/*
2642 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2643 * stopped by the hypervisor.  This function will be called from the host only.
2644 * EINVAL is returned when the host attempts to set the flag for a guest that
2645 * does not support pv clocks.
2646 */
2647static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2648{
2649        if (!vcpu->arch.time_page)
2650                return -EINVAL;
2651        vcpu->arch.pvclock_set_guest_stopped_request = true;
2652        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2653        return 0;
2654}
2655
2656long kvm_arch_vcpu_ioctl(struct file *filp,
2657                         unsigned int ioctl, unsigned long arg)
2658{
2659        struct kvm_vcpu *vcpu = filp->private_data;
2660        void __user *argp = (void __user *)arg;
2661        int r;
2662        union {
2663                struct kvm_lapic_state *lapic;
2664                struct kvm_xsave *xsave;
2665                struct kvm_xcrs *xcrs;
2666                void *buffer;
2667        } u;
2668
2669        u.buffer = NULL;
2670        switch (ioctl) {
2671        case KVM_GET_LAPIC: {
2672                r = -EINVAL;
2673                if (!vcpu->arch.apic)
2674                        goto out;
2675                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2676
2677                r = -ENOMEM;
2678                if (!u.lapic)
2679                        goto out;
2680                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2681                if (r)
2682                        goto out;
2683                r = -EFAULT;
2684                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2685                        goto out;
2686                r = 0;
2687                break;
2688        }
2689        case KVM_SET_LAPIC: {
2690                r = -EINVAL;
2691                if (!vcpu->arch.apic)
2692                        goto out;
2693                u.lapic = memdup_user(argp, sizeof(*u.lapic));
2694                if (IS_ERR(u.lapic)) {
2695                        r = PTR_ERR(u.lapic);
2696                        goto out;
2697                }
2698
2699                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2700                if (r)
2701                        goto out;
2702                r = 0;
2703                break;
2704        }
2705        case KVM_INTERRUPT: {
2706                struct kvm_interrupt irq;
2707
2708                r = -EFAULT;
2709                if (copy_from_user(&irq, argp, sizeof irq))
2710                        goto out;
2711                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2712                if (r)
2713                        goto out;
2714                r = 0;
2715                break;
2716        }
2717        case KVM_NMI: {
2718                r = kvm_vcpu_ioctl_nmi(vcpu);
2719                if (r)
2720                        goto out;
2721                r = 0;
2722                break;
2723        }
2724        case KVM_SET_CPUID: {
2725                struct kvm_cpuid __user *cpuid_arg = argp;
2726                struct kvm_cpuid cpuid;
2727
2728                r = -EFAULT;
2729                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2730                        goto out;
2731                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2732                if (r)
2733                        goto out;
2734                break;
2735        }
2736        case KVM_SET_CPUID2: {
2737                struct kvm_cpuid2 __user *cpuid_arg = argp;
2738                struct kvm_cpuid2 cpuid;
2739
2740                r = -EFAULT;
2741                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2742                        goto out;
2743                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2744                                              cpuid_arg->entries);
2745                if (r)
2746                        goto out;
2747                break;
2748        }
2749        case KVM_GET_CPUID2: {
2750                struct kvm_cpuid2 __user *cpuid_arg = argp;
2751                struct kvm_cpuid2 cpuid;
2752
2753                r = -EFAULT;
2754                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2755                        goto out;
2756                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2757                                              cpuid_arg->entries);
2758                if (r)
2759                        goto out;
2760                r = -EFAULT;
2761                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2762                        goto out;
2763                r = 0;
2764                break;
2765        }
2766        case KVM_GET_MSRS:
2767                r = msr_io(vcpu, argp, kvm_get_msr, 1);
2768                break;
2769        case KVM_SET_MSRS:
2770                r = msr_io(vcpu, argp, do_set_msr, 0);
2771                break;
2772        case KVM_TPR_ACCESS_REPORTING: {
2773                struct kvm_tpr_access_ctl tac;
2774
2775                r = -EFAULT;
2776                if (copy_from_user(&tac, argp, sizeof tac))
2777                        goto out;
2778                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2779                if (r)
2780                        goto out;
2781                r = -EFAULT;
2782                if (copy_to_user(argp, &tac, sizeof tac))
2783                        goto out;
2784                r = 0;
2785                break;
2786        };
2787        case KVM_SET_VAPIC_ADDR: {
2788                struct kvm_vapic_addr va;
2789
2790                r = -EINVAL;
2791                if (!irqchip_in_kernel(vcpu->kvm))
2792                        goto out;
2793                r = -EFAULT;
2794                if (copy_from_user(&va, argp, sizeof va))
2795                        goto out;
2796                r = 0;
2797                kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2798                break;
2799        }
2800        case KVM_X86_SETUP_MCE: {
2801                u64 mcg_cap;
2802
2803                r = -EFAULT;
2804                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2805                        goto out;
2806                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2807                break;
2808        }
2809        case KVM_X86_SET_MCE: {
2810                struct kvm_x86_mce mce;
2811
2812                r = -EFAULT;
2813                if (copy_from_user(&mce, argp, sizeof mce))
2814                        goto out;
2815                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2816                break;
2817        }
2818        case KVM_GET_VCPU_EVENTS: {
2819                struct kvm_vcpu_events events;
2820
2821                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2822
2823                r = -EFAULT;
2824                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2825                        break;
2826                r = 0;
2827                break;
2828        }
2829        case KVM_SET_VCPU_EVENTS: {
2830                struct kvm_vcpu_events events;
2831
2832                r = -EFAULT;
2833                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2834                        break;
2835
2836                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2837                break;
2838        }
2839        case KVM_GET_DEBUGREGS: {
2840                struct kvm_debugregs dbgregs;
2841
2842                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2843
2844                r = -EFAULT;
2845                if (copy_to_user(argp, &dbgregs,
2846                                 sizeof(struct kvm_debugregs)))
2847                        break;
2848                r = 0;
2849                break;
2850        }
2851        case KVM_SET_DEBUGREGS: {
2852                struct kvm_debugregs dbgregs;
2853
2854                r = -EFAULT;
2855                if (copy_from_user(&dbgregs, argp,
2856                                   sizeof(struct kvm_debugregs)))
2857                        break;
2858
2859                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2860                break;
2861        }
2862        case KVM_GET_XSAVE: {
2863                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2864                r = -ENOMEM;
2865                if (!u.xsave)
2866                        break;
2867
2868                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2869
2870                r = -EFAULT;
2871                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2872                        break;
2873                r = 0;
2874                break;
2875        }
2876        case KVM_SET_XSAVE: {
2877                u.xsave = memdup_user(argp, sizeof(*u.xsave));
2878                if (IS_ERR(u.xsave)) {
2879                        r = PTR_ERR(u.xsave);
2880                        goto out;
2881                }
2882
2883                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2884                break;
2885        }
2886        case KVM_GET_XCRS: {
2887                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2888                r = -ENOMEM;
2889                if (!u.xcrs)
2890                        break;
2891
2892                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2893
2894                r = -EFAULT;
2895                if (copy_to_user(argp, u.xcrs,
2896                                 sizeof(struct kvm_xcrs)))
2897                        break;
2898                r = 0;
2899                break;
2900        }
2901        case KVM_SET_XCRS: {
2902                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2903                if (IS_ERR(u.xcrs)) {
2904                        r = PTR_ERR(u.xcrs);
2905                        goto out;
2906                }
2907
2908                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2909                break;
2910        }
2911        case KVM_SET_TSC_KHZ: {
2912                u32 user_tsc_khz;
2913
2914                r = -EINVAL;
2915                user_tsc_khz = (u32)arg;
2916
2917                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2918                        goto out;
2919
2920                if (user_tsc_khz == 0)
2921                        user_tsc_khz = tsc_khz;
2922
2923                kvm_set_tsc_khz(vcpu, user_tsc_khz);
2924
2925                r = 0;
2926                goto out;
2927        }
2928        case KVM_GET_TSC_KHZ: {
2929                r = vcpu->arch.virtual_tsc_khz;
2930                goto out;
2931        }
2932        case KVM_KVMCLOCK_CTRL: {
2933                r = kvm_set_guest_paused(vcpu);
2934                goto out;
2935        }
2936        default:
2937                r = -EINVAL;
2938        }
2939out:
2940        kfree(u.buffer);
2941        return r;
2942}
2943
2944int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2945{
2946        return VM_FAULT_SIGBUS;
2947}
2948
2949static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2950{
2951        int ret;
2952
2953        if (addr > (unsigned int)(-3 * PAGE_SIZE))
2954                return -1;
2955        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2956        return ret;
2957}
2958
2959static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2960                                              u64 ident_addr)
2961{
2962        kvm->arch.ept_identity_map_addr = ident_addr;
2963        return 0;
2964}
2965
2966static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2967                                          u32 kvm_nr_mmu_pages)
2968{
2969        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2970                return -EINVAL;
2971
2972        mutex_lock(&kvm->slots_lock);
2973        spin_lock(&kvm->mmu_lock);
2974
2975        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2976        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2977
2978        spin_unlock(&kvm->mmu_lock);
2979        mutex_unlock(&kvm->slots_lock);
2980        return 0;
2981}
2982
2983static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2984{
2985        return kvm->arch.n_max_mmu_pages;
2986}
2987
2988static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2989{
2990        int r;
2991
2992        r = 0;
2993        switch (chip->chip_id) {
2994        case KVM_IRQCHIP_PIC_MASTER:
2995                memcpy(&chip->chip.pic,
2996                        &pic_irqchip(kvm)->pics[0],
2997                        sizeof(struct kvm_pic_state));
2998                break;
2999        case KVM_IRQCHIP_PIC_SLAVE:
3000                memcpy(&chip->chip.pic,
3001                        &pic_irqchip(kvm)->pics[1],
3002                        sizeof(struct kvm_pic_state));
3003                break;
3004        case KVM_IRQCHIP_IOAPIC:
3005                r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3006                break;
3007        default:
3008                r = -EINVAL;
3009                break;
3010        }
3011        return r;
3012}
3013
3014static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3015{
3016        int r;
3017
3018        r = 0;
3019        switch (chip->chip_id) {
3020        case KVM_IRQCHIP_PIC_MASTER:
3021                spin_lock(&pic_irqchip(kvm)->lock);
3022                memcpy(&pic_irqchip(kvm)->pics[0],
3023                        &chip->chip.pic,
3024                        sizeof(struct kvm_pic_state));
3025                spin_unlock(&pic_irqchip(kvm)->lock);
3026                break;
3027        case KVM_IRQCHIP_PIC_SLAVE:
3028                spin_lock(&pic_irqchip(kvm)->lock);
3029                memcpy(&pic_irqchip(kvm)->pics[1],
3030                        &chip->chip.pic,
3031                        sizeof(struct kvm_pic_state));
3032                spin_unlock(&pic_irqchip(kvm)->lock);
3033                break;
3034        case KVM_IRQCHIP_IOAPIC:
3035                r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3036                break;
3037        default:
3038                r = -EINVAL;
3039                break;
3040        }
3041        kvm_pic_update_irq(pic_irqchip(kvm));
3042        return r;
3043}
3044
3045static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3046{
3047        int r = 0;
3048
3049        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3050        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3051        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3052        return r;
3053}
3054
3055static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3056{
3057        int r = 0;
3058
3059        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3060        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3061        kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3062        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3063        return r;
3064}
3065
3066static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3067{
3068        int r = 0;
3069
3070        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3071        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3072                sizeof(ps->channels));
3073        ps->flags = kvm->arch.vpit->pit_state.flags;
3074        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3075        memset(&ps->reserved, 0, sizeof(ps->reserved));
3076        return r;
3077}
3078
3079static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3080{
3081        int r = 0, start = 0;
3082        u32 prev_legacy, cur_legacy;
3083        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3084        prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3085        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3086        if (!prev_legacy && cur_legacy)
3087                start = 1;
3088        memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3089               sizeof(kvm->arch.vpit->pit_state.channels));
3090        kvm->arch.vpit->pit_state.flags = ps->flags;
3091        kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3092        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3093        return r;
3094}
3095
3096static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3097                                 struct kvm_reinject_control *control)
3098{
3099        if (!kvm->arch.vpit)
3100                return -ENXIO;
3101        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3102        kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3103        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3104        return 0;
3105}
3106
3107/**
3108 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3109 * @kvm: kvm instance
3110 * @log: slot id and address to which we copy the log
3111 *
3112 * We need to keep it in mind that VCPU threads can write to the bitmap
3113 * concurrently.  So, to avoid losing data, we keep the following order for
3114 * each bit:
3115 *
3116 *   1. Take a snapshot of the bit and clear it if needed.
3117 *   2. Write protect the corresponding page.
3118 *   3. Flush TLB's if needed.
3119 *   4. Copy the snapshot to the userspace.
3120 *
3121 * Between 2 and 3, the guest may write to the page using the remaining TLB
3122 * entry.  This is not a problem because the page will be reported dirty at
3123 * step 4 using the snapshot taken before and step 3 ensures that successive
3124 * writes will be logged for the next call.
