linux/drivers/net/ethernet/marvell/skge.c
<<
>>
Prefs
   1/*
   2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   3 * Ethernet adapters. Based on earlier sk98lin, e100 and
   4 * FreeBSD if_sk drivers.
   5 *
   6 * This driver intentionally does not support all the features
   7 * of the original driver such as link fail-over and link management because
   8 * those should be done at higher levels.
   9 *
  10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/in.h>
  29#include <linux/kernel.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/ethtool.h>
  35#include <linux/pci.h>
  36#include <linux/if_vlan.h>
  37#include <linux/ip.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/debugfs.h>
  42#include <linux/sched.h>
  43#include <linux/seq_file.h>
  44#include <linux/mii.h>
  45#include <linux/slab.h>
  46#include <linux/dmi.h>
  47#include <linux/prefetch.h>
  48#include <asm/irq.h>
  49
  50#include "skge.h"
  51
  52#define DRV_NAME                "skge"
  53#define DRV_VERSION             "1.14"
  54
  55#define DEFAULT_TX_RING_SIZE    128
  56#define DEFAULT_RX_RING_SIZE    512
  57#define MAX_TX_RING_SIZE        1024
  58#define TX_LOW_WATER            (MAX_SKB_FRAGS + 1)
  59#define MAX_RX_RING_SIZE        4096
  60#define RX_COPY_THRESHOLD       128
  61#define RX_BUF_SIZE             1536
  62#define PHY_RETRIES             1000
  63#define ETH_JUMBO_MTU           9000
  64#define TX_WATCHDOG             (5 * HZ)
  65#define NAPI_WEIGHT             64
  66#define BLINK_MS                250
  67#define LINK_HZ                 HZ
  68
  69#define SKGE_EEPROM_MAGIC       0x9933aabb
  70
  71
  72MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  73MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  74MODULE_LICENSE("GPL");
  75MODULE_VERSION(DRV_VERSION);
  76
  77static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  78                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  79                                NETIF_MSG_IFDOWN);
  80
  81static int debug = -1;  /* defaults above */
  82module_param(debug, int, 0);
  83MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  84
  85static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  86        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },       /* 3Com 3C940 */
  87        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },       /* 3Com 3C940B */
  88#ifdef CONFIG_SKGE_GENESIS
  89        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  90#endif
  91        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  92        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },      /* D-Link DGE-530T (rev.B) */
  93        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },      /* D-Link DGE-530T */
  94        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },      /* D-Link DGE-530T Rev C1 */
  95        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },    /* Marvell Yukon 88E8001/8003/8010 */
  96        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },    /* Belkin */
  97        { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) },       /* CNet PowerG-2000 */
  98        { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },    /* Linksys EG1064 v2 */
  99        { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
 100        { 0 }
 101};
 102MODULE_DEVICE_TABLE(pci, skge_id_table);
 103
 104static int skge_up(struct net_device *dev);
 105static int skge_down(struct net_device *dev);
 106static void skge_phy_reset(struct skge_port *skge);
 107static void skge_tx_clean(struct net_device *dev);
 108static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 109static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 110static void genesis_get_stats(struct skge_port *skge, u64 *data);
 111static void yukon_get_stats(struct skge_port *skge, u64 *data);
 112static void yukon_init(struct skge_hw *hw, int port);
 113static void genesis_mac_init(struct skge_hw *hw, int port);
 114static void genesis_link_up(struct skge_port *skge);
 115static void skge_set_multicast(struct net_device *dev);
 116static irqreturn_t skge_intr(int irq, void *dev_id);
 117
 118/* Avoid conditionals by using array */
 119static const int txqaddr[] = { Q_XA1, Q_XA2 };
 120static const int rxqaddr[] = { Q_R1, Q_R2 };
 121static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 122static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 123static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 124static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 125
 126static inline bool is_genesis(const struct skge_hw *hw)
 127{
 128#ifdef CONFIG_SKGE_GENESIS
 129        return hw->chip_id == CHIP_ID_GENESIS;
 130#else
 131        return false;
 132#endif
 133}
 134
 135static int skge_get_regs_len(struct net_device *dev)
 136{
 137        return 0x4000;
 138}
 139
 140/*
 141 * Returns copy of whole control register region
 142 * Note: skip RAM address register because accessing it will
 143 *       cause bus hangs!
 144 */
 145static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 146                          void *p)
 147{
 148        const struct skge_port *skge = netdev_priv(dev);
 149        const void __iomem *io = skge->hw->regs;
 150
 151        regs->version = 1;
 152        memset(p, 0, regs->len);
 153        memcpy_fromio(p, io, B3_RAM_ADDR);
 154
 155        memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 156                      regs->len - B3_RI_WTO_R1);
 157}
 158
 159/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 160static u32 wol_supported(const struct skge_hw *hw)
 161{
 162        if (is_genesis(hw))
 163                return 0;
 164
 165        if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 166                return 0;
 167
 168        return WAKE_MAGIC | WAKE_PHY;
 169}
 170
 171static void skge_wol_init(struct skge_port *skge)
 172{
 173        struct skge_hw *hw = skge->hw;
 174        int port = skge->port;
 175        u16 ctrl;
 176
 177        skge_write16(hw, B0_CTST, CS_RST_CLR);
 178        skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 179
 180        /* Turn on Vaux */
 181        skge_write8(hw, B0_POWER_CTRL,
 182                    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 183
 184        /* WA code for COMA mode -- clear PHY reset */
 185        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 186            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 187                u32 reg = skge_read32(hw, B2_GP_IO);
 188                reg |= GP_DIR_9;
 189                reg &= ~GP_IO_9;
 190                skge_write32(hw, B2_GP_IO, reg);
 191        }
 192
 193        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 194                     GPC_DIS_SLEEP |
 195                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 196                     GPC_ANEG_1 | GPC_RST_SET);
 197
 198        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 199                     GPC_DIS_SLEEP |
 200                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 201                     GPC_ANEG_1 | GPC_RST_CLR);
 202
 203        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 204
 205        /* Force to 10/100 skge_reset will re-enable on resume   */
 206        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 207                     (PHY_AN_100FULL | PHY_AN_100HALF |
 208                      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 209        /* no 1000 HD/FD */
 210        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 211        gm_phy_write(hw, port, PHY_MARV_CTRL,
 212                     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 213                     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 214
 215
 216        /* Set GMAC to no flow control and auto update for speed/duplex */
 217        gma_write16(hw, port, GM_GP_CTRL,
 218                    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 219                    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 220
 221        /* Set WOL address */
 222        memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 223                    skge->netdev->dev_addr, ETH_ALEN);
 224
 225        /* Turn on appropriate WOL control bits */
 226        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 227        ctrl = 0;
 228        if (skge->wol & WAKE_PHY)
 229                ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 230        else
 231                ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 232
 233        if (skge->wol & WAKE_MAGIC)
 234                ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 235        else
 236                ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 237
 238        ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 239        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 240
 241        /* block receiver */
 242        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 243}
 244
 245static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 246{
 247        struct skge_port *skge = netdev_priv(dev);
 248
 249        wol->supported = wol_supported(skge->hw);
 250        wol->wolopts = skge->wol;
 251}
 252
 253static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 254{
 255        struct skge_port *skge = netdev_priv(dev);
 256        struct skge_hw *hw = skge->hw;
 257
 258        if ((wol->wolopts & ~wol_supported(hw)) ||
 259            !device_can_wakeup(&hw->pdev->dev))
 260                return -EOPNOTSUPP;
 261
 262        skge->wol = wol->wolopts;
 263
 264        device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 265
 266        return 0;
 267}
 268
 269/* Determine supported/advertised modes based on hardware.
 270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 271 */
 272static u32 skge_supported_modes(const struct skge_hw *hw)
 273{
 274        u32 supported;
 275
 276        if (hw->copper) {
 277                supported = (SUPPORTED_10baseT_Half |
 278                             SUPPORTED_10baseT_Full |
 279                             SUPPORTED_100baseT_Half |
 280                             SUPPORTED_100baseT_Full |
 281                             SUPPORTED_1000baseT_Half |
 282                             SUPPORTED_1000baseT_Full |
 283                             SUPPORTED_Autoneg |
 284                             SUPPORTED_TP);
 285
 286                if (is_genesis(hw))
 287                        supported &= ~(SUPPORTED_10baseT_Half |
 288                                       SUPPORTED_10baseT_Full |
 289                                       SUPPORTED_100baseT_Half |
 290                                       SUPPORTED_100baseT_Full);
 291
 292                else if (hw->chip_id == CHIP_ID_YUKON)
 293                        supported &= ~SUPPORTED_1000baseT_Half;
 294        } else
 295                supported = (SUPPORTED_1000baseT_Full |
 296                             SUPPORTED_1000baseT_Half |
 297                             SUPPORTED_FIBRE |
 298                             SUPPORTED_Autoneg);
 299
 300        return supported;
 301}
 302
 303static int skge_get_settings(struct net_device *dev,
 304                             struct ethtool_cmd *ecmd)
 305{
 306        struct skge_port *skge = netdev_priv(dev);
 307        struct skge_hw *hw = skge->hw;
 308
 309        ecmd->transceiver = XCVR_INTERNAL;
 310        ecmd->supported = skge_supported_modes(hw);
 311
 312        if (hw->copper) {
 313                ecmd->port = PORT_TP;
 314                ecmd->phy_address = hw->phy_addr;
 315        } else
 316                ecmd->port = PORT_FIBRE;
 317
 318        ecmd->advertising = skge->advertising;
 319        ecmd->autoneg = skge->autoneg;
 320        ethtool_cmd_speed_set(ecmd, skge->speed);
 321        ecmd->duplex = skge->duplex;
 322        return 0;
 323}
 324
 325static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 326{
 327        struct skge_port *skge = netdev_priv(dev);
 328        const struct skge_hw *hw = skge->hw;
 329        u32 supported = skge_supported_modes(hw);
 330        int err = 0;
 331
 332        if (ecmd->autoneg == AUTONEG_ENABLE) {
 333                ecmd->advertising = supported;
 334                skge->duplex = -1;
 335                skge->speed = -1;
 336        } else {
 337                u32 setting;
 338                u32 speed = ethtool_cmd_speed(ecmd);
 339
 340                switch (speed) {
 341                case SPEED_1000:
 342                        if (ecmd->duplex == DUPLEX_FULL)
 343                                setting = SUPPORTED_1000baseT_Full;
 344                        else if (ecmd->duplex == DUPLEX_HALF)
 345                                setting = SUPPORTED_1000baseT_Half;
 346                        else
 347                                return -EINVAL;
 348                        break;
 349                case SPEED_100:
 350                        if (ecmd->duplex == DUPLEX_FULL)
 351                                setting = SUPPORTED_100baseT_Full;
 352                        else if (ecmd->duplex == DUPLEX_HALF)
 353                                setting = SUPPORTED_100baseT_Half;
 354                        else
 355                                return -EINVAL;
 356                        break;
 357
 358                case SPEED_10:
 359                        if (ecmd->duplex == DUPLEX_FULL)
 360                                setting = SUPPORTED_10baseT_Full;
 361                        else if (ecmd->duplex == DUPLEX_HALF)
 362                                setting = SUPPORTED_10baseT_Half;
 363                        else
 364                                return -EINVAL;
 365                        break;
 366                default:
 367                        return -EINVAL;
 368                }
 369
 370                if ((setting & supported) == 0)
 371                        return -EINVAL;
 372
 373                skge->speed = speed;
 374                skge->duplex = ecmd->duplex;
 375        }
 376
 377        skge->autoneg = ecmd->autoneg;
 378        skge->advertising = ecmd->advertising;
 379
 380        if (netif_running(dev)) {
 381                skge_down(dev);
 382                err = skge_up(dev);
 383                if (err) {
 384                        dev_close(dev);
 385                        return err;
 386                }
 387        }
 388
 389        return 0;
 390}
 391
 392static void skge_get_drvinfo(struct net_device *dev,
 393                             struct ethtool_drvinfo *info)
 394{
 395        struct skge_port *skge = netdev_priv(dev);
 396
 397        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 398        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 399        strlcpy(info->bus_info, pci_name(skge->hw->pdev),
 400                sizeof(info->bus_info));
 401}
 402
 403static const struct skge_stat {
 404        char       name[ETH_GSTRING_LEN];
 405        u16        xmac_offset;
 406        u16        gma_offset;
 407} skge_stats[] = {
 408        { "tx_bytes",           XM_TXO_OK_HI,  GM_TXO_OK_HI },
 409        { "rx_bytes",           XM_RXO_OK_HI,  GM_RXO_OK_HI },
 410
 411        { "tx_broadcast",       XM_TXF_BC_OK,  GM_TXF_BC_OK },
 412        { "rx_broadcast",       XM_RXF_BC_OK,  GM_RXF_BC_OK },
 413        { "tx_multicast",       XM_TXF_MC_OK,  GM_TXF_MC_OK },
 414        { "rx_multicast",       XM_RXF_MC_OK,  GM_RXF_MC_OK },
 415        { "tx_unicast",         XM_TXF_UC_OK,  GM_TXF_UC_OK },
 416        { "rx_unicast",         XM_RXF_UC_OK,  GM_RXF_UC_OK },
 417        { "tx_mac_pause",       XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 418        { "rx_mac_pause",       XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 419
 420        { "collisions",         XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 421        { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 422        { "aborted",            XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 423        { "late_collision",     XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 424        { "fifo_underrun",      XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 425        { "fifo_overflow",      XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 426
 427        { "rx_toolong",         XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 428        { "rx_jabber",          XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 429        { "rx_runt",            XM_RXE_RUNT,    GM_RXE_FRAG },
 430        { "rx_too_long",        XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 431        { "rx_fcs_error",       XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 432};
 433
 434static int skge_get_sset_count(struct net_device *dev, int sset)
 435{
 436        switch (sset) {
 437        case ETH_SS_STATS:
 438                return ARRAY_SIZE(skge_stats);
 439        default:
 440                return -EOPNOTSUPP;
 441        }
 442}
 443
 444static void skge_get_ethtool_stats(struct net_device *dev,
 445                                   struct ethtool_stats *stats, u64 *data)
 446{
 447        struct skge_port *skge = netdev_priv(dev);
 448
 449        if (is_genesis(skge->hw))
 450                genesis_get_stats(skge, data);
 451        else
 452                yukon_get_stats(skge, data);
 453}
 454
 455/* Use hardware MIB variables for critical path statistics and
 456 * transmit feedback not reported at interrupt.
