linux/drivers/infiniband/ulp/srpt/ib_srpt.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
   3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/err.h>
  39#include <linux/ctype.h>
  40#include <linux/kthread.h>
  41#include <linux/string.h>
  42#include <linux/delay.h>
  43#include <linux/atomic.h>
  44#include <scsi/scsi_tcq.h>
  45#include <target/configfs_macros.h>
  46#include <target/target_core_base.h>
  47#include <target/target_core_fabric_configfs.h>
  48#include <target/target_core_fabric.h>
  49#include <target/target_core_configfs.h>
  50#include "ib_srpt.h"
  51
  52/* Name of this kernel module. */
  53#define DRV_NAME                "ib_srpt"
  54#define DRV_VERSION             "2.0.0"
  55#define DRV_RELDATE             "2011-02-14"
  56
  57#define SRPT_ID_STRING  "Linux SRP target"
  58
  59#undef pr_fmt
  60#define pr_fmt(fmt) DRV_NAME " " fmt
  61
  62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
  63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
  64                   "v" DRV_VERSION " (" DRV_RELDATE ")");
  65MODULE_LICENSE("Dual BSD/GPL");
  66
  67/*
  68 * Global Variables
  69 */
  70
  71static u64 srpt_service_guid;
  72static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
  73static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
  74
  75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
  76module_param(srp_max_req_size, int, 0444);
  77MODULE_PARM_DESC(srp_max_req_size,
  78                 "Maximum size of SRP request messages in bytes.");
  79
  80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
  81module_param(srpt_srq_size, int, 0444);
  82MODULE_PARM_DESC(srpt_srq_size,
  83                 "Shared receive queue (SRQ) size.");
  84
  85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
  86{
  87        return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
  88}
  89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
  90                  0444);
  91MODULE_PARM_DESC(srpt_service_guid,
  92                 "Using this value for ioc_guid, id_ext, and cm_listen_id"
  93                 " instead of using the node_guid of the first HCA.");
  94
  95static struct ib_client srpt_client;
  96static struct target_fabric_configfs *srpt_target;
  97static void srpt_release_channel(struct srpt_rdma_ch *ch);
  98static int srpt_queue_status(struct se_cmd *cmd);
  99
 100/**
 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
 102 */
 103static inline
 104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
 105{
 106        switch (dir) {
 107        case DMA_TO_DEVICE:     return DMA_FROM_DEVICE;
 108        case DMA_FROM_DEVICE:   return DMA_TO_DEVICE;
 109        default:                return dir;
 110        }
 111}
 112
 113/**
 114 * srpt_sdev_name() - Return the name associated with the HCA.
 115 *
 116 * Examples are ib0, ib1, ...
 117 */
 118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
 119{
 120        return sdev->device->name;
 121}
 122
 123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
 124{
 125        unsigned long flags;
 126        enum rdma_ch_state state;
 127
 128        spin_lock_irqsave(&ch->spinlock, flags);
 129        state = ch->state;
 130        spin_unlock_irqrestore(&ch->spinlock, flags);
 131        return state;
 132}
 133
 134static enum rdma_ch_state
 135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
 136{
 137        unsigned long flags;
 138        enum rdma_ch_state prev;
 139
 140        spin_lock_irqsave(&ch->spinlock, flags);
 141        prev = ch->state;
 142        ch->state = new_state;
 143        spin_unlock_irqrestore(&ch->spinlock, flags);
 144        return prev;
 145}
 146
 147/**
 148 * srpt_test_and_set_ch_state() - Test and set the channel state.
 149 *
 150 * Returns true if and only if the channel state has been set to the new state.
 151 */
 152static bool
 153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
 154                           enum rdma_ch_state new)
 155{
 156        unsigned long flags;
 157        enum rdma_ch_state prev;
 158
 159        spin_lock_irqsave(&ch->spinlock, flags);
 160        prev = ch->state;
 161        if (prev == old)
 162                ch->state = new;
 163        spin_unlock_irqrestore(&ch->spinlock, flags);
 164        return prev == old;
 165}
 166
 167/**
 168 * srpt_event_handler() - Asynchronous IB event callback function.
 169 *
 170 * Callback function called by the InfiniBand core when an asynchronous IB
 171 * event occurs. This callback may occur in interrupt context. See also
 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 173 * Architecture Specification.
 174 */
 175static void srpt_event_handler(struct ib_event_handler *handler,
 176                               struct ib_event *event)
 177{
 178        struct srpt_device *sdev;
 179        struct srpt_port *sport;
 180
 181        sdev = ib_get_client_data(event->device, &srpt_client);
 182        if (!sdev || sdev->device != event->device)
 183                return;
 184
 185        pr_debug("ASYNC event= %d on device= %s\n", event->event,
 186                 srpt_sdev_name(sdev));
 187
 188        switch (event->event) {
 189        case IB_EVENT_PORT_ERR:
 190                if (event->element.port_num <= sdev->device->phys_port_cnt) {
 191                        sport = &sdev->port[event->element.port_num - 1];
 192                        sport->lid = 0;
 193                        sport->sm_lid = 0;
 194                }
 195                break;
 196        case IB_EVENT_PORT_ACTIVE:
 197        case IB_EVENT_LID_CHANGE:
 198        case IB_EVENT_PKEY_CHANGE:
 199        case IB_EVENT_SM_CHANGE:
 200        case IB_EVENT_CLIENT_REREGISTER:
 201                /* Refresh port data asynchronously. */
 202                if (event->element.port_num <= sdev->device->phys_port_cnt) {
 203                        sport = &sdev->port[event->element.port_num - 1];
 204                        if (!sport->lid && !sport->sm_lid)
 205                                schedule_work(&sport->work);
 206                }
 207                break;
 208        default:
 209                printk(KERN_ERR "received unrecognized IB event %d\n",
 210                       event->event);
 211                break;
 212        }
 213}
 214
 215/**
 216 * srpt_srq_event() - SRQ event callback function.
 217 */
 218static void srpt_srq_event(struct ib_event *event, void *ctx)
 219{
 220        printk(KERN_INFO "SRQ event %d\n", event->event);
 221}
 222
 223/**
 224 * srpt_qp_event() - QP event callback function.
 225 */
 226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
 227{
 228        pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
 229                 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
 230
 231        switch (event->event) {
 232        case IB_EVENT_COMM_EST:
 233                ib_cm_notify(ch->cm_id, event->event);
 234                break;
 235        case IB_EVENT_QP_LAST_WQE_REACHED:
 236                if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
 237                                               CH_RELEASING))
 238                        srpt_release_channel(ch);
 239                else
 240                        pr_debug("%s: state %d - ignored LAST_WQE.\n",
 241                                 ch->sess_name, srpt_get_ch_state(ch));
 242                break;
 243        default:
 244                printk(KERN_ERR "received unrecognized IB QP event %d\n",
 245                       event->event);
 246                break;
 247        }
 248}
 249
 250/**
 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
 252 *
 253 * @slot: one-based slot number.
 254 * @value: four-bit value.
 255 *
 256 * Copies the lowest four bits of value in element slot of the array of four
 257 * bit elements called c_list (controller list). The index slot is one-based.
 258 */
 259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
 260{
 261        u16 id;
 262        u8 tmp;
 263
 264        id = (slot - 1) / 2;
 265        if (slot & 0x1) {
 266                tmp = c_list[id] & 0xf;
 267                c_list[id] = (value << 4) | tmp;
 268        } else {
 269                tmp = c_list[id] & 0xf0;
 270                c_list[id] = (value & 0xf) | tmp;
 271        }
 272}
 273
 274/**
 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
 276 *
 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 278 * Specification.
 279 */
 280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
 281{
 282        struct ib_class_port_info *cif;
 283
 284        cif = (struct ib_class_port_info *)mad->data;
 285        memset(cif, 0, sizeof *cif);
 286        cif->base_version = 1;
 287        cif->class_version = 1;
 288        cif->resp_time_value = 20;
 289
 290        mad->mad_hdr.status = 0;
 291}
 292
 293/**
 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
 295 *
 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 298 */
 299static void srpt_get_iou(struct ib_dm_mad *mad)
 300{
 301        struct ib_dm_iou_info *ioui;
 302        u8 slot;
 303        int i;
 304
 305        ioui = (struct ib_dm_iou_info *)mad->data;
 306        ioui->change_id = __constant_cpu_to_be16(1);
 307        ioui->max_controllers = 16;
 308
 309        /* set present for slot 1 and empty for the rest */
 310        srpt_set_ioc(ioui->controller_list, 1, 1);
 311        for (i = 1, slot = 2; i < 16; i++, slot++)
 312                srpt_set_ioc(ioui->controller_list, slot, 0);
 313
 314        mad->mad_hdr.status = 0;
 315}
 316
 317/**
 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
 319 *
 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 321 * Architecture Specification. See also section B.7, table B.7 in the SRP
 322 * r16a document.
 323 */
 324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
 325                         struct ib_dm_mad *mad)
 326{
 327        struct srpt_device *sdev = sport->sdev;
 328        struct ib_dm_ioc_profile *iocp;
 329
 330        iocp = (struct ib_dm_ioc_profile *)mad->data;
 331
 332        if (!slot || slot > 16) {
 333                mad->mad_hdr.status
 334                        = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 335                return;
 336        }
 337
 338        if (slot > 2) {
 339                mad->mad_hdr.status
 340                        = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 341                return;
 342        }
 343
 344        memset(iocp, 0, sizeof *iocp);
 345        strcpy(iocp->id_string, SRPT_ID_STRING);
 346        iocp->guid = cpu_to_be64(srpt_service_guid);
 347        iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
 348        iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
 349        iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
 350        iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
 351        iocp->subsys_device_id = 0x0;
 352        iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
 353        iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
 354        iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
 355        iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
 356        iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
 357        iocp->rdma_read_depth = 4;
 358        iocp->send_size = cpu_to_be32(srp_max_req_size);
 359        iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
 360                                          1U << 24));
 361        iocp->num_svc_entries = 1;
 362        iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
 363                SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
 364
 365        mad->mad_hdr.status = 0;
 366}
 367
 368/**
 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
 370 *
 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 373 */
 374static void srpt_get_svc_entries(u64 ioc_guid,
 375                                 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
 376{
 377        struct ib_dm_svc_entries *svc_entries;
 378
 379        WARN_ON(!ioc_guid);
 380
 381        if (!slot || slot > 16) {
 382                mad->mad_hdr.status
 383                        = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 384                return;
 385        }
 386
 387        if (slot > 2 || lo > hi || hi > 1) {
 388                mad->mad_hdr.status
 389                        = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 390                return;
 391        }
 392
 393        svc_entries = (struct ib_dm_svc_entries *)mad->data;
 394        memset(svc_entries, 0, sizeof *svc_entries);
 395        svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
 396        snprintf(svc_entries->service_entries[0].name,
 397                 sizeof(svc_entries->service_entries[0].name),
 398                 "%s%016llx",
 399                 SRP_SERVICE_NAME_PREFIX,
 400                 ioc_guid);
 401
 402        mad->mad_hdr.status = 0;
 403}
 404
 405/**
 406 * srpt_mgmt_method_get() - Process a received management datagram.
 407 * @sp:      source port through which the MAD has been received.
 408 * @rq_mad:  received MAD.
 409 * @rsp_mad: response MAD.
 410 */
 411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
 412                                 struct ib_dm_mad *rsp_mad)
 413{
 414        u16 attr_id;
 415        u32 slot;
 416        u8 hi, lo;
 417
 418        attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
 419        switch (attr_id) {
 420        case DM_ATTR_CLASS_PORT_INFO:
 421                srpt_get_class_port_info(rsp_mad);
 422                break;
 423        case DM_ATTR_IOU_INFO:
 424                srpt_get_iou(rsp_mad);
 425                break;
 426        case DM_ATTR_IOC_PROFILE:
 427                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 428                srpt_get_ioc(sp, slot, rsp_mad);
 429                break;
 430        case DM_ATTR_SVC_ENTRIES:
 431                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 432                hi = (u8) ((slot >> 8) & 0xff);
 433                lo = (u8) (slot & 0xff);
 434                slot = (u16) ((slot >> 16) & 0xffff);
 435                srpt_get_svc_entries(srpt_service_guid,
 436                                     slot, hi, lo, rsp_mad);
 437                break;
 438        default:
 439                rsp_mad->mad_hdr.status =
 440                    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 441                break;
 442        }
 443}
 444
 445/**
 446 * srpt_mad_send_handler() - Post MAD-send callback function.
 447 */
 448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
 449                                  struct ib_mad_send_wc *mad_wc)
 450{
 451        ib_destroy_ah(mad_wc->send_buf->ah);
 452        ib_free_send_mad(mad_wc->send_buf);
 453}
 454
 455/**
 456 * srpt_mad_recv_handler() - MAD reception callback function.
 457 */
 458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
 459                                  struct ib_mad_recv_wc *mad_wc)
 460{
 461        struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
 462        struct ib_ah *ah;
 463        struct ib_mad_send_buf *rsp;
 464        struct ib_dm_mad *dm_mad;
 465
 466        if (!mad_wc || !mad_wc->recv_buf.mad)
 467                return;
 468
 469        ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
 470                                  mad_wc->recv_buf.grh, mad_agent->port_num);
 471        if (IS_ERR(ah))
 472                goto err;
 473
 474        BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
 475
 476        rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
 477                                 mad_wc->wc->pkey_index, 0,
 478                                 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
 479                                 GFP_KERNEL);
 480        if (IS_ERR(rsp))
 481                goto err_rsp;
 482
 483        rsp->ah = ah;
 484
 485        dm_mad = rsp->mad;
 486        memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
 487        dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
 488        dm_mad->mad_hdr.status = 0;
 489
 490        switch (mad_wc->recv_buf.mad->mad_hdr.method) {
 491        case IB_MGMT_METHOD_GET:
 492                srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
 493                break;
 494        case IB_MGMT_METHOD_SET:
 495                dm_mad->mad_hdr.status =
 496                    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 497                break;
 498        default:
 499                dm_mad->mad_hdr.status =
 500                    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
 501                break;
 502        }
 503
 504        if (!ib_post_send_mad(rsp, NULL)) {
 505                ib_free_recv_mad(mad_wc);
 506                /* will destroy_ah & free_send_mad in send completion */
 507                return;
 508        }
 509
 510        ib_free_send_mad(rsp);
 511
 512err_rsp:
 513        ib_destroy_ah(ah);
 514err:
 515        ib_free_recv_mad(mad_wc);
 516}
 517
 518/**
 519 * srpt_refresh_port() - Configure a HCA port.
 520 *
 521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 522 * lid and gid values, and register a callback function for processing MADs
 523 * on the specified port.
 524 *
 525 * Note: It is safe to call this function more than once for the same port.