3125 */
3126int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3127{
3128        int r;
3129        struct kvm_memory_slot *memslot;
3130        unsigned long n, i;
3131        unsigned long *dirty_bitmap;
3132        unsigned long *dirty_bitmap_buffer;
3133        bool is_dirty = false;
3134
3135        mutex_lock(&kvm->slots_lock);
3136
3137        r = -EINVAL;
3138        if (log->slot >= KVM_MEMORY_SLOTS)
3139                goto out;
3140
3141        memslot = id_to_memslot(kvm->memslots, log->slot);
3142
3143        dirty_bitmap = memslot->dirty_bitmap;
3144        r = -ENOENT;
3145        if (!dirty_bitmap)
3146                goto out;
3147
3148        n = kvm_dirty_bitmap_bytes(memslot);
3149
3150        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3151        memset(dirty_bitmap_buffer, 0, n);
3152
3153        spin_lock(&kvm->mmu_lock);
3154
3155        for (i = 0; i < n / sizeof(long); i++) {
3156                unsigned long mask;
3157                gfn_t offset;
3158
3159                if (!dirty_bitmap[i])
3160                        continue;
3161
3162                is_dirty = true;
3163
3164                mask = xchg(&dirty_bitmap[i], 0);
3165                dirty_bitmap_buffer[i] = mask;
3166
3167                offset = i * BITS_PER_LONG;
3168                kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3169        }
3170        if (is_dirty)
3171                kvm_flush_remote_tlbs(kvm);
3172
3173        spin_unlock(&kvm->mmu_lock);
3174
3175        r = -EFAULT;
3176        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3177                goto out;
3178
3179        r = 0;
3180out:
3181        mutex_unlock(&kvm->slots_lock);
3182        return r;
3183}
3184
3185int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3186{
3187        if (!irqchip_in_kernel(kvm))
3188                return -ENXIO;
3189
3190        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3191                                        irq_event->irq, irq_event->level);
3192        return 0;
3193}
3194
3195long kvm_arch_vm_ioctl(struct file *filp,
3196                       unsigned int ioctl, unsigned long arg)
3197{
3198        struct kvm *kvm = filp->private_data;
3199        void __user *argp = (void __user *)arg;
3200        int r = -ENOTTY;
3201        /*
3202         * This union makes it completely explicit to gcc-3.x
3203         * that these two variables' stack usage should be
3204         * combined, not added together.
3205         */
3206        union {
3207                struct kvm_pit_state ps;
3208                struct kvm_pit_state2 ps2;
3209                struct kvm_pit_config pit_config;
3210        } u;
3211
3212        switch (ioctl) {
3213        case KVM_SET_TSS_ADDR:
3214                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3215                if (r < 0)
3216                        goto out;
3217                break;
3218        case KVM_SET_IDENTITY_MAP_ADDR: {
3219                u64 ident_addr;
3220
3221                r = -EFAULT;
3222                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3223                        goto out;
3224                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3225                if (r < 0)
3226                        goto out;
3227                break;
3228        }
3229        case KVM_SET_NR_MMU_PAGES:
3230                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3231                if (r)
3232                        goto out;
3233                break;
3234        case KVM_GET_NR_MMU_PAGES:
3235                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3236                break;
3237        case KVM_CREATE_IRQCHIP: {
3238                struct kvm_pic *vpic;
3239
3240                mutex_lock(&kvm->lock);
3241                r = -EEXIST;
3242                if (kvm->arch.vpic)
3243                        goto create_irqchip_unlock;
3244                r = -EINVAL;
3245                if (atomic_read(&kvm->online_vcpus))
3246                        goto create_irqchip_unlock;
3247                r = -ENOMEM;
3248                vpic = kvm_create_pic(kvm);
3249                if (vpic) {
3250                        r = kvm_ioapic_init(kvm);
3251                        if (r) {
3252                                mutex_lock(&kvm->slots_lock);
3253                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3254                                                          &vpic->dev_master);
3255                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3256                                                          &vpic->dev_slave);
3257                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3258                                                          &vpic->dev_eclr);
3259                                mutex_unlock(&kvm->slots_lock);
3260                                kfree(vpic);
3261                                goto create_irqchip_unlock;
3262                        }
3263                } else
3264                        goto create_irqchip_unlock;
3265                smp_wmb();
3266                kvm->arch.vpic = vpic;
3267                smp_wmb();
3268                r = kvm_setup_default_irq_routing(kvm);
3269                if (r) {
3270                        mutex_lock(&kvm->slots_lock);
3271                        mutex_lock(&kvm->irq_lock);
3272                        kvm_ioapic_destroy(kvm);
3273                        kvm_destroy_pic(kvm);
3274                        mutex_unlock(&kvm->irq_lock);
3275                        mutex_unlock(&kvm->slots_lock);
3276                }
3277        create_irqchip_unlock:
3278                mutex_unlock(&kvm->lock);
3279                break;
3280        }
3281        case KVM_CREATE_PIT:
3282                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3283                goto create_pit;
3284        case KVM_CREATE_PIT2:
3285                r = -EFAULT;
3286                if (copy_from_user(&u.pit_config, argp,
3287                                   sizeof(struct kvm_pit_config)))
3288                        goto out;
3289        create_pit:
3290                mutex_lock(&kvm->slots_lock);
3291                r = -EEXIST;
3292                if (kvm->arch.vpit)
3293                        goto create_pit_unlock;
3294                r = -ENOMEM;
3295                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3296                if (kvm->arch.vpit)
3297                        r = 0;
3298        create_pit_unlock:
3299                mutex_unlock(&kvm->slots_lock);
3300                break;
3301        case KVM_GET_IRQCHIP: {
3302                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3303                struct kvm_irqchip *chip;
3304
3305                chip = memdup_user(argp, sizeof(*chip));
3306                if (IS_ERR(chip)) {
3307                        r = PTR_ERR(chip);
3308                        goto out;
3309                }
3310
3311                r = -ENXIO;
3312                if (!irqchip_in_kernel(kvm))
3313                        goto get_irqchip_out;
3314                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3315                if (r)
3316                        goto get_irqchip_out;
3317                r = -EFAULT;
3318                if (copy_to_user(argp, chip, sizeof *chip))
3319                        goto get_irqchip_out;
3320                r = 0;
3321        get_irqchip_out:
3322                kfree(chip);
3323                if (r)
3324                        goto out;
3325                break;
3326        }
3327        case KVM_SET_IRQCHIP: {
3328                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3329                struct kvm_irqchip *chip;
3330
3331                chip = memdup_user(argp, sizeof(*chip));
3332                if (IS_ERR(chip)) {
3333                        r = PTR_ERR(chip);
3334                        goto out;
3335                }
3336
3337                r = -ENXIO;
3338                if (!irqchip_in_kernel(kvm))
3339                        goto set_irqchip_out;
3340                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3341                if (r)
3342                        goto set_irqchip_out;
3343                r = 0;
3344        set_irqchip_out:
3345                kfree(chip);
3346                if (r)
3347                        goto out;
3348                break;
3349        }
3350        case KVM_GET_PIT: {
3351                r = -EFAULT;
3352                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3353                        goto out;
3354                r = -ENXIO;
3355                if (!kvm->arch.vpit)
3356                        goto out;
3357                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3358                if (r)
3359                        goto out;
3360                r = -EFAULT;
3361                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3362                        goto out;
3363                r = 0;
3364                break;
3365        }
3366        case KVM_SET_PIT: {
3367                r = -EFAULT;
3368                if (copy_from_user(&u.ps, argp, sizeof u.ps))
3369                        goto out;
3370                r = -ENXIO;
3371                if (!kvm->arch.vpit)
3372                        goto out;
3373                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3374                if (r)
3375                        goto out;
3376                r = 0;
3377                break;
3378        }
3379        case KVM_GET_PIT2: {
3380                r = -ENXIO;
3381                if (!kvm->arch.vpit)
3382                        goto out;
3383                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3384                if (r)
3385                        goto out;
3386                r = -EFAULT;
3387                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3388                        goto out;
3389                r = 0;
3390                break;
3391        }
3392        case KVM_SET_PIT2: {
3393                r = -EFAULT;
3394                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3395                        goto out;
3396                r = -ENXIO;
3397                if (!kvm->arch.vpit)
3398                        goto out;
3399                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3400                if (r)
3401                        goto out;
3402                r = 0;
3403                break;
3404        }
3405        case KVM_REINJECT_CONTROL: {
3406                struct kvm_reinject_control control;
3407                r =  -EFAULT;
3408                if (copy_from_user(&control, argp, sizeof(control)))
3409                        goto out;
3410                r = kvm_vm_ioctl_reinject(kvm, &control);
3411                if (r)
3412                        goto out;
3413                r = 0;
3414                break;
3415        }
3416        case KVM_XEN_HVM_CONFIG: {
3417                r = -EFAULT;
3418                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3419                                   sizeof(struct kvm_xen_hvm_config)))
3420                        goto out;
3421                r = -EINVAL;
3422                if (kvm->arch.xen_hvm_config.flags)
3423                        goto out;
3424                r = 0;
3425                break;
3426        }
3427        case KVM_SET_CLOCK: {
3428                struct kvm_clock_data user_ns;
3429                u64 now_ns;
3430                s64 delta;
3431
3432                r = -EFAULT;
3433                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3434                        goto out;
3435
3436                r = -EINVAL;
3437                if (user_ns.flags)
3438                        goto out;
3439
3440                r = 0;
3441                local_irq_disable();
3442                now_ns = get_kernel_ns();
3443                delta = user_ns.clock - now_ns;
3444                local_irq_enable();
3445                kvm->arch.kvmclock_offset = delta;
3446                break;
3447        }
3448        case KVM_GET_CLOCK: {
3449                struct kvm_clock_data user_ns;
3450                u64 now_ns;
3451
3452                local_irq_disable();
3453                now_ns = get_kernel_ns();
3454                user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3455                local_irq_enable();
3456                user_ns.flags = 0;
3457                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3458
3459                r = -EFAULT;
3460                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3461                        goto out;
3462                r = 0;
3463                break;
3464        }
3465
3466        default:
3467                ;
3468        }
3469out:
3470        return r;
3471}
3472
3473static void kvm_init_msr_list(void)
3474{
3475        u32 dummy[2];
3476        unsigned i, j;
3477
3478        /* skip the first msrs in the list. KVM-specific */
3479        for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3480                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3481                        continue;
3482                if (j < i)
3483                        msrs_to_save[j] = msrs_to_save[i];
3484                j++;
3485        }
3486        num_msrs_to_save = j;
3487}
3488
3489static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3490                           const void *v)
3491{
3492        int handled = 0;
3493        int n;
3494
3495        do {
3496                n = min(len, 8);
3497                if (!(vcpu->arch.apic &&
3498                      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3499                    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3500                        break;
3501                handled += n;
3502                addr += n;
3503                len -= n;
3504                v += n;
3505        } while (len);
3506
3507        return handled;
3508}
3509
3510static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3511{
3512        int handled = 0;
3513        int n;
3514
3515        do {
3516                n = min(len, 8);
3517                if (!(vcpu->arch.apic &&
3518                      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3519                    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3520                        break;
3521                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3522                handled += n;
3523                addr += n;
3524                len -= n;
3525                v += n;
3526        } while (len);
3527
3528        return handled;
3529}
3530
3531static void kvm_set_segment(struct kvm_vcpu *vcpu,
3532                        struct kvm_segment *var, int seg)
3533{
3534        kvm_x86_ops->set_segment(vcpu, var, seg);
3535}
3536
3537void kvm_get_segment(struct kvm_vcpu *vcpu,
3538                     struct kvm_segment *var, int seg)
3539{
3540        kvm_x86_ops->get_segment(vcpu, var, seg);
3541}
3542
3543gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3544{
3545        gpa_t t_gpa;
3546        struct x86_exception exception;
3547
3548        BUG_ON(!mmu_is_nested(vcpu));
3549
3550        /* NPT walks are always user-walks */
3551        access |= PFERR_USER_MASK;
3552        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3553
3554        return t_gpa;
3555}
3556
3557gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3558                              struct x86_exception *exception)
3559{
3560        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3561        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3562}
3563
3564 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3565                                struct x86_exception *exception)
3566{
3567        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3568        access |= PFERR_FETCH_MASK;
3569        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3570}
3571
3572gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3573                               struct x86_exception *exception)
3574{
3575        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3576        access |= PFERR_WRITE_MASK;
3577        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3578}
3579
3580/* uses this to access any guest's mapped memory without checking CPL */
3581gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3582                                struct x86_exception *exception)
3583{
3584        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3585}
3586
3587static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3588                                      struct kvm_vcpu *vcpu, u32 access,
3589                                      struct x86_exception *exception)
3590{
3591        void *data = val;
3592        int r = X86EMUL_CONTINUE;
3593
3594        while (bytes) {
3595                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3596                                                            exception);
3597                unsigned offset = addr & (PAGE_SIZE-1);
3598                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3599                int ret;
3600
3601                if (gpa == UNMAPPED_GVA)
3602                        return X86EMUL_PROPAGATE_FAULT;
3603                ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3604                if (ret < 0) {
3605                        r = X86EMUL_IO_NEEDED;
3606                        goto out;
3607                }
3608
3609                bytes -= toread;
3610                data += toread;
3611                addr += toread;
3612        }
3613out:
3614        return r;
3615}
3616
3617/* used for instruction fetching */
3618static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3619                                gva_t addr, void *val, unsigned int bytes,
3620                                struct x86_exception *exception)
3621{
3622        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3623        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3624
3625        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3626                                          access | PFERR_FETCH_MASK,
3627                                          exception);
3628}
3629
3630int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3631                               gva_t addr, void *val, unsigned int bytes,
3632                               struct x86_exception *exception)
3633{
3634        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3635        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3636
3637        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3638                                          exception);
3639}
3640EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3641
3642static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3643                                      gva_t addr, void *val, unsigned int bytes,
3644                                      struct x86_exception *exception)
3645{
3646        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3647        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3648}
3649
3650int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3651                                       gva_t addr, void *val,
3652                                       unsigned int bytes,
3653                                       struct x86_exception *exception)
3654{
3655        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3656        void *data = val;
3657        int r = X86EMUL_CONTINUE;
3658
3659        while (bytes) {
3660                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3661                                                             PFERR_WRITE_MASK,
3662                                                             exception);
3663                unsigned offset = addr & (PAGE_SIZE-1);
3664                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3665                int ret;
3666
3667                if (gpa == UNMAPPED_GVA)
3668                        return X86EMUL_PROPAGATE_FAULT;
3669                ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3670                if (ret < 0) {
3671                        r = X86EMUL_IO_NEEDED;
3672                        goto out;
3673                }
3674
3675                bytes -= towrite;
3676                data += towrite;
3677                addr += towrite;
3678        }
3679out:
3680        return r;
3681}
3682EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3683
3684static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3685                                gpa_t *gpa, struct x86_exception *exception,
3686                                bool write)
3687{
3688        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3689                | (write ? PFERR_WRITE_MASK : 0);
3690
3691        if (vcpu_match_mmio_gva(vcpu, gva)
3692            && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3693                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3694                                        (gva & (PAGE_SIZE - 1));
3695                trace_vcpu_match_mmio(gva, *gpa, write, false);
3696                return 1;
3697        }
3698
3699        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3700
3701        if (*gpa == UNMAPPED_GVA)
3702                return -1;
3703
3704        /* For APIC access vmexit */
3705        if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3706                return 1;
3707
3708        if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3709                trace_vcpu_match_mmio(gva, *gpa, write, true);
3710                return 1;
3711        }
3712
3713        return 0;
3714}
3715
3716int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3717                        const void *val, int bytes)
3718{
3719        int ret;
3720
3721        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3722        if (ret < 0)
3723                return 0;
3724        kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3725        return 1;
3726}
3727
3728struct read_write_emulator_ops {
3729        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3730                                  int bytes);
3731        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3732                                  void *val, int bytes);
3733        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3734                               int bytes, void *val);
3735        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3736                                    void *val, int bytes);
3737        bool write;
3738};
3739
3740static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3741{
3742        if (vcpu->mmio_read_completed) {
3743                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3744                               vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3745                vcpu->mmio_read_completed = 0;
3746                return 1;
3747        }
3748
3749        return 0;
3750}
3751
3752static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3753                        void *val, int bytes)
3754{
3755        return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3756}
3757
3758static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3759                         void *val, int bytes)
3760{
3761        return emulator_write_phys(vcpu, gpa, val, bytes);
3762}
3763
3764static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3765{
3766        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3767        return vcpu_mmio_write(vcpu, gpa, bytes, val);
3768}
3769
3770static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3771                          void *val, int bytes)
3772{
3773        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3774        return X86EMUL_IO_NEEDED;
3775}
3776
3777static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3778                           void *val, int bytes)
3779{
3780        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3781
3782        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
3783        return X86EMUL_CONTINUE;
3784}
3785
3786static const struct read_write_emulator_ops read_emultor = {
3787        .read_write_prepare = read_prepare,
3788        .read_write_emulate = read_emulate,
3789        .read_write_mmio = vcpu_mmio_read,
3790        .read_write_exit_mmio = read_exit_mmio,
3791};
3792
3793static const struct read_write_emulator_ops write_emultor = {
3794        .read_write_emulate = write_emulate,
3795        .read_write_mmio = write_mmio,
3796        .read_write_exit_mmio = write_exit_mmio,
3797        .write = true,
3798};
3799
3800static int emulator_read_write_onepage(unsigned long addr, void *val,
3801                                       unsigned int bytes,
3802                                       struct x86_exception *exception,
3803                                       struct kvm_vcpu *vcpu,
3804                                       const struct read_write_emulator_ops *ops)
3805{
3806        gpa_t gpa;
3807        int handled, ret;
3808        bool write = ops->write;
3809        struct kvm_mmio_fragment *frag;
3810
3811        ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3812
3813        if (ret < 0)
3814                return X86EMUL_PROPAGATE_FAULT;
3815
3816        /* For APIC access vmexit */
3817        if (ret)
3818                goto mmio;
3819
3820        if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3821                return X86EMUL_CONTINUE;
3822
3823mmio:
3824        /*
3825         * Is this MMIO handled locally?