 457 * Other errors are accounted for in interrupt handler.
 458 */
 459static struct net_device_stats *skge_get_stats(struct net_device *dev)
 460{
 461        struct skge_port *skge = netdev_priv(dev);
 462        u64 data[ARRAY_SIZE(skge_stats)];
 463
 464        if (is_genesis(skge->hw))
 465                genesis_get_stats(skge, data);
 466        else
 467                yukon_get_stats(skge, data);
 468
 469        dev->stats.tx_bytes = data[0];
 470        dev->stats.rx_bytes = data[1];
 471        dev->stats.tx_packets = data[2] + data[4] + data[6];
 472        dev->stats.rx_packets = data[3] + data[5] + data[7];
 473        dev->stats.multicast = data[3] + data[5];
 474        dev->stats.collisions = data[10];
 475        dev->stats.tx_aborted_errors = data[12];
 476
 477        return &dev->stats;
 478}
 479
 480static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 481{
 482        int i;
 483
 484        switch (stringset) {
 485        case ETH_SS_STATS:
 486                for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 487                        memcpy(data + i * ETH_GSTRING_LEN,
 488                               skge_stats[i].name, ETH_GSTRING_LEN);
 489                break;
 490        }
 491}
 492
 493static void skge_get_ring_param(struct net_device *dev,
 494                                struct ethtool_ringparam *p)
 495{
 496        struct skge_port *skge = netdev_priv(dev);
 497
 498        p->rx_max_pending = MAX_RX_RING_SIZE;
 499        p->tx_max_pending = MAX_TX_RING_SIZE;
 500
 501        p->rx_pending = skge->rx_ring.count;
 502        p->tx_pending = skge->tx_ring.count;
 503}
 504
 505static int skge_set_ring_param(struct net_device *dev,
 506                               struct ethtool_ringparam *p)
 507{
 508        struct skge_port *skge = netdev_priv(dev);
 509        int err = 0;
 510
 511        if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 512            p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 513                return -EINVAL;
 514
 515        skge->rx_ring.count = p->rx_pending;
 516        skge->tx_ring.count = p->tx_pending;
 517
 518        if (netif_running(dev)) {
 519                skge_down(dev);
 520                err = skge_up(dev);
 521                if (err)
 522                        dev_close(dev);
 523        }
 524
 525        return err;
 526}
 527
 528static u32 skge_get_msglevel(struct net_device *netdev)
 529{
 530        struct skge_port *skge = netdev_priv(netdev);
 531        return skge->msg_enable;
 532}
 533
 534static void skge_set_msglevel(struct net_device *netdev, u32 value)
 535{
 536        struct skge_port *skge = netdev_priv(netdev);
 537        skge->msg_enable = value;
 538}
 539
 540static int skge_nway_reset(struct net_device *dev)
 541{
 542        struct skge_port *skge = netdev_priv(dev);
 543
 544        if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 545                return -EINVAL;
 546
 547        skge_phy_reset(skge);
 548        return 0;
 549}
 550
 551static void skge_get_pauseparam(struct net_device *dev,
 552                                struct ethtool_pauseparam *ecmd)
 553{
 554        struct skge_port *skge = netdev_priv(dev);
 555
 556        ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 557                          (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 558        ecmd->tx_pause = (ecmd->rx_pause ||
 559                          (skge->flow_control == FLOW_MODE_LOC_SEND));
 560
 561        ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 562}
 563
 564static int skge_set_pauseparam(struct net_device *dev,
 565                               struct ethtool_pauseparam *ecmd)
 566{
 567        struct skge_port *skge = netdev_priv(dev);
 568        struct ethtool_pauseparam old;
 569        int err = 0;
 570
 571        skge_get_pauseparam(dev, &old);
 572
 573        if (ecmd->autoneg != old.autoneg)
 574                skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 575        else {
 576                if (ecmd->rx_pause && ecmd->tx_pause)
 577                        skge->flow_control = FLOW_MODE_SYMMETRIC;
 578                else if (ecmd->rx_pause && !ecmd->tx_pause)
 579                        skge->flow_control = FLOW_MODE_SYM_OR_REM;
 580                else if (!ecmd->rx_pause && ecmd->tx_pause)
 581                        skge->flow_control = FLOW_MODE_LOC_SEND;
 582                else
 583                        skge->flow_control = FLOW_MODE_NONE;
 584        }
 585
 586        if (netif_running(dev)) {
 587                skge_down(dev);
 588                err = skge_up(dev);
 589                if (err) {
 590                        dev_close(dev);
 591                        return err;
 592                }
 593        }
 594
 595        return 0;
 596}
 597
 598/* Chip internal frequency for clock calculations */
 599static inline u32 hwkhz(const struct skge_hw *hw)
 600{
 601        return is_genesis(hw) ? 53125 : 78125;
 602}
 603
 604/* Chip HZ to microseconds */
 605static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 606{
 607        return (ticks * 1000) / hwkhz(hw);
 608}
 609
 610/* Microseconds to chip HZ */
 611static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 612{
 613        return hwkhz(hw) * usec / 1000;
 614}
 615
 616static int skge_get_coalesce(struct net_device *dev,
 617                             struct ethtool_coalesce *ecmd)
 618{
 619        struct skge_port *skge = netdev_priv(dev);
 620        struct skge_hw *hw = skge->hw;
 621        int port = skge->port;
 622
 623        ecmd->rx_coalesce_usecs = 0;
 624        ecmd->tx_coalesce_usecs = 0;
 625
 626        if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 627                u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 628                u32 msk = skge_read32(hw, B2_IRQM_MSK);
 629
 630                if (msk & rxirqmask[port])
 631                        ecmd->rx_coalesce_usecs = delay;
 632                if (msk & txirqmask[port])
 633                        ecmd->tx_coalesce_usecs = delay;
 634        }
 635
 636        return 0;
 637}
 638
 639/* Note: interrupt timer is per board, but can turn on/off per port */
 640static int skge_set_coalesce(struct net_device *dev,
 641                             struct ethtool_coalesce *ecmd)
 642{
 643        struct skge_port *skge = netdev_priv(dev);
 644        struct skge_hw *hw = skge->hw;
 645        int port = skge->port;
 646        u32 msk = skge_read32(hw, B2_IRQM_MSK);
 647        u32 delay = 25;
 648
 649        if (ecmd->rx_coalesce_usecs == 0)
 650                msk &= ~rxirqmask[port];
 651        else if (ecmd->rx_coalesce_usecs < 25 ||
 652                 ecmd->rx_coalesce_usecs > 33333)
 653                return -EINVAL;
 654        else {
 655                msk |= rxirqmask[port];
 656                delay = ecmd->rx_coalesce_usecs;
 657        }
 658
 659        if (ecmd->tx_coalesce_usecs == 0)
 660                msk &= ~txirqmask[port];
 661        else if (ecmd->tx_coalesce_usecs < 25 ||
 662                 ecmd->tx_coalesce_usecs > 33333)
 663                return -EINVAL;
 664        else {
 665                msk |= txirqmask[port];
 666                delay = min(delay, ecmd->rx_coalesce_usecs);
 667        }
 668
 669        skge_write32(hw, B2_IRQM_MSK, msk);
 670        if (msk == 0)
 671                skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 672        else {
 673                skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 674                skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 675        }
 676        return 0;
 677}
 678
 679enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 680static void skge_led(struct skge_port *skge, enum led_mode mode)
 681{
 682        struct skge_hw *hw = skge->hw;
 683        int port = skge->port;
 684
 685        spin_lock_bh(&hw->phy_lock);
 686        if (is_genesis(hw)) {
 687                switch (mode) {
 688                case LED_MODE_OFF:
 689                        if (hw->phy_type == SK_PHY_BCOM)
 690                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 691                        else {
 692                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 693                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 694                        }
 695                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 696                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 697                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 698                        break;
 699
 700                case LED_MODE_ON:
 701                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 702                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 703
 704                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 705                        skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 706
 707                        break;
 708
 709                case LED_MODE_TST:
 710                        skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 711                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 712                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 713
 714                        if (hw->phy_type == SK_PHY_BCOM)
 715                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 716                        else {
 717                                skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 718                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 719                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 720                        }
 721
 722                }
 723        } else {
 724                switch (mode) {
 725                case LED_MODE_OFF:
 726                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 727                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 728                                     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 729                                     PHY_M_LED_MO_10(MO_LED_OFF)   |
 730                                     PHY_M_LED_MO_100(MO_LED_OFF)  |
 731                                     PHY_M_LED_MO_1000(MO_LED_OFF) |
 732                                     PHY_M_LED_MO_RX(MO_LED_OFF));
 733                        break;
 734                case LED_MODE_ON:
 735                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 736                                     PHY_M_LED_PULS_DUR(PULS_170MS) |
 737                                     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 738                                     PHY_M_LEDC_TX_CTRL |
 739                                     PHY_M_LEDC_DP_CTRL);
 740
 741                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 742                                     PHY_M_LED_MO_RX(MO_LED_OFF) |
 743                                     (skge->speed == SPEED_100 ?