 526 */
 527static int srpt_refresh_port(struct srpt_port *sport)
 528{
 529        struct ib_mad_reg_req reg_req;
 530        struct ib_port_modify port_modify;
 531        struct ib_port_attr port_attr;
 532        int ret;
 533
 534        memset(&port_modify, 0, sizeof port_modify);
 535        port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 536        port_modify.clr_port_cap_mask = 0;
 537
 538        ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 539        if (ret)
 540                goto err_mod_port;
 541
 542        ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
 543        if (ret)
 544                goto err_query_port;
 545
 546        sport->sm_lid = port_attr.sm_lid;
 547        sport->lid = port_attr.lid;
 548
 549        ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
 550        if (ret)
 551                goto err_query_port;
 552
 553        if (!sport->mad_agent) {
 554                memset(&reg_req, 0, sizeof reg_req);
 555                reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
 556                reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
 557                set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
 558                set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
 559
 560                sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
 561                                                         sport->port,
 562                                                         IB_QPT_GSI,
 563                                                         &reg_req, 0,
 564                                                         srpt_mad_send_handler,
 565                                                         srpt_mad_recv_handler,
 566                                                         sport);
 567                if (IS_ERR(sport->mad_agent)) {
 568                        ret = PTR_ERR(sport->mad_agent);
 569                        sport->mad_agent = NULL;
 570                        goto err_query_port;
 571                }
 572        }
 573
 574        return 0;
 575
 576err_query_port:
 577
 578        port_modify.set_port_cap_mask = 0;
 579        port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 580        ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 581
 582err_mod_port:
 583
 584        return ret;
 585}
 586
 587/**
 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
 589 *
 590 * Note: It is safe to call this function more than once for the same device.
 591 */
 592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
 593{
 594        struct ib_port_modify port_modify = {
 595                .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
 596        };
 597        struct srpt_port *sport;
 598        int i;
 599
 600        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
 601                sport = &sdev->port[i - 1];
 602                WARN_ON(sport->port != i);
 603                if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
 604                        printk(KERN_ERR "disabling MAD processing failed.\n");
 605                if (sport->mad_agent) {
 606                        ib_unregister_mad_agent(sport->mad_agent);
 607                        sport->mad_agent = NULL;
 608                }
 609        }
 610}
 611
 612/**
 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
 614 */
 615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
 616                                           int ioctx_size, int dma_size,
 617                                           enum dma_data_direction dir)
 618{
 619        struct srpt_ioctx *ioctx;
 620
 621        ioctx = kmalloc(ioctx_size, GFP_KERNEL);
 622        if (!ioctx)
 623                goto err;
 624
 625        ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
 626        if (!ioctx->buf)
 627                goto err_free_ioctx;
 628
 629        ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
 630        if (ib_dma_mapping_error(sdev->device, ioctx->dma))
 631                goto err_free_buf;
 632
 633        return ioctx;
 634
 635err_free_buf:
 636        kfree(ioctx->buf);
 637err_free_ioctx:
 638        kfree(ioctx);
 639err:
 640        return NULL;
 641}
 642
 643/**
 644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
 645 */
 646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
 647                            int dma_size, enum dma_data_direction dir)
 648{
 649        if (!ioctx)
 650                return;
 651
 652        ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
 653        kfree(ioctx->buf);
 654        kfree(ioctx);
 655}
 656
 657/**
 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
 659 * @sdev:       Device to allocate the I/O context ring for.
 660 * @ring_size:  Number of elements in the I/O context ring.
 661 * @ioctx_size: I/O context size.
 662 * @dma_size:   DMA buffer size.
 663 * @dir:        DMA data direction.
 664 */
 665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
 666                                int ring_size, int ioctx_size,
 667                                int dma_size, enum dma_data_direction dir)
 668{
 669        struct srpt_ioctx **ring;
 670        int i;
 671
 672        WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
 673                && ioctx_size != sizeof(struct srpt_send_ioctx));
 674
 675        ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
 676        if (!ring)
 677                goto out;
 678        for (i = 0; i < ring_size; ++i) {
 679                ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
 680                if (!ring[i])
 681                        goto err;
 682                ring[i]->index = i;
 683        }
 684        goto out;
 685
 686err:
 687        while (--i >= 0)
 688                srpt_free_ioctx(sdev, ring[i], dma_size, dir);
 689        kfree(ring);
 690        ring = NULL;
 691out:
 692        return ring;
 693}
 694
 695/**
 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
 697 */
 698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
 699                                 struct srpt_device *sdev, int ring_size,
 700                                 int dma_size, enum dma_data_direction dir)
 701{
 702        int i;
 703
 704        for (i = 0; i < ring_size; ++i)
 705                srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
 706        kfree(ioctx_ring);
 707}
 708
 709/**
 710 * srpt_get_cmd_state() - Get the state of a SCSI command.
 711 */
 712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
 713{
 714        enum srpt_command_state state;
 715        unsigned long flags;
 716
 717        BUG_ON(!ioctx);
 718
 719        spin_lock_irqsave(&ioctx->spinlock, flags);
 720        state = ioctx->state;
 721        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 722        return state;
 723}
 724
 725/**
 726 * srpt_set_cmd_state() - Set the state of a SCSI command.
 727 *
 728 * Does not modify the state of aborted commands. Returns the previous command
 729 * state.
 730 */
 731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
 732                                                  enum srpt_command_state new)
 733{
 734        enum srpt_command_state previous;
 735        unsigned long flags;
 736
 737        BUG_ON(!ioctx);
 738
 739        spin_lock_irqsave(&ioctx->spinlock, flags);
 740        previous = ioctx->state;
 741        if (previous != SRPT_STATE_DONE)
 742                ioctx->state = new;
 743        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 744
 745        return previous;
 746}
 747
 748/**
 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
 750 *
 751 * Returns true if and only if the previous command state was equal to 'old'.
 752 */
 753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
 754                                        enum srpt_command_state old,
 755                                        enum srpt_command_state new)
 756{
 757        enum srpt_command_state previous;
 758        unsigned long flags;
 759
 760        WARN_ON(!ioctx);
 761        WARN_ON(old == SRPT_STATE_DONE);
 762        WARN_ON(new == SRPT_STATE_NEW);
 763
 764        spin_lock_irqsave(&ioctx->spinlock, flags);
 765        previous = ioctx->state;
 766        if (previous == old)
 767                ioctx->state = new;
 768        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 769        return previous == old;
 770}
 771
 772/**
 773 * srpt_post_recv() - Post an IB receive request.
 774 */
 775static int srpt_post_recv(struct srpt_device *sdev,
 776                          struct srpt_recv_ioctx *ioctx)
 777{
 778        struct ib_sge list;
 779        struct ib_recv_wr wr, *bad_wr;
 780
 781        BUG_ON(!sdev);
 782        wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
 783
 784        list.addr = ioctx->ioctx.dma;
 785        list.length = srp_max_req_size;
 786        list.lkey = sdev->mr->lkey;
 787
 788        wr.next = NULL;
 789        wr.sg_list = &list;
 790        wr.num_sge = 1;
 791
 792        return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
 793}
 794
 795/**
 796 * srpt_post_send() - Post an IB send request.
 797 *
 798 * Returns zero upon success and a non-zero value upon failure.
 799 */
 800static int srpt_post_send(struct srpt_rdma_ch *ch,
 801                          struct srpt_send_ioctx *ioctx, int len)
 802{
 803        struct ib_sge list;
 804        struct ib_send_wr wr, *bad_wr;
 805        struct srpt_device *sdev = ch->sport->sdev;
 806        int ret;
 807
 808        atomic_inc(&ch->req_lim);
 809
 810        ret = -ENOMEM;
 811        if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
 812                printk(KERN_WARNING "IB send queue full (needed 1)\n");
 813                goto out;
 814        }
 815
 816        ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
 817                                      DMA_TO_DEVICE);
 818
 819        list.addr = ioctx->ioctx.dma;
 820        list.length = len;
 821        list.lkey = sdev->mr->lkey;
 822
 823        wr.next = NULL;
 824        wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
 825        wr.sg_list = &list;
 826        wr.num_sge = 1;
 827        wr.opcode = IB_WR_SEND;
 828        wr.send_flags = IB_SEND_SIGNALED;
 829
 830        ret = ib_post_send(ch->qp, &wr, &bad_wr);
 831
 832out:
 833        if (ret < 0) {
 834                atomic_inc(&ch->sq_wr_avail);
 835                atomic_dec(&ch->req_lim);
 836        }
 837        return ret;
 838}
 839
 840/**
 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
 842 * @ioctx: Pointer to the I/O context associated with the request.
 843 * @srp_cmd: Pointer to the SRP_CMD request data.
 844 * @dir: Pointer to the variable to which the transfer direction will be
 845 *   written.
 846 * @data_len: Pointer to the variable to which the total data length of all
 847 *   descriptors in the SRP_CMD request will be written.
 848 *
 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 850 *
 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 852 * -ENOMEM when memory allocation fails and zero upon success.
 853 */
 854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
 855                             struct srp_cmd *srp_cmd,
 856                             enum dma_data_direction *dir, u64 *data_len)
 857{
 858        struct srp_indirect_buf *idb;
 859        struct srp_direct_buf *db;
 860        unsigned add_cdb_offset;
 861        int ret;
 862
 863        /*
 864         * The pointer computations below will only be compiled correctly
 865         * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
 866         * whether srp_cmd::add_data has been declared as a byte pointer.
 867         */
 868        BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
 869                     && !__same_type(srp_cmd->add_data[0], (u8)0));
 870
 871        BUG_ON(!dir);
 872        BUG_ON(!data_len);
 873
 874        ret = 0;
 875        *data_len = 0;
 876
 877        /*
 878         * The lower four bits of the buffer format field contain the DATA-IN
 879         * buffer descriptor format, and the highest four bits contain the
 880         * DATA-OUT buffer descriptor format.
 881         */
 882        *dir = DMA_NONE;
 883        if (srp_cmd->buf_fmt & 0xf)
 884                /* DATA-IN: transfer data from target to initiator (read). */
 885                *dir = DMA_FROM_DEVICE;
 886        else if (srp_cmd->buf_fmt >> 4)
 887                /* DATA-OUT: transfer data from initiator to target (write). */
 888                *dir = DMA_TO_DEVICE;
 889
 890        /*
 891         * According to the SRP spec, the lower two bits of the 'ADDITIONAL
 892         * CDB LENGTH' field are reserved and the size in bytes of this field
 893         * is four times the value specified in bits 3..7. Hence the "& ~3".
 894         */
 895        add_cdb_offset = srp_cmd->add_cdb_len & ~3;
 896        if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
 897            ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
 898                ioctx->n_rbuf = 1;
 899                ioctx->rbufs = &ioctx->single_rbuf;
 900
 901                db = (struct srp_direct_buf *)(srp_cmd->add_data
 902                                               + add_cdb_offset);
 903                memcpy(ioctx->rbufs, db, sizeof *db);
 904                *data_len = be32_to_cpu(db->len);
 905        } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
 906                   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
 907                idb = (struct srp_indirect_buf *)(srp_cmd->add_data
 908                                                  + add_cdb_offset);
 909
 910                ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
 911
 912                if (ioctx->n_rbuf >
 913                    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
 914                        printk(KERN_ERR "received unsupported SRP_CMD request"
 915                               " type (%u out + %u in != %u / %zu)\n",
 916                               srp_cmd->data_out_desc_cnt,
 917                               srp_cmd->data_in_desc_cnt,
 918                               be32_to_cpu(idb->table_desc.len),
 919                               sizeof(*db));
 920                        ioctx->n_rbuf = 0;
 921                        ret = -EINVAL;
 922                        goto out;
 923                }
 924
 925                if (ioctx->n_rbuf == 1)
 926                        ioctx->rbufs = &ioctx->single_rbuf;
 927                else {
 928                        ioctx->rbufs =
 929                                kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
 930                        if (!ioctx->rbufs) {
 931                                ioctx->n_rbuf = 0;
 932                                ret = -ENOMEM;
 933                                goto out;
 934                        }
 935                }
 936
 937                db = idb->desc_list;
 938                memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
 939                *data_len = be32_to_cpu(idb->len);
 940        }
 941out:
 942        return ret;
 943}
 944
 945/**
 946 * srpt_init_ch_qp() - Initialize queue pair attributes.
 947 *
 948 * Initialized the attributes of queue pair 'qp' by allowing local write,
 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 950 */
 951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
 952{
 953        struct ib_qp_attr *attr;
 954        int ret;
 955
 956        attr = kzalloc(sizeof *attr, GFP_KERNEL);
 957        if (!attr)
 958                return -ENOMEM;
 959
 960        attr->qp_state = IB_QPS_INIT;
 961        attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
 962            IB_ACCESS_REMOTE_WRITE;
 963        attr->port_num = ch->sport->port;
 964        attr->pkey_index = 0;
 965
 966        ret = ib_modify_qp(qp, attr,
 967                           IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
 968                           IB_QP_PKEY_INDEX);
 969
 970        kfree(attr);
 971        return ret;
 972}
 973
 974/**
 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
 976 * @ch: channel of the queue pair.
 977 * @qp: queue pair to change the state of.
 978 *
 979 * Returns zero upon success and a negative value upon failure.
 980 *
 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 982 * If this structure ever becomes larger, it might be necessary to allocate
 983 * it dynamically instead of on the stack.
 984 */
 985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
 986{
 987        struct ib_qp_attr qp_attr;
 988        int attr_mask;
 989        int ret;
 990
 991        qp_attr.qp_state = IB_QPS_RTR;
 992        ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
 993        if (ret)
 994                goto out;
 995
 996        qp_attr.max_dest_rd_atomic = 4;
 997
 998        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
 999
1000out:
1001        return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017        struct ib_qp_attr qp_attr;
1018        int attr_mask;
1019        int ret;
1020
1021        qp_attr.qp_state = IB_QPS_RTS;
1022        ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023        if (ret)
1024                goto out;
1025
1026        qp_attr.max_rd_atomic = 4;
1027
1028        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031        return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039        struct ib_qp_attr qp_attr;
1040
1041        qp_attr.qp_state = IB_QPS_ERR;
1042        return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049                                    struct srpt_send_ioctx *ioctx)
1050{
1051        struct scatterlist *sg;
1052        enum dma_data_direction dir;
1053
1054        BUG_ON(!ch);
1055        BUG_ON(!ioctx);
1056        BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058        while (ioctx->n_rdma)
1059                kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061        kfree(ioctx->rdma_ius);
1062        ioctx->rdma_ius = NULL;
1063
1064        if (ioctx->mapped_sg_count) {
1065                sg = ioctx->sg;
1066                WARN_ON(!sg);
1067                dir = ioctx->cmd.data_direction;
1068                BUG_ON(dir == DMA_NONE);
1069                ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070                                opposite_dma_dir(dir));
1071                ioctx->mapped_sg_count = 0;
1072        }
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079                                 struct srpt_send_ioctx *ioctx)
1080{
1081        struct se_cmd *cmd;
1082        struct scatterlist *sg, *sg_orig;
1083        int sg_cnt;
1084        enum dma_data_direction dir;
1085        struct rdma_iu *riu;
1086        struct srp_direct_buf *db;
1087        dma_addr_t dma_addr;
1088        struct ib_sge *sge;
1089        u64 raddr;
1090        u32 rsize;
1091        u32 tsize;
1092        u32 dma_len;
1093        int count, nrdma;
1094        int i, j, k;
1095
1096        BUG_ON(!ch);
1097        BUG_ON(!ioctx);
1098        cmd = &ioctx->cmd;
1099        dir = cmd->data_direction;
1100        BUG_ON(dir == DMA_NONE);
1101
1102        ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103        ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1104
1105        count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106                              opposite_dma_dir(dir));
1107        if (unlikely(!count))
1108                return -EAGAIN;
1109
1110        ioctx->mapped_sg_count = count;
1111
1112        if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113                nrdma = ioctx->n_rdma_ius;
1114        else {
1115                nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116                        + ioctx->n_rbuf;
1117
1118                ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119                if (!ioctx->rdma_ius)
1120                        goto free_mem;
1121
1122                ioctx->n_rdma_ius = nrdma;
1123        }
1124
1125        db = ioctx->rbufs;
1126        tsize = cmd->data_length;
1127        dma_len = sg_dma_len(&sg[0]);
1128        riu = ioctx->rdma_ius;
1129
1130        /*
1131         * For each remote desc - calculate the #ib_sge.