3826         */
3827        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3828        if (handled == bytes)
3829                return X86EMUL_CONTINUE;
3830
3831        gpa += handled;
3832        bytes -= handled;
3833        val += handled;
3834
3835        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
3836        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3837        frag->gpa = gpa;
3838        frag->data = val;
3839        frag->len = bytes;
3840        return X86EMUL_CONTINUE;
3841}
3842
3843int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3844                        void *val, unsigned int bytes,
3845                        struct x86_exception *exception,
3846                        const struct read_write_emulator_ops *ops)
3847{
3848        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3849        gpa_t gpa;
3850        int rc;
3851
3852        if (ops->read_write_prepare &&
3853                  ops->read_write_prepare(vcpu, val, bytes))
3854                return X86EMUL_CONTINUE;
3855
3856        vcpu->mmio_nr_fragments = 0;
3857
3858        /* Crossing a page boundary? */
3859        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3860                int now;
3861
3862                now = -addr & ~PAGE_MASK;
3863                rc = emulator_read_write_onepage(addr, val, now, exception,
3864                                                 vcpu, ops);
3865
3866                if (rc != X86EMUL_CONTINUE)
3867                        return rc;
3868                addr += now;
3869                val += now;
3870                bytes -= now;
3871        }
3872
3873        rc = emulator_read_write_onepage(addr, val, bytes, exception,
3874                                         vcpu, ops);
3875        if (rc != X86EMUL_CONTINUE)
3876                return rc;
3877
3878        if (!vcpu->mmio_nr_fragments)
3879                return rc;
3880
3881        gpa = vcpu->mmio_fragments[0].gpa;
3882
3883        vcpu->mmio_needed = 1;
3884        vcpu->mmio_cur_fragment = 0;
3885
3886        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
3887        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3888        vcpu->run->exit_reason = KVM_EXIT_MMIO;
3889        vcpu->run->mmio.phys_addr = gpa;
3890
3891        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3892}
3893
3894static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3895                                  unsigned long addr,
3896                                  void *val,
3897                                  unsigned int bytes,
3898                                  struct x86_exception *exception)
3899{
3900        return emulator_read_write(ctxt, addr, val, bytes,
3901                                   exception, &read_emultor);
3902}
3903
3904int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3905                            unsigned long addr,
3906                            const void *val,
3907                            unsigned int bytes,
3908                            struct x86_exception *exception)
3909{
3910        return emulator_read_write(ctxt, addr, (void *)val, bytes,
3911                                   exception, &write_emultor);
3912}
3913
3914#define CMPXCHG_TYPE(t, ptr, old, new) \
3915        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3916
3917#ifdef CONFIG_X86_64
3918#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3919#else
3920#  define CMPXCHG64(ptr, old, new) \
3921        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3922#endif
3923
3924static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3925                                     unsigned long addr,
3926                                     const void *old,
3927                                     const void *new,
3928                                     unsigned int bytes,
3929                                     struct x86_exception *exception)
3930{
3931        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3932        gpa_t gpa;
3933        struct page *page;
3934        char *kaddr;
3935        bool exchanged;
3936
3937        /* guests cmpxchg8b have to be emulated atomically */
3938        if (bytes > 8 || (bytes & (bytes - 1)))
3939                goto emul_write;
3940
3941        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3942
3943        if (gpa == UNMAPPED_GVA ||
3944            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3945                goto emul_write;
3946
3947        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3948                goto emul_write;
3949
3950        page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3951        if (is_error_page(page))
3952                goto emul_write;
3953
3954        kaddr = kmap_atomic(page);
3955        kaddr += offset_in_page(gpa);
3956        switch (bytes) {
3957        case 1:
3958                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3959                break;
3960        case 2:
3961                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3962                break;
3963        case 4:
3964                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3965                break;
3966        case 8:
3967                exchanged = CMPXCHG64(kaddr, old, new);
3968                break;
3969        default:
3970                BUG();
3971        }
3972        kunmap_atomic(kaddr);
3973        kvm_release_page_dirty(page);
3974
3975        if (!exchanged)
3976                return X86EMUL_CMPXCHG_FAILED;
3977
3978        kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3979
3980        return X86EMUL_CONTINUE;
3981
3982emul_write:
3983        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3984
3985        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3986}
3987
3988static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3989{
3990        /* TODO: String I/O for in kernel device */
3991        int r;
3992
3993        if (vcpu->arch.pio.in)
3994                r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3995                                    vcpu->arch.pio.size, pd);
3996        else
3997                r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3998                                     vcpu->arch.pio.port, vcpu->arch.pio.size,
3999                                     pd);
4000        return r;
4001}
4002
4003static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4004                               unsigned short port, void *val,
4005                               unsigned int count, bool in)
4006{
4007        trace_kvm_pio(!in, port, size, count);
4008
4009        vcpu->arch.pio.port = port;
4010        vcpu->arch.pio.in = in;
4011        vcpu->arch.pio.count  = count;
4012        vcpu->arch.pio.size = size;
4013
4014        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4015                vcpu->arch.pio.count = 0;
4016                return 1;
4017        }
4018
4019        vcpu->run->exit_reason = KVM_EXIT_IO;
4020        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4021        vcpu->run->io.size = size;
4022        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4023        vcpu->run->io.count = count;
4024        vcpu->run->io.port = port;
4025
4026        return 0;
4027}
4028
4029static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4030                                    int size, unsigned short port, void *val,
4031                                    unsigned int count)
4032{
4033        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4034        int ret;
4035
4036        if (vcpu->arch.pio.count)
4037                goto data_avail;
4038
4039        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4040        if (ret) {
4041data_avail:
4042                memcpy(val, vcpu->arch.pio_data, size * count);
4043                vcpu->arch.pio.count = 0;
4044                return 1;
4045        }
4046
4047        return 0;
4048}
4049
4050static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4051                                     int size, unsigned short port,
4052                                     const void *val, unsigned int count)
4053{
4054        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4055
4056        memcpy(vcpu->arch.pio_data, val, size * count);
4057        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4058}
4059
4060static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4061{
4062        return kvm_x86_ops->get_segment_base(vcpu, seg);
4063}
4064
4065static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4066{
4067        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4068}
4069
4070int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4071{
4072        if (!need_emulate_wbinvd(vcpu))
4073                return X86EMUL_CONTINUE;
4074
4075        if (kvm_x86_ops->has_wbinvd_exit()) {
4076                int cpu = get_cpu();
4077
4078                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4079                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4080                                wbinvd_ipi, NULL, 1);
4081                put_cpu();
4082                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4083        } else
4084                wbinvd();
4085        return X86EMUL_CONTINUE;
4086}
4087EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4088
4089static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4090{
4091        kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4092}
4093
4094int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4095{
4096        return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4097}
4098
4099int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4100{
4101
4102        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4103}
4104
4105static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4106{
4107        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4108}
4109
4110static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4111{
4112        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4113        unsigned long value;
4114
4115        switch (cr) {
4116        case 0:
4117                value = kvm_read_cr0(vcpu);
4118                break;
4119        case 2:
4120                value = vcpu->arch.cr2;
4121                break;
4122        case 3:
4123                value = kvm_read_cr3(vcpu);
4124                break;
4125        case 4:
4126                value = kvm_read_cr4(vcpu);
4127                break;
4128        case 8:
4129                value = kvm_get_cr8(vcpu);
4130                break;
4131        default:
4132                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4133                return 0;
4134        }
4135
4136        return value;
4137}
4138
4139static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4140{
4141        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4142        int res = 0;
4143
4144        switch (cr) {
4145        case 0:
4146                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4147                break;
4148        case 2:
4149                vcpu->arch.cr2 = val;
4150                break;
4151        case 3:
4152                res = kvm_set_cr3(vcpu, val);
4153                break;
4154        case 4:
4155                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4156                break;
4157        case 8:
4158                res = kvm_set_cr8(vcpu, val);
4159                break;
4160        default:
4161                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4162                res = -1;
4163        }
4164
4165        return res;
4166}
4167
4168static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4169{
4170        kvm_set_rflags(emul_to_vcpu(ctxt), val);
4171}
4172
4173static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4174{
4175        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4176}
4177
4178static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4179{
4180        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4181}
4182
4183static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4184{
4185        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4186}
4187
4188static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4189{
4190        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4191}
4192
4193static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4194{
4195        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4196}
4197
4198static unsigned long emulator_get_cached_segment_base(
4199        struct x86_emulate_ctxt *ctxt, int seg)
4200{
4201        return get_segment_base(emul_to_vcpu(ctxt), seg);
4202}
4203
4204static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4205                                 struct desc_struct *desc, u32 *base3,
4206                                 int seg)
4207{
4208        struct kvm_segment var;
4209
4210        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4211        *selector = var.selector;
4212
4213        if (var.unusable)
4214                return false;
4215
4216        if (var.g)
4217                var.limit >>= 12;
4218        set_desc_limit(desc, var.limit);
4219        set_desc_base(desc, (unsigned long)var.base);
4220#ifdef CONFIG_X86_64
4221        if (base3)
4222                *base3 = var.base >> 32;
4223#endif
4224        desc->type = var.type;
4225        desc->s = var.s;
4226        desc->dpl = var.dpl;
4227        desc->p = var.present;
4228        desc->avl = var.avl;
4229        desc->l = var.l;
4230        desc->d = var.db;
4231        desc->g = var.g;
4232
4233        return true;
4234}
4235
4236static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4237                                 struct desc_struct *desc, u32 base3,
4238                                 int seg)
4239{
4240        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4241        struct kvm_segment var;
4242
4243        var.selector = selector;
4244        var.base = get_desc_base(desc);
4245#ifdef CONFIG_X86_64
4246        var.base |= ((u64)base3) << 32;
4247#endif
4248        var.limit = get_desc_limit(desc);
4249        if (desc->g)
4250                var.limit = (var.limit << 12) | 0xfff;
4251        var.type = desc->type;
4252        var.present = desc->p;
4253        var.dpl = desc->dpl;
4254        var.db = desc->d;
4255        var.s = desc->s;
4256        var.l = desc->l;
4257        var.g = desc->g;
4258        var.avl = desc->avl;
4259        var.present = desc->p;
4260        var.unusable = !var.present;
4261        var.padding = 0;
4262
4263        kvm_set_segment(vcpu, &var, seg);
4264        return;
4265}
4266
4267static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4268                            u32 msr_index, u64 *pdata)
4269{
4270        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4271}
4272
4273static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4274                            u32 msr_index, u64 data)
4275{
4276        return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4277}
4278
4279static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4280                             u32 pmc, u64 *pdata)
4281{
4282        return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4283}
4284
4285static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4286{
4287        emul_to_vcpu(ctxt)->arch.halt_request = 1;
4288}
4289
4290static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4291{
4292        preempt_disable();
4293        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4294        /*
4295         * CR0.TS may reference the host fpu state, not the guest fpu state,
4296         * so it may be clear at this point.