 744                                      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 745                        break;
 746                case LED_MODE_TST:
 747                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 748                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 749                                     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 750                                     PHY_M_LED_MO_10(MO_LED_ON)   |
 751                                     PHY_M_LED_MO_100(MO_LED_ON)  |
 752                                     PHY_M_LED_MO_1000(MO_LED_ON) |
 753                                     PHY_M_LED_MO_RX(MO_LED_ON));
 754                }
 755        }
 756        spin_unlock_bh(&hw->phy_lock);
 757}
 758
 759/* blink LED's for finding board */
 760static int skge_set_phys_id(struct net_device *dev,
 761                            enum ethtool_phys_id_state state)
 762{
 763        struct skge_port *skge = netdev_priv(dev);
 764
 765        switch (state) {
 766        case ETHTOOL_ID_ACTIVE:
 767                return 2;       /* cycle on/off twice per second */
 768
 769        case ETHTOOL_ID_ON:
 770                skge_led(skge, LED_MODE_TST);
 771                break;
 772
 773        case ETHTOOL_ID_OFF:
 774                skge_led(skge, LED_MODE_OFF);
 775                break;
 776
 777        case ETHTOOL_ID_INACTIVE:
 778                /* back to regular LED state */
 779                skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 780        }
 781
 782        return 0;
 783}
 784
 785static int skge_get_eeprom_len(struct net_device *dev)
 786{
 787        struct skge_port *skge = netdev_priv(dev);
 788        u32 reg2;
 789
 790        pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 791        return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 792}
 793
 794static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 795{
 796        u32 val;
 797
 798        pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 799
 800        do {
 801                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 802        } while (!(offset & PCI_VPD_ADDR_F));
 803
 804        pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 805        return val;
 806}
 807
 808static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 809{
 810        pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 811        pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 812                              offset | PCI_VPD_ADDR_F);
 813
 814        do {
 815                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 816        } while (offset & PCI_VPD_ADDR_F);
 817}
 818
 819static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 820                           u8 *data)
 821{
 822        struct skge_port *skge = netdev_priv(dev);
 823        struct pci_dev *pdev = skge->hw->pdev;
 824        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 825        int length = eeprom->len;
 826        u16 offset = eeprom->offset;
 827
 828        if (!cap)
 829                return -EINVAL;
 830
 831        eeprom->magic = SKGE_EEPROM_MAGIC;
 832
 833        while (length > 0) {
 834                u32 val = skge_vpd_read(pdev, cap, offset);
 835                int n = min_t(int, length, sizeof(val));
 836
 837                memcpy(data, &val, n);
 838                length -= n;
 839                data += n;
 840                offset += n;
 841        }
 842        return 0;
 843}
 844
 845static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 846                           u8 *data)
 847{
 848        struct skge_port *skge = netdev_priv(dev);
 849        struct pci_dev *pdev = skge->hw->pdev;
 850        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 851        int length = eeprom->len;
 852        u16 offset = eeprom->offset;
 853
 854        if (!cap)
 855                return -EINVAL;
 856
 857        if (eeprom->magic != SKGE_EEPROM_MAGIC)
 858                return -EINVAL;
 859
 860        while (length > 0) {
 861                u32 val;
 862                int n = min_t(int, length, sizeof(val));
 863
 864                if (n < sizeof(val))
 865                        val = skge_vpd_read(pdev, cap, offset);
 866                memcpy(&val, data, n);
 867
 868                skge_vpd_write(pdev, cap, offset, val);
 869
 870                length -= n;
 871                data += n;
 872                offset += n;
 873        }
 874        return 0;
 875}
 876
 877static const struct ethtool_ops skge_ethtool_ops = {
 878        .get_settings   = skge_get_settings,
 879        .set_settings   = skge_set_settings,
 880        .get_drvinfo    = skge_get_drvinfo,
 881        .get_regs_len   = skge_get_regs_len,
 882        .get_regs       = skge_get_regs,
 883        .get_wol        = skge_get_wol,
 884        .set_wol        = skge_set_wol,
 885        .get_msglevel   = skge_get_msglevel,
 886        .set_msglevel   = skge_set_msglevel,
 887        .nway_reset     = skge_nway_reset,
 888        .get_link       = ethtool_op_get_link,
 889        .get_eeprom_len = skge_get_eeprom_len,
 890        .get_eeprom     = skge_get_eeprom,
 891        .set_eeprom     = skge_set_eeprom,
 892        .get_ringparam  = skge_get_ring_param,
 893        .set_ringparam  = skge_set_ring_param,
 894        .get_pauseparam = skge_get_pauseparam,
 895        .set_pauseparam = skge_set_pauseparam,
 896        .get_coalesce   = skge_get_coalesce,
 897        .set_coalesce   = skge_set_coalesce,
 898        .get_strings    = skge_get_strings,
 899        .set_phys_id    = skge_set_phys_id,
 900        .get_sset_count = skge_get_sset_count,
 901        .get_ethtool_stats = skge_get_ethtool_stats,
 902};
 903
 904/*
 905 * Allocate ring elements and chain them together
 906 * One-to-one association of board descriptors with ring elements
 907 */
 908static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 909{
 910        struct skge_tx_desc *d;
 911        struct skge_element *e;
 912        int i;
 913
 914        ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 915        if (!ring->start)
 916                return -ENOMEM;
 917
 918        for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 919                e->desc = d;
 920                if (i == ring->count - 1) {
 921                        e->next = ring->start;
 922                        d->next_offset = base;
 923                } else {
 924                        e->next = e + 1;
 925                        d->next_offset = base + (i+1) * sizeof(*d);
 926                }
 927        }
 928        ring->to_use = ring->to_clean = ring->start;
 929
 930        return 0;
 931}
 932
 933/* Allocate and setup a new buffer for receiving */
 934static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 935                          struct sk_buff *skb, unsigned int bufsize)
 936{
 937        struct skge_rx_desc *rd = e->desc;
 938        u64 map;
 939
 940        map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 941                             PCI_DMA_FROMDEVICE);
 942
 943        rd->dma_lo = map;
 944        rd->dma_hi = map >> 32;
 945        e->skb = skb;
 946        rd->csum1_start = ETH_HLEN;
 947        rd->csum2_start = ETH_HLEN;
 948        rd->csum1 = 0;
 949        rd->csum2 = 0;
 950
 951        wmb();
 952
 953        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 954        dma_unmap_addr_set(e, mapaddr, map);
 955        dma_unmap_len_set(e, maplen, bufsize);
 956}
 957
 958/* Resume receiving using existing skb,
 959 * Note: DMA address is not changed by chip.
 960 *       MTU not changed while receiver active.
 961 */
 962static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 963{
 964        struct skge_rx_desc *rd = e->desc;
 965
 966        rd->csum2 = 0;
 967        rd->csum2_start = ETH_HLEN;
 968
 969        wmb();
 970
 971        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 972}
 973
 974
 975/* Free all  buffers in receive ring, assumes receiver stopped */
 976static void skge_rx_clean(struct skge_port *skge)
 977{
 978        struct skge_hw *hw = skge->hw;
 979        struct skge_ring *ring = &skge->rx_ring;
 980        struct skge_element *e;
 981
 982        e = ring->start;
 983        do {
 984                struct skge_rx_desc *rd = e->desc;
 985                rd->control = 0;
 986                if (e->skb) {
 987                        pci_unmap_single(hw->pdev,
 988                                         dma_unmap_addr(e, mapaddr),
 989                                         dma_unmap_len(e, maplen),
 990                                         PCI_DMA_FROMDEVICE);
 991                        dev_kfree_skb(e->skb);
 992                        e->skb = NULL;
 993                }
 994        } while ((e = e->next) != ring->start);
 995}
 996
 997
 998/* Allocate buffers for receive ring
 999 * For receive:  to_clean is next received frame.