1132         * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133         *      each remote desc rdma_iu is required a rdma wr;
1134         * else
1135         *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1136         *      another rdma wr
1137         */
1138        for (i = 0, j = 0;
1139             j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140                rsize = be32_to_cpu(db->len);
1141                raddr = be64_to_cpu(db->va);
1142                riu->raddr = raddr;
1143                riu->rkey = be32_to_cpu(db->key);
1144                riu->sge_cnt = 0;
1145
1146                /* calculate how many sge required for this remote_buf */
1147                while (rsize > 0 && tsize > 0) {
1148
1149                        if (rsize >= dma_len) {
1150                                tsize -= dma_len;
1151                                rsize -= dma_len;
1152                                raddr += dma_len;
1153
1154                                if (tsize > 0) {
1155                                        ++j;
1156                                        if (j < count) {
1157                                                sg = sg_next(sg);
1158                                                dma_len = sg_dma_len(sg);
1159                                        }
1160                                }
1161                        } else {
1162                                tsize -= rsize;
1163                                dma_len -= rsize;
1164                                rsize = 0;
1165                        }
1166
1167                        ++riu->sge_cnt;
1168
1169                        if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170                                ++ioctx->n_rdma;
1171                                riu->sge =
1172                                    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173                                            GFP_KERNEL);
1174                                if (!riu->sge)
1175                                        goto free_mem;
1176
1177                                ++riu;
1178                                riu->sge_cnt = 0;
1179                                riu->raddr = raddr;
1180                                riu->rkey = be32_to_cpu(db->key);
1181                        }
1182                }
1183
1184                ++ioctx->n_rdma;
1185                riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186                                   GFP_KERNEL);
1187                if (!riu->sge)
1188                        goto free_mem;
1189        }
1190
1191        db = ioctx->rbufs;
1192        tsize = cmd->data_length;
1193        riu = ioctx->rdma_ius;
1194        sg = sg_orig;
1195        dma_len = sg_dma_len(&sg[0]);
1196        dma_addr = sg_dma_address(&sg[0]);
1197
1198        /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199        for (i = 0, j = 0;
1200             j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201                rsize = be32_to_cpu(db->len);
1202                sge = riu->sge;
1203                k = 0;
1204
1205                while (rsize > 0 && tsize > 0) {
1206                        sge->addr = dma_addr;
1207                        sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209                        if (rsize >= dma_len) {
1210                                sge->length =
1211                                        (tsize < dma_len) ? tsize : dma_len;
1212                                tsize -= dma_len;
1213                                rsize -= dma_len;
1214
1215                                if (tsize > 0) {
1216                                        ++j;
1217                                        if (j < count) {
1218                                                sg = sg_next(sg);
1219                                                dma_len = sg_dma_len(sg);
1220                                                dma_addr = sg_dma_address(sg);
1221                                        }
1222                                }
1223                        } else {
1224                                sge->length = (tsize < rsize) ? tsize : rsize;
1225                                tsize -= rsize;
1226                                dma_len -= rsize;
1227                                dma_addr += rsize;
1228                                rsize = 0;
1229                        }
1230
1231                        ++k;
1232                        if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233                                ++riu;
1234                                sge = riu->sge;
1235                                k = 0;
1236                        } else if (rsize > 0 && tsize > 0)
1237                                ++sge;
1238                }
1239        }
1240
1241        return 0;
1242
1243free_mem:
1244        srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246        return -ENOMEM;
1247}
1248
1249/**
1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251 */
1252static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253{
1254        struct srpt_send_ioctx *ioctx;
1255        unsigned long flags;
1256
1257        BUG_ON(!ch);
1258
1259        ioctx = NULL;
1260        spin_lock_irqsave(&ch->spinlock, flags);
1261        if (!list_empty(&ch->free_list)) {
1262                ioctx = list_first_entry(&ch->free_list,
1263                                         struct srpt_send_ioctx, free_list);
1264                list_del(&ioctx->free_list);
1265        }
1266        spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268        if (!ioctx)
1269                return ioctx;
1270
1271        BUG_ON(ioctx->ch != ch);
1272        kref_init(&ioctx->kref);
1273        spin_lock_init(&ioctx->spinlock);
1274        ioctx->state = SRPT_STATE_NEW;
1275        ioctx->n_rbuf = 0;
1276        ioctx->rbufs = NULL;
1277        ioctx->n_rdma = 0;
1278        ioctx->n_rdma_ius = 0;
1279        ioctx->rdma_ius = NULL;
1280        ioctx->mapped_sg_count = 0;
1281        init_completion(&ioctx->tx_done);
1282        ioctx->queue_status_only = false;
1283        /*
1284         * transport_init_se_cmd() does not initialize all fields, so do it
1285         * here.
1286         */
1287        memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1288        memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1289
1290        return ioctx;
1291}
1292
1293/**
1294 * srpt_put_send_ioctx() - Free up resources.
1295 */
1296static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
1297{
1298        struct srpt_rdma_ch *ch;
1299        unsigned long flags;
1300
1301        BUG_ON(!ioctx);
1302        ch = ioctx->ch;
1303        BUG_ON(!ch);
1304
1305        WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
1306
1307        srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1308        transport_generic_free_cmd(&ioctx->cmd, 0);
1309
1310        if (ioctx->n_rbuf > 1) {
1311                kfree(ioctx->rbufs);
1312                ioctx->rbufs = NULL;
1313                ioctx->n_rbuf = 0;
1314        }
1315
1316        spin_lock_irqsave(&ch->spinlock, flags);
1317        list_add(&ioctx->free_list, &ch->free_list);
1318        spin_unlock_irqrestore(&ch->spinlock, flags);
1319}
1320
1321static void srpt_put_send_ioctx_kref(struct kref *kref)
1322{
1323        srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
1324}
1325
1326/**
1327 * srpt_abort_cmd() - Abort a SCSI command.
1328 * @ioctx:   I/O context associated with the SCSI command.
1329 * @context: Preferred execution context.
1330 */
1331static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1332{
1333        enum srpt_command_state state;
1334        unsigned long flags;
1335
1336        BUG_ON(!ioctx);
1337
1338        /*
1339         * If the command is in a state where the target core is waiting for
1340         * the ib_srpt driver, change the state to the next state. Changing
1341         * the state of the command from SRPT_STATE_NEED_DATA to
1342         * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1343         * function a second time.
1344         */
1345
1346        spin_lock_irqsave(&ioctx->spinlock, flags);
1347        state = ioctx->state;
1348        switch (state) {
1349        case SRPT_STATE_NEED_DATA:
1350                ioctx->state = SRPT_STATE_DATA_IN;
1351                break;
1352        case SRPT_STATE_DATA_IN:
1353        case SRPT_STATE_CMD_RSP_SENT:
1354        case SRPT_STATE_MGMT_RSP_SENT:
1355                ioctx->state = SRPT_STATE_DONE;
1356                break;
1357        default:
1358                break;
1359        }
1360        spin_unlock_irqrestore(&ioctx->spinlock, flags);
1361
1362        if (state == SRPT_STATE_DONE)
1363                goto out;
1364
1365        pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1366                 ioctx->tag);
1367
1368        switch (state) {
1369        case SRPT_STATE_NEW:
1370        case SRPT_STATE_DATA_IN:
1371        case SRPT_STATE_MGMT:
1372                /*
1373                 * Do nothing - defer abort processing until
1374                 * srpt_queue_response() is invoked.
1375                 */
1376                WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1377                break;
1378        case SRPT_STATE_NEED_DATA:
1379                /* DMA_TO_DEVICE (write) - RDMA read error. */
1380
1381                /* XXX(hch): this is a horrible layering violation.. */
1382                spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1383                ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1384                ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1385                spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1386
1387                complete(&ioctx->cmd.transport_lun_stop_comp);
1388                break;
1389        case SRPT_STATE_CMD_RSP_SENT:
1390                /*
1391                 * SRP_RSP sending failed or the SRP_RSP send completion has
1392                 * not been received in time.
1393                 */
1394                srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1395                spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1396                ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1397                spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1398                kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1399                break;
1400        case SRPT_STATE_MGMT_RSP_SENT:
1401                srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1402                kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1403                break;
1404        default:
1405                WARN_ON("ERROR: unexpected command state");
1406                break;
1407        }
1408
1409out:
1410        return state;
1411}
1412
1413/**
1414 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1415 */
1416static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1417{
1418        struct srpt_send_ioctx *ioctx;
1419        enum srpt_command_state state;
1420        struct se_cmd *cmd;
1421        u32 index;
1422
1423        atomic_inc(&ch->sq_wr_avail);
1424
1425        index = idx_from_wr_id(wr_id);
1426        ioctx = ch->ioctx_ring[index];
1427        state = srpt_get_cmd_state(ioctx);
1428        cmd = &ioctx->cmd;
1429
1430        WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1431                && state != SRPT_STATE_MGMT_RSP_SENT
1432                && state != SRPT_STATE_NEED_DATA
1433                && state != SRPT_STATE_DONE);
1434
1435        /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1436        if (state == SRPT_STATE_CMD_RSP_SENT
1437            || state == SRPT_STATE_MGMT_RSP_SENT)
1438                atomic_dec(&ch->req_lim);
1439
1440        srpt_abort_cmd(ioctx);
1441}
1442
1443/**
1444 * srpt_handle_send_comp() - Process an IB send completion notification.
1445 */
1446static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1447                                  struct srpt_send_ioctx *ioctx)
1448{
1449        enum srpt_command_state state;
1450
1451        atomic_inc(&ch->sq_wr_avail);
1452
1453        state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1454
1455        if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1456                    && state != SRPT_STATE_MGMT_RSP_SENT
1457                    && state != SRPT_STATE_DONE))
1458                pr_debug("state = %d\n", state);
1459
1460        if (state != SRPT_STATE_DONE)
1461                kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1462        else
1463                printk(KERN_ERR "IB completion has been received too late for"
1464                       " wr_id = %u.\n", ioctx->ioctx.index);
1465}
1466
1467/**
1468 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1469 *
1470 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1471 * the data that has been transferred via IB RDMA had to be postponed until the
1472 * check_stop_free() callback.  None of this is necessary anymore and needs to
1473 * be cleaned up.
1474 */
1475static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1476                                  struct srpt_send_ioctx *ioctx,
1477                                  enum srpt_opcode opcode)
1478{
1479        WARN_ON(ioctx->n_rdma <= 0);
1480        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1481
1482        if (opcode == SRPT_RDMA_READ_LAST) {
1483                if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1484                                                SRPT_STATE_DATA_IN))
1485                        target_execute_cmd(&ioctx->cmd);
1486                else
1487                        printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1488                               __LINE__, srpt_get_cmd_state(ioctx));
1489        } else if (opcode == SRPT_RDMA_ABORT) {
1490                ioctx->rdma_aborted = true;
1491        } else {
1492                WARN(true, "unexpected opcode %d\n", opcode);
1493        }
1494}
1495
1496/**
1497 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1498 */
1499static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1500                                      struct srpt_send_ioctx *ioctx,
1501                                      enum srpt_opcode opcode)
1502{
1503        struct se_cmd *cmd;
1504        enum srpt_command_state state;
1505        unsigned long flags;
1506
1507        cmd = &ioctx->cmd;
1508        state = srpt_get_cmd_state(ioctx);
1509        switch (opcode) {
1510        case SRPT_RDMA_READ_LAST:
1511                if (ioctx->n_rdma <= 0) {
1512                        printk(KERN_ERR "Received invalid RDMA read"
1513                               " error completion with idx %d\n",
1514                               ioctx->ioctx.index);
1515                        break;
1516                }
1517                atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1518                if (state == SRPT_STATE_NEED_DATA)
1519                        srpt_abort_cmd(ioctx);
1520                else
1521                        printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1522                               __func__, __LINE__, state);
1523                break;
1524        case SRPT_RDMA_WRITE_LAST:
1525                spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1526                ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1527                spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1528                break;
1529        default:
1530                printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1531                       __LINE__, opcode);
1532                break;
1533        }
1534}
1535
1536/**
1537 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1538 * @ch: RDMA channel through which the request has been received.
1539 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1540 *   be built in the buffer ioctx->buf points at and hence this function will
1541 *   overwrite the request data.
1542 * @tag: tag of the request for which this response is being generated.
1543 * @status: value for the STATUS field of the SRP_RSP information unit.
1544 *
1545 * Returns the size in bytes of the SRP_RSP response.
1546 *
1547 * An SRP_RSP response contains a SCSI status or service response. See also
1548 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1549 * response. See also SPC-2 for more information about sense data.
1550 */
1551static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1552                              struct srpt_send_ioctx *ioctx, u64 tag,
1553                              int status)
1554{
1555        struct srp_rsp *srp_rsp;
1556        const u8 *sense_data;
1557        int sense_data_len, max_sense_len;
1558
1559        /*
1560         * The lowest bit of all SAM-3 status codes is zero (see also
1561         * paragraph 5.3 in SAM-3).