4297         */
4298        clts();
4299}
4300
4301static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4302{
4303        preempt_enable();
4304}
4305
4306static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4307                              struct x86_instruction_info *info,
4308                              enum x86_intercept_stage stage)
4309{
4310        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4311}
4312
4313static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4314                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4315{
4316        kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4317}
4318
4319static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4320{
4321        return kvm_register_read(emul_to_vcpu(ctxt), reg);
4322}
4323
4324static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4325{
4326        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4327}
4328
4329static const struct x86_emulate_ops emulate_ops = {
4330        .read_gpr            = emulator_read_gpr,
4331        .write_gpr           = emulator_write_gpr,
4332        .read_std            = kvm_read_guest_virt_system,
4333        .write_std           = kvm_write_guest_virt_system,
4334        .fetch               = kvm_fetch_guest_virt,
4335        .read_emulated       = emulator_read_emulated,
4336        .write_emulated      = emulator_write_emulated,
4337        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4338        .invlpg              = emulator_invlpg,
4339        .pio_in_emulated     = emulator_pio_in_emulated,
4340        .pio_out_emulated    = emulator_pio_out_emulated,
4341        .get_segment         = emulator_get_segment,
4342        .set_segment         = emulator_set_segment,
4343        .get_cached_segment_base = emulator_get_cached_segment_base,
4344        .get_gdt             = emulator_get_gdt,
4345        .get_idt             = emulator_get_idt,
4346        .set_gdt             = emulator_set_gdt,
4347        .set_idt             = emulator_set_idt,
4348        .get_cr              = emulator_get_cr,
4349        .set_cr              = emulator_set_cr,
4350        .set_rflags          = emulator_set_rflags,
4351        .cpl                 = emulator_get_cpl,
4352        .get_dr              = emulator_get_dr,
4353        .set_dr              = emulator_set_dr,
4354        .set_msr             = emulator_set_msr,
4355        .get_msr             = emulator_get_msr,
4356        .read_pmc            = emulator_read_pmc,
4357        .halt                = emulator_halt,
4358        .wbinvd              = emulator_wbinvd,
4359        .fix_hypercall       = emulator_fix_hypercall,
4360        .get_fpu             = emulator_get_fpu,
4361        .put_fpu             = emulator_put_fpu,
4362        .intercept           = emulator_intercept,
4363        .get_cpuid           = emulator_get_cpuid,
4364};
4365
4366static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4367{
4368        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4369        /*
4370         * an sti; sti; sequence only disable interrupts for the first
4371         * instruction. So, if the last instruction, be it emulated or
4372         * not, left the system with the INT_STI flag enabled, it
4373         * means that the last instruction is an sti. We should not
4374         * leave the flag on in this case. The same goes for mov ss
4375         */
4376        if (!(int_shadow & mask))
4377                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4378}
4379
4380static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4381{
4382        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4383        if (ctxt->exception.vector == PF_VECTOR)
4384                kvm_propagate_fault(vcpu, &ctxt->exception);
4385        else if (ctxt->exception.error_code_valid)
4386                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4387                                      ctxt->exception.error_code);
4388        else
4389                kvm_queue_exception(vcpu, ctxt->exception.vector);
4390}
4391
4392static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4393{
4394        memset(&ctxt->twobyte, 0,
4395               (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4396
4397        ctxt->fetch.start = 0;
4398        ctxt->fetch.end = 0;
4399        ctxt->io_read.pos = 0;
4400        ctxt->io_read.end = 0;
4401        ctxt->mem_read.pos = 0;
4402        ctxt->mem_read.end = 0;
4403}
4404
4405static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4406{
4407        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4408        int cs_db, cs_l;
4409
4410        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4411
4412        ctxt->eflags = kvm_get_rflags(vcpu);
4413        ctxt->eip = kvm_rip_read(vcpu);
4414        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4415                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4416                     cs_l                               ? X86EMUL_MODE_PROT64 :
4417                     cs_db                              ? X86EMUL_MODE_PROT32 :
4418                                                          X86EMUL_MODE_PROT16;
4419        ctxt->guest_mode = is_guest_mode(vcpu);
4420
4421        init_decode_cache(ctxt);
4422        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4423}
4424
4425int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4426{
4427        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4428        int ret;
4429
4430        init_emulate_ctxt(vcpu);
4431
4432        ctxt->op_bytes = 2;
4433        ctxt->ad_bytes = 2;
4434        ctxt->_eip = ctxt->eip + inc_eip;
4435        ret = emulate_int_real(ctxt, irq);
4436
4437        if (ret != X86EMUL_CONTINUE)
4438                return EMULATE_FAIL;
4439
4440        ctxt->eip = ctxt->_eip;
4441        kvm_rip_write(vcpu, ctxt->eip);
4442        kvm_set_rflags(vcpu, ctxt->eflags);
4443
4444        if (irq == NMI_VECTOR)
4445                vcpu->arch.nmi_pending = 0;
4446        else
4447                vcpu->arch.interrupt.pending = false;
4448
4449        return EMULATE_DONE;
4450}
4451EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4452
4453static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4454{
4455        int r = EMULATE_DONE;
4456
4457        ++vcpu->stat.insn_emulation_fail;
4458        trace_kvm_emulate_insn_failed(vcpu);
4459        if (!is_guest_mode(vcpu)) {
4460                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4461                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4462                vcpu->run->internal.ndata = 0;
4463                r = EMULATE_FAIL;
4464        }
4465        kvm_queue_exception(vcpu, UD_VECTOR);
4466
4467        return r;
4468}
4469
4470static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4471{
4472        gpa_t gpa;
4473        pfn_t pfn;
4474
4475        if (tdp_enabled)
4476                return false;
4477
4478        /*
4479         * if emulation was due to access to shadowed page table
4480         * and it failed try to unshadow page and re-enter the
4481         * guest to let CPU execute the instruction.
4482         */
4483        if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4484                return true;
4485
4486        gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4487
4488        if (gpa == UNMAPPED_GVA)
4489                return true; /* let cpu generate fault */
4490
4491        /*
4492         * Do not retry the unhandleable instruction if it faults on the
4493         * readonly host memory, otherwise it will goto a infinite loop:
4494         * retry instruction -> write #PF -> emulation fail -> retry
4495         * instruction -> ...
4496         */
4497        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4498        if (!is_error_pfn(pfn)) {
4499                kvm_release_pfn_clean(pfn);
4500                return true;
4501        }
4502
4503        return false;
4504}
4505
4506static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4507                              unsigned long cr2,  int emulation_type)
4508{
4509        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4510        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4511
4512        last_retry_eip = vcpu->arch.last_retry_eip;
4513        last_retry_addr = vcpu->arch.last_retry_addr;
4514
4515        /*
4516         * If the emulation is caused by #PF and it is non-page_table
4517         * writing instruction, it means the VM-EXIT is caused by shadow
4518         * page protected, we can zap the shadow page and retry this
4519         * instruction directly.
4520         *
4521         * Note: if the guest uses a non-page-table modifying instruction
4522         * on the PDE that points to the instruction, then we will unmap
4523         * the instruction and go to an infinite loop. So, we cache the
4524         * last retried eip and the last fault address, if we meet the eip
4525         * and the address again, we can break out of the potential infinite
4526         * loop.
4527         */
4528        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4529
4530        if (!(emulation_type & EMULTYPE_RETRY))
4531                return false;
4532
4533        if (x86_page_table_writing_insn(ctxt))
4534                return false;
4535
4536        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4537                return false;
4538
4539        vcpu->arch.last_retry_eip = ctxt->eip;
4540        vcpu->arch.last_retry_addr = cr2;
4541
4542        if (!vcpu->arch.mmu.direct_map)
4543                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4544
4545        kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4546
4547        return true;
4548}
4549
4550static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4551static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4552
4553int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4554                            unsigned long cr2,
4555                            int emulation_type,
4556                            void *insn,
4557                            int insn_len)
4558{
4559        int r;
4560        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4561        bool writeback = true;
4562
4563        kvm_clear_exception_queue(vcpu);
4564
4565        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4566                init_emulate_ctxt(vcpu);
4567                ctxt->interruptibility = 0;
4568                ctxt->have_exception = false;
4569                ctxt->perm_ok = false;
4570
4571                ctxt->only_vendor_specific_insn
4572                        = emulation_type & EMULTYPE_TRAP_UD;
4573
4574                r = x86_decode_insn(ctxt, insn, insn_len);
4575
4576                trace_kvm_emulate_insn_start(vcpu);
4577                ++vcpu->stat.insn_emulation;
4578                if (r != EMULATION_OK)  {
4579                        if (emulation_type & EMULTYPE_TRAP_UD)
4580                                return EMULATE_FAIL;
4581                        if (reexecute_instruction(vcpu, cr2))
4582                                return EMULATE_DONE;
4583                        if (emulation_type & EMULTYPE_SKIP)
4584                                return EMULATE_FAIL;
4585                        return handle_emulation_failure(vcpu);
4586                }
4587        }
4588
4589        if (emulation_type & EMULTYPE_SKIP) {
4590                kvm_rip_write(vcpu, ctxt->_eip);
4591                return EMULATE_DONE;
4592        }
4593
4594        if (retry_instruction(ctxt, cr2, emulation_type))
4595                return EMULATE_DONE;
4596
4597        /* this is needed for vmware backdoor interface to work since it
4598           changes registers values  during IO operation */
4599        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4600                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4601                emulator_invalidate_register_cache(ctxt);
4602        }
4603
4604restart:
4605        r = x86_emulate_insn(ctxt);
4606
4607        if (r == EMULATION_INTERCEPTED)
4608                return EMULATE_DONE;
4609
4610        if (r == EMULATION_FAILED) {
4611                if (reexecute_instruction(vcpu, cr2))
4612                        return EMULATE_DONE;
4613
4614                return handle_emulation_failure(vcpu);
4615        }
4616
4617        if (ctxt->have_exception) {
4618                inject_emulated_exception(vcpu);
4619                r = EMULATE_DONE;
4620        } else if (vcpu->arch.pio.count) {
4621                if (!vcpu->arch.pio.in)
4622                        vcpu->arch.pio.count = 0;
4623                else {
4624                        writeback = false;
4625                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
4626                }
4627                r = EMULATE_DO_MMIO;
4628        } else if (vcpu->mmio_needed) {
4629                if (!vcpu->mmio_is_write)
4630                        writeback = false;
4631                r = EMULATE_DO_MMIO;
4632                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4633        } else if (r == EMULATION_RESTART)
4634                goto restart;
4635        else
4636                r = EMULATE_DONE;
4637
4638        if (writeback) {
4639                toggle_interruptibility(vcpu, ctxt->interruptibility);
4640                kvm_set_rflags(vcpu, ctxt->eflags);
4641                kvm_make_request(KVM_REQ_EVENT, vcpu);
4642                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4643                kvm_rip_write(vcpu, ctxt->eip);
4644        } else
4645                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4646
4647        return r;
4648}
4649EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4650
4651int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4652{
4653        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4654        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4655                                            size, port, &val, 1);
4656        /* do not return to emulator after return from userspace */
4657        vcpu->arch.pio.count = 0;
4658        return ret;
4659}
4660EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4661
4662static void tsc_bad(void *info)
4663{
4664        __this_cpu_write(cpu_tsc_khz, 0);
4665}
4666
4667static void tsc_khz_changed(void *data)
4668{
4669        struct cpufreq_freqs *freq = data;
4670        unsigned long khz = 0;
4671
4672        if (data)
4673                khz = freq->new;
4674        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4675                khz = cpufreq_quick_get(raw_smp_processor_id());
4676        if (!khz)
4677                khz = tsc_khz;
4678        __this_cpu_write(cpu_tsc_khz, khz);
4679}
4680
4681static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4682                                     void *data)
4683{
4684        struct cpufreq_freqs *freq = data;
4685        struct kvm *kvm;
4686        struct kvm_vcpu *vcpu;
4687        int i, send_ipi = 0;
4688
4689        /*
4690         * We allow guests to temporarily run on slowing clocks,
4691         * provided we notify them after, or to run on accelerating
4692         * clocks, provided we notify them before.  Thus time never
4693         * goes backwards.
4694         *
4695         * However, we have a problem.  We can't atomically update
4696         * the frequency of a given CPU from this function; it is
4697         * merely a notifier, which can be called from any CPU.
4698         * Changing the TSC frequency at arbitrary points in time
4699         * requires a recomputation of local variables related to
4700         * the TSC for each VCPU.  We must flag these local variables
4701         * to be updated and be sure the update takes place with the
4702         * new frequency before any guests proceed.
4703         *
4704         * Unfortunately, the combination of hotplug CPU and frequency
4705         * change creates an intractable locking scenario; the order
4706         * of when these callouts happen is undefined with respect to
4707         * CPU hotplug, and they can race with each other.  As such,
4708         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4709         * undefined; you can actually have a CPU frequency change take
4710         * place in between the computation of X and the setting of the
4711         * variable.  To protect against this problem, all updates of
4712         * the per_cpu tsc_khz variable are done in an interrupt
4713         * protected IPI, and all callers wishing to update the value
4714         * must wait for a synchronous IPI to complete (which is trivial
4715         * if the caller is on the CPU already).  This establishes the
4716         * necessary total order on variable updates.
4717         *
4718         * Note that because a guest time update may take place
4719         * anytime after the setting of the VCPU's request bit, the
4720         * correct TSC value must be set before the request.  However,
4721         * to ensure the update actually makes it to any guest which
4722         * starts running in hardware virtualization between the set
4723         * and the acquisition of the spinlock, we must also ping the
4724         * CPU after setting the request bit.
4725         *
4726         */
4727
4728        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4729                return 0;
4730        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4731                return 0;
4732
4733        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4734
4735        raw_spin_lock(&kvm_lock);
4736        list_for_each_entry(kvm, &vm_list, vm_list) {
4737                kvm_for_each_vcpu(i, vcpu, kvm) {
4738                        if (vcpu->cpu != freq->cpu)
4739                                continue;
4740                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4741                        if (vcpu->cpu != smp_processor_id())
4742                                send_ipi = 1;
4743                }
4744        }
4745        raw_spin_unlock(&kvm_lock);
4746
4747        if (freq->old < freq->new && send_ipi) {
4748                /*
4749                 * We upscale the frequency.  Must make the guest
4750                 * doesn't see old kvmclock values while running with
4751                 * the new frequency, otherwise we risk the guest sees
4752                 * time go backwards.