1000 */
1001static int skge_rx_fill(struct net_device *dev)
1002{
1003        struct skge_port *skge = netdev_priv(dev);
1004        struct skge_ring *ring = &skge->rx_ring;
1005        struct skge_element *e;
1006
1007        e = ring->start;
1008        do {
1009                struct sk_buff *skb;
1010
1011                skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1012                                         GFP_KERNEL);
1013                if (!skb)
1014                        return -ENOMEM;
1015
1016                skb_reserve(skb, NET_IP_ALIGN);
1017                skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1018        } while ((e = e->next) != ring->start);
1019
1020        ring->to_clean = ring->start;
1021        return 0;
1022}
1023
1024static const char *skge_pause(enum pause_status status)
1025{
1026        switch (status) {
1027        case FLOW_STAT_NONE:
1028                return "none";
1029        case FLOW_STAT_REM_SEND:
1030                return "rx only";
1031        case FLOW_STAT_LOC_SEND:
1032                return "tx_only";
1033        case FLOW_STAT_SYMMETRIC:               /* Both station may send PAUSE */
1034                return "both";
1035        default:
1036                return "indeterminated";
1037        }
1038}
1039
1040
1041static void skge_link_up(struct skge_port *skge)
1042{
1043        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1044                    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1045
1046        netif_carrier_on(skge->netdev);
1047        netif_wake_queue(skge->netdev);
1048
1049        netif_info(skge, link, skge->netdev,
1050                   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1051                   skge->speed,
1052                   skge->duplex == DUPLEX_FULL ? "full" : "half",
1053                   skge_pause(skge->flow_status));
1054}
1055
1056static void skge_link_down(struct skge_port *skge)
1057{
1058        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1059        netif_carrier_off(skge->netdev);
1060        netif_stop_queue(skge->netdev);
1061
1062        netif_info(skge, link, skge->netdev, "Link is down\n");
1063}
1064
1065static void xm_link_down(struct skge_hw *hw, int port)
1066{
1067        struct net_device *dev = hw->dev[port];
1068        struct skge_port *skge = netdev_priv(dev);
1069
1070        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1071
1072        if (netif_carrier_ok(dev))
1073                skge_link_down(skge);
1074}
1075
1076static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1077{
1078        int i;
1079
1080        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1081        *val = xm_read16(hw, port, XM_PHY_DATA);
1082
1083        if (hw->phy_type == SK_PHY_XMAC)
1084                goto ready;
1085
1086        for (i = 0; i < PHY_RETRIES; i++) {
1087                if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1088                        goto ready;
1089                udelay(1);
1090        }
1091
1092        return -ETIMEDOUT;
1093 ready:
1094        *val = xm_read16(hw, port, XM_PHY_DATA);
1095
1096        return 0;
1097}
1098
1099static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1100{
1101        u16 v = 0;
1102        if (__xm_phy_read(hw, port, reg, &v))
1103                pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1104        return v;
1105}
1106
1107static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1108{
1109        int i;
1110
1111        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1112        for (i = 0; i < PHY_RETRIES; i++) {
1113                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1114                        goto ready;
1115                udelay(1);
1116        }
1117        return -EIO;
1118
1119 ready:
1120        xm_write16(hw, port, XM_PHY_DATA, val);
1121        for (i = 0; i < PHY_RETRIES; i++) {
1122                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123                        return 0;
1124                udelay(1);
1125        }
1126        return -ETIMEDOUT;
1127}
1128
1129static void genesis_init(struct skge_hw *hw)
1130{
1131        /* set blink source counter */
1132        skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1133        skge_write8(hw, B2_BSC_CTRL, BSC_START);
1134
1135        /* configure mac arbiter */
1136        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1137
1138        /* configure mac arbiter timeout values */
1139        skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1140        skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1141        skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1142        skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1143
1144        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1145        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1146        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1147        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1148
1149        /* configure packet arbiter timeout */
1150        skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1151        skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1152        skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1153        skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1154        skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1155}
1156
1157static void genesis_reset(struct skge_hw *hw, int port)
1158{
1159        static const u8 zero[8]  = { 0 };
1160        u32 reg;
1161
1162        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1163
1164        /* reset the statistics module */
1165        xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1166        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1167        xm_write32(hw, port, XM_MODE, 0);               /* clear Mode Reg */
1168        xm_write16(hw, port, XM_TX_CMD, 0);     /* reset TX CMD Reg */
1169        xm_write16(hw, port, XM_RX_CMD, 0);     /* reset RX CMD Reg */
1170
1171        /* disable Broadcom PHY IRQ */
1172        if (hw->phy_type == SK_PHY_BCOM)
1173                xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1174
1175        xm_outhash(hw, port, XM_HSM, zero);
1176
1177        /* Flush TX and RX fifo */
1178        reg = xm_read32(hw, port, XM_MODE);
1179        xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1180        xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1181}
1182
1183/* Convert mode to MII values  */
1184static const u16 phy_pause_map[] = {
1185        [FLOW_MODE_NONE] =      0,
1186        [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
1187        [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1188        [FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1189};
1190
1191/* special defines for FIBER (88E1011S only) */
1192static const u16 fiber_pause_map[] = {
1193        [FLOW_MODE_NONE]        = PHY_X_P_NO_PAUSE,
1194        [FLOW_MODE_LOC_SEND]    = PHY_X_P_ASYM_MD,
1195        [FLOW_MODE_SYMMETRIC]   = PHY_X_P_SYM_MD,
1196        [FLOW_MODE_SYM_OR_REM]  = PHY_X_P_BOTH_MD,
1197};
1198
1199
1200/* Check status of Broadcom phy link */
1201static void bcom_check_link(struct skge_hw *hw, int port)
1202{
1203        struct net_device *dev = hw->dev[port];
1204        struct skge_port *skge = netdev_priv(dev);
1205        u16 status;
1206
1207        /* read twice because of latch */
1208        xm_phy_read(hw, port, PHY_BCOM_STAT);
1209        status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1210
1211        if ((status & PHY_ST_LSYNC) == 0) {
1212                xm_link_down(hw, port);
1213                return;
1214        }
1215
1216        if (skge->autoneg == AUTONEG_ENABLE) {
1217                u16 lpa, aux;
1218
1219                if (!(status & PHY_ST_AN_OVER))
1220                        return;
1221
1222                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1223                if (lpa & PHY_B_AN_RF) {
1224                        netdev_notice(dev, "remote fault\n");
1225                        return;
1226                }
1227
1228                aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1229
1230                /* Check Duplex mismatch */
1231                switch (aux & PHY_B_AS_AN_RES_MSK) {
1232                case PHY_B_RES_1000FD:
1233                        skge->duplex = DUPLEX_FULL;
1234                        break;
1235                case PHY_B_RES_1000HD:
1236                        skge->duplex = DUPLEX_HALF;
1237                        break;
1238                default:
1239                        netdev_notice(dev, "duplex mismatch\n");
1240                        return;
1241                }
1242
1243                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1244                switch (aux & PHY_B_AS_PAUSE_MSK) {
1245                case PHY_B_AS_PAUSE_MSK:
1246                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1247                        break;
1248                case PHY_B_AS_PRR:
1249                        skge->flow_status = FLOW_STAT_REM_SEND;
1250                        break;
1251                case PHY_B_AS_PRT:
1252                        skge->flow_status = FLOW_STAT_LOC_SEND;
1253                        break;
1254                default:
1255                        skge->flow_status = FLOW_STAT_NONE;
1256                }
1257                skge->speed = SPEED_1000;
1258        }
1259
1260        if (!netif_carrier_ok(dev))
1261                genesis_link_up(skge);
1262}
1263
1264/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1265 * Phy on for 100 or 10Mbit operation
1266 */
1267static void bcom_phy_init(struct skge_port *skge)
1268{
1269        struct skge_hw *hw = skge->hw;
1270        int port = skge->port;
1271        int i;
1272        u16 id1, r, ext, ctl;
1273
1274        /* magic workaround patterns for Broadcom */
1275        static const struct {
1276                u16 reg;
1277                u16 val;
1278        } A1hack[] = {
1279                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1280                { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1281                { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1282                { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1283        }, C0hack[] = {
1284                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1285                { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1286        };
1287
1288        /* read Id from external PHY (all have the same address) */
1289        id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1290
1291        /* Optimize MDIO transfer by suppressing preamble. */
1292        r = xm_read16(hw, port, XM_MMU_CMD);
1293        r |=  XM_MMU_NO_PRE;
1294        xm_write16(hw, port, XM_MMU_CMD, r);
1295
1296        switch (id1) {
1297        case PHY_BCOM_ID1_C0:
1298                /*
1299                 * Workaround BCOM Errata for the C0 type.
1300                 * Write magic patterns to reserved registers.
1301                 */
1302                for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1303                        xm_phy_write(hw, port,
1304                                     C0hack[i].reg, C0hack[i].val);
1305
1306                break;
1307        case PHY_BCOM_ID1_A1:
1308                /*
1309                 * Workaround BCOM Errata for the A1 type.
1310                 * Write magic patterns to reserved registers.
1311                 */
1312                for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1313                        xm_phy_write(hw, port,
1314                                     A1hack[i].reg, A1hack[i].val);
1315                break;
1316        }
1317
1318        /*
1319         * Workaround BCOM Errata (#10523) for all BCom PHYs.
1320         * Disable Power Management after reset.
1321         */
1322        r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1323        r |= PHY_B_AC_DIS_PM;
1324        xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1325
1326        /* Dummy read */
1327        xm_read16(hw, port, XM_ISRC);
1328
1329        ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1330        ctl = PHY_CT_SP1000;    /* always 1000mbit */
1331
1332        if (skge->autoneg == AUTONEG_ENABLE) {
1333                /*
1334                 * Workaround BCOM Errata #1 for the C5 type.
1335                 * 1000Base-T Link Acquisition Failure in Slave Mode
1336                 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1337                 */
1338                u16 adv = PHY_B_1000C_RD;
1339                if (skge->advertising & ADVERTISED_1000baseT_Half)
1340                        adv |= PHY_B_1000C_AHD;
1341                if (skge->advertising & ADVERTISED_1000baseT_Full)
1342                        adv |= PHY_B_1000C_AFD;
1343                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1344
1345                ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1346        } else {
1347                if (skge->duplex == DUPLEX_FULL)
1348                        ctl |= PHY_CT_DUP_MD;
1349                /* Force to slave */
1350                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1351        }
1352
1353        /* Set autonegotiation pause parameters */
1354        xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1355                     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1356
1357        /* Handle Jumbo frames */
1358        if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1359                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1360                             PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1361
1362                ext |= PHY_B_PEC_HIGH_LA;
1363
1364        }
1365
1366        xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1367        xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1368
1369        /* Use link status change interrupt */
1370        xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1371}
1372
1373static void xm_phy_init(struct skge_port *skge)
1374{
1375        struct skge_hw *hw = skge->hw;
1376        int port = skge->port;
1377        u16 ctrl = 0;
1378
1379        if (skge->autoneg == AUTONEG_ENABLE) {
1380                if (skge->advertising & ADVERTISED_1000baseT_Half)
1381                        ctrl |= PHY_X_AN_HD;
1382                if (skge->advertising & ADVERTISED_1000baseT_Full)
1383                        ctrl |= PHY_X_AN_FD;
1384
1385                ctrl |= fiber_pause_map[skge->flow_control];
1386
1387                xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1388
1389                /* Restart Auto-negotiation */
1390                ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1391        } else {
1392                /* Set DuplexMode in Config register */
1393                if (skge->duplex == DUPLEX_FULL)
1394                        ctrl |= PHY_CT_DUP_MD;
1395                /*
1396                 * Do NOT enable Auto-negotiation here. This would hold
1397                 * the link down because no IDLEs are transmitted
1398                 */
1399        }
1400
1401        xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1402
1403        /* Poll PHY for status changes */
1404        mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1405}
1406
1407static int xm_check_link(struct net_device *dev)
1408{
1409        struct skge_port *skge = netdev_priv(dev);
1410        struct skge_hw *hw = skge->hw;
1411        int port = skge->port;
1412        u16 status;
1413
1414        /* read twice because of latch */
1415        xm_phy_read(hw, port, PHY_XMAC_STAT);
1416        status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1417
1418        if ((status & PHY_ST_LSYNC) == 0) {
1419                xm_link_down(hw, port);
1420                return 0;
1421        }
1422
1423        if (skge->autoneg == AUTONEG_ENABLE) {
1424                u16 lpa, res;
1425
1426                if (!(status & PHY_ST_AN_OVER))
1427                        return 0;
1428
1429                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1430                if (lpa & PHY_B_AN_RF) {
1431                        netdev_notice(dev, "remote fault\n");
1432                        return 0;
1433                }
1434
1435                res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1436
1437                /* Check Duplex mismatch */
1438                switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1439                case PHY_X_RS_FD:
1440                        skge->duplex = DUPLEX_FULL;
1441                        break;
1442                case PHY_X_RS_HD:
1443                        skge->duplex = DUPLEX_HALF;
1444                        break;
1445                default:
1446                        netdev_notice(dev, "duplex mismatch\n");
1447                        return 0;
1448                }
1449
1450                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1451                if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1452                     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1453                    (lpa & PHY_X_P_SYM_MD))
1454                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1455                else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1456                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1457                        /* Enable PAUSE receive, disable PAUSE transmit */
1458                        skge->flow_status  = FLOW_STAT_REM_SEND;
1459                else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1460                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1461                        /* Disable PAUSE receive, enable PAUSE transmit */
1462                        skge->flow_status = FLOW_STAT_LOC_SEND;
1463                else
1464                        skge->flow_status = FLOW_STAT_NONE;
1465
1466                skge->speed = SPEED_1000;
1467        }
1468
1469        if (!netif_carrier_ok(dev))
1470                genesis_link_up(skge);
1471        return 1;
1472}
1473
1474/* Poll to check for link coming up.