1562         */
1563        WARN_ON(status & 1);
1564
1565        srp_rsp = ioctx->ioctx.buf;
1566        BUG_ON(!srp_rsp);
1567
1568        sense_data = ioctx->sense_data;
1569        sense_data_len = ioctx->cmd.scsi_sense_length;
1570        WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1571
1572        memset(srp_rsp, 0, sizeof *srp_rsp);
1573        srp_rsp->opcode = SRP_RSP;
1574        srp_rsp->req_lim_delta =
1575                __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1576        srp_rsp->tag = tag;
1577        srp_rsp->status = status;
1578
1579        if (sense_data_len) {
1580                BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1581                max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1582                if (sense_data_len > max_sense_len) {
1583                        printk(KERN_WARNING "truncated sense data from %d to %d"
1584                               " bytes\n", sense_data_len, max_sense_len);
1585                        sense_data_len = max_sense_len;
1586                }
1587
1588                srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1589                srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1590                memcpy(srp_rsp + 1, sense_data, sense_data_len);
1591        }
1592
1593        return sizeof(*srp_rsp) + sense_data_len;
1594}
1595
1596/**
1597 * srpt_build_tskmgmt_rsp() - Build a task management response.
1598 * @ch:       RDMA channel through which the request has been received.
1599 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1600 * @rsp_code: RSP_CODE that will be stored in the response.
1601 * @tag:      Tag of the request for which this response is being generated.
1602 *
1603 * Returns the size in bytes of the SRP_RSP response.
1604 *
1605 * An SRP_RSP response contains a SCSI status or service response. See also
1606 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1607 * response.
1608 */
1609static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1610                                  struct srpt_send_ioctx *ioctx,
1611                                  u8 rsp_code, u64 tag)
1612{
1613        struct srp_rsp *srp_rsp;
1614        int resp_data_len;
1615        int resp_len;
1616
1617        resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
1618        resp_len = sizeof(*srp_rsp) + resp_data_len;
1619
1620        srp_rsp = ioctx->ioctx.buf;
1621        BUG_ON(!srp_rsp);
1622        memset(srp_rsp, 0, sizeof *srp_rsp);
1623
1624        srp_rsp->opcode = SRP_RSP;
1625        srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1626                                    + atomic_xchg(&ch->req_lim_delta, 0));
1627        srp_rsp->tag = tag;
1628
1629        if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
1630                srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1631                srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1632                srp_rsp->data[3] = rsp_code;
1633        }
1634
1635        return resp_len;
1636}
1637
1638#define NO_SUCH_LUN ((uint64_t)-1LL)
1639
1640/*
1641 * SCSI LUN addressing method. See also SAM-2 and the section about
1642 * eight byte LUNs.
1643 */
1644enum scsi_lun_addr_method {
1645        SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1646        SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1647        SCSI_LUN_ADDR_METHOD_LUN          = 2,
1648        SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1649};
1650
1651/*
1652 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1653 *
1654 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1655 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1656 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1657 */
1658static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1659{
1660        uint64_t res = NO_SUCH_LUN;
1661        int addressing_method;
1662
1663        if (unlikely(len < 2)) {
1664                printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1665                       "more", len);
1666                goto out;
1667        }
1668
1669        switch (len) {
1670        case 8:
1671                if ((*((__be64 *)lun) &
1672                     __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1673                        goto out_err;
1674                break;
1675        case 4:
1676                if (*((__be16 *)&lun[2]) != 0)
1677                        goto out_err;
1678                break;
1679        case 6:
1680                if (*((__be32 *)&lun[2]) != 0)
1681                        goto out_err;
1682                break;
1683        case 2:
1684                break;
1685        default:
1686                goto out_err;
1687        }
1688
1689        addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1690        switch (addressing_method) {
1691        case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1692        case SCSI_LUN_ADDR_METHOD_FLAT:
1693        case SCSI_LUN_ADDR_METHOD_LUN:
1694                res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1695                break;
1696
1697        case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1698        default:
1699                printk(KERN_ERR "Unimplemented LUN addressing method %u",
1700                       addressing_method);
1701                break;
1702        }
1703
1704out:
1705        return res;
1706
1707out_err:
1708        printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1709               " implemented");
1710        goto out;
1711}
1712
1713static int srpt_check_stop_free(struct se_cmd *cmd)
1714{
1715        struct srpt_send_ioctx *ioctx;
1716
1717        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
1718        return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1719}
1720
1721/**
1722 * srpt_handle_cmd() - Process SRP_CMD.
1723 */
1724static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1725                           struct srpt_recv_ioctx *recv_ioctx,
1726                           struct srpt_send_ioctx *send_ioctx)
1727{
1728        struct se_cmd *cmd;
1729        struct srp_cmd *srp_cmd;
1730        uint64_t unpacked_lun;
1731        u64 data_len;
1732        enum dma_data_direction dir;
1733        int ret;
1734
1735        BUG_ON(!send_ioctx);
1736
1737        srp_cmd = recv_ioctx->ioctx.buf;
1738        kref_get(&send_ioctx->kref);
1739        cmd = &send_ioctx->cmd;
1740        send_ioctx->tag = srp_cmd->tag;
1741
1742        switch (srp_cmd->task_attr) {
1743        case SRP_CMD_SIMPLE_Q:
1744                cmd->sam_task_attr = MSG_SIMPLE_TAG;
1745                break;
1746        case SRP_CMD_ORDERED_Q:
1747        default:
1748                cmd->sam_task_attr = MSG_ORDERED_TAG;
1749                break;
1750        case SRP_CMD_HEAD_OF_Q:
1751                cmd->sam_task_attr = MSG_HEAD_TAG;
1752                break;
1753        case SRP_CMD_ACA:
1754                cmd->sam_task_attr = MSG_ACA_TAG;
1755                break;
1756        }
1757
1758        ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len);
1759        if (ret) {
1760                printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1761                       srp_cmd->tag);
1762                cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1763                cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1764                kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
1765                goto send_sense;
1766        }
1767
1768        cmd->data_length = data_len;
1769        cmd->data_direction = dir;
1770        unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1771                                       sizeof(srp_cmd->lun));
1772        if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) {
1773                kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
1774                goto send_sense;
1775        }
1776        ret = target_setup_cmd_from_cdb(cmd, srp_cmd->cdb);
1777        if (ret < 0) {
1778                kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
1779                if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) {
1780                        srpt_queue_status(cmd);
1781                        return 0;
1782                } else
1783                        goto send_sense;
1784        }
1785
1786        transport_handle_cdb_direct(cmd);
1787        return 0;
1788
1789send_sense:
1790        transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason,
1791                                                 0);
1792        return -1;
1793}
1794
1795/**
1796 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1797 * @ch: RDMA channel of the task management request.
1798 * @fn: Task management function to perform.
1799 * @req_tag: Tag of the SRP task management request.
1800 * @mgmt_ioctx: I/O context of the task management request.
1801 *
1802 * Returns zero if the target core will process the task management
1803 * request asynchronously.
1804 *
1805 * Note: It is assumed that the initiator serializes tag-based task management
1806 * requests.
1807 */
1808static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1809{
1810        struct srpt_device *sdev;
1811        struct srpt_rdma_ch *ch;
1812        struct srpt_send_ioctx *target;
1813        int ret, i;
1814
1815        ret = -EINVAL;
1816        ch = ioctx->ch;
1817        BUG_ON(!ch);
1818        BUG_ON(!ch->sport);
1819        sdev = ch->sport->sdev;
1820        BUG_ON(!sdev);
1821        spin_lock_irq(&sdev->spinlock);
1822        for (i = 0; i < ch->rq_size; ++i) {
1823                target = ch->ioctx_ring[i];
1824                if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1825                    target->tag == tag &&
1826                    srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1827                        ret = 0;
1828                        /* now let the target core abort &target->cmd; */
1829                        break;
1830                }
1831        }
1832        spin_unlock_irq(&sdev->spinlock);
1833        return ret;
1834}
1835
1836static int srp_tmr_to_tcm(int fn)
1837{
1838        switch (fn) {
1839        case SRP_TSK_ABORT_TASK:
1840                return TMR_ABORT_TASK;
1841        case SRP_TSK_ABORT_TASK_SET:
1842                return TMR_ABORT_TASK_SET;
1843        case SRP_TSK_CLEAR_TASK_SET:
1844                return TMR_CLEAR_TASK_SET;
1845        case SRP_TSK_LUN_RESET:
1846                return TMR_LUN_RESET;
1847        case SRP_TSK_CLEAR_ACA:
1848                return TMR_CLEAR_ACA;
1849        default:
1850                return -1;
1851        }
1852}
1853
1854/**
1855 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1856 *
1857 * Returns 0 if and only if the request will be processed by the target core.
1858 *
1859 * For more information about SRP_TSK_MGMT information units, see also section
1860 * 6.7 in the SRP r16a document.
1861 */
1862static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1863                                 struct srpt_recv_ioctx *recv_ioctx,
1864                                 struct srpt_send_ioctx *send_ioctx)
1865{
1866        struct srp_tsk_mgmt *srp_tsk;
1867        struct se_cmd *cmd;
1868        uint64_t unpacked_lun;
1869        int tcm_tmr;
1870        int res;
1871
1872        BUG_ON(!send_ioctx);
1873
1874        srp_tsk = recv_ioctx->ioctx.buf;
1875        cmd = &send_ioctx->cmd;
1876
1877        pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1878                 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1879                 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1880
1881        srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1882        send_ioctx->tag = srp_tsk->tag;
1883        tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1884        if (tcm_tmr < 0) {
1885                send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1886                send_ioctx->cmd.se_tmr_req->response =
1887                        TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1888                goto process_tmr;
1889        }
1890        res = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
1891        if (res < 0) {
1892                send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1893                send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1894                goto process_tmr;
1895        }
1896
1897        unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1898                                       sizeof(srp_tsk->lun));
1899        res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
1900        if (res) {
1901                pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
1902                send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1903                send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1904                goto process_tmr;
1905        }
1906
1907        if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
1908                srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1909
1910process_tmr:
1911        kref_get(&send_ioctx->kref);
1912        if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION))
1913                transport_generic_handle_tmr(&send_ioctx->cmd);
1914        else
1915                transport_send_check_condition_and_sense(cmd,
1916                                                cmd->scsi_sense_reason, 0);
1917
1918}
1919
1920/**
1921 * srpt_handle_new_iu() - Process a newly received information unit.
1922 * @ch:    RDMA channel through which the information unit has been received.
1923 * @ioctx: SRPT I/O context associated with the information unit.
1924 */
1925static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1926                               struct srpt_recv_ioctx *recv_ioctx,
1927                               struct srpt_send_ioctx *send_ioctx)
1928{
1929        struct srp_cmd *srp_cmd;
1930        enum rdma_ch_state ch_state;
1931
1932        BUG_ON(!ch);
1933        BUG_ON(!recv_ioctx);
1934
1935        ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1936                                   recv_ioctx->ioctx.dma, srp_max_req_size,
1937                                   DMA_FROM_DEVICE);
1938
1939        ch_state = srpt_get_ch_state(ch);
1940        if (unlikely(ch_state == CH_CONNECTING)) {
1941                list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1942                goto out;
1943        }
1944
1945        if (unlikely(ch_state != CH_LIVE))
1946                goto out;
1947
1948        srp_cmd = recv_ioctx->ioctx.buf;
1949        if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1950                if (!send_ioctx)
1951                        send_ioctx = srpt_get_send_ioctx(ch);
1952                if (unlikely(!send_ioctx)) {
1953                        list_add_tail(&recv_ioctx->wait_list,
1954                                      &ch->cmd_wait_list);
1955                        goto out;
1956                }
1957        }
1958
1959        transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
1960                              0, DMA_NONE, MSG_SIMPLE_TAG,
1961                              send_ioctx->sense_data);
1962
1963        switch (srp_cmd->opcode) {
1964        case SRP_CMD:
1965                srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1966                break;
1967        case SRP_TSK_MGMT:
1968                srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1969                break;
1970        case SRP_I_LOGOUT:
1971                printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1972                break;
1973        case SRP_CRED_RSP:
1974                pr_debug("received SRP_CRED_RSP\n");
1975                break;
1976        case SRP_AER_RSP:
1977                pr_debug("received SRP_AER_RSP\n");
1978                break;
1979        case SRP_RSP:
1980                printk(KERN_ERR "Received SRP_RSP\n");
1981                break;
1982        default:
1983                printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1984                       srp_cmd->opcode);
1985                break;
1986        }
1987
1988        srpt_post_recv(ch->sport->sdev, recv_ioctx);
1989out:
1990        return;
1991}
1992
1993static void srpt_process_rcv_completion(struct ib_cq *cq,
1994                                        struct srpt_rdma_ch *ch,
1995                                        struct ib_wc *wc)
1996{
1997        struct srpt_device *sdev = ch->sport->sdev;
1998        struct srpt_recv_ioctx *ioctx;
1999        u32 index;
2000
2001        index = idx_from_wr_id(wc->wr_id);
2002        if (wc->status == IB_WC_SUCCESS) {
2003                int req_lim;
2004
2005                req_lim = atomic_dec_return(&ch->req_lim);
2006                if (unlikely(req_lim < 0))
2007                        printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
2008                ioctx = sdev->ioctx_ring[index];
2009                srpt_handle_new_iu(ch, ioctx, NULL);
2010        } else {
2011                printk(KERN_INFO "receiving failed for idx %u with status %d\n",
2012                       index, wc->status);
2013        }
2014}
2015
2016/**
2017 * srpt_process_send_completion() - Process an IB send completion.
2018 *
2019 * Note: Although this has not yet been observed during tests, at least in
2020 * theory it is possible that the srpt_get_send_ioctx() call invoked by
2021 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
2022 * value in each response is set to one, and it is possible that this response
2023 * makes the initiator send a new request before the send completion for that
2024 * response has been processed. This could e.g. happen if the call to
2025 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
2026 * if IB retransmission causes generation of the send completion to be
2027 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
2028 * are queued on cmd_wait_list. The code below processes these delayed
2029 * requests one at a time.