4753                 *
4754                 * In case we update the frequency for another cpu
4755                 * (which might be in guest context) send an interrupt
4756                 * to kick the cpu out of guest context.  Next time
4757                 * guest context is entered kvmclock will be updated,
4758                 * so the guest will not see stale values.
4759                 */
4760                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4761        }
4762        return 0;
4763}
4764
4765static struct notifier_block kvmclock_cpufreq_notifier_block = {
4766        .notifier_call  = kvmclock_cpufreq_notifier
4767};
4768
4769static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4770                                        unsigned long action, void *hcpu)
4771{
4772        unsigned int cpu = (unsigned long)hcpu;
4773
4774        switch (action) {
4775                case CPU_ONLINE:
4776                case CPU_DOWN_FAILED:
4777                        smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4778                        break;
4779                case CPU_DOWN_PREPARE:
4780                        smp_call_function_single(cpu, tsc_bad, NULL, 1);
4781                        break;
4782        }
4783        return NOTIFY_OK;
4784}
4785
4786static struct notifier_block kvmclock_cpu_notifier_block = {
4787        .notifier_call  = kvmclock_cpu_notifier,
4788        .priority = -INT_MAX
4789};
4790
4791static void kvm_timer_init(void)
4792{
4793        int cpu;
4794
4795        max_tsc_khz = tsc_khz;
4796        register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4797        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4798#ifdef CONFIG_CPU_FREQ
4799                struct cpufreq_policy policy;
4800                memset(&policy, 0, sizeof(policy));
4801                cpu = get_cpu();
4802                cpufreq_get_policy(&policy, cpu);
4803                if (policy.cpuinfo.max_freq)
4804                        max_tsc_khz = policy.cpuinfo.max_freq;
4805                put_cpu();
4806#endif
4807                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4808                                          CPUFREQ_TRANSITION_NOTIFIER);
4809        }
4810        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4811        for_each_online_cpu(cpu)
4812                smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4813}
4814
4815static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4816
4817int kvm_is_in_guest(void)
4818{
4819        return __this_cpu_read(current_vcpu) != NULL;
4820}
4821
4822static int kvm_is_user_mode(void)
4823{
4824        int user_mode = 3;
4825
4826        if (__this_cpu_read(current_vcpu))
4827                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4828
4829        return user_mode != 0;
4830}
4831
4832static unsigned long kvm_get_guest_ip(void)
4833{
4834        unsigned long ip = 0;
4835
4836        if (__this_cpu_read(current_vcpu))
4837                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4838
4839        return ip;
4840}
4841
4842static struct perf_guest_info_callbacks kvm_guest_cbs = {
4843        .is_in_guest            = kvm_is_in_guest,
4844        .is_user_mode           = kvm_is_user_mode,
4845        .get_guest_ip           = kvm_get_guest_ip,
4846};
4847
4848void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4849{
4850        __this_cpu_write(current_vcpu, vcpu);
4851}
4852EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4853
4854void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4855{
4856        __this_cpu_write(current_vcpu, NULL);
4857}
4858EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4859
4860static void kvm_set_mmio_spte_mask(void)
4861{
4862        u64 mask;
4863        int maxphyaddr = boot_cpu_data.x86_phys_bits;
4864
4865        /*
4866         * Set the reserved bits and the present bit of an paging-structure
4867         * entry to generate page fault with PFER.RSV = 1.
4868         */
4869        mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4870        mask |= 1ull;
4871
4872#ifdef CONFIG_X86_64
4873        /*
4874         * If reserved bit is not supported, clear the present bit to disable
4875         * mmio page fault.
4876         */
4877        if (maxphyaddr == 52)
4878                mask &= ~1ull;
4879#endif
4880
4881        kvm_mmu_set_mmio_spte_mask(mask);
4882}
4883
4884int kvm_arch_init(void *opaque)
4885{
4886        int r;
4887        struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4888
4889        if (kvm_x86_ops) {
4890                printk(KERN_ERR "kvm: already loaded the other module\n");
4891                r = -EEXIST;
4892                goto out;
4893        }
4894
4895        if (!ops->cpu_has_kvm_support()) {
4896                printk(KERN_ERR "kvm: no hardware support\n");
4897                r = -EOPNOTSUPP;
4898                goto out;
4899        }
4900        if (ops->disabled_by_bios()) {
4901                printk(KERN_ERR "kvm: disabled by bios\n");
4902                r = -EOPNOTSUPP;
4903                goto out;
4904        }
4905
4906        r = kvm_mmu_module_init();
4907        if (r)
4908                goto out;
4909
4910        kvm_set_mmio_spte_mask();
4911        kvm_init_msr_list();
4912
4913        kvm_x86_ops = ops;
4914        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4915                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
4916
4917        kvm_timer_init();
4918
4919        perf_register_guest_info_callbacks(&kvm_guest_cbs);
4920
4921        if (cpu_has_xsave)
4922                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4923
4924        kvm_lapic_init();
4925        return 0;
4926
4927out:
4928        return r;
4929}
4930
4931void kvm_arch_exit(void)
4932{
4933        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4934
4935        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4936                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4937                                            CPUFREQ_TRANSITION_NOTIFIER);
4938        unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4939        kvm_x86_ops = NULL;
4940        kvm_mmu_module_exit();
4941}
4942
4943int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4944{
4945        ++vcpu->stat.halt_exits;
4946        if (irqchip_in_kernel(vcpu->kvm)) {
4947                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4948                return 1;
4949        } else {
4950                vcpu->run->exit_reason = KVM_EXIT_HLT;
4951                return 0;
4952        }
4953}
4954EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4955
4956int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4957{
4958        u64 param, ingpa, outgpa, ret;
4959        uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4960        bool fast, longmode;
4961        int cs_db, cs_l;
4962
4963        /*
4964         * hypercall generates UD from non zero cpl and real mode
4965         * per HYPER-V spec
4966         */
4967        if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4968                kvm_queue_exception(vcpu, UD_VECTOR);
4969                return 0;
4970        }
4971
4972        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4973        longmode = is_long_mode(vcpu) && cs_l == 1;
4974
4975        if (!longmode) {
4976                param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4977                        (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4978                ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4979                        (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4980                outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4981                        (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4982        }
4983#ifdef CONFIG_X86_64
4984        else {
4985                param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4986                ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4987                outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4988        }
4989#endif
4990
4991        code = param & 0xffff;
4992        fast = (param >> 16) & 0x1;
4993        rep_cnt = (param >> 32) & 0xfff;
4994        rep_idx = (param >> 48) & 0xfff;
4995
4996        trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4997
4998        switch (code) {
4999        case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5000                kvm_vcpu_on_spin(vcpu);
5001                break;
5002        default:
5003                res = HV_STATUS_INVALID_HYPERCALL_CODE;
5004                break;
5005        }
5006
5007        ret = res | (((u64)rep_done & 0xfff) << 32);
5008        if (longmode) {
5009                kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5010        } else {
5011                kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5012                kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5013        }
5014
5015        return 1;
5016}
5017
5018int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5019{
5020        unsigned long nr, a0, a1, a2, a3, ret;
5021        int r = 1;
5022
5023        if (kvm_hv_hypercall_enabled(vcpu->kvm))
5024                return kvm_hv_hypercall(vcpu);
5025
5026        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5027        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5028        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5029        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5030        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5031
5032        trace_kvm_hypercall(nr, a0, a1, a2, a3);
5033
5034        if (!is_long_mode(vcpu)) {
5035                nr &= 0xFFFFFFFF;
5036                a0 &= 0xFFFFFFFF;
5037                a1 &= 0xFFFFFFFF;
5038                a2 &= 0xFFFFFFFF;
5039                a3 &= 0xFFFFFFFF;
5040        }
5041
5042        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5043                ret = -KVM_EPERM;
5044                goto out;
5045        }
5046
5047        switch (nr) {
5048        case KVM_HC_VAPIC_POLL_IRQ:
5049                ret = 0;
5050                break;
5051        default:
5052                ret = -KVM_ENOSYS;
5053                break;
5054        }
5055out:
5056        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5057        ++vcpu->stat.hypercalls;
5058        return r;
5059}
5060EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5061
5062int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5063{
5064        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5065        char instruction[3];
5066        unsigned long rip = kvm_rip_read(vcpu);
5067
5068        /*
5069         * Blow out the MMU to ensure that no other VCPU has an active mapping
5070         * to ensure that the updated hypercall appears atomically across all
5071         * VCPUs.
5072         */
5073        kvm_mmu_zap_all(vcpu->kvm);
5074
5075        kvm_x86_ops->patch_hypercall(vcpu, instruction);
5076
5077        return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5078}
5079
5080/*
5081 * Check if userspace requested an interrupt window, and that the
5082 * interrupt window is open.
5083 *
5084 * No need to exit to userspace if we already have an interrupt queued.
5085 */
5086static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5087{
5088        return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5089                vcpu->run->request_interrupt_window &&
5090                kvm_arch_interrupt_allowed(vcpu));
5091}
5092
5093static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5094{
5095        struct kvm_run *kvm_run = vcpu->run;
5096
5097        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5098        kvm_run->cr8 = kvm_get_cr8(vcpu);
5099        kvm_run->apic_base = kvm_get_apic_base(vcpu);
5100        if (irqchip_in_kernel(vcpu->kvm))
5101                kvm_run->ready_for_interrupt_injection = 1;
5102        else
5103                kvm_run->ready_for_interrupt_injection =
5104                        kvm_arch_interrupt_allowed(vcpu) &&
5105                        !kvm_cpu_has_interrupt(vcpu) &&
5106                        !kvm_event_needs_reinjection(vcpu);
5107}
5108
5109static int vapic_enter(struct kvm_vcpu *vcpu)
5110{
5111        struct kvm_lapic *apic = vcpu->arch.apic;
5112        struct page *page;
5113
5114        if (!apic || !apic->vapic_addr)
5115                return 0;
5116
5117        page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5118        if (is_error_page(page))
5119                return -EFAULT;
5120
5121        vcpu->arch.apic->vapic_page = page;
5122        return 0;
5123}
5124
5125static void vapic_exit(struct kvm_vcpu *vcpu)
5126{
5127        struct kvm_lapic *apic = vcpu->arch.apic;
5128        int idx;
5129
5130        if (!apic || !apic->vapic_addr)
5131                return;
5132
5133        idx = srcu_read_lock(&vcpu->kvm->srcu);
5134        kvm_release_page_dirty(apic->vapic_page);
5135        mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5136        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5137}
5138
5139static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5140{
5141        int max_irr, tpr;
5142
5143        if (!kvm_x86_ops->update_cr8_intercept)
5144                return;
5145
5146        if (!vcpu->arch.apic)
5147                return;
5148
5149        if (!vcpu->arch.apic->vapic_addr)
5150                max_irr = kvm_lapic_find_highest_irr(vcpu);
5151        else
5152                max_irr = -1;
5153
5154        if (max_irr != -1)
5155                max_irr >>= 4;
5156
5157        tpr = kvm_lapic_get_cr8(vcpu);
5158
5159        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5160}
5161
5162static void inject_pending_event(struct kvm_vcpu *vcpu)
5163{
5164        /* try to reinject previous events if any */
5165        if (vcpu->arch.exception.pending) {
5166                trace_kvm_inj_exception(vcpu->arch.exception.nr,
5167                                        vcpu->arch.exception.has_error_code,
5168                                        vcpu->arch.exception.error_code);
5169                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5170                                          vcpu->arch.exception.has_error_code,
5171                                          vcpu->arch.exception.error_code,
5172                                          vcpu->arch.exception.reinject);
5173                return;
5174        }
5175
5176        if (vcpu->arch.nmi_injected) {
5177                kvm_x86_ops->set_nmi(vcpu);
5178                return;
5179        }
5180
5181        if (vcpu->arch.interrupt.pending) {
5182                kvm_x86_ops->set_irq(vcpu);
5183                return;
5184        }
5185
5186        /* try to inject new event if pending */
5187        if (vcpu->arch.nmi_pending) {
5188                if (kvm_x86_ops->nmi_allowed(vcpu)) {
5189                        --vcpu->arch.nmi_pending;
5190                        vcpu->arch.nmi_injected = true;
5191                        kvm_x86_ops->set_nmi(vcpu);
5192                }
5193        } else if (kvm_cpu_has_interrupt(vcpu)) {
5194                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5195                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5196                                            false);
5197                        kvm_x86_ops->set_irq(vcpu);
5198                }
5199        }
5200}
5201
5202static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5203{
5204        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5205                        !vcpu->guest_xcr0_loaded) {
5206                /* kvm_set_xcr() also depends on this */
5207                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5208                vcpu->guest_xcr0_loaded = 1;
5209        }
5210}
5211
5212static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5213{
5214        if (vcpu->guest_xcr0_loaded) {
5215                if (vcpu->arch.xcr0 != host_xcr0)
5216                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5217                vcpu->guest_xcr0_loaded = 0;
5218        }
5219}
5220
5221static void process_nmi(struct kvm_vcpu *vcpu)
5222{
5223        unsigned limit = 2;
5224
5225        /*
5226         * x86 is limited to one NMI running, and one NMI pending after it.
5227         * If an NMI is already in progress, limit further NMIs to just one.
5228         * Otherwise, allow two (and we'll inject the first one immediately).