1475 *
1476 * Since internal PHY is wired to a level triggered pin, can't
1477 * get an interrupt when carrier is detected, need to poll for
1478 * link coming up.
1479 */
1480static void xm_link_timer(unsigned long arg)
1481{
1482        struct skge_port *skge = (struct skge_port *) arg;
1483        struct net_device *dev = skge->netdev;
1484        struct skge_hw *hw = skge->hw;
1485        int port = skge->port;
1486        int i;
1487        unsigned long flags;
1488
1489        if (!netif_running(dev))
1490                return;
1491
1492        spin_lock_irqsave(&hw->phy_lock, flags);
1493
1494        /*
1495         * Verify that the link by checking GPIO register three times.
1496         * This pin has the signal from the link_sync pin connected to it.
1497         */
1498        for (i = 0; i < 3; i++) {
1499                if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1500                        goto link_down;
1501        }
1502
1503        /* Re-enable interrupt to detect link down */
1504        if (xm_check_link(dev)) {
1505                u16 msk = xm_read16(hw, port, XM_IMSK);
1506                msk &= ~XM_IS_INP_ASS;
1507                xm_write16(hw, port, XM_IMSK, msk);
1508                xm_read16(hw, port, XM_ISRC);
1509        } else {
1510link_down:
1511                mod_timer(&skge->link_timer,
1512                          round_jiffies(jiffies + LINK_HZ));
1513        }
1514        spin_unlock_irqrestore(&hw->phy_lock, flags);
1515}
1516
1517static void genesis_mac_init(struct skge_hw *hw, int port)
1518{
1519        struct net_device *dev = hw->dev[port];
1520        struct skge_port *skge = netdev_priv(dev);
1521        int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1522        int i;
1523        u32 r;
1524        static const u8 zero[6]  = { 0 };
1525
1526        for (i = 0; i < 10; i++) {
1527                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1528                             MFF_SET_MAC_RST);
1529                if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1530                        goto reset_ok;
1531                udelay(1);
1532        }
1533
1534        netdev_warn(dev, "genesis reset failed\n");
1535
1536 reset_ok:
1537        /* Unreset the XMAC. */
1538        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1539
1540        /*
1541         * Perform additional initialization for external PHYs,
1542         * namely for the 1000baseTX cards that use the XMAC's
1543         * GMII mode.
1544         */
1545        if (hw->phy_type != SK_PHY_XMAC) {
1546                /* Take external Phy out of reset */
1547                r = skge_read32(hw, B2_GP_IO);
1548                if (port == 0)
1549                        r |= GP_DIR_0|GP_IO_0;
1550                else
1551                        r |= GP_DIR_2|GP_IO_2;
1552
1553                skge_write32(hw, B2_GP_IO, r);
1554
1555                /* Enable GMII interface */
1556                xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1557        }
1558
1559
1560        switch (hw->phy_type) {
1561        case SK_PHY_XMAC:
1562                xm_phy_init(skge);
1563                break;
1564        case SK_PHY_BCOM:
1565                bcom_phy_init(skge);
1566                bcom_check_link(hw, port);
1567        }
1568
1569        /* Set Station Address */
1570        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1571
1572        /* We don't use match addresses so clear */
1573        for (i = 1; i < 16; i++)
1574                xm_outaddr(hw, port, XM_EXM(i), zero);
1575
1576        /* Clear MIB counters */
1577        xm_write16(hw, port, XM_STAT_CMD,
1578                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1579        /* Clear two times according to Errata #3 */
1580        xm_write16(hw, port, XM_STAT_CMD,
1581                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1582
1583        /* configure Rx High Water Mark (XM_RX_HI_WM) */
1584        xm_write16(hw, port, XM_RX_HI_WM, 1450);
1585
1586        /* We don't need the FCS appended to the packet. */
1587        r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1588        if (jumbo)
1589                r |= XM_RX_BIG_PK_OK;
1590
1591        if (skge->duplex == DUPLEX_HALF) {
1592                /*
1593                 * If in manual half duplex mode the other side might be in
1594                 * full duplex mode, so ignore if a carrier extension is not seen
1595                 * on frames received
1596                 */
1597                r |= XM_RX_DIS_CEXT;
1598        }
1599        xm_write16(hw, port, XM_RX_CMD, r);
1600
1601        /* We want short frames padded to 60 bytes. */
1602        xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1603
1604        /* Increase threshold for jumbo frames on dual port */
1605        if (hw->ports > 1 && jumbo)
1606                xm_write16(hw, port, XM_TX_THR, 1020);
1607        else
1608                xm_write16(hw, port, XM_TX_THR, 512);
1609
1610        /*
1611         * Enable the reception of all error frames. This is is
1612         * a necessary evil due to the design of the XMAC. The
1613         * XMAC's receive FIFO is only 8K in size, however jumbo
1614         * frames can be up to 9000 bytes in length. When bad
1615         * frame filtering is enabled, the XMAC's RX FIFO operates
1616         * in 'store and forward' mode. For this to work, the
1617         * entire frame has to fit into the FIFO, but that means
1618         * that jumbo frames larger than 8192 bytes will be
1619         * truncated. Disabling all bad frame filtering causes
1620         * the RX FIFO to operate in streaming mode, in which
1621         * case the XMAC will start transferring frames out of the
1622         * RX FIFO as soon as the FIFO threshold is reached.
1623         */
1624        xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1625
1626
1627        /*
1628         * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1629         *      - Enable all bits excepting 'Octets Rx OK Low CntOv'
1630         *        and 'Octets Rx OK Hi Cnt Ov'.
1631         */
1632        xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1633
1634        /*
1635         * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1636         *      - Enable all bits excepting 'Octets Tx OK Low CntOv'
1637         *        and 'Octets Tx OK Hi Cnt Ov'.
1638         */
1639        xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1640
1641        /* Configure MAC arbiter */
1642        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1643
1644        /* configure timeout values */
1645        skge_write8(hw, B3_MA_TOINI_RX1, 72);
1646        skge_write8(hw, B3_MA_TOINI_RX2, 72);
1647        skge_write8(hw, B3_MA_TOINI_TX1, 72);
1648        skge_write8(hw, B3_MA_TOINI_TX2, 72);
1649
1650        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1651        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1652        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1653        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1654
1655        /* Configure Rx MAC FIFO */
1656        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1657        skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1658        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1659
1660        /* Configure Tx MAC FIFO */
1661        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1662        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1663        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1664
1665        if (jumbo) {
1666                /* Enable frame flushing if jumbo frames used */
1667                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1668        } else {
1669                /* enable timeout timers if normal frames */
1670                skge_write16(hw, B3_PA_CTRL,
1671                             (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1672        }
1673}
1674
1675static void genesis_stop(struct skge_port *skge)
1676{
1677        struct skge_hw *hw = skge->hw;
1678        int port = skge->port;
1679        unsigned retries = 1000;
1680        u16 cmd;
1681
1682        /* Disable Tx and Rx */
1683        cmd = xm_read16(hw, port, XM_MMU_CMD);
1684        cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1685        xm_write16(hw, port, XM_MMU_CMD, cmd);
1686
1687        genesis_reset(hw, port);
1688
1689        /* Clear Tx packet arbiter timeout IRQ */
1690        skge_write16(hw, B3_PA_CTRL,
1691                     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1692
1693        /* Reset the MAC */
1694        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1695        do {
1696                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1697                if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1698                        break;
1699        } while (--retries > 0);
1700
1701        /* For external PHYs there must be special handling */
1702        if (hw->phy_type != SK_PHY_XMAC) {
1703                u32 reg = skge_read32(hw, B2_GP_IO);
1704                if (port == 0) {
1705                        reg |= GP_DIR_0;
1706                        reg &= ~GP_IO_0;
1707                } else {
1708                        reg |= GP_DIR_2;
1709                        reg &= ~GP_IO_2;
1710                }
1711                skge_write32(hw, B2_GP_IO, reg);
1712                skge_read32(hw, B2_GP_IO);
1713        }
1714
1715        xm_write16(hw, port, XM_MMU_CMD,
1716                        xm_read16(hw, port, XM_MMU_CMD)
1717                        & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1718
1719        xm_read16(hw, port, XM_MMU_CMD);
1720}
1721
1722
1723static void genesis_get_stats(struct skge_port *skge, u64 *data)
1724{
1725        struct skge_hw *hw = skge->hw;
1726        int port = skge->port;
1727        int i;
1728        unsigned long timeout = jiffies + HZ;
1729
1730        xm_write16(hw, port,
1731                        XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1732
1733        /* wait for update to complete */
1734        while (xm_read16(hw, port, XM_STAT_CMD)
1735               & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1736                if (time_after(jiffies, timeout))
1737                        break;
1738                udelay(10);
1739        }
1740
1741        /* special case for 64 bit octet counter */
1742        data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1743                | xm_read32(hw, port, XM_TXO_OK_LO);
1744        data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1745                | xm_read32(hw, port, XM_RXO_OK_LO);
1746
1747        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1748                data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1749}
1750
1751static void genesis_mac_intr(struct skge_hw *hw, int port)
1752{
1753        struct net_device *dev = hw->dev[port];
1754        struct skge_port *skge = netdev_priv(dev);
1755        u16 status = xm_read16(hw, port, XM_ISRC);
1756
1757        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1758                     "mac interrupt status 0x%x\n", status);
1759
1760        if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1761                xm_link_down(hw, port);
1762                mod_timer(&skge->link_timer, jiffies + 1);
1763        }
1764
1765        if (status & XM_IS_TXF_UR) {
1766                xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1767                ++dev->stats.tx_fifo_errors;
1768        }
1769}
1770
1771static void genesis_link_up(struct skge_port *skge)
1772{
1773        struct skge_hw *hw = skge->hw;
1774        int port = skge->port;
1775        u16 cmd, msk;
1776        u32 mode;
1777
1778        cmd = xm_read16(hw, port, XM_MMU_CMD);
1779
1780        /*
1781         * enabling pause frame reception is required for 1000BT
1782         * because the XMAC is not reset if the link is going down
1783         */
1784        if (skge->flow_status == FLOW_STAT_NONE ||
1785            skge->flow_status == FLOW_STAT_LOC_SEND)
1786                /* Disable Pause Frame Reception */
1787                cmd |= XM_MMU_IGN_PF;
1788        else
1789                /* Enable Pause Frame Reception */
1790                cmd &= ~XM_MMU_IGN_PF;
1791
1792        xm_write16(hw, port, XM_MMU_CMD, cmd);
1793
1794        mode = xm_read32(hw, port, XM_MODE);
1795        if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1796            skge->flow_status == FLOW_STAT_LOC_SEND) {
1797                /*
1798                 * Configure Pause Frame Generation
1799                 * Use internal and external Pause Frame Generation.
1800                 * Sending pause frames is edge triggered.
1801                 * Send a Pause frame with the maximum pause time if
1802                 * internal oder external FIFO full condition occurs.
1803                 * Send a zero pause time frame to re-start transmission.