2030 */
2031static void srpt_process_send_completion(struct ib_cq *cq,
2032                                         struct srpt_rdma_ch *ch,
2033                                         struct ib_wc *wc)
2034{
2035        struct srpt_send_ioctx *send_ioctx;
2036        uint32_t index;
2037        enum srpt_opcode opcode;
2038
2039        index = idx_from_wr_id(wc->wr_id);
2040        opcode = opcode_from_wr_id(wc->wr_id);
2041        send_ioctx = ch->ioctx_ring[index];
2042        if (wc->status == IB_WC_SUCCESS) {
2043                if (opcode == SRPT_SEND)
2044                        srpt_handle_send_comp(ch, send_ioctx);
2045                else {
2046                        WARN_ON(opcode != SRPT_RDMA_ABORT &&
2047                                wc->opcode != IB_WC_RDMA_READ);
2048                        srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2049                }
2050        } else {
2051                if (opcode == SRPT_SEND) {
2052                        printk(KERN_INFO "sending response for idx %u failed"
2053                               " with status %d\n", index, wc->status);
2054                        srpt_handle_send_err_comp(ch, wc->wr_id);
2055                } else if (opcode != SRPT_RDMA_MID) {
2056                        printk(KERN_INFO "RDMA t %d for idx %u failed with"
2057                                " status %d", opcode, index, wc->status);
2058                        srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2059                }
2060        }
2061
2062        while (unlikely(opcode == SRPT_SEND
2063                        && !list_empty(&ch->cmd_wait_list)
2064                        && srpt_get_ch_state(ch) == CH_LIVE
2065                        && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2066                struct srpt_recv_ioctx *recv_ioctx;
2067
2068                recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2069                                              struct srpt_recv_ioctx,
2070                                              wait_list);
2071                list_del(&recv_ioctx->wait_list);
2072                srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2073        }
2074}
2075
2076static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2077{
2078        struct ib_wc *const wc = ch->wc;
2079        int i, n;
2080
2081        WARN_ON(cq != ch->cq);
2082
2083        ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2084        while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2085                for (i = 0; i < n; i++) {
2086                        if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2087                                srpt_process_rcv_completion(cq, ch, &wc[i]);
2088                        else
2089                                srpt_process_send_completion(cq, ch, &wc[i]);
2090                }
2091        }
2092}
2093
2094/**
2095 * srpt_completion() - IB completion queue callback function.
2096 *
2097 * Notes:
2098 * - It is guaranteed that a completion handler will never be invoked
2099 *   concurrently on two different CPUs for the same completion queue. See also
2100 *   Documentation/infiniband/core_locking.txt and the implementation of
2101 *   handle_edge_irq() in kernel/irq/chip.c.
2102 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2103 *   context instead of interrupt context.
2104 */
2105static void srpt_completion(struct ib_cq *cq, void *ctx)
2106{
2107        struct srpt_rdma_ch *ch = ctx;
2108
2109        wake_up_interruptible(&ch->wait_queue);
2110}
2111
2112static int srpt_compl_thread(void *arg)
2113{
2114        struct srpt_rdma_ch *ch;
2115
2116        /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2117        current->flags |= PF_NOFREEZE;
2118
2119        ch = arg;
2120        BUG_ON(!ch);
2121        printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2122               ch->sess_name, ch->thread->comm, current->pid);
2123        while (!kthread_should_stop()) {
2124                wait_event_interruptible(ch->wait_queue,
2125                        (srpt_process_completion(ch->cq, ch),
2126                         kthread_should_stop()));
2127        }
2128        printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2129               ch->sess_name, ch->thread->comm, current->pid);
2130        return 0;
2131}
2132
2133/**
2134 * srpt_create_ch_ib() - Create receive and send completion queues.
2135 */
2136static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2137{
2138        struct ib_qp_init_attr *qp_init;
2139        struct srpt_port *sport = ch->sport;
2140        struct srpt_device *sdev = sport->sdev;
2141        u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2142        int ret;
2143
2144        WARN_ON(ch->rq_size < 1);
2145
2146        ret = -ENOMEM;
2147        qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2148        if (!qp_init)
2149                goto out;
2150
2151        ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2152                              ch->rq_size + srp_sq_size, 0);
2153        if (IS_ERR(ch->cq)) {
2154                ret = PTR_ERR(ch->cq);
2155                printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2156                       ch->rq_size + srp_sq_size, ret);
2157                goto out;
2158        }
2159
2160        qp_init->qp_context = (void *)ch;
2161        qp_init->event_handler
2162                = (void(*)(struct ib_event *, void*))srpt_qp_event;
2163        qp_init->send_cq = ch->cq;
2164        qp_init->recv_cq = ch->cq;
2165        qp_init->srq = sdev->srq;
2166        qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2167        qp_init->qp_type = IB_QPT_RC;
2168        qp_init->cap.max_send_wr = srp_sq_size;
2169        qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2170
2171        ch->qp = ib_create_qp(sdev->pd, qp_init);
2172        if (IS_ERR(ch->qp)) {
2173                ret = PTR_ERR(ch->qp);
2174                printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2175                goto err_destroy_cq;
2176        }
2177
2178        atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2179
2180        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2181                 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2182                 qp_init->cap.max_send_wr, ch->cm_id);
2183
2184        ret = srpt_init_ch_qp(ch, ch->qp);
2185        if (ret)
2186                goto err_destroy_qp;
2187
2188        init_waitqueue_head(&ch->wait_queue);
2189
2190        pr_debug("creating thread for session %s\n", ch->sess_name);
2191
2192        ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2193        if (IS_ERR(ch->thread)) {
2194                printk(KERN_ERR "failed to create kernel thread %ld\n",
2195                       PTR_ERR(ch->thread));
2196                ch->thread = NULL;
2197                goto err_destroy_qp;
2198        }
2199
2200out:
2201        kfree(qp_init);
2202        return ret;
2203
2204err_destroy_qp:
2205        ib_destroy_qp(ch->qp);
2206err_destroy_cq:
2207        ib_destroy_cq(ch->cq);
2208        goto out;
2209}
2210
2211static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2212{
2213        if (ch->thread)
2214                kthread_stop(ch->thread);
2215
2216        ib_destroy_qp(ch->qp);
2217        ib_destroy_cq(ch->cq);
2218}
2219
2220/**
2221 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2222 *
2223 * Reset the QP and make sure all resources associated with the channel will
2224 * be deallocated at an appropriate time.
2225 *
2226 * Note: The caller must hold ch->sport->sdev->spinlock.
2227 */
2228static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2229{
2230        struct srpt_device *sdev;
2231        enum rdma_ch_state prev_state;
2232        unsigned long flags;
2233
2234        sdev = ch->sport->sdev;
2235
2236        spin_lock_irqsave(&ch->spinlock, flags);
2237        prev_state = ch->state;
2238        switch (prev_state) {
2239        case CH_CONNECTING:
2240        case CH_LIVE:
2241                ch->state = CH_DISCONNECTING;
2242                break;
2243        default:
2244                break;
2245        }
2246        spin_unlock_irqrestore(&ch->spinlock, flags);
2247
2248        switch (prev_state) {
2249        case CH_CONNECTING:
2250                ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2251                               NULL, 0);
2252                /* fall through */
2253        case CH_LIVE:
2254                if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2255                        printk(KERN_ERR "sending CM DREQ failed.\n");
2256                break;
2257        case CH_DISCONNECTING:
2258                break;
2259        case CH_DRAINING:
2260        case CH_RELEASING:
2261                break;
2262        }
2263}
2264
2265/**
2266 * srpt_close_ch() - Close an RDMA channel.
2267 */
2268static void srpt_close_ch(struct srpt_rdma_ch *ch)
2269{
2270        struct srpt_device *sdev;
2271
2272        sdev = ch->sport->sdev;
2273        spin_lock_irq(&sdev->spinlock);
2274        __srpt_close_ch(ch);
2275        spin_unlock_irq(&sdev->spinlock);
2276}
2277
2278/**
2279 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2280 * @cm_id: Pointer to the CM ID of the channel to be drained.
2281 *
2282 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2283 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2284 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2285 * waits until all target sessions for the associated IB device have been
2286 * unregistered and target session registration involves a call to
2287 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2288 * this function has finished).
2289 */
2290static void srpt_drain_channel(struct ib_cm_id *cm_id)
2291{
2292        struct srpt_device *sdev;
2293        struct srpt_rdma_ch *ch;
2294        int ret;
2295        bool do_reset = false;
2296
2297        WARN_ON_ONCE(irqs_disabled());
2298
2299        sdev = cm_id->context;
2300        BUG_ON(!sdev);
2301        spin_lock_irq(&sdev->spinlock);
2302        list_for_each_entry(ch, &sdev->rch_list, list) {
2303                if (ch->cm_id == cm_id) {
2304                        do_reset = srpt_test_and_set_ch_state(ch,
2305                                        CH_CONNECTING, CH_DRAINING) ||
2306                                   srpt_test_and_set_ch_state(ch,
2307                                        CH_LIVE, CH_DRAINING) ||
2308                                   srpt_test_and_set_ch_state(ch,
2309                                        CH_DISCONNECTING, CH_DRAINING);
2310                        break;
2311                }
2312        }
2313        spin_unlock_irq(&sdev->spinlock);
2314
2315        if (do_reset) {
2316                ret = srpt_ch_qp_err(ch);
2317                if (ret < 0)
2318                        printk(KERN_ERR "Setting queue pair in error state"
2319                               " failed: %d\n", ret);
2320        }
2321}
2322
2323/**
2324 * srpt_find_channel() - Look up an RDMA channel.
2325 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2326 *
2327 * Return NULL if no matching RDMA channel has been found.
2328 */
2329static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2330                                              struct ib_cm_id *cm_id)
2331{
2332        struct srpt_rdma_ch *ch;
2333        bool found;
2334
2335        WARN_ON_ONCE(irqs_disabled());
2336        BUG_ON(!sdev);
2337
2338        found = false;
2339        spin_lock_irq(&sdev->spinlock);
2340        list_for_each_entry(ch, &sdev->rch_list, list) {
2341                if (ch->cm_id == cm_id) {
2342                        found = true;
2343                        break;
2344                }
2345        }
2346        spin_unlock_irq(&sdev->spinlock);
2347
2348        return found ? ch : NULL;
2349}
2350
2351/**
2352 * srpt_release_channel() - Release channel resources.
2353 *
2354 * Schedules the actual release because:
2355 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2356 *   trigger a deadlock.
2357 * - It is not safe to call TCM transport_* functions from interrupt context.
2358 */
2359static void srpt_release_channel(struct srpt_rdma_ch *ch)
2360{
2361        schedule_work(&ch->release_work);
2362}
2363
2364static void srpt_release_channel_work(struct work_struct *w)
2365{
2366        struct srpt_rdma_ch *ch;
2367        struct srpt_device *sdev;
2368
2369        ch = container_of(w, struct srpt_rdma_ch, release_work);
2370        pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2371                 ch->release_done);
2372
2373        sdev = ch->sport->sdev;
2374        BUG_ON(!sdev);
2375
2376        transport_deregister_session_configfs(ch->sess);
2377        transport_deregister_session(ch->sess);
2378        ch->sess = NULL;
2379
2380        srpt_destroy_ch_ib(ch);
2381
2382        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2383                             ch->sport->sdev, ch->rq_size,
2384                             ch->rsp_size, DMA_TO_DEVICE);
2385
2386        spin_lock_irq(&sdev->spinlock);
2387        list_del(&ch->list);
2388        spin_unlock_irq(&sdev->spinlock);
2389
2390        ib_destroy_cm_id(ch->cm_id);
2391
2392        if (ch->release_done)
2393                complete(ch->release_done);
2394
2395        wake_up(&sdev->ch_releaseQ);
2396
2397        kfree(ch);
2398}
2399
2400static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2401                                               u8 i_port_id[16])
2402{
2403        struct srpt_node_acl *nacl;
2404
2405        list_for_each_entry(nacl, &sport->port_acl_list, list)
2406                if (memcmp(nacl->i_port_id, i_port_id,
2407                           sizeof(nacl->i_port_id)) == 0)
2408                        return nacl;
2409
2410        return NULL;
2411}
2412
2413static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2414                                             u8 i_port_id[16])
2415{
2416        struct srpt_node_acl *nacl;
2417
2418        spin_lock_irq(&sport->port_acl_lock);
2419        nacl = __srpt_lookup_acl(sport, i_port_id);
2420        spin_unlock_irq(&sport->port_acl_lock);
2421
2422        return nacl;
2423}
2424
2425/**
2426 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2427 *
2428 * Ownership of the cm_id is transferred to the target session if this
2429 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2430 */
2431static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2432                            struct ib_cm_req_event_param *param,
2433                            void *private_data)
2434{
2435        struct srpt_device *sdev = cm_id->context;
2436        struct srpt_port *sport = &sdev->port[param->port - 1];
2437        struct srp_login_req *req;
2438        struct srp_login_rsp *rsp;
2439        struct srp_login_rej *rej;
2440        struct ib_cm_rep_param *rep_param;
2441        struct srpt_rdma_ch *ch, *tmp_ch;
2442        struct srpt_node_acl *nacl;
2443        u32 it_iu_len;
2444        int i;
2445        int ret = 0;
2446
2447        WARN_ON_ONCE(irqs_disabled());
2448
2449        if (WARN_ON(!sdev || !private_data))
2450                return -EINVAL;
2451
2452        req = (struct srp_login_req *)private_data;
2453
2454        it_iu_len = be32_to_cpu(req->req_it_iu_len);
2455
2456        printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2457               " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2458               " (guid=0x%llx:0x%llx)\n",
2459               be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2460               be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2461               be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2462               be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2463               it_iu_len,
2464               param->port,
2465               be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2466               be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2467
2468        rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2469        rej = kzalloc(sizeof *rej, GFP_KERNEL);
2470        rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2471
2472        if (!rsp || !rej || !rep_param) {
2473                ret = -ENOMEM;
2474                goto out;
2475        }
2476
2477        if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2478                rej->reason = __constant_cpu_to_be32(
2479                                SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2480                ret = -EINVAL;
2481                printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2482                       " length (%d bytes) is out of range (%d .. %d)\n",
2483                       it_iu_len, 64, srp_max_req_size);
2484                goto reject;
2485        }
2486
2487        if (!sport->enabled) {
2488                rej->reason = __constant_cpu_to_be32(
2489                             SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2490                ret = -EINVAL;
2491                printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2492                       " has not yet been enabled\n");
2493                goto reject;
2494        }
2495
2496        if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2497                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2498
2499                spin_lock_irq(&sdev->spinlock);
2500
2501                list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2502                        if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2503                            && !memcmp(ch->t_port_id, req->target_port_id, 16)
2504                            && param->port == ch->sport->port
2505                            && param->listen_id == ch->sport->sdev->cm_id
2506                            && ch->cm_id) {
2507                                enum rdma_ch_state ch_state;
2508
2509                                ch_state = srpt_get_ch_state(ch);
2510                                if (ch_state != CH_CONNECTING
2511                                    && ch_state != CH_LIVE)
2512                                        continue;
2513
2514                                /* found an existing channel */
2515                                pr_debug("Found existing channel %s"
2516                                         " cm_id= %p state= %d\n",
2517                                         ch->sess_name, ch->cm_id, ch_state);
2518
2519                                __srpt_close_ch(ch);
2520
2521                                rsp->rsp_flags =
2522                                        SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2523                        }
2524                }
2525
2526                spin_unlock_irq(&sdev->spinlock);
2527
2528        } else
2529                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2530
2531        if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2532            || *(__be64 *)(req->target_port_id + 8) !=
2533               cpu_to_be64(srpt_service_guid)) {
2534                rej->reason = __constant_cpu_to_be32(
2535                                SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2536                ret = -ENOMEM;
2537                printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2538                       " has an invalid target port identifier.\n");
2539                goto reject;
2540        }
2541
2542        ch = kzalloc(sizeof *ch, GFP_KERNEL);
2543        if (!ch) {
2544                rej->reason = __constant_cpu_to_be32(
2545                                        SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2546                printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2547                ret = -ENOMEM;
2548                goto reject;
2549        }
2550
2551        INIT_WORK(&ch->release_work, srpt_release_channel_work);
2552        memcpy(ch->i_port_id, req->initiator_port_id, 16);
2553        memcpy(ch->t_port_id, req->target_port_id, 16);
2554        ch->sport = &sdev->port[param->port - 1];
2555        ch->cm_id = cm_id;
2556        /*
2557         * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2558         * for the SRP protocol to the command queue size.