5229         */
5230        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5231                limit = 1;
5232
5233        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5234        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5235        kvm_make_request(KVM_REQ_EVENT, vcpu);
5236}
5237
5238static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5239{
5240        int r;
5241        bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5242                vcpu->run->request_interrupt_window;
5243        bool req_immediate_exit = 0;
5244
5245        if (vcpu->requests) {
5246                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5247                        kvm_mmu_unload(vcpu);
5248                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5249                        __kvm_migrate_timers(vcpu);
5250                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5251                        r = kvm_guest_time_update(vcpu);
5252                        if (unlikely(r))
5253                                goto out;
5254                }
5255                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5256                        kvm_mmu_sync_roots(vcpu);
5257                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5258                        kvm_x86_ops->tlb_flush(vcpu);
5259                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5260                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5261                        r = 0;
5262                        goto out;
5263                }
5264                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5265                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5266                        r = 0;
5267                        goto out;
5268                }
5269                if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5270                        vcpu->fpu_active = 0;
5271                        kvm_x86_ops->fpu_deactivate(vcpu);
5272                }
5273                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5274                        /* Page is swapped out. Do synthetic halt */
5275                        vcpu->arch.apf.halted = true;
5276                        r = 1;
5277                        goto out;
5278                }
5279                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5280                        record_steal_time(vcpu);
5281                if (kvm_check_request(KVM_REQ_NMI, vcpu))
5282                        process_nmi(vcpu);
5283                req_immediate_exit =
5284                        kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5285                if (kvm_check_request(KVM_REQ_PMU, vcpu))
5286                        kvm_handle_pmu_event(vcpu);
5287                if (kvm_check_request(KVM_REQ_PMI, vcpu))
5288                        kvm_deliver_pmi(vcpu);
5289        }
5290
5291        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5292                inject_pending_event(vcpu);
5293
5294                /* enable NMI/IRQ window open exits if needed */
5295                if (vcpu->arch.nmi_pending)
5296                        kvm_x86_ops->enable_nmi_window(vcpu);
5297                else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5298                        kvm_x86_ops->enable_irq_window(vcpu);
5299
5300                if (kvm_lapic_enabled(vcpu)) {
5301                        update_cr8_intercept(vcpu);
5302                        kvm_lapic_sync_to_vapic(vcpu);
5303                }
5304        }
5305
5306        r = kvm_mmu_reload(vcpu);
5307        if (unlikely(r)) {
5308                goto cancel_injection;
5309        }
5310
5311        preempt_disable();
5312
5313        kvm_x86_ops->prepare_guest_switch(vcpu);
5314        if (vcpu->fpu_active)
5315                kvm_load_guest_fpu(vcpu);
5316        kvm_load_guest_xcr0(vcpu);
5317
5318        vcpu->mode = IN_GUEST_MODE;
5319
5320        /* We should set ->mode before check ->requests,
5321         * see the comment in make_all_cpus_request.
5322         */
5323        smp_mb();
5324
5325        local_irq_disable();
5326
5327        if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5328            || need_resched() || signal_pending(current)) {
5329                vcpu->mode = OUTSIDE_GUEST_MODE;
5330                smp_wmb();
5331                local_irq_enable();
5332                preempt_enable();
5333                r = 1;
5334                goto cancel_injection;
5335        }
5336
5337        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5338
5339        if (req_immediate_exit)
5340                smp_send_reschedule(vcpu->cpu);
5341
5342        kvm_guest_enter();
5343
5344        if (unlikely(vcpu->arch.switch_db_regs)) {
5345                set_debugreg(0, 7);
5346                set_debugreg(vcpu->arch.eff_db[0], 0);
5347                set_debugreg(vcpu->arch.eff_db[1], 1);
5348                set_debugreg(vcpu->arch.eff_db[2], 2);
5349                set_debugreg(vcpu->arch.eff_db[3], 3);
5350        }
5351
5352        trace_kvm_entry(vcpu->vcpu_id);
5353        kvm_x86_ops->run(vcpu);
5354
5355        /*
5356         * If the guest has used debug registers, at least dr7
5357         * will be disabled while returning to the host.
5358         * If we don't have active breakpoints in the host, we don't
5359         * care about the messed up debug address registers. But if
5360         * we have some of them active, restore the old state.
5361         */
5362        if (hw_breakpoint_active())
5363                hw_breakpoint_restore();
5364
5365        vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5366
5367        vcpu->mode = OUTSIDE_GUEST_MODE;
5368        smp_wmb();
5369        local_irq_enable();
5370
5371        ++vcpu->stat.exits;
5372
5373        /*
5374         * We must have an instruction between local_irq_enable() and
5375         * kvm_guest_exit(), so the timer interrupt isn't delayed by
5376         * the interrupt shadow.  The stat.exits increment will do nicely.
5377         * But we need to prevent reordering, hence this barrier():
5378         */
5379        barrier();
5380
5381        kvm_guest_exit();
5382
5383        preempt_enable();
5384
5385        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5386
5387        /*
5388         * Profile KVM exit RIPs:
5389         */
5390        if (unlikely(prof_on == KVM_PROFILING)) {
5391                unsigned long rip = kvm_rip_read(vcpu);
5392                profile_hit(KVM_PROFILING, (void *)rip);
5393        }
5394
5395        if (unlikely(vcpu->arch.tsc_always_catchup))
5396                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5397
5398        if (vcpu->arch.apic_attention)
5399                kvm_lapic_sync_from_vapic(vcpu);
5400
5401        r = kvm_x86_ops->handle_exit(vcpu);
5402        return r;
5403
5404cancel_injection:
5405        kvm_x86_ops->cancel_injection(vcpu);
5406        if (unlikely(vcpu->arch.apic_attention))
5407                kvm_lapic_sync_from_vapic(vcpu);
5408out:
5409        return r;
5410}
5411
5412
5413static int __vcpu_run(struct kvm_vcpu *vcpu)
5414{
5415        int r;
5416        struct kvm *kvm = vcpu->kvm;
5417
5418        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5419                pr_debug("vcpu %d received sipi with vector # %x\n",
5420                         vcpu->vcpu_id, vcpu->arch.sipi_vector);
5421                kvm_lapic_reset(vcpu);
5422                r = kvm_arch_vcpu_reset(vcpu);
5423                if (r)
5424                        return r;
5425                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5426        }
5427
5428        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5429        r = vapic_enter(vcpu);
5430        if (r) {
5431                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5432                return r;
5433        }
5434
5435        r = 1;
5436        while (r > 0) {
5437                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5438                    !vcpu->arch.apf.halted)
5439                        r = vcpu_enter_guest(vcpu);
5440                else {
5441                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5442                        kvm_vcpu_block(vcpu);
5443                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5444                        if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5445                        {
5446                                switch(vcpu->arch.mp_state) {
5447                                case KVM_MP_STATE_HALTED:
5448                                        vcpu->arch.mp_state =
5449                                                KVM_MP_STATE_RUNNABLE;
5450                                case KVM_MP_STATE_RUNNABLE:
5451                                        vcpu->arch.apf.halted = false;
5452                                        break;
5453                                case KVM_MP_STATE_SIPI_RECEIVED:
5454                                default:
5455                                        r = -EINTR;
5456                                        break;
5457                                }
5458                        }
5459                }
5460
5461                if (r <= 0)
5462                        break;
5463
5464                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5465                if (kvm_cpu_has_pending_timer(vcpu))
5466                        kvm_inject_pending_timer_irqs(vcpu);
5467
5468                if (dm_request_for_irq_injection(vcpu)) {
5469                        r = -EINTR;
5470                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5471                        ++vcpu->stat.request_irq_exits;
5472                }
5473
5474                kvm_check_async_pf_completion(vcpu);
5475
5476                if (signal_pending(current)) {
5477                        r = -EINTR;
5478                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5479                        ++vcpu->stat.signal_exits;
5480                }
5481                if (need_resched()) {
5482                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5483                        kvm_resched(vcpu);
5484                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5485                }
5486        }
5487
5488        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5489
5490        vapic_exit(vcpu);
5491
5492        return r;
5493}
5494
5495static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5496{
5497        int r;
5498        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5499        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5500        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5501        if (r != EMULATE_DONE)
5502                return 0;
5503        return 1;
5504}
5505
5506static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5507{
5508        BUG_ON(!vcpu->arch.pio.count);
5509
5510        return complete_emulated_io(vcpu);
5511}
5512
5513/*
5514 * Implements the following, as a state machine:
5515 *
5516 * read:
5517 *   for each fragment
5518 *     for each mmio piece in the fragment
5519 *       write gpa, len
5520 *       exit
5521 *       copy data
5522 *   execute insn
5523 *
5524 * write:
5525 *   for each fragment
5526 *     for each mmio piece in the fragment
5527 *       write gpa, len
5528 *       copy data
5529 *       exit
5530 */
5531static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5532{
5533        struct kvm_run *run = vcpu->run;
5534        struct kvm_mmio_fragment *frag;
5535        unsigned len;
5536
5537        BUG_ON(!vcpu->mmio_needed);
5538
5539        /* Complete previous fragment */
5540        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5541        len = min(8u, frag->len);
5542        if (!vcpu->mmio_is_write)
5543                memcpy(frag->data, run->mmio.data, len);
5544
5545        if (frag->len <= 8) {
5546                /* Switch to the next fragment. */
5547                frag++;
5548                vcpu->mmio_cur_fragment++;
5549        } else {
5550                /* Go forward to the next mmio piece. */
5551                frag->data += len;
5552                frag->gpa += len;
5553                frag->len -= len;
5554        }
5555
5556        if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5557                vcpu->mmio_needed = 0;
5558                if (vcpu->mmio_is_write)
5559                        return 1;
5560                vcpu->mmio_read_completed = 1;
5561                return complete_emulated_io(vcpu);
5562        }
5563
5564        run->exit_reason = KVM_EXIT_MMIO;
5565        run->mmio.phys_addr = frag->gpa;
5566        if (vcpu->mmio_is_write)
5567                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5568        run->mmio.len = min(8u, frag->len);
5569        run->mmio.is_write = vcpu->mmio_is_write;
5570        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5571        return 0;
5572}
5573
5574
5575int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5576{
5577        int r;
5578        sigset_t sigsaved;
5579
5580        if (!tsk_used_math(current) && init_fpu(current))
5581                return -ENOMEM;
5582
5583        if (vcpu->sigset_active)
5584                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5585
5586        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5587                kvm_vcpu_block(vcpu);
5588                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5589                r = -EAGAIN;
5590                goto out;
5591        }
5592
5593        /* re-sync apic's tpr */
5594        if (!irqchip_in_kernel(vcpu->kvm)) {
5595                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5596                        r = -EINVAL;
5597                        goto out;
5598                }
5599        }
5600
5601        if (unlikely(vcpu->arch.complete_userspace_io)) {
5602                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5603                vcpu->arch.complete_userspace_io = NULL;
5604                r = cui(vcpu);
5605                if (r <= 0)
5606                        goto out;
5607        } else
5608                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5609
5610        r = __vcpu_run(vcpu);
5611
5612out:
5613        post_kvm_run_save(vcpu);
5614        if (vcpu->sigset_active)
5615                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5616
5617        return r;
5618}
5619
5620int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5621{
5622        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5623                /*
5624                 * We are here if userspace calls get_regs() in the middle of
5625                 * instruction emulation. Registers state needs to be copied
5626                 * back from emulation context to vcpu. Userspace shouldn't do
5627                 * that usually, but some bad designed PV devices (vmware
5628                 * backdoor interface) need this to work
5629                 */
5630                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5631                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5632        }
5633        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5634        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5635        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5636        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5637        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5638        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5639        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5640        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5641#ifdef CONFIG_X86_64
5642        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5643        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5644        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5645        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5646        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5647        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5648        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5649        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5650#endif
5651
5652        regs->rip = kvm_rip_read(vcpu);
5653        regs->rflags = kvm_get_rflags(vcpu);
5654
5655        return 0;
5656}
5657
5658int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5659{
5660        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5661        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5662
5663        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5664        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5665        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5666        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5667        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5668        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5669        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5670        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5671#ifdef CONFIG_X86_64
5672        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5673        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5674        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5675        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5676        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5677        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5678        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5679        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5680#endif
5681
5682        kvm_rip_write(vcpu, regs->rip);
5683        kvm_set_rflags(vcpu, regs->rflags);
5684
5685        vcpu->arch.exception.pending = false;
5686
5687        kvm_make_request(KVM_REQ_EVENT, vcpu);
5688
5689        return 0;
5690}
5691
5692void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5693{
5694        struct kvm_segment cs;
5695
5696        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5697        *db = cs.db;
5698        *l = cs.l;
5699}
5700EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5701
5702int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5703                                  struct kvm_sregs *sregs)
5704{
5705        struct desc_ptr dt;
5706
5707        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5708        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5709        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5710        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5711        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5712        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5713
5714        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5715        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5716
5717        kvm_x86_ops->get_idt(vcpu, &dt);
5718        sregs->idt.limit = dt.size;
5719        sregs->idt.base = dt.address;
5720        kvm_x86_ops->get_gdt(vcpu, &dt);
5721        sregs->gdt.limit = dt.size;
5722        sregs->gdt.base = dt.address;
5723
5724        sregs->cr0 = kvm_read_cr0(vcpu);
5725        sregs->cr2 = vcpu->arch.cr2;
5726        sregs->cr3 = kvm_read_cr3(vcpu);
5727        sregs->cr4 = kvm_read_cr4(vcpu);
5728        sregs->cr8 = kvm_get_cr8(vcpu);
5729        sregs->efer = vcpu->arch.efer;
5730        sregs->apic_base = kvm_get_apic_base(vcpu);
5731
5732        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5733
5734        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5735                set_bit(vcpu->arch.interrupt.nr,
5736                        (unsigned long *)sregs->interrupt_bitmap);
5737
5738        return 0;
5739}
5740
5741int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5742                                    struct kvm_mp_state *mp_state)
5743{
5744        mp_state->mp_state = vcpu->arch.mp_state;
5745        return 0;
5746}
5747
5748int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5749                                    struct kvm_mp_state *mp_state)
5750{
5751        vcpu->arch.mp_state = mp_state->mp_state;
5752        kvm_make_request(KVM_REQ_EVENT, vcpu);
5753        return 0;
5754}
5755
5756int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5757                    int reason, bool has_error_code, u32 error_code)
5758{
5759        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5760        int ret;
5761
5762        init_emulate_ctxt(vcpu);
5763
5764        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5765                                   has_error_code, error_code);
5766
5767        if (ret)
5768                return EMULATE_FAIL;
5769
5770        kvm_rip_write(vcpu, ctxt->eip);
5771        kvm_set_rflags(vcpu, ctxt->eflags);
5772        kvm_make_request(KVM_REQ_EVENT, vcpu);
5773        return EMULATE_DONE;
5774}
5775EXPORT_SYMBOL_GPL(kvm_task_switch);
5776
5777int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5778                                  struct kvm_sregs *sregs)
5779{
5780        int mmu_reset_needed = 0;
5781        int pending_vec, max_bits, idx;
5782        struct desc_ptr dt;
5783
5784        if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
5785                return -EINVAL;
5786
5787        dt.size = sregs->idt.limit;
5788        dt.address = sregs->idt.base;
5789        kvm_x86_ops->set_idt(vcpu, &dt);
5790        dt.size = sregs->gdt.limit;
5791        dt.address = sregs->gdt.base;
5792        kvm_x86_ops->set_gdt(vcpu, &dt);
5793
5794        vcpu->arch.cr2 = sregs->cr2;
5795        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5796        vcpu->arch.cr3 = sregs->cr3;
5797        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5798
5799        kvm_set_cr8(vcpu, sregs->cr8);
5800
5801        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5802        kvm_x86_ops->set_efer(vcpu, sregs->efer);
5803        kvm_set_apic_base(vcpu, sregs->apic_base);
5804
5805        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5806        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5807        vcpu->arch.cr0 = sregs->cr0;
5808
5809        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5810        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5811        if (sregs->cr4 & X86_CR4_OSXSAVE)
5812                kvm_update_cpuid(vcpu);
5813
5814        idx = srcu_read_lock(&vcpu->kvm->srcu);
5815        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5816                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5817                mmu_reset_needed = 1;
5818        }
5819        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5820
5821        if (mmu_reset_needed)
5822                kvm_mmu_reset_context(vcpu);
5823
5824        max_bits = KVM_NR_INTERRUPTS;
5825        pending_vec = find_first_bit(
5826                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5827        if (pending_vec < max_bits) {
5828                kvm_queue_interrupt(vcpu, pending_vec, false);
5829                pr_debug("Set back pending irq %d\n", pending_vec);
5830        }
5831
5832        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5833        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5834        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5835        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5836        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5837        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5838
5839        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5840        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5841
5842        update_cr8_intercept(vcpu);
5843
5844        /* Older userspace won't unhalt the vcpu on reset. */
5845        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5846            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5847            !is_protmode(vcpu))
5848                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5849
5850        kvm_make_request(KVM_REQ_EVENT, vcpu);
5851
5852        return 0;
5853}
5854
5855int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5856                                        struct kvm_guest_debug *dbg)
5857{
5858        unsigned long rflags;
5859        int i, r;
5860
5861        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5862                r = -EBUSY;
5863                if (vcpu->arch.exception.pending)
5864                        goto out;
5865                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5866                        kvm_queue_exception(vcpu, DB_VECTOR);
5867                else
5868                        kvm_queue_exception(vcpu, BP_VECTOR);
5869        }
5870
5871        /*
5872         * Read rflags as long as potentially injected trace flags are still
5873         * filtered out.