1804                 */
1805                /* XM_PAUSE_DA = '010000C28001' (default) */
1806                /* XM_MAC_PTIME = 0xffff (maximum) */
1807                /* remember this value is defined in big endian (!) */
1808                xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1809
1810                mode |= XM_PAUSE_MODE;
1811                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1812        } else {
1813                /*
1814                 * disable pause frame generation is required for 1000BT
1815                 * because the XMAC is not reset if the link is going down
1816                 */
1817                /* Disable Pause Mode in Mode Register */
1818                mode &= ~XM_PAUSE_MODE;
1819
1820                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1821        }
1822
1823        xm_write32(hw, port, XM_MODE, mode);
1824
1825        /* Turn on detection of Tx underrun */
1826        msk = xm_read16(hw, port, XM_IMSK);
1827        msk &= ~XM_IS_TXF_UR;
1828        xm_write16(hw, port, XM_IMSK, msk);
1829
1830        xm_read16(hw, port, XM_ISRC);
1831
1832        /* get MMU Command Reg. */
1833        cmd = xm_read16(hw, port, XM_MMU_CMD);
1834        if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1835                cmd |= XM_MMU_GMII_FD;
1836
1837        /*
1838         * Workaround BCOM Errata (#10523) for all BCom Phys
1839         * Enable Power Management after link up
1840         */
1841        if (hw->phy_type == SK_PHY_BCOM) {
1842                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1843                             xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1844                             & ~PHY_B_AC_DIS_PM);
1845                xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1846        }
1847
1848        /* enable Rx/Tx */
1849        xm_write16(hw, port, XM_MMU_CMD,
1850                        cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1851        skge_link_up(skge);
1852}
1853
1854
1855static inline void bcom_phy_intr(struct skge_port *skge)
1856{
1857        struct skge_hw *hw = skge->hw;
1858        int port = skge->port;
1859        u16 isrc;
1860
1861        isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1862        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1863                     "phy interrupt status 0x%x\n", isrc);
1864
1865        if (isrc & PHY_B_IS_PSE)
1866                pr_err("%s: uncorrectable pair swap error\n",
1867                       hw->dev[port]->name);
1868
1869        /* Workaround BCom Errata:
1870         *      enable and disable loopback mode if "NO HCD" occurs.
1871         */
1872        if (isrc & PHY_B_IS_NO_HDCL) {
1873                u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1874                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1875                                  ctrl | PHY_CT_LOOP);
1876                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1877                                  ctrl & ~PHY_CT_LOOP);
1878        }
1879
1880        if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1881                bcom_check_link(hw, port);
1882
1883}
1884
1885static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1886{
1887        int i;
1888
1889        gma_write16(hw, port, GM_SMI_DATA, val);
1890        gma_write16(hw, port, GM_SMI_CTRL,
1891                         GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1892        for (i = 0; i < PHY_RETRIES; i++) {
1893                udelay(1);
1894
1895                if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1896                        return 0;
1897        }
1898
1899        pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1900        return -EIO;
1901}
1902
1903static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1904{
1905        int i;
1906
1907        gma_write16(hw, port, GM_SMI_CTRL,
1908                         GM_SMI_CT_PHY_AD(hw->phy_addr)
1909                         | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1910
1911        for (i = 0; i < PHY_RETRIES; i++) {
1912                udelay(1);
1913                if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1914                        goto ready;
1915        }
1916
1917        return -ETIMEDOUT;
1918 ready:
1919        *val = gma_read16(hw, port, GM_SMI_DATA);
1920        return 0;
1921}
1922
1923static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1924{
1925        u16 v = 0;
1926        if (__gm_phy_read(hw, port, reg, &v))
1927                pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1928        return v;
1929}
1930
1931/* Marvell Phy Initialization */
1932static void yukon_init(struct skge_hw *hw, int port)
1933{
1934        struct skge_port *skge = netdev_priv(hw->dev[port]);
1935        u16 ctrl, ct1000, adv;
1936
1937        if (skge->autoneg == AUTONEG_ENABLE) {
1938                u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1939
1940                ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1941                          PHY_M_EC_MAC_S_MSK);
1942                ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1943
1944                ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1945
1946                gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1947        }
1948
1949        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1950        if (skge->autoneg == AUTONEG_DISABLE)
1951                ctrl &= ~PHY_CT_ANE;
1952
1953        ctrl |= PHY_CT_RESET;
1954        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1955
1956        ctrl = 0;
1957        ct1000 = 0;
1958        adv = PHY_AN_CSMA;
1959
1960        if (skge->autoneg == AUTONEG_ENABLE) {
1961                if (hw->copper) {
1962                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1963                                ct1000 |= PHY_M_1000C_AFD;
1964                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1965                                ct1000 |= PHY_M_1000C_AHD;
1966                        if (skge->advertising & ADVERTISED_100baseT_Full)
1967                                adv |= PHY_M_AN_100_FD;
1968                        if (skge->advertising & ADVERTISED_100baseT_Half)
1969                                adv |= PHY_M_AN_100_HD;
1970                        if (skge->advertising & ADVERTISED_10baseT_Full)
1971                                adv |= PHY_M_AN_10_FD;
1972                        if (skge->advertising & ADVERTISED_10baseT_Half)
1973                                adv |= PHY_M_AN_10_HD;
1974
1975                        /* Set Flow-control capabilities */
1976                        adv |= phy_pause_map[skge->flow_control];
1977                } else {
1978                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1979                                adv |= PHY_M_AN_1000X_AFD;
1980                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1981                                adv |= PHY_M_AN_1000X_AHD;
1982
1983                        adv |= fiber_pause_map[skge->flow_control];
1984                }
1985
1986                /* Restart Auto-negotiation */
1987                ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1988        } else {
1989                /* forced speed/duplex settings */
1990                ct1000 = PHY_M_1000C_MSE;
1991
1992                if (skge->duplex == DUPLEX_FULL)
1993                        ctrl |= PHY_CT_DUP_MD;
1994
1995                switch (skge->speed) {
1996                case SPEED_1000:
1997                        ctrl |= PHY_CT_SP1000;
1998                        break;
1999                case SPEED_100:
2000                        ctrl |= PHY_CT_SP100;
2001                        break;
2002                }
2003
2004                ctrl |= PHY_CT_RESET;
2005        }
2006
2007        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2008
2009        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2010        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2011
2012        /* Enable phy interrupt on autonegotiation complete (or link up) */
2013        if (skge->autoneg == AUTONEG_ENABLE)
2014                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2015        else
2016                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2017}
2018
2019static void yukon_reset(struct skge_hw *hw, int port)
2020{
2021        gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2022        gma_write16(hw, port, GM_MC_ADDR_H1, 0);        /* clear MC hash */
2023        gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2024        gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2025        gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2026
2027        gma_write16(hw, port, GM_RX_CTRL,
2028                         gma_read16(hw, port, GM_RX_CTRL)
2029                         | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2030}
2031
2032/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2033static int is_yukon_lite_a0(struct skge_hw *hw)
2034{
2035        u32 reg;
2036        int ret;
2037
2038        if (hw->chip_id != CHIP_ID_YUKON)
2039                return 0;
2040
2041        reg = skge_read32(hw, B2_FAR);
2042        skge_write8(hw, B2_FAR + 3, 0xff);
2043        ret = (skge_read8(hw, B2_FAR + 3) != 0);
2044        skge_write32(hw, B2_FAR, reg);
2045        return ret;
2046}
2047
2048static void yukon_mac_init(struct skge_hw *hw, int port)
2049{
2050        struct skge_port *skge = netdev_priv(hw->dev[port]);
2051        int i;
2052        u32 reg;
2053        const u8 *addr = hw->dev[port]->dev_addr;
2054
2055        /* WA code for COMA mode -- set PHY reset */
2056        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2057            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2058                reg = skge_read32(hw, B2_GP_IO);
2059                reg |= GP_DIR_9 | GP_IO_9;
2060                skge_write32(hw, B2_GP_IO, reg);
2061        }
2062
2063        /* hard reset */
2064        skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2065        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2066
2067        /* WA code for COMA mode -- clear PHY reset */
2068        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2069            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2070                reg = skge_read32(hw, B2_GP_IO);
2071                reg |= GP_DIR_9;
2072                reg &= ~GP_IO_9;
2073                skge_write32(hw, B2_GP_IO, reg);
2074        }
2075
2076        /* Set hardware config mode */
2077        reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2078                GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2079        reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2080
2081        /* Clear GMC reset */
2082        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2083        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2084        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2085
2086        if (skge->autoneg == AUTONEG_DISABLE) {
2087                reg = GM_GPCR_AU_ALL_DIS;
2088                gma_write16(hw, port, GM_GP_CTRL,
2089                                 gma_read16(hw, port, GM_GP_CTRL) | reg);
2090
2091                switch (skge->speed) {
2092                case SPEED_1000:
2093                        reg &= ~GM_GPCR_SPEED_100;
2094                        reg |= GM_GPCR_SPEED_1000;
2095                        break;
2096                case SPEED_100:
2097                        reg &= ~GM_GPCR_SPEED_1000;
2098                        reg |= GM_GPCR_SPEED_100;
2099                        break;
2100                case SPEED_10:
2101                        reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2102                        break;
2103                }
2104
2105                if (skge->duplex == DUPLEX_FULL)
2106                        reg |= GM_GPCR_DUP_FULL;
2107        } else
2108                reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2109
2110        switch (skge->flow_control) {
2111        case FLOW_MODE_NONE:
2112                skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2113                reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2114                break;
2115        case FLOW_MODE_LOC_SEND:
2116                /* disable Rx flow-control */
2117                reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2118                break;
2119        case FLOW_MODE_SYMMETRIC:
2120        case FLOW_MODE_SYM_OR_REM:
2121                /* enable Tx & Rx flow-control */
2122                break;
2123        }
2124
2125        gma_write16(hw, port, GM_GP_CTRL, reg);
2126        skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2127
2128        yukon_init(hw, port);
2129
2130        /* MIB clear */
2131        reg = gma_read16(hw, port, GM_PHY_ADDR);
2132        gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2133
2134        for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2135                gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2136        gma_write16(hw, port, GM_PHY_ADDR, reg);
2137
2138        /* transmit control */
2139        gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2140
2141        /* receive control reg: unicast + multicast + no FCS  */
2142        gma_write16(hw, port, GM_RX_CTRL,
2143                         GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2144
2145        /* transmit flow control */
2146        gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2147
2148        /* transmit parameter */
2149        gma_write16(hw, port, GM_TX_PARAM,
2150                         TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2151                         TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2152                         TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2153
2154        /* configure the Serial Mode Register */
2155        reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2156                | GM_SMOD_VLAN_ENA
2157                | IPG_DATA_VAL(IPG_DATA_DEF);
2158
2159        if (hw->dev[port]->mtu > ETH_DATA_LEN)
2160                reg |= GM_SMOD_JUMBO_ENA;
2161
2162        gma_write16(hw, port, GM_SERIAL_MODE, reg);
2163
2164        /* physical address: used for pause frames */
2165        gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2166        /* virtual address for data */
2167        gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2168