2559         */
2560        ch->rq_size = SRPT_RQ_SIZE;
2561        spin_lock_init(&ch->spinlock);
2562        ch->state = CH_CONNECTING;
2563        INIT_LIST_HEAD(&ch->cmd_wait_list);
2564        ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2565
2566        ch->ioctx_ring = (struct srpt_send_ioctx **)
2567                srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2568                                      sizeof(*ch->ioctx_ring[0]),
2569                                      ch->rsp_size, DMA_TO_DEVICE);
2570        if (!ch->ioctx_ring)
2571                goto free_ch;
2572
2573        INIT_LIST_HEAD(&ch->free_list);
2574        for (i = 0; i < ch->rq_size; i++) {
2575                ch->ioctx_ring[i]->ch = ch;
2576                list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2577        }
2578
2579        ret = srpt_create_ch_ib(ch);
2580        if (ret) {
2581                rej->reason = __constant_cpu_to_be32(
2582                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2583                printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2584                       " a new RDMA channel failed.\n");
2585                goto free_ring;
2586        }
2587
2588        ret = srpt_ch_qp_rtr(ch, ch->qp);
2589        if (ret) {
2590                rej->reason = __constant_cpu_to_be32(
2591                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2592                printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2593                       " RTR failed (error code = %d)\n", ret);
2594                goto destroy_ib;
2595        }
2596        /*
2597         * Use the initator port identifier as the session name.
2598         */
2599        snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2600                        be64_to_cpu(*(__be64 *)ch->i_port_id),
2601                        be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2602
2603        pr_debug("registering session %s\n", ch->sess_name);
2604
2605        nacl = srpt_lookup_acl(sport, ch->i_port_id);
2606        if (!nacl) {
2607                printk(KERN_INFO "Rejected login because no ACL has been"
2608                       " configured yet for initiator %s.\n", ch->sess_name);
2609                rej->reason = __constant_cpu_to_be32(
2610                                SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2611                goto destroy_ib;
2612        }
2613
2614        ch->sess = transport_init_session();
2615        if (IS_ERR(ch->sess)) {
2616                rej->reason = __constant_cpu_to_be32(
2617                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2618                pr_debug("Failed to create session\n");
2619                goto deregister_session;
2620        }
2621        ch->sess->se_node_acl = &nacl->nacl;
2622        transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2623
2624        pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2625                 ch->sess_name, ch->cm_id);
2626
2627        /* create srp_login_response */
2628        rsp->opcode = SRP_LOGIN_RSP;
2629        rsp->tag = req->tag;
2630        rsp->max_it_iu_len = req->req_it_iu_len;
2631        rsp->max_ti_iu_len = req->req_it_iu_len;
2632        ch->max_ti_iu_len = it_iu_len;
2633        rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2634                                              | SRP_BUF_FORMAT_INDIRECT);
2635        rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2636        atomic_set(&ch->req_lim, ch->rq_size);
2637        atomic_set(&ch->req_lim_delta, 0);
2638
2639        /* create cm reply */
2640        rep_param->qp_num = ch->qp->qp_num;
2641        rep_param->private_data = (void *)rsp;
2642        rep_param->private_data_len = sizeof *rsp;
2643        rep_param->rnr_retry_count = 7;
2644        rep_param->flow_control = 1;
2645        rep_param->failover_accepted = 0;
2646        rep_param->srq = 1;
2647        rep_param->responder_resources = 4;
2648        rep_param->initiator_depth = 4;
2649
2650        ret = ib_send_cm_rep(cm_id, rep_param);
2651        if (ret) {
2652                printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2653                       " (error code = %d)\n", ret);
2654                goto release_channel;
2655        }
2656
2657        spin_lock_irq(&sdev->spinlock);
2658        list_add_tail(&ch->list, &sdev->rch_list);
2659        spin_unlock_irq(&sdev->spinlock);
2660
2661        goto out;
2662
2663release_channel:
2664        srpt_set_ch_state(ch, CH_RELEASING);
2665        transport_deregister_session_configfs(ch->sess);
2666
2667deregister_session:
2668        transport_deregister_session(ch->sess);
2669        ch->sess = NULL;
2670
2671destroy_ib:
2672        srpt_destroy_ch_ib(ch);
2673
2674free_ring:
2675        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2676                             ch->sport->sdev, ch->rq_size,
2677                             ch->rsp_size, DMA_TO_DEVICE);
2678free_ch:
2679        kfree(ch);
2680
2681reject:
2682        rej->opcode = SRP_LOGIN_REJ;
2683        rej->tag = req->tag;
2684        rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2685                                              | SRP_BUF_FORMAT_INDIRECT);
2686
2687        ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2688                             (void *)rej, sizeof *rej);
2689
2690out:
2691        kfree(rep_param);
2692        kfree(rsp);
2693        kfree(rej);
2694
2695        return ret;
2696}
2697
2698static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2699{
2700        printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2701        srpt_drain_channel(cm_id);
2702}
2703
2704/**
2705 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2706 *
2707 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2708 * and that the recipient may begin transmitting (RTU = ready to use).
2709 */
2710static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2711{
2712        struct srpt_rdma_ch *ch;
2713        int ret;
2714
2715        ch = srpt_find_channel(cm_id->context, cm_id);
2716        BUG_ON(!ch);
2717
2718        if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2719                struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2720
2721                ret = srpt_ch_qp_rts(ch, ch->qp);
2722
2723                list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2724                                         wait_list) {
2725                        list_del(&ioctx->wait_list);
2726                        srpt_handle_new_iu(ch, ioctx, NULL);
2727                }
2728                if (ret)
2729                        srpt_close_ch(ch);
2730        }
2731}
2732
2733static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2734{
2735        printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2736        srpt_drain_channel(cm_id);
2737}
2738
2739static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2740{
2741        printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2742        srpt_drain_channel(cm_id);
2743}
2744
2745/**
2746 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2747 */
2748static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2749{
2750        struct srpt_rdma_ch *ch;
2751        unsigned long flags;
2752        bool send_drep = false;
2753
2754        ch = srpt_find_channel(cm_id->context, cm_id);
2755        BUG_ON(!ch);
2756
2757        pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2758
2759        spin_lock_irqsave(&ch->spinlock, flags);
2760        switch (ch->state) {
2761        case CH_CONNECTING:
2762        case CH_LIVE:
2763                send_drep = true;
2764                ch->state = CH_DISCONNECTING;
2765                break;
2766        case CH_DISCONNECTING:
2767        case CH_DRAINING:
2768        case CH_RELEASING:
2769                WARN(true, "unexpected channel state %d\n", ch->state);
2770                break;
2771        }
2772        spin_unlock_irqrestore(&ch->spinlock, flags);
2773
2774        if (send_drep) {
2775                if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2776                        printk(KERN_ERR "Sending IB DREP failed.\n");
2777                printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2778                       ch->sess_name);
2779        }
2780}
2781
2782/**
2783 * srpt_cm_drep_recv() - Process reception of a DREP message.
2784 */
2785static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2786{
2787        printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2788               cm_id);
2789        srpt_drain_channel(cm_id);
2790}
2791
2792/**
2793 * srpt_cm_handler() - IB connection manager callback function.
2794 *
2795 * A non-zero return value will cause the caller destroy the CM ID.
2796 *
2797 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2798 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2799 * a non-zero value in any other case will trigger a race with the
2800 * ib_destroy_cm_id() call in srpt_release_channel().
2801 */
2802static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2803{
2804        int ret;
2805
2806        ret = 0;
2807        switch (event->event) {
2808        case IB_CM_REQ_RECEIVED:
2809                ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2810                                       event->private_data);
2811                break;
2812        case IB_CM_REJ_RECEIVED:
2813                srpt_cm_rej_recv(cm_id);
2814                break;
2815        case IB_CM_RTU_RECEIVED:
2816        case IB_CM_USER_ESTABLISHED:
2817                srpt_cm_rtu_recv(cm_id);
2818                break;
2819        case IB_CM_DREQ_RECEIVED:
2820                srpt_cm_dreq_recv(cm_id);
2821                break;
2822        case IB_CM_DREP_RECEIVED:
2823                srpt_cm_drep_recv(cm_id);
2824                break;
2825        case IB_CM_TIMEWAIT_EXIT:
2826                srpt_cm_timewait_exit(cm_id);
2827                break;
2828        case IB_CM_REP_ERROR:
2829                srpt_cm_rep_error(cm_id);
2830                break;
2831        case IB_CM_DREQ_ERROR:
2832                printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2833                break;
2834        case IB_CM_MRA_RECEIVED:
2835                printk(KERN_INFO "Received IB MRA event\n");
2836                break;
2837        default:
2838                printk(KERN_ERR "received unrecognized IB CM event %d\n",
2839                       event->event);
2840                break;
2841        }
2842
2843        return ret;
2844}
2845
2846/**
2847 * srpt_perform_rdmas() - Perform IB RDMA.
2848 *
2849 * Returns zero upon success or a negative number upon failure.
2850 */
2851static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2852                              struct srpt_send_ioctx *ioctx)
2853{
2854        struct ib_send_wr wr;
2855        struct ib_send_wr *bad_wr;
2856        struct rdma_iu *riu;
2857        int i;
2858        int ret;
2859        int sq_wr_avail;
2860        enum dma_data_direction dir;
2861        const int n_rdma = ioctx->n_rdma;
2862
2863        dir = ioctx->cmd.data_direction;
2864        if (dir == DMA_TO_DEVICE) {
2865                /* write */
2866                ret = -ENOMEM;
2867                sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2868                if (sq_wr_avail < 0) {
2869                        printk(KERN_WARNING "IB send queue full (needed %d)\n",
2870                               n_rdma);
2871                        goto out;
2872                }
2873        }
2874
2875        ioctx->rdma_aborted = false;
2876        ret = 0;
2877        riu = ioctx->rdma_ius;
2878        memset(&wr, 0, sizeof wr);
2879
2880        for (i = 0; i < n_rdma; ++i, ++riu) {
2881                if (dir == DMA_FROM_DEVICE) {
2882                        wr.opcode = IB_WR_RDMA_WRITE;
2883                        wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2884                                                SRPT_RDMA_WRITE_LAST :
2885                                                SRPT_RDMA_MID,
2886                                                ioctx->ioctx.index);
2887                } else {
2888                        wr.opcode = IB_WR_RDMA_READ;
2889                        wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2890                                                SRPT_RDMA_READ_LAST :
2891                                                SRPT_RDMA_MID,
2892                                                ioctx->ioctx.index);
2893                }
2894                wr.next = NULL;
2895                wr.wr.rdma.remote_addr = riu->raddr;
2896                wr.wr.rdma.rkey = riu->rkey;
2897                wr.num_sge = riu->sge_cnt;
2898                wr.sg_list = riu->sge;
2899
2900                /* only get completion event for the last rdma write */
2901                if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2902                        wr.send_flags = IB_SEND_SIGNALED;
2903
2904                ret = ib_post_send(ch->qp, &wr, &bad_wr);
2905                if (ret)
2906                        break;
2907        }
2908
2909        if (ret)
2910                printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2911                                 __func__, __LINE__, ret, i, n_rdma);
2912        if (ret && i > 0) {
2913                wr.num_sge = 0;
2914                wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2915                wr.send_flags = IB_SEND_SIGNALED;
2916                while (ch->state == CH_LIVE &&
2917                        ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2918                        printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2919                                ioctx->ioctx.index);
2920                        msleep(1000);
2921                }
2922                while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2923                        printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2924                                ioctx->ioctx.index);
2925                        msleep(1000);
2926                }
2927        }
2928out:
2929        if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2930                atomic_add(n_rdma, &ch->sq_wr_avail);
2931        return ret;
2932}
2933
2934/**
2935 * srpt_xfer_data() - Start data transfer from initiator to target.
2936 */
2937static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2938                          struct srpt_send_ioctx *ioctx)
2939{
2940        int ret;
2941
2942        ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2943        if (ret) {
2944                printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2945                goto out;
2946        }
2947
2948        ret = srpt_perform_rdmas(ch, ioctx);
2949        if (ret) {
2950                if (ret == -EAGAIN || ret == -ENOMEM)
2951                        printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2952                                   __func__, __LINE__, ret);
2953                else
2954                        printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2955                               __func__, __LINE__, ret);
2956                goto out_unmap;
2957        }
2958
2959out:
2960        return ret;
2961out_unmap:
2962        srpt_unmap_sg_to_ib_sge(ch, ioctx);
2963        goto out;
2964}
2965
2966static int srpt_write_pending_status(struct se_cmd *se_cmd)
2967{
2968        struct srpt_send_ioctx *ioctx;
2969
2970        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2971        return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2972}
2973
2974/*
2975 * srpt_write_pending() - Start data transfer from initiator to target (write).
2976 */
2977static int srpt_write_pending(struct se_cmd *se_cmd)
2978{
2979        struct srpt_rdma_ch *ch;
2980        struct srpt_send_ioctx *ioctx;
2981        enum srpt_command_state new_state;
2982        enum rdma_ch_state ch_state;
2983        int ret;
2984
2985        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2986
2987        new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2988        WARN_ON(new_state == SRPT_STATE_DONE);
2989
2990        ch = ioctx->ch;
2991        BUG_ON(!ch);
2992
2993        ch_state = srpt_get_ch_state(ch);
2994        switch (ch_state) {
2995        case CH_CONNECTING:
2996                WARN(true, "unexpected channel state %d\n", ch_state);
2997                ret = -EINVAL;
2998                goto out;
2999        case CH_LIVE:
3000                break;
3001        case CH_DISCONNECTING:
3002        case CH_DRAINING:
3003        case CH_RELEASING:
3004                pr_debug("cmd with tag %lld: channel disconnecting\n",
3005                         ioctx->tag);
3006                srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
3007                ret = -EINVAL;
3008                goto out;
3009        }
3010        ret = srpt_xfer_data(ch, ioctx);
3011
3012out:
3013        return ret;
3014}
3015
3016static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3017{
3018        switch (tcm_mgmt_status) {
3019        case TMR_FUNCTION_COMPLETE:
3020                return SRP_TSK_MGMT_SUCCESS;
3021        case TMR_FUNCTION_REJECTED:
3022                return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3023        }
3024        return SRP_TSK_MGMT_FAILED;
3025}
3026
3027/**
3028 * srpt_queue_response() - Transmits the response to a SCSI command.