5874         */
5875        rflags = kvm_get_rflags(vcpu);
5876
5877        vcpu->guest_debug = dbg->control;
5878        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5879                vcpu->guest_debug = 0;
5880
5881        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5882                for (i = 0; i < KVM_NR_DB_REGS; ++i)
5883                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5884                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
5885        } else {
5886                for (i = 0; i < KVM_NR_DB_REGS; i++)
5887                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5888        }
5889        kvm_update_dr7(vcpu);
5890
5891        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5892                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5893                        get_segment_base(vcpu, VCPU_SREG_CS);
5894
5895        /*
5896         * Trigger an rflags update that will inject or remove the trace
5897         * flags.
5898         */
5899        kvm_set_rflags(vcpu, rflags);
5900
5901        kvm_x86_ops->update_db_bp_intercept(vcpu);
5902
5903        r = 0;
5904
5905out:
5906
5907        return r;
5908}
5909
5910/*
5911 * Translate a guest virtual address to a guest physical address.
5912 */
5913int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5914                                    struct kvm_translation *tr)
5915{
5916        unsigned long vaddr = tr->linear_address;
5917        gpa_t gpa;
5918        int idx;
5919
5920        idx = srcu_read_lock(&vcpu->kvm->srcu);
5921        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5922        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5923        tr->physical_address = gpa;
5924        tr->valid = gpa != UNMAPPED_GVA;
5925        tr->writeable = 1;
5926        tr->usermode = 0;
5927
5928        return 0;
5929}
5930
5931int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5932{
5933        struct i387_fxsave_struct *fxsave =
5934                        &vcpu->arch.guest_fpu.state->fxsave;
5935
5936        memcpy(fpu->fpr, fxsave->st_space, 128);
5937        fpu->fcw = fxsave->cwd;
5938        fpu->fsw = fxsave->swd;
5939        fpu->ftwx = fxsave->twd;
5940        fpu->last_opcode = fxsave->fop;
5941        fpu->last_ip = fxsave->rip;
5942        fpu->last_dp = fxsave->rdp;
5943        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5944
5945        return 0;
5946}
5947
5948int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5949{
5950        struct i387_fxsave_struct *fxsave =
5951                        &vcpu->arch.guest_fpu.state->fxsave;
5952
5953        memcpy(fxsave->st_space, fpu->fpr, 128);
5954        fxsave->cwd = fpu->fcw;
5955        fxsave->swd = fpu->fsw;
5956        fxsave->twd = fpu->ftwx;
5957        fxsave->fop = fpu->last_opcode;
5958        fxsave->rip = fpu->last_ip;
5959        fxsave->rdp = fpu->last_dp;
5960        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5961
5962        return 0;
5963}
5964
5965int fx_init(struct kvm_vcpu *vcpu)
5966{
5967        int err;
5968
5969        err = fpu_alloc(&vcpu->arch.guest_fpu);
5970        if (err)
5971                return err;
5972
5973        fpu_finit(&vcpu->arch.guest_fpu);
5974
5975        /*
5976         * Ensure guest xcr0 is valid for loading
5977         */
5978        vcpu->arch.xcr0 = XSTATE_FP;
5979
5980        vcpu->arch.cr0 |= X86_CR0_ET;
5981
5982        return 0;
5983}
5984EXPORT_SYMBOL_GPL(fx_init);
5985
5986static void fx_free(struct kvm_vcpu *vcpu)
5987{
5988        fpu_free(&vcpu->arch.guest_fpu);
5989}
5990
5991void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5992{
5993        if (vcpu->guest_fpu_loaded)
5994                return;
5995
5996        /*
5997         * Restore all possible states in the guest,
5998         * and assume host would use all available bits.
5999         * Guest xcr0 would be loaded later.
6000         */
6001        kvm_put_guest_xcr0(vcpu);
6002        vcpu->guest_fpu_loaded = 1;
6003        __kernel_fpu_begin();
6004        fpu_restore_checking(&vcpu->arch.guest_fpu);
6005        trace_kvm_fpu(1);
6006}
6007
6008void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6009{
6010        kvm_put_guest_xcr0(vcpu);
6011
6012        if (!vcpu->guest_fpu_loaded)
6013                return;
6014
6015        vcpu->guest_fpu_loaded = 0;
6016        fpu_save_init(&vcpu->arch.guest_fpu);
6017        __kernel_fpu_end();
6018        ++vcpu->stat.fpu_reload;
6019        kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6020        trace_kvm_fpu(0);
6021}
6022
6023void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6024{
6025        kvmclock_reset(vcpu);
6026
6027        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6028        fx_free(vcpu);
6029        kvm_x86_ops->vcpu_free(vcpu);
6030}
6031
6032struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6033                                                unsigned int id)
6034{
6035        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6036                printk_once(KERN_WARNING
6037                "kvm: SMP vm created on host with unstable TSC; "
6038                "guest TSC will not be reliable\n");
6039        return kvm_x86_ops->vcpu_create(kvm, id);
6040}
6041
6042int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6043{
6044        int r;
6045
6046        vcpu->arch.mtrr_state.have_fixed = 1;
6047        r = vcpu_load(vcpu);
6048        if (r)
6049                return r;
6050        r = kvm_arch_vcpu_reset(vcpu);
6051        if (r == 0)
6052                r = kvm_mmu_setup(vcpu);
6053        vcpu_put(vcpu);
6054
6055        return r;
6056}
6057
6058void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6059{
6060        int r;
6061        vcpu->arch.apf.msr_val = 0;
6062
6063        r = vcpu_load(vcpu);
6064        BUG_ON(r);
6065        kvm_mmu_unload(vcpu);
6066        vcpu_put(vcpu);
6067
6068        fx_free(vcpu);
6069        kvm_x86_ops->vcpu_free(vcpu);
6070}
6071
6072int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6073{
6074        atomic_set(&vcpu->arch.nmi_queued, 0);
6075        vcpu->arch.nmi_pending = 0;
6076        vcpu->arch.nmi_injected = false;
6077
6078        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6079        vcpu->arch.dr6 = DR6_FIXED_1;
6080        vcpu->arch.dr7 = DR7_FIXED_1;
6081        kvm_update_dr7(vcpu);
6082
6083        kvm_make_request(KVM_REQ_EVENT, vcpu);
6084        vcpu->arch.apf.msr_val = 0;
6085        vcpu->arch.st.msr_val = 0;
6086
6087        kvmclock_reset(vcpu);
6088
6089        kvm_clear_async_pf_completion_queue(vcpu);
6090        kvm_async_pf_hash_reset(vcpu);
6091        vcpu->arch.apf.halted = false;
6092
6093        kvm_pmu_reset(vcpu);
6094
6095        return kvm_x86_ops->vcpu_reset(vcpu);
6096}
6097
6098int kvm_arch_hardware_enable(void *garbage)
6099{
6100        struct kvm *kvm;
6101        struct kvm_vcpu *vcpu;
6102        int i;
6103        int ret;
6104        u64 local_tsc;
6105        u64 max_tsc = 0;
6106        bool stable, backwards_tsc = false;
6107
6108        kvm_shared_msr_cpu_online();
6109        ret = kvm_x86_ops->hardware_enable(garbage);
6110        if (ret != 0)
6111                return ret;
6112
6113        local_tsc = native_read_tsc();
6114        stable = !check_tsc_unstable();
6115        list_for_each_entry(kvm, &vm_list, vm_list) {
6116                kvm_for_each_vcpu(i, vcpu, kvm) {
6117                        if (!stable && vcpu->cpu == smp_processor_id())
6118                                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6119                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6120                                backwards_tsc = true;
6121                                if (vcpu->arch.last_host_tsc > max_tsc)
6122                                        max_tsc = vcpu->arch.last_host_tsc;
6123                        }
6124                }
6125        }
6126
6127        /*
6128         * Sometimes, even reliable TSCs go backwards.  This happens on
6129         * platforms that reset TSC during suspend or hibernate actions, but
6130         * maintain synchronization.  We must compensate.  Fortunately, we can
6131         * detect that condition here, which happens early in CPU bringup,
6132         * before any KVM threads can be running.  Unfortunately, we can't
6133         * bring the TSCs fully up to date with real time, as we aren't yet far
6134         * enough into CPU bringup that we know how much real time has actually
6135         * elapsed; our helper function, get_kernel_ns() will be using boot
6136         * variables that haven't been updated yet.
6137         *
6138         * So we simply find the maximum observed TSC above, then record the
6139         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6140         * the adjustment will be applied.  Note that we accumulate
6141         * adjustments, in case multiple suspend cycles happen before some VCPU
6142         * gets a chance to run again.  In the event that no KVM threads get a
6143         * chance to run, we will miss the entire elapsed period, as we'll have
6144         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6145         * loose cycle time.  This isn't too big a deal, since the loss will be
6146         * uniform across all VCPUs (not to mention the scenario is extremely
6147         * unlikely). It is possible that a second hibernate recovery happens
6148         * much faster than a first, causing the observed TSC here to be
6149         * smaller; this would require additional padding adjustment, which is
6150         * why we set last_host_tsc to the local tsc observed here.
6151         *
6152         * N.B. - this code below runs only on platforms with reliable TSC,
6153         * as that is the only way backwards_tsc is set above.  Also note
6154         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6155         * have the same delta_cyc adjustment applied if backwards_tsc
6156         * is detected.  Note further, this adjustment is only done once,
6157         * as we reset last_host_tsc on all VCPUs to stop this from being
6158         * called multiple times (one for each physical CPU bringup).
6159         *
6160         * Platforms with unreliable TSCs don't have to deal with this, they
6161         * will be compensated by the logic in vcpu_load, which sets the TSC to
6162         * catchup mode.  This will catchup all VCPUs to real time, but cannot
6163         * guarantee that they stay in perfect synchronization.
6164         */
6165        if (backwards_tsc) {
6166                u64 delta_cyc = max_tsc - local_tsc;
6167                list_for_each_entry(kvm, &vm_list, vm_list) {
6168                        kvm_for_each_vcpu(i, vcpu, kvm) {
6169                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
6170                                vcpu->arch.last_host_tsc = local_tsc;
6171                        }
6172
6173                        /*
6174                         * We have to disable TSC offset matching.. if you were
6175                         * booting a VM while issuing an S4 host suspend....
6176                         * you may have some problem.  Solving this issue is
6177                         * left as an exercise to the reader.