2169        /* enable interrupt mask for counter overflows */
2170        gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2171        gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2172        gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2173
2174        /* Initialize Mac Fifo */
2175
2176        /* Configure Rx MAC FIFO */
2177        skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2178        reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2179
2180        /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2181        if (is_yukon_lite_a0(hw))
2182                reg &= ~GMF_RX_F_FL_ON;
2183
2184        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2185        skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2186        /*
2187         * because Pause Packet Truncation in GMAC is not working
2188         * we have to increase the Flush Threshold to 64 bytes
2189         * in order to flush pause packets in Rx FIFO on Yukon-1
2190         */
2191        skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2192
2193        /* Configure Tx MAC FIFO */
2194        skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2195        skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2196}
2197
2198/* Go into power down mode */
2199static void yukon_suspend(struct skge_hw *hw, int port)
2200{
2201        u16 ctrl;
2202
2203        ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2204        ctrl |= PHY_M_PC_POL_R_DIS;
2205        gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2206
2207        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2208        ctrl |= PHY_CT_RESET;
2209        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2210
2211        /* switch IEEE compatible power down mode on */
2212        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2213        ctrl |= PHY_CT_PDOWN;
2214        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2215}
2216
2217static void yukon_stop(struct skge_port *skge)
2218{
2219        struct skge_hw *hw = skge->hw;
2220        int port = skge->port;
2221
2222        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2223        yukon_reset(hw, port);
2224
2225        gma_write16(hw, port, GM_GP_CTRL,
2226                         gma_read16(hw, port, GM_GP_CTRL)
2227                         & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2228        gma_read16(hw, port, GM_GP_CTRL);
2229
2230        yukon_suspend(hw, port);
2231
2232        /* set GPHY Control reset */
2233        skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2234        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2235}
2236
2237static void yukon_get_stats(struct skge_port *skge, u64 *data)
2238{
2239        struct skge_hw *hw = skge->hw;
2240        int port = skge->port;
2241        int i;
2242
2243        data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2244                | gma_read32(hw, port, GM_TXO_OK_LO);
2245        data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2246                | gma_read32(hw, port, GM_RXO_OK_LO);
2247
2248        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2249                data[i] = gma_read32(hw, port,
2250                                          skge_stats[i].gma_offset);
2251}
2252
2253static void yukon_mac_intr(struct skge_hw *hw, int port)
2254{
2255        struct net_device *dev = hw->dev[port];
2256        struct skge_port *skge = netdev_priv(dev);
2257        u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2258
2259        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2260                     "mac interrupt status 0x%x\n", status);
2261
2262        if (status & GM_IS_RX_FF_OR) {
2263                ++dev->stats.rx_fifo_errors;
2264                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2265        }
2266
2267        if (status & GM_IS_TX_FF_UR) {
2268                ++dev->stats.tx_fifo_errors;
2269                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2270        }
2271
2272}
2273
2274static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2275{
2276        switch (aux & PHY_M_PS_SPEED_MSK) {
2277        case PHY_M_PS_SPEED_1000:
2278                return SPEED_1000;
2279        case PHY_M_PS_SPEED_100:
2280                return SPEED_100;
2281        default:
2282                return SPEED_10;
2283        }
2284}
2285
2286static void yukon_link_up(struct skge_port *skge)
2287{
2288        struct skge_hw *hw = skge->hw;
2289        int port = skge->port;
2290        u16 reg;
2291
2292        /* Enable Transmit FIFO Underrun */
2293        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2294
2295        reg = gma_read16(hw, port, GM_GP_CTRL);
2296        if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2297                reg |= GM_GPCR_DUP_FULL;
2298
2299        /* enable Rx/Tx */
2300        reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2301        gma_write16(hw, port, GM_GP_CTRL, reg);
2302
2303        gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2304        skge_link_up(skge);
2305}
2306
2307static void yukon_link_down(struct skge_port *skge)
2308{
2309        struct skge_hw *hw = skge->hw;
2310        int port = skge->port;
2311        u16 ctrl;
2312
2313        ctrl = gma_read16(hw, port, GM_GP_CTRL);
2314        ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2315        gma_write16(hw, port, GM_GP_CTRL, ctrl);
2316
2317        if (skge->flow_status == FLOW_STAT_REM_SEND) {
2318                ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2319                ctrl |= PHY_M_AN_ASP;
2320                /* restore Asymmetric Pause bit */
2321                gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2322        }
2323
2324        skge_link_down(skge);
2325
2326        yukon_init(hw, port);
2327}
2328
2329static void yukon_phy_intr(struct skge_port *skge)
2330{
2331        struct skge_hw *hw = skge->hw;
2332        int port = skge->port;
2333        const char *reason = NULL;
2334        u16 istatus, phystat;
2335
2336        istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2337        phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2338
2339        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2340                     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2341
2342        if (istatus & PHY_M_IS_AN_COMPL) {
2343                if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2344                    & PHY_M_AN_RF) {
2345                        reason = "remote fault";
2346                        goto failed;
2347                }
2348
2349                if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2350                        reason = "master/slave fault";
2351                        goto failed;
2352                }
2353
2354                if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2355                        reason = "speed/duplex";
2356                        goto failed;
2357                }
2358
2359                skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2360                        ? DUPLEX_FULL : DUPLEX_HALF;
2361                skge->speed = yukon_speed(hw, phystat);
2362
2363                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2364                switch (phystat & PHY_M_PS_PAUSE_MSK) {
2365                case PHY_M_PS_PAUSE_MSK:
2366                        skge->flow_status = FLOW_STAT_SYMMETRIC;
2367                        break;
2368                case PHY_M_PS_RX_P_EN:
2369                        skge->flow_status = FLOW_STAT_REM_SEND;
2370                        break;
2371                case PHY_M_PS_TX_P_EN:
2372                        skge->flow_status = FLOW_STAT_LOC_SEND;
2373                        break;
2374                default:
2375                        skge->flow_status = FLOW_STAT_NONE;
2376                }
2377
2378                if (skge->flow_status == FLOW_STAT_NONE ||
2379                    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2380                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2381                else
2382                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2383                yukon_link_up(skge);
2384                return;
2385        }
2386
2387        if (istatus & PHY_M_IS_LSP_CHANGE)
2388                skge->speed = yukon_speed(hw, phystat);
2389
2390        if (istatus & PHY_M_IS_DUP_CHANGE)
2391                skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2392        if (istatus & PHY_M_IS_LST_CHANGE) {
2393                if (phystat & PHY_M_PS_LINK_UP)
2394                        yukon_link_up(skge);
2395                else
2396                        yukon_link_down(skge);
2397        }
2398        return;
2399 failed:
2400        pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2401
2402        /* XXX restart autonegotiation? */
2403}
2404
2405static void skge_phy_reset(struct skge_port *skge)
2406{
2407        struct skge_hw *hw = skge->hw;
2408        int port = skge->port;
2409        struct net_device *dev = hw->dev[port];
2410
2411        netif_stop_queue(skge->netdev);
2412        netif_carrier_off(skge->netdev);
2413
2414        spin_lock_bh(&hw->phy_lock);
2415        if (is_genesis(hw)) {
2416                genesis_reset(hw, port);
2417                genesis_mac_init(hw, port);
2418        } else {
2419                yukon_reset(hw, port);
2420                yukon_init(hw, port);
2421        }
2422        spin_unlock_bh(&hw->phy_lock);
2423
2424        skge_set_multicast(dev);
2425}
2426
2427/* Basic MII support */
2428static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2429{
2430        struct mii_ioctl_data *data = if_mii(ifr);
2431        struct skge_port *skge = netdev_priv(dev);
2432        struct skge_hw *hw = skge->hw;
2433        int err = -EOPNOTSUPP;
2434
2435        if (!netif_running(dev))
2436                return -ENODEV; /* Phy still in reset */
2437
2438        switch (cmd) {
2439        case SIOCGMIIPHY:
2440                data->phy_id = hw->phy_addr;
2441
2442                /* fallthru */
2443        case SIOCGMIIREG: {
2444                u16 val = 0;
2445                spin_lock_bh(&hw->phy_lock);
2446
2447                if (is_genesis(hw))
2448                        err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2449                else
2450                        err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2451                spin_unlock_bh(&hw->phy_lock);
2452                data->val_out = val;
2453                break;
2454        }
2455
2456        case SIOCSMIIREG:
2457                spin_lock_bh(&hw->phy_lock);
2458                if (is_genesis(hw))
2459                        err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2460                                   data->val_in);
2461                else
2462                        err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2463                                   data->val_in);
2464                spin_unlock_bh(&hw->phy_lock);
2465                break;
2466        }
2467        return err;
2468}
2469
2470static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2471{
2472        u32 end;
2473
2474        start /= 8;
2475        len /= 8;
2476        end = start + len - 1;
2477
2478        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2479        skge_write32(hw, RB_ADDR(q, RB_START), start);
2480        skge_write32(hw, RB_ADDR(q, RB_WP), start);
2481        skge_write32(hw, RB_ADDR(q, RB_RP), start);
2482        skge_write32(hw, RB_ADDR(q, RB_END), end);
2483
2484        if (q == Q_R1 || q == Q_R2) {
2485                /* Set thresholds on receive queue's */
2486                skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2487                             start + (2*len)/3);
2488                skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2489                             start + (len/3));
2490        } else {
2491                /* Enable store & forward on Tx queue's because
2492                 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2493                 */
2494                skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2495        }
2496
2497        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2498}
2499
2500/* Setup Bus Memory Interface */
2501static void skge_qset(struct skge_port *skge, u16 q,
2502                      const struct skge_element *e)
2503{
2504        struct skge_hw *hw = skge->hw;
2505        u32 watermark = 0x600;
2506        u64 base = skge->dma + (e->desc - skge->mem);
2507
2508        /* optimization to reduce window on 32bit/33mhz */
2509        if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2510                watermark /= 2;
2511
2512        skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2513        skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2514        skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2515        skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2516}
2517
2518static int skge_up(struct net_device *dev)
2519{
2520        struct skge_port *skge = netdev_priv(dev);
2521        struct skge_hw *hw = skge->hw;
2522        int port = skge->port;
2523        u32 chunk, ram_addr;
2524        size_t rx_size, tx_size;
2525        int err;
2526
2527        if (!is_valid_ether_addr(dev->dev_addr))
2528                return -EINVAL;
2529
2530        netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2531
2532        if (dev->mtu > RX_BUF_SIZE)
2533                skge->rx_buf_size = dev->mtu + ETH_HLEN;
2534        else
2535                skge->rx_buf_size = RX_BUF_SIZE;
2536
2537
2538        rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2539        tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2540        skge->mem_size = tx_size + rx_size;
2541        skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2542        if (!skge->mem)
2543                return -ENOMEM;
2544
2545        BUG_ON(skge->dma & 7);
2546
2547        if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2548                dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2549                err = -EINVAL;
2550                goto free_pci_mem;
2551        }
2552
2553        memset(skge->mem, 0, skge->mem_size);
2554
2555        err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2556        if (err)
2557                goto free_pci_mem;
2558
2559        err = skge_rx_fill(dev);
2560        if (err)
2561                goto free_rx_ring;
2562