3029 *
3030 * Callback function called by the TCM core. Must not block since it can be
3031 * invoked on the context of the IB completion handler.
3032 */
3033static int srpt_queue_response(struct se_cmd *cmd)
3034{
3035        struct srpt_rdma_ch *ch;
3036        struct srpt_send_ioctx *ioctx;
3037        enum srpt_command_state state;
3038        unsigned long flags;
3039        int ret;
3040        enum dma_data_direction dir;
3041        int resp_len;
3042        u8 srp_tm_status;
3043
3044        ret = 0;
3045
3046        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3047        ch = ioctx->ch;
3048        BUG_ON(!ch);
3049
3050        spin_lock_irqsave(&ioctx->spinlock, flags);
3051        state = ioctx->state;
3052        switch (state) {
3053        case SRPT_STATE_NEW:
3054        case SRPT_STATE_DATA_IN:
3055                ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3056                break;
3057        case SRPT_STATE_MGMT:
3058                ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3059                break;
3060        default:
3061                WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3062                        ch, ioctx->ioctx.index, ioctx->state);
3063                break;
3064        }
3065        spin_unlock_irqrestore(&ioctx->spinlock, flags);
3066
3067        if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3068                     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3069                atomic_inc(&ch->req_lim_delta);
3070                srpt_abort_cmd(ioctx);
3071                goto out;
3072        }
3073
3074        dir = ioctx->cmd.data_direction;
3075
3076        /* For read commands, transfer the data to the initiator. */
3077        if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3078            !ioctx->queue_status_only) {
3079                ret = srpt_xfer_data(ch, ioctx);
3080                if (ret) {
3081                        printk(KERN_ERR "xfer_data failed for tag %llu\n",
3082                               ioctx->tag);
3083                        goto out;
3084                }
3085        }
3086
3087        if (state != SRPT_STATE_MGMT)
3088                resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3089                                              cmd->scsi_status);
3090        else {
3091                srp_tm_status
3092                        = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3093                resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3094                                                 ioctx->tag);
3095        }
3096        ret = srpt_post_send(ch, ioctx, resp_len);
3097        if (ret) {
3098                printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3099                       ioctx->tag);
3100                srpt_unmap_sg_to_ib_sge(ch, ioctx);
3101                srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3102                kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
3103        }
3104
3105out:
3106        return ret;
3107}
3108
3109static int srpt_queue_status(struct se_cmd *cmd)
3110{
3111        struct srpt_send_ioctx *ioctx;
3112
3113        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3114        BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3115        if (cmd->se_cmd_flags &
3116            (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3117                WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3118        ioctx->queue_status_only = true;
3119        return srpt_queue_response(cmd);
3120}
3121
3122static void srpt_refresh_port_work(struct work_struct *work)
3123{
3124        struct srpt_port *sport = container_of(work, struct srpt_port, work);
3125
3126        srpt_refresh_port(sport);
3127}
3128
3129static int srpt_ch_list_empty(struct srpt_device *sdev)
3130{
3131        int res;
3132
3133        spin_lock_irq(&sdev->spinlock);
3134        res = list_empty(&sdev->rch_list);
3135        spin_unlock_irq(&sdev->spinlock);
3136
3137        return res;
3138}
3139
3140/**
3141 * srpt_release_sdev() - Free the channel resources associated with a target.
3142 */
3143static int srpt_release_sdev(struct srpt_device *sdev)
3144{
3145        struct srpt_rdma_ch *ch, *tmp_ch;
3146        int res;
3147
3148        WARN_ON_ONCE(irqs_disabled());
3149
3150        BUG_ON(!sdev);
3151
3152        spin_lock_irq(&sdev->spinlock);
3153        list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3154                __srpt_close_ch(ch);
3155        spin_unlock_irq(&sdev->spinlock);
3156
3157        res = wait_event_interruptible(sdev->ch_releaseQ,
3158                                       srpt_ch_list_empty(sdev));
3159        if (res)
3160                printk(KERN_ERR "%s: interrupted.\n", __func__);
3161
3162        return 0;
3163}
3164
3165static struct srpt_port *__srpt_lookup_port(const char *name)
3166{
3167        struct ib_device *dev;
3168        struct srpt_device *sdev;
3169        struct srpt_port *sport;
3170        int i;
3171
3172        list_for_each_entry(sdev, &srpt_dev_list, list) {
3173                dev = sdev->device;
3174                if (!dev)
3175                        continue;
3176
3177                for (i = 0; i < dev->phys_port_cnt; i++) {
3178                        sport = &sdev->port[i];
3179
3180                        if (!strcmp(sport->port_guid, name))
3181                                return sport;
3182                }
3183        }
3184
3185        return NULL;
3186}
3187
3188static struct srpt_port *srpt_lookup_port(const char *name)
3189{
3190        struct srpt_port *sport;
3191
3192        spin_lock(&srpt_dev_lock);
3193        sport = __srpt_lookup_port(name);
3194        spin_unlock(&srpt_dev_lock);
3195
3196        return sport;
3197}
3198
3199/**
3200 * srpt_add_one() - Infiniband device addition callback function.
3201 */
3202static void srpt_add_one(struct ib_device *device)
3203{
3204        struct srpt_device *sdev;
3205        struct srpt_port *sport;
3206        struct ib_srq_init_attr srq_attr;
3207        int i;
3208
3209        pr_debug("device = %p, device->dma_ops = %p\n", device,
3210                 device->dma_ops);
3211
3212        sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3213        if (!sdev)
3214                goto err;
3215
3216        sdev->device = device;
3217        INIT_LIST_HEAD(&sdev->rch_list);
3218        init_waitqueue_head(&sdev->ch_releaseQ);
3219        spin_lock_init(&sdev->spinlock);
3220
3221        if (ib_query_device(device, &sdev->dev_attr))
3222                goto free_dev;
3223
3224        sdev->pd = ib_alloc_pd(device);
3225        if (IS_ERR(sdev->pd))
3226                goto free_dev;
3227
3228        sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3229        if (IS_ERR(sdev->mr))
3230                goto err_pd;
3231
3232        sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3233
3234        srq_attr.event_handler = srpt_srq_event;
3235        srq_attr.srq_context = (void *)sdev;
3236        srq_attr.attr.max_wr = sdev->srq_size;
3237        srq_attr.attr.max_sge = 1;
3238        srq_attr.attr.srq_limit = 0;
3239        srq_attr.srq_type = IB_SRQT_BASIC;
3240
3241        sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3242        if (IS_ERR(sdev->srq))
3243                goto err_mr;
3244
3245        pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3246                 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3247                 device->name);
3248
3249        if (!srpt_service_guid)
3250                srpt_service_guid = be64_to_cpu(device->node_guid);
3251
3252        sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3253        if (IS_ERR(sdev->cm_id))
3254                goto err_srq;
3255
3256        /* print out target login information */
3257        pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3258                 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3259                 srpt_service_guid, srpt_service_guid);
3260
3261        /*
3262         * We do not have a consistent service_id (ie. also id_ext of target_id)
3263         * to identify this target. We currently use the guid of the first HCA
3264         * in the system as service_id; therefore, the target_id will change
3265         * if this HCA is gone bad and replaced by different HCA
3266         */
3267        if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3268                goto err_cm;
3269
3270        INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3271                              srpt_event_handler);
3272        if (ib_register_event_handler(&sdev->event_handler))
3273                goto err_cm;
3274
3275        sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3276                srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3277                                      sizeof(*sdev->ioctx_ring[0]),
3278                                      srp_max_req_size, DMA_FROM_DEVICE);
3279        if (!sdev->ioctx_ring)
3280                goto err_event;
3281
3282        for (i = 0; i < sdev->srq_size; ++i)
3283                srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3284
3285        WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3286
3287        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3288                sport = &sdev->port[i - 1];
3289                sport->sdev = sdev;
3290                sport->port = i;
3291                sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3292                sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3293                sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3294                INIT_WORK(&sport->work, srpt_refresh_port_work);
3295                INIT_LIST_HEAD(&sport->port_acl_list);
3296                spin_lock_init(&sport->port_acl_lock);
3297
3298                if (srpt_refresh_port(sport)) {
3299                        printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3300                               srpt_sdev_name(sdev), i);
3301                        goto err_ring;
3302                }
3303                snprintf(sport->port_guid, sizeof(sport->port_guid),
3304                        "0x%016llx%016llx",
3305                        be64_to_cpu(sport->gid.global.subnet_prefix),
3306                        be64_to_cpu(sport->gid.global.interface_id));
3307        }
3308
3309        spin_lock(&srpt_dev_lock);
3310        list_add_tail(&sdev->list, &srpt_dev_list);
3311        spin_unlock(&srpt_dev_lock);
3312
3313out:
3314        ib_set_client_data(device, &srpt_client, sdev);
3315        pr_debug("added %s.\n", device->name);
3316        return;
3317
3318err_ring:
3319        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3320                             sdev->srq_size, srp_max_req_size,
3321                             DMA_FROM_DEVICE);
3322err_event:
3323        ib_unregister_event_handler(&sdev->event_handler);
3324err_cm:
3325        ib_destroy_cm_id(sdev->cm_id);
3326err_srq:
3327        ib_destroy_srq(sdev->srq);
3328err_mr:
3329        ib_dereg_mr(sdev->mr);
3330err_pd:
3331        ib_dealloc_pd(sdev->pd);
3332free_dev:
3333        kfree(sdev);
3334err:
3335        sdev = NULL;
3336        printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3337        goto out;
3338}
3339
3340/**
3341 * srpt_remove_one() - InfiniBand device removal callback function.
3342 */
3343static void srpt_remove_one(struct ib_device *device)
3344{
3345        struct srpt_device *sdev;
3346        int i;
3347
3348        sdev = ib_get_client_data(device, &srpt_client);
3349        if (!sdev) {
3350                printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3351                       device->name);
3352                return;
3353        }
3354
3355        srpt_unregister_mad_agent(sdev);
3356
3357        ib_unregister_event_handler(&sdev->event_handler);
3358
3359        /* Cancel any work queued by the just unregistered IB event handler. */
3360        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3361                cancel_work_sync(&sdev->port[i].work);
3362
3363        ib_destroy_cm_id(sdev->cm_id);
3364
3365        /*
3366         * Unregistering a target must happen after destroying sdev->cm_id
3367         * such that no new SRP_LOGIN_REQ information units can arrive while
3368         * destroying the target.
3369         */
3370        spin_lock(&srpt_dev_lock);
3371        list_del(&sdev->list);
3372        spin_unlock(&srpt_dev_lock);
3373        srpt_release_sdev(sdev);
3374
3375        ib_destroy_srq(sdev->srq);
3376        ib_dereg_mr(sdev->mr);
3377        ib_dealloc_pd(sdev->pd);
3378
3379        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3380                             sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3381        sdev->ioctx_ring = NULL;
3382        kfree(sdev);
3383}
3384
3385static struct ib_client srpt_client = {
3386        .name = DRV_NAME,
3387        .add = srpt_add_one,
3388        .remove = srpt_remove_one
3389};
3390
3391static int srpt_check_true(struct se_portal_group *se_tpg)
3392{
3393        return 1;
3394}
3395
3396static int srpt_check_false(struct se_portal_group *se_tpg)
3397{
3398        return 0;
3399}
3400
3401static char *srpt_get_fabric_name(void)
3402{
3403        return "srpt";
3404}
3405
3406static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3407{
3408        return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3409}
3410
3411static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3412{
3413        struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3414
3415        return sport->port_guid;
3416}
3417
3418static u16 srpt_get_tag(struct se_portal_group *tpg)
3419{
3420        return 1;
3421}
3422
3423static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3424{
3425        return 1;
3426}
3427
3428static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3429                                    struct se_node_acl *se_nacl,
3430                                    struct t10_pr_registration *pr_reg,
3431                                    int *format_code, unsigned char *buf)
3432{
3433        struct srpt_node_acl *nacl;
3434        struct spc_rdma_transport_id *tr_id;
3435
3436        nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3437        tr_id = (void *)buf;
3438        tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3439        memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3440        return sizeof(*tr_id);
3441}
3442
3443static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3444                                        struct se_node_acl *se_nacl,
3445                                        struct t10_pr_registration *pr_reg,
3446                                        int *format_code)
3447{
3448        *format_code = 0;
3449        return sizeof(struct spc_rdma_transport_id);
3450}
3451
3452static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3453                                            const char *buf, u32 *out_tid_len,
3454                                            char **port_nexus_ptr)
3455{
3456        struct spc_rdma_transport_id *tr_id;
3457
3458        *port_nexus_ptr = NULL;
3459        *out_tid_len = sizeof(struct spc_rdma_transport_id);
3460        tr_id = (void *)buf;
3461        return (char *)tr_id->i_port_id;
3462}
3463
3464static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3465{
3466        struct srpt_node_acl *nacl;
3467
3468        nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3469        if (!nacl) {
3470                printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3471                return NULL;
3472        }
3473
3474        return &nacl->nacl;
3475}
3476
3477static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3478                                    struct se_node_acl *se_nacl)
3479{
3480        struct srpt_node_acl *nacl;
3481
3482        nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3483        kfree(nacl);
3484}
3485
3486static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3487{
3488        return 1;
3489}
3490
3491static void srpt_release_cmd(struct se_cmd *se_cmd)
3492{
3493}
3494
3495/**
3496 * srpt_shutdown_session() - Whether or not a session may be shut down.
3497 */
3498static int srpt_shutdown_session(struct se_session *se_sess)
3499{
3500        return true;
3501}
3502
3503/**
3504 * srpt_close_session() - Forcibly close a session.
3505 *
3506 * Callback function invoked by the TCM core to clean up sessions associated
3507 * with a node ACL when the user invokes
3508 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3509 */
3510static void srpt_close_session(struct se_session *se_sess)
3511{
3512        DECLARE_COMPLETION_ONSTACK(release_done);
3513        struct srpt_rdma_ch *ch;
3514        struct srpt_device *sdev;
3515        int res;
3516
3517        ch = se_sess->fabric_sess_ptr;
3518        WARN_ON(ch->sess != se_sess);
3519
3520        pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3521
3522        sdev = ch->sport->sdev;
3523        spin_lock_irq(&sdev->spinlock);
3524        BUG_ON(ch->release_done);
3525        ch->release_done = &release_done;
3526        __srpt_close_ch(ch);
3527        spin_unlock_irq(&sdev->spinlock);
3528
3529        res = wait_for_completion_timeout(&release_done, 60 * HZ);
3530        WARN_ON(res <= 0);
3531}
3532
3533/**
3534 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3535 *
3536 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3537 * This object represents an arbitrary integer used to uniquely identify a
3538 * particular attached remote initiator port to a particular SCSI target port
3539 * within a particular SCSI target device within a particular SCSI instance.