6178                         */
6179                        kvm->arch.last_tsc_nsec = 0;
6180                        kvm->arch.last_tsc_write = 0;
6181                }
6182
6183        }
6184        return 0;
6185}
6186
6187void kvm_arch_hardware_disable(void *garbage)
6188{
6189        kvm_x86_ops->hardware_disable(garbage);
6190        drop_user_return_notifiers(garbage);
6191}
6192
6193int kvm_arch_hardware_setup(void)
6194{
6195        return kvm_x86_ops->hardware_setup();
6196}
6197
6198void kvm_arch_hardware_unsetup(void)
6199{
6200        kvm_x86_ops->hardware_unsetup();
6201}
6202
6203void kvm_arch_check_processor_compat(void *rtn)
6204{
6205        kvm_x86_ops->check_processor_compatibility(rtn);
6206}
6207
6208bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6209{
6210        return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6211}
6212
6213struct static_key kvm_no_apic_vcpu __read_mostly;
6214
6215int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6216{
6217        struct page *page;
6218        struct kvm *kvm;
6219        int r;
6220
6221        BUG_ON(vcpu->kvm == NULL);
6222        kvm = vcpu->kvm;
6223
6224        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6225        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6226                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6227        else
6228                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6229
6230        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6231        if (!page) {
6232                r = -ENOMEM;
6233                goto fail;
6234        }
6235        vcpu->arch.pio_data = page_address(page);
6236
6237        kvm_set_tsc_khz(vcpu, max_tsc_khz);
6238
6239        r = kvm_mmu_create(vcpu);
6240        if (r < 0)
6241                goto fail_free_pio_data;
6242
6243        if (irqchip_in_kernel(kvm)) {
6244                r = kvm_create_lapic(vcpu);
6245                if (r < 0)
6246                        goto fail_mmu_destroy;
6247        } else
6248                static_key_slow_inc(&kvm_no_apic_vcpu);
6249
6250        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6251                                       GFP_KERNEL);
6252        if (!vcpu->arch.mce_banks) {
6253                r = -ENOMEM;
6254                goto fail_free_lapic;
6255        }
6256        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6257
6258        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6259                goto fail_free_mce_banks;
6260
6261        kvm_async_pf_hash_reset(vcpu);
6262        kvm_pmu_init(vcpu);
6263
6264        return 0;
6265fail_free_mce_banks:
6266        kfree(vcpu->arch.mce_banks);
6267fail_free_lapic:
6268        kvm_free_lapic(vcpu);
6269fail_mmu_destroy:
6270        kvm_mmu_destroy(vcpu);
6271fail_free_pio_data:
6272        free_page((unsigned long)vcpu->arch.pio_data);
6273fail:
6274        return r;
6275}
6276
6277void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6278{
6279        int idx;
6280
6281        kvm_pmu_destroy(vcpu);
6282        kfree(vcpu->arch.mce_banks);
6283        kvm_free_lapic(vcpu);
6284        idx = srcu_read_lock(&vcpu->kvm->srcu);
6285        kvm_mmu_destroy(vcpu);
6286        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6287        free_page((unsigned long)vcpu->arch.pio_data);
6288        if (!irqchip_in_kernel(vcpu->kvm))
6289                static_key_slow_dec(&kvm_no_apic_vcpu);
6290}
6291
6292int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6293{
6294        if (type)
6295                return -EINVAL;
6296
6297        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6298        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6299
6300        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6301        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6302        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6303        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6304                &kvm->arch.irq_sources_bitmap);
6305
6306        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6307        mutex_init(&kvm->arch.apic_map_lock);
6308
6309        return 0;
6310}
6311
6312static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6313{
6314        int r;
6315        r = vcpu_load(vcpu);
6316        BUG_ON(r);
6317        kvm_mmu_unload(vcpu);
6318        vcpu_put(vcpu);
6319}
6320
6321static void kvm_free_vcpus(struct kvm *kvm)
6322{
6323        unsigned int i;
6324        struct kvm_vcpu *vcpu;
6325
6326        /*
6327         * Unpin any mmu pages first.
6328         */
6329        kvm_for_each_vcpu(i, vcpu, kvm) {
6330                kvm_clear_async_pf_completion_queue(vcpu);
6331                kvm_unload_vcpu_mmu(vcpu);
6332        }
6333        kvm_for_each_vcpu(i, vcpu, kvm)
6334                kvm_arch_vcpu_free(vcpu);
6335
6336        mutex_lock(&kvm->lock);
6337        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6338                kvm->vcpus[i] = NULL;
6339
6340        atomic_set(&kvm->online_vcpus, 0);
6341        mutex_unlock(&kvm->lock);
6342}
6343
6344void kvm_arch_sync_events(struct kvm *kvm)
6345{
6346        kvm_free_all_assigned_devices(kvm);
6347        kvm_free_pit(kvm);
6348}
6349
6350void kvm_arch_destroy_vm(struct kvm *kvm)
6351{
6352        kvm_iommu_unmap_guest(kvm);
6353        kfree(kvm->arch.vpic);
6354        kfree(kvm->arch.vioapic);
6355        kvm_free_vcpus(kvm);
6356        if (kvm->arch.apic_access_page)
6357                put_page(kvm->arch.apic_access_page);
6358        if (kvm->arch.ept_identity_pagetable)
6359                put_page(kvm->arch.ept_identity_pagetable);
6360        kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6361}
6362
6363void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6364                           struct kvm_memory_slot *dont)
6365{
6366        int i;
6367
6368        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6369                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6370                        kvm_kvfree(free->arch.rmap[i]);
6371                        free->arch.rmap[i] = NULL;
6372                }
6373                if (i == 0)
6374                        continue;
6375
6376                if (!dont || free->arch.lpage_info[i - 1] !=
6377                             dont->arch.lpage_info[i - 1]) {
6378                        kvm_kvfree(free->arch.lpage_info[i - 1]);
6379                        free->arch.lpage_info[i - 1] = NULL;
6380                }
6381        }
6382}
6383
6384int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6385{
6386        int i;
6387
6388        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6389                unsigned long ugfn;
6390                int lpages;
6391                int level = i + 1;
6392
6393                lpages = gfn_to_index(slot->base_gfn + npages - 1,
6394                                      slot->base_gfn, level) + 1;
6395
6396                slot->arch.rmap[i] =
6397                        kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6398                if (!slot->arch.rmap[i])
6399                        goto out_free;
6400                if (i == 0)
6401                        continue;
6402
6403                slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6404                                        sizeof(*slot->arch.lpage_info[i - 1]));
6405                if (!slot->arch.lpage_info[i - 1])
6406                        goto out_free;
6407
6408                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6409                        slot->arch.lpage_info[i - 1][0].write_count = 1;
6410                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6411                        slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6412                ugfn = slot->userspace_addr >> PAGE_SHIFT;
6413                /*
6414                 * If the gfn and userspace address are not aligned wrt each
6415                 * other, or if explicitly asked to, disable large page
6416                 * support for this slot
6417                 */
6418                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6419                    !kvm_largepages_enabled()) {
6420                        unsigned long j;
6421
6422                        for (j = 0; j < lpages; ++j)
6423                                slot->arch.lpage_info[i - 1][j].write_count = 1;
6424                }
6425        }
6426
6427        return 0;
6428
6429out_free:
6430        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6431                kvm_kvfree(slot->arch.rmap[i]);
6432                slot->arch.rmap[i] = NULL;
6433                if (i == 0)
6434                        continue;
6435
6436                kvm_kvfree(slot->arch.lpage_info[i - 1]);
6437                slot->arch.lpage_info[i - 1] = NULL;
6438        }
6439        return -ENOMEM;
6440}
6441
6442int kvm_arch_prepare_memory_region(struct kvm *kvm,
6443                                struct kvm_memory_slot *memslot,
6444                                struct kvm_memory_slot old,
6445                                struct kvm_userspace_memory_region *mem,
6446                                int user_alloc)
6447{
6448        int npages = memslot->npages;
6449        int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6450
6451        /* Prevent internal slot pages from being moved by fork()/COW. */
6452        if (memslot->id >= KVM_MEMORY_SLOTS)
6453                map_flags = MAP_SHARED | MAP_ANONYMOUS;
6454
6455        /*To keep backward compatibility with older userspace,
6456         *x86 needs to handle !user_alloc case.
6457         */
6458        if (!user_alloc) {
6459                if (npages && !old.npages) {
6460                        unsigned long userspace_addr;
6461
6462                        userspace_addr = vm_mmap(NULL, 0,
6463                                                 npages * PAGE_SIZE,
6464                                                 PROT_READ | PROT_WRITE,
6465                                                 map_flags,
6466                                                 0);
6467
6468                        if (IS_ERR((void *)userspace_addr))
6469                                return PTR_ERR((void *)userspace_addr);
6470
6471                        memslot->userspace_addr = userspace_addr;
6472                }
6473        }
6474
6475
6476        return 0;
6477}
6478
6479void kvm_arch_commit_memory_region(struct kvm *kvm,
6480                                struct kvm_userspace_memory_region *mem,
6481                                struct kvm_memory_slot old,
6482                                int user_alloc)
6483{
6484
6485        int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6486
6487        if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6488                int ret;
6489
6490                ret = vm_munmap(old.userspace_addr,
6491                                old.npages * PAGE_SIZE);
6492                if (ret < 0)
6493                        printk(KERN_WARNING
6494                               "kvm_vm_ioctl_set_memory_region: "
6495                               "failed to munmap memory\n");
6496        }
6497
6498        if (!kvm->arch.n_requested_mmu_pages)
6499                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6500
6501        spin_lock(&kvm->mmu_lock);
6502        if (nr_mmu_pages)
6503                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6504        kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6505        spin_unlock(&kvm->mmu_lock);
6506        /*
6507         * If memory slot is created, or moved, we need to clear all
6508         * mmio sptes.
6509         */
6510        if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6511                kvm_mmu_zap_all(kvm);
6512                kvm_reload_remote_mmus(kvm);
6513        }
6514}
6515
6516void kvm_arch_flush_shadow_all(struct kvm *kvm)
6517{
6518        kvm_mmu_zap_all(kvm);
6519        kvm_reload_remote_mmus(kvm);
6520}
6521
6522void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6523                                   struct kvm_memory_slot *slot)
6524{
6525        kvm_arch_flush_shadow_all(kvm);
6526}
6527
6528int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6529{
6530        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6531                !vcpu->arch.apf.halted)
6532                || !list_empty_careful(&vcpu->async_pf.done)
6533                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6534                || atomic_read(&vcpu->arch.nmi_queued) ||
6535                (kvm_arch_interrupt_allowed(vcpu) &&
6536                 kvm_cpu_has_interrupt(vcpu));
6537}
6538
6539int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6540{
6541        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6542}
6543
6544int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6545{
6546        return kvm_x86_ops->interrupt_allowed(vcpu);
6547}
6548
6549bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6550{
6551        unsigned long current_rip = kvm_rip_read(vcpu) +
6552                get_segment_base(vcpu, VCPU_SREG_CS);
6553
6554        return current_rip == linear_rip;
6555}
6556EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6557
6558unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6559{
6560        unsigned long rflags;
6561
6562        rflags = kvm_x86_ops->get_rflags(vcpu);
6563        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6564                rflags &= ~X86_EFLAGS_TF;
6565        return rflags;
6566}
6567EXPORT_SYMBOL_GPL(kvm_get_rflags);
6568
6569void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6570{
6571        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6572            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6573                rflags |= X86_EFLAGS_TF;
6574        kvm_x86_ops->set_rflags(vcpu, rflags);
6575        kvm_make_request(KVM_REQ_EVENT, vcpu);
6576}
6577EXPORT_SYMBOL_GPL(kvm_set_rflags);
6578
6579void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6580{
6581        int r;
6582
6583        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6584              is_error_page(work->page))
6585                return;
6586
6587        r = kvm_mmu_reload(vcpu);
6588        if (unlikely(r))
6589                return;
6590
6591        if (!vcpu->arch.mmu.direct_map &&
6592              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6593                return;
6594
6595        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6596}
6597
6598static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6599{
6600        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6601}
6602
6603static inline u32 kvm_async_pf_next_probe(u32 key)
6604{
6605        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6606}
6607
6608static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6609{
6610        u32 key = kvm_async_pf_hash_fn(gfn);
6611
6612        while (vcpu->arch.apf.gfns[key] != ~0)
6613                key = kvm_async_pf_next_probe(key);
6614
6615        vcpu->arch.apf.gfns[key] = gfn;
6616}
6617
6618static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6619{
6620        int i;
6621        u32 key = kvm_async_pf_hash_fn(gfn);
6622
6623        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6624                     (vcpu->arch.apf.gfns[key] != gfn &&
6625                      vcpu->arch.apf.gfns[key] != ~0); i++)
6626                key = kvm_async_pf_next_probe(key);
6627
6628        return key;
6629}
6630
6631bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6632{
6633        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6634}
6635
6636static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6637{
6638        u32 i, j, k;
6639
6640        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6641        while (true) {
6642                vcpu->arch.apf.gfns[i] = ~0;
6643                do {
6644                        j = kvm_async_pf_next_probe(j);
6645                        if (vcpu->arch.apf.gfns[j] == ~0)
6646                                return;
6647                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6648                        /*
6649                         * k lies cyclically in ]i,j]
6650                         * |    i.k.j |
6651                         * |....j i.k.| or  |.k..j i...|
6652                         */
6653                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6654                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6655                i = j;
6656        }
6657}
6658
6659static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6660{
6661
6662        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6663                                      sizeof(val));
6664}
6665
6666void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6667                                     struct kvm_async_pf *work)
6668{
6669        struct x86_exception fault;
6670
6671        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6672        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6673
6674        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6675            (vcpu->arch.apf.send_user_only &&
6676             kvm_x86_ops->get_cpl(vcpu) == 0))
6677                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6678        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6679                fault.vector = PF_VECTOR;
6680                fault.error_code_valid = true;
6681                fault.error_code = 0;
6682                fault.nested_page_fault = false;
6683                fault.address = work->arch.token;
6684                kvm_inject_page_fault(vcpu, &fault);
6685        }
6686}
6687
6688void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6689                                 struct kvm_async_pf *work)
6690{
6691        struct x86_exception fault;
6692
6693        trace_kvm_async_pf_ready(work->arch.token, work->gva);
6694        if (is_error_page(work->page))
6695                work->arch.token = ~0; /* broadcast wakeup */
6696        else
6697                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6698
6699        if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6700            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6701                fault.vector = PF_VECTOR;
6702                fault.error_code_valid = true;
6703                fault.error_code = 0;
6704                fault.nested_page_fault = false;
6705                fault.address = work->arch.token;
6706                kvm_inject_page_fault(vcpu, &fault);
6707        }
6708        vcpu->arch.apf.halted = false;
6709        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6710}
6711
6712bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6713{
6714        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6715                return true;
6716        else
6717                return !kvm_event_needs_reinjection(vcpu) &&
6718                        kvm_x86_ops->interrupt_allowed(vcpu);
6719}
6720
6721EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6722EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6723EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6724EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6725EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6726EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6727EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6728EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6729EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6730EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6731EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6732EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6733