3540 */
3541static u32 srpt_sess_get_index(struct se_session *se_sess)
3542{
3543        return 0;
3544}
3545
3546static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3547{
3548}
3549
3550static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3551{
3552        struct srpt_send_ioctx *ioctx;
3553
3554        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3555        return ioctx->tag;
3556}
3557
3558/* Note: only used from inside debug printk's by the TCM core. */
3559static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3560{
3561        struct srpt_send_ioctx *ioctx;
3562
3563        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3564        return srpt_get_cmd_state(ioctx);
3565}
3566
3567/**
3568 * srpt_parse_i_port_id() - Parse an initiator port ID.
3569 * @name: ASCII representation of a 128-bit initiator port ID.
3570 * @i_port_id: Binary 128-bit port ID.
3571 */
3572static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3573{
3574        const char *p;
3575        unsigned len, count, leading_zero_bytes;
3576        int ret, rc;
3577
3578        p = name;
3579        if (strnicmp(p, "0x", 2) == 0)
3580                p += 2;
3581        ret = -EINVAL;
3582        len = strlen(p);
3583        if (len % 2)
3584                goto out;
3585        count = min(len / 2, 16U);
3586        leading_zero_bytes = 16 - count;
3587        memset(i_port_id, 0, leading_zero_bytes);
3588        rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3589        if (rc < 0)
3590                pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3591        ret = 0;
3592out:
3593        return ret;
3594}
3595
3596/*
3597 * configfs callback function invoked for
3598 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3599 */
3600static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3601                                             struct config_group *group,
3602                                             const char *name)
3603{
3604        struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3605        struct se_node_acl *se_nacl, *se_nacl_new;
3606        struct srpt_node_acl *nacl;
3607        int ret = 0;
3608        u32 nexus_depth = 1;
3609        u8 i_port_id[16];
3610
3611        if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3612                printk(KERN_ERR "invalid initiator port ID %s\n", name);
3613                ret = -EINVAL;
3614                goto err;
3615        }
3616
3617        se_nacl_new = srpt_alloc_fabric_acl(tpg);
3618        if (!se_nacl_new) {
3619                ret = -ENOMEM;
3620                goto err;
3621        }
3622        /*
3623         * nacl_new may be released by core_tpg_add_initiator_node_acl()
3624         * when converting a node ACL from demo mode to explict
3625         */
3626        se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3627                                                  nexus_depth);
3628        if (IS_ERR(se_nacl)) {
3629                ret = PTR_ERR(se_nacl);
3630                goto err;
3631        }
3632        /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3633        nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3634        memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3635        nacl->sport = sport;
3636
3637        spin_lock_irq(&sport->port_acl_lock);
3638        list_add_tail(&nacl->list, &sport->port_acl_list);
3639        spin_unlock_irq(&sport->port_acl_lock);
3640
3641        return se_nacl;
3642err:
3643        return ERR_PTR(ret);
3644}
3645
3646/*
3647 * configfs callback function invoked for
3648 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3649 */
3650static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3651{
3652        struct srpt_node_acl *nacl;
3653        struct srpt_device *sdev;
3654        struct srpt_port *sport;
3655
3656        nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3657        sport = nacl->sport;
3658        sdev = sport->sdev;
3659        spin_lock_irq(&sport->port_acl_lock);
3660        list_del(&nacl->list);
3661        spin_unlock_irq(&sport->port_acl_lock);
3662        core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3663        srpt_release_fabric_acl(NULL, se_nacl);
3664}
3665
3666static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3667        struct se_portal_group *se_tpg,
3668        char *page)
3669{
3670        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3671
3672        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3673}
3674
3675static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3676        struct se_portal_group *se_tpg,
3677        const char *page,
3678        size_t count)
3679{
3680        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3681        unsigned long val;
3682        int ret;
3683
3684        ret = strict_strtoul(page, 0, &val);
3685        if (ret < 0) {
3686                pr_err("strict_strtoul() failed with ret: %d\n", ret);
3687                return -EINVAL;
3688        }
3689        if (val > MAX_SRPT_RDMA_SIZE) {
3690                pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3691                        MAX_SRPT_RDMA_SIZE);
3692                return -EINVAL;
3693        }
3694        if (val < DEFAULT_MAX_RDMA_SIZE) {
3695                pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3696                        val, DEFAULT_MAX_RDMA_SIZE);
3697                return -EINVAL;
3698        }
3699        sport->port_attrib.srp_max_rdma_size = val;
3700
3701        return count;
3702}
3703
3704TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3705
3706static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3707        struct se_portal_group *se_tpg,
3708        char *page)
3709{
3710        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3711
3712        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3713}
3714
3715static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3716        struct se_portal_group *se_tpg,
3717        const char *page,
3718        size_t count)
3719{
3720        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3721        unsigned long val;
3722        int ret;
3723
3724        ret = strict_strtoul(page, 0, &val);
3725        if (ret < 0) {
3726                pr_err("strict_strtoul() failed with ret: %d\n", ret);
3727                return -EINVAL;
3728        }
3729        if (val > MAX_SRPT_RSP_SIZE) {
3730                pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3731                        MAX_SRPT_RSP_SIZE);
3732                return -EINVAL;
3733        }
3734        if (val < MIN_MAX_RSP_SIZE) {
3735                pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3736                        MIN_MAX_RSP_SIZE);
3737                return -EINVAL;
3738        }
3739        sport->port_attrib.srp_max_rsp_size = val;
3740
3741        return count;
3742}
3743
3744TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3745
3746static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3747        struct se_portal_group *se_tpg,
3748        char *page)
3749{
3750        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3751
3752        return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3753}
3754
3755static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3756        struct se_portal_group *se_tpg,
3757        const char *page,
3758        size_t count)
3759{
3760        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3761        unsigned long val;
3762        int ret;
3763
3764        ret = strict_strtoul(page, 0, &val);
3765        if (ret < 0) {
3766                pr_err("strict_strtoul() failed with ret: %d\n", ret);
3767                return -EINVAL;
3768        }
3769        if (val > MAX_SRPT_SRQ_SIZE) {
3770                pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3771                        MAX_SRPT_SRQ_SIZE);
3772                return -EINVAL;
3773        }
3774        if (val < MIN_SRPT_SRQ_SIZE) {
3775                pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3776                        MIN_SRPT_SRQ_SIZE);
3777                return -EINVAL;
3778        }
3779        sport->port_attrib.srp_sq_size = val;
3780
3781        return count;
3782}
3783
3784TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3785
3786static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3787        &srpt_tpg_attrib_srp_max_rdma_size.attr,
3788        &srpt_tpg_attrib_srp_max_rsp_size.attr,
3789        &srpt_tpg_attrib_srp_sq_size.attr,
3790        NULL,
3791};
3792
3793static ssize_t srpt_tpg_show_enable(
3794        struct se_portal_group *se_tpg,
3795        char *page)
3796{
3797        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3798
3799        return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3800}
3801
3802static ssize_t srpt_tpg_store_enable(
3803        struct se_portal_group *se_tpg,
3804        const char *page,
3805        size_t count)
3806{
3807        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3808        unsigned long tmp;
3809        int ret;
3810
3811        ret = strict_strtoul(page, 0, &tmp);
3812        if (ret < 0) {
3813                printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3814                return -EINVAL;
3815        }
3816
3817        if ((tmp != 0) && (tmp != 1)) {
3818                printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3819                return -EINVAL;
3820        }
3821        if (tmp == 1)
3822                sport->enabled = true;
3823        else
3824                sport->enabled = false;
3825
3826        return count;
3827}
3828
3829TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3830
3831static struct configfs_attribute *srpt_tpg_attrs[] = {
3832        &srpt_tpg_enable.attr,
3833        NULL,
3834};
3835
3836/**
3837 * configfs callback invoked for
3838 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3839 */
3840static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3841                                             struct config_group *group,
3842                                             const char *name)
3843{
3844        struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3845        int res;
3846
3847        /* Initialize sport->port_wwn and sport->port_tpg_1 */
3848        res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3849                        &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3850        if (res)
3851                return ERR_PTR(res);
3852
3853        return &sport->port_tpg_1;
3854}
3855
3856/**
3857 * configfs callback invoked for
3858 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3859 */
3860static void srpt_drop_tpg(struct se_portal_group *tpg)
3861{
3862        struct srpt_port *sport = container_of(tpg,
3863                                struct srpt_port, port_tpg_1);
3864
3865        sport->enabled = false;
3866        core_tpg_deregister(&sport->port_tpg_1);
3867}
3868
3869/**
3870 * configfs callback invoked for
3871 * mkdir /sys/kernel/config/target/$driver/$port
3872 */
3873static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3874                                      struct config_group *group,
3875                                      const char *name)
3876{
3877        struct srpt_port *sport;
3878        int ret;
3879
3880        sport = srpt_lookup_port(name);
3881        pr_debug("make_tport(%s)\n", name);
3882        ret = -EINVAL;
3883        if (!sport)
3884                goto err;
3885
3886        return &sport->port_wwn;
3887
3888err:
3889        return ERR_PTR(ret);
3890}
3891
3892/**
3893 * configfs callback invoked for
3894 * rmdir /sys/kernel/config/target/$driver/$port
3895 */
3896static void srpt_drop_tport(struct se_wwn *wwn)
3897{
3898        struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3899
3900        pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3901}
3902
3903static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3904                                              char *buf)
3905{
3906        return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3907}
3908
3909TF_WWN_ATTR_RO(srpt, version);
3910
3911static struct configfs_attribute *srpt_wwn_attrs[] = {
3912        &srpt_wwn_version.attr,
3913        NULL,
3914};
3915
3916static struct target_core_fabric_ops srpt_template = {
3917        .get_fabric_name                = srpt_get_fabric_name,
3918        .get_fabric_proto_ident         = srpt_get_fabric_proto_ident,
3919        .tpg_get_wwn                    = srpt_get_fabric_wwn,
3920        .tpg_get_tag                    = srpt_get_tag,
3921        .tpg_get_default_depth          = srpt_get_default_depth,
3922        .tpg_get_pr_transport_id        = srpt_get_pr_transport_id,
3923        .tpg_get_pr_transport_id_len    = srpt_get_pr_transport_id_len,
3924        .tpg_parse_pr_out_transport_id  = srpt_parse_pr_out_transport_id,
3925        .tpg_check_demo_mode            = srpt_check_false,
3926        .tpg_check_demo_mode_cache      = srpt_check_true,
3927        .tpg_check_demo_mode_write_protect = srpt_check_true,
3928        .tpg_check_prod_mode_write_protect = srpt_check_false,
3929        .tpg_alloc_fabric_acl           = srpt_alloc_fabric_acl,
3930        .tpg_release_fabric_acl         = srpt_release_fabric_acl,
3931        .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3932        .release_cmd                    = srpt_release_cmd,
3933        .check_stop_free                = srpt_check_stop_free,
3934        .shutdown_session               = srpt_shutdown_session,
3935        .close_session                  = srpt_close_session,
3936        .sess_get_index                 = srpt_sess_get_index,
3937        .sess_get_initiator_sid         = NULL,
3938        .write_pending                  = srpt_write_pending,
3939        .write_pending_status           = srpt_write_pending_status,
3940        .set_default_node_attributes    = srpt_set_default_node_attrs,
3941        .get_task_tag                   = srpt_get_task_tag,
3942        .get_cmd_state                  = srpt_get_tcm_cmd_state,
3943        .queue_data_in                  = srpt_queue_response,
3944        .queue_status                   = srpt_queue_status,
3945        .queue_tm_rsp                   = srpt_queue_response,
3946        /*
3947         * Setup function pointers for generic logic in
3948         * target_core_fabric_configfs.c
3949         */
3950        .fabric_make_wwn                = srpt_make_tport,
3951        .fabric_drop_wwn                = srpt_drop_tport,
3952        .fabric_make_tpg                = srpt_make_tpg,
3953        .fabric_drop_tpg                = srpt_drop_tpg,
3954        .fabric_post_link               = NULL,
3955        .fabric_pre_unlink              = NULL,
3956        .fabric_make_np                 = NULL,
3957        .fabric_drop_np                 = NULL,
3958        .fabric_make_nodeacl            = srpt_make_nodeacl,
3959        .fabric_drop_nodeacl            = srpt_drop_nodeacl,
3960};
3961
3962/**
3963 * srpt_init_module() - Kernel module initialization.
3964 *
3965 * Note: Since ib_register_client() registers callback functions, and since at
3966 * least one of these callback functions (srpt_add_one()) calls target core
3967 * functions, this driver must be registered with the target core before
3968 * ib_register_client() is called.
3969 */
3970static int __init srpt_init_module(void)
3971{
3972        int ret;
3973
3974        ret = -EINVAL;
3975        if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3976                printk(KERN_ERR "invalid value %d for kernel module parameter"
3977                       " srp_max_req_size -- must be at least %d.\n",
3978                       srp_max_req_size, MIN_MAX_REQ_SIZE);
3979                goto out;
3980        }
3981
3982        if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3983            || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3984                printk(KERN_ERR "invalid value %d for kernel module parameter"
3985                       " srpt_srq_size -- must be in the range [%d..%d].\n",
3986                       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3987                goto out;
3988        }
3989
3990        srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3991        if (IS_ERR(srpt_target)) {
3992                printk(KERN_ERR "couldn't register\n");
3993                ret = PTR_ERR(srpt_target);
3994                goto out;
3995        }
3996
3997        srpt_target->tf_ops = srpt_template;
3998
3999        /*
4000         * Set up default attribute lists.
4001         */
4002        srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4003        srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4004        srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4005        srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4006        srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4007        srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4008        srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4009        srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4010        srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4011
4012        ret = target_fabric_configfs_register(srpt_target);
4013        if (ret < 0) {
4014                printk(KERN_ERR "couldn't register\n");
4015                goto out_free_target;
4016        }
4017
4018        ret = ib_register_client(&srpt_client);
4019        if (ret) {
4020                printk(KERN_ERR "couldn't register IB client\n");
4021                goto out_unregister_target;
4022        }
4023
4024        return 0;
4025
4026out_unregister_target:
4027        target_fabric_configfs_deregister(srpt_target);
4028        srpt_target = NULL;
4029out_free_target:
4030        if (srpt_target)
4031                target_fabric_configfs_free(srpt_target);
4032out:
4033        return ret;
4034}
4035
4036static void __exit srpt_cleanup_module(void)
4037{
4038        ib_unregister_client(&srpt_client);
4039        target_fabric_configfs_deregister(srpt_target);
4040        srpt_target = NULL;
4041}
4042
4043module_init(srpt_init_module);
4044module_exit(srpt_cleanup_module);
4045