2563        err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2564                              skge->dma + rx_size);
2565        if (err)
2566                goto free_rx_ring;
2567
2568        if (hw->ports == 1) {
2569                err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2570                                  dev->name, hw);
2571                if (err) {
2572                        netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2573                                   hw->pdev->irq, err);
2574                        goto free_tx_ring;
2575                }
2576        }
2577
2578        /* Initialize MAC */
2579        netif_carrier_off(dev);
2580        spin_lock_bh(&hw->phy_lock);
2581        if (is_genesis(hw))
2582                genesis_mac_init(hw, port);
2583        else
2584                yukon_mac_init(hw, port);
2585        spin_unlock_bh(&hw->phy_lock);
2586
2587        /* Configure RAMbuffers - equally between ports and tx/rx */
2588        chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2589        ram_addr = hw->ram_offset + 2 * chunk * port;
2590
2591        skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2592        skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2593
2594        BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2595        skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2596        skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2597
2598        /* Start receiver BMU */
2599        wmb();
2600        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2601        skge_led(skge, LED_MODE_ON);
2602
2603        spin_lock_irq(&hw->hw_lock);
2604        hw->intr_mask |= portmask[port];
2605        skge_write32(hw, B0_IMSK, hw->intr_mask);
2606        skge_read32(hw, B0_IMSK);
2607        spin_unlock_irq(&hw->hw_lock);
2608
2609        napi_enable(&skge->napi);
2610
2611        skge_set_multicast(dev);
2612
2613        return 0;
2614
2615 free_tx_ring:
2616        kfree(skge->tx_ring.start);
2617 free_rx_ring:
2618        skge_rx_clean(skge);
2619        kfree(skge->rx_ring.start);
2620 free_pci_mem:
2621        pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2622        skge->mem = NULL;
2623
2624        return err;
2625}
2626
2627/* stop receiver */
2628static void skge_rx_stop(struct skge_hw *hw, int port)
2629{
2630        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2631        skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2632                     RB_RST_SET|RB_DIS_OP_MD);
2633        skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2634}
2635
2636static int skge_down(struct net_device *dev)
2637{
2638        struct skge_port *skge = netdev_priv(dev);
2639        struct skge_hw *hw = skge->hw;
2640        int port = skge->port;
2641
2642        if (skge->mem == NULL)
2643                return 0;
2644
2645        netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2646
2647        netif_tx_disable(dev);
2648
2649        if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2650                del_timer_sync(&skge->link_timer);
2651
2652        napi_disable(&skge->napi);
2653        netif_carrier_off(dev);
2654
2655        spin_lock_irq(&hw->hw_lock);
2656        hw->intr_mask &= ~portmask[port];
2657        skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2658        skge_read32(hw, B0_IMSK);
2659        spin_unlock_irq(&hw->hw_lock);
2660
2661        if (hw->ports == 1)
2662                free_irq(hw->pdev->irq, hw);
2663
2664        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2665        if (is_genesis(hw))
2666                genesis_stop(skge);
2667        else
2668                yukon_stop(skge);
2669
2670        /* Stop transmitter */
2671        skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2672        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2673                     RB_RST_SET|RB_DIS_OP_MD);
2674
2675
2676        /* Disable Force Sync bit and Enable Alloc bit */
2677        skge_write8(hw, SK_REG(port, TXA_CTRL),
2678                    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2679
2680        /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2681        skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2682        skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2683
2684        /* Reset PCI FIFO */
2685        skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2686        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2687
2688        /* Reset the RAM Buffer async Tx queue */
2689        skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2690
2691        skge_rx_stop(hw, port);
2692
2693        if (is_genesis(hw)) {
2694                skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2695                skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2696        } else {
2697                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2698                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2699        }
2700
2701        skge_led(skge, LED_MODE_OFF);
2702
2703        netif_tx_lock_bh(dev);
2704        skge_tx_clean(dev);
2705        netif_tx_unlock_bh(dev);
2706
2707        skge_rx_clean(skge);
2708
2709        kfree(skge->rx_ring.start);
2710        kfree(skge->tx_ring.start);
2711        pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2712        skge->mem = NULL;
2713        return 0;
2714}
2715
2716static inline int skge_avail(const struct skge_ring *ring)
2717{
2718        smp_mb();
2719        return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2720                + (ring->to_clean - ring->to_use) - 1;
2721}
2722
2723static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2724                                   struct net_device *dev)
2725{
2726        struct skge_port *skge = netdev_priv(dev);
2727        struct skge_hw *hw = skge->hw;
2728        struct skge_element *e;
2729        struct skge_tx_desc *td;
2730        int i;
2731        u32 control, len;
2732        u64 map;
2733
2734        if (skb_padto(skb, ETH_ZLEN))
2735                return NETDEV_TX_OK;
2736
2737        if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2738                return NETDEV_TX_BUSY;
2739
2740        e = skge->tx_ring.to_use;
2741        td = e->desc;
2742        BUG_ON(td->control & BMU_OWN);
2743        e->skb = skb;
2744        len = skb_headlen(skb);
2745        map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2746        dma_unmap_addr_set(e, mapaddr, map);
2747        dma_unmap_len_set(e, maplen, len);
2748
2749        td->dma_lo = map;
2750        td->dma_hi = map >> 32;
2751
2752        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2753                const int offset = skb_checksum_start_offset(skb);
2754
2755                /* This seems backwards, but it is what the sk98lin
2756                 * does.  Looks like hardware is wrong?
2757                 */
2758                if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2759                    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2760                        control = BMU_TCP_CHECK;
2761                else
2762                        control = BMU_UDP_CHECK;
2763
2764                td->csum_offs = 0;
2765                td->csum_start = offset;
2766                td->csum_write = offset + skb->csum_offset;
2767        } else
2768                control = BMU_CHECK;
2769
2770        if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2771                control |= BMU_EOF | BMU_IRQ_EOF;
2772        else {
2773                struct skge_tx_desc *tf = td;
2774
2775                control |= BMU_STFWD;
2776                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2777                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2778
2779                        map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2780                                               skb_frag_size(frag), DMA_TO_DEVICE);
2781
2782                        e = e->next;
2783                        e->skb = skb;
2784                        tf = e->desc;
2785                        BUG_ON(tf->control & BMU_OWN);
2786
2787                        tf->dma_lo = map;
2788                        tf->dma_hi = (u64) map >> 32;
2789                        dma_unmap_addr_set(e, mapaddr, map);
2790                        dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2791
2792                        tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2793                }
2794                tf->control |= BMU_EOF | BMU_IRQ_EOF;
2795        }
2796        /* Make sure all the descriptors written */
2797        wmb();
2798        td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2799        wmb();
2800
2801        netdev_sent_queue(dev, skb->len);
2802
2803        skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2804
2805        netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2806                     "tx queued, slot %td, len %d\n",
2807                     e - skge->tx_ring.start, skb->len);
2808
2809        skge->tx_ring.to_use = e->next;
2810        smp_wmb();
2811
2812        if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2813                netdev_dbg(dev, "transmit queue full\n");
2814                netif_stop_queue(dev);
2815        }
2816
2817        return NETDEV_TX_OK;
2818}
2819
2820
2821/* Free resources associated with this reing element */
2822static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2823                                 u32 control)
2824{
2825        /* skb header vs. fragment */
2826        if (control & BMU_STF)
2827                pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2828                                 dma_unmap_len(e, maplen),
2829                                 PCI_DMA_TODEVICE);
2830        else
2831                pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2832                               dma_unmap_len(e, maplen),
2833                               PCI_DMA_TODEVICE);
2834}
2835
2836/* Free all buffers in transmit ring */
2837static void skge_tx_clean(struct net_device *dev)
2838{
2839        struct skge_port *skge = netdev_priv(dev);
2840        struct skge_element *e;
2841
2842        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2843                struct skge_tx_desc *td = e->desc;
2844
2845                skge_tx_unmap(skge->hw->pdev, e, td->control);
2846
2847                if (td->control & BMU_EOF)
2848                        dev_kfree_skb(e->skb);
2849                td->control = 0;
2850        }
2851
2852        netdev_reset_queue(dev);
2853        skge->tx_ring.to_clean = e;
2854}
2855
2856static void skge_tx_timeout(struct net_device *dev)
2857{
2858        struct skge_port *skge = netdev_priv(dev);
2859
2860        netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2861
2862        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2863        skge_tx_clean(dev);
2864        netif_wake_queue(dev);
2865}
2866
2867static int skge_change_mtu(struct net_device *dev, int new_mtu)
2868{
2869        int err;
2870
2871        if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2872                return -EINVAL;
2873
2874        if (!netif_running(dev)) {
2875                dev->mtu = new_mtu;
2876                return 0;
2877        }
2878
2879        skge_down(dev);
2880
2881        dev->mtu = new_mtu;
2882
2883        err = skge_up(dev);
2884        if (err)
2885                dev_close(dev);
2886
2887        return err;
2888}
2889
2890static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2891
2892static void genesis_add_filter(u8 filter[8], const u8 *addr)
2893{
2894        u32 crc, bit;
2895
2896        crc = ether_crc_le(ETH_ALEN, addr);
2897        bit = ~crc & 0x3f;
2898        filter[bit/8] |= 1 << (bit%8);
2899}
2900
2901static void genesis_set_multicast(struct net_device *dev)
2902{
2903        struct skge_port *skge = netdev_priv(dev);
2904        struct skge_hw *hw = skge->hw;
2905        int port = skge->port;
2906        struct netdev_hw_addr *ha;
2907        u32 mode;
2908        u8 filter[8];
2909
2910        mode = xm_read32(hw, port, XM_MODE);
2911        mode |= XM_MD_ENA_HASH;
2912        if (dev->flags & IFF_PROMISC)
2913                mode |= XM_MD_ENA_PROM;
2914        else
2915                mode &= ~XM_MD_ENA_PROM;
2916
2917        if (dev->flags & IFF_ALLMULTI)
2918                memset(filter, 0xff, sizeof(filter));
2919        else {
2920                memset(filter, 0, sizeof(filter));
2921
2922                if (skge->flow_status == FLOW_STAT_REM_SEND ||
2923                    skge->flow_status == FLOW_STAT_SYMMETRIC)
2924                        genesis_add_filter(filter, pause_mc_addr);
2925
2926                netdev_for_each_mc_addr(ha, dev)
2927                        genesis_add_filter(filter, ha->addr);
2928        }
2929
2930        xm_write32(hw, port, XM_MODE, mode);
2931        xm_outhash(hw, port, XM_HSM, filter);
2932}
2933
2934static void yukon_add_filter(u8 filter[8], const u8 *addr)
2935{
2936         u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2937         filter[bit/8] |= 1 << (bit%8);
2938}
2939
2940static void yukon_set_multicast(struct net_device *dev)
2941{
2942        struct skge_port *skge = netdev_priv(dev);
2943        struct skge_hw *hw = skge->hw;
2944        int port = skge->port;
2945        struct netdev_hw_addr *ha;
2946        int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2947                        skge->flow_status == FLOW_STAT_SYMMETRIC);
2948        u16 reg;
2949        u8 filter[8];
2950
2951        memset(filter, 0, sizeof(filter));
2952
2953        reg = gma_read16(hw, port, GM_RX_CTRL);
2954        reg |= GM_RXCR_UCF_ENA;
2955
2956        if (dev->flags & IFF_PROMISC)           /* promiscuous */
2957                reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2958        else if (dev->flags & IFF_ALLMULTI)     /* all multicast */
2959                memset(filter, 0xff, sizeof(filter));
2960        else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2961                reg &= ~GM_RXCR_MCF_ENA;
2962        else {
2963                reg |= GM_RXCR_MCF_ENA;
2964
2965                if (rx_pause)
2966                        yukon_add_filter(filter, pause_mc_addr);
2967
2968                netdev_for_each_mc_addr(ha, dev)
2969                        yukon_add_filter(filter, ha->addr);
2970        }
2971
2972
2973        gma_write16(hw, port, GM_MC_ADDR_H1,
2974                         (u16)filter[0] | ((u16)filter[1] << 8));
2975        gma_write16(hw, port, GM_MC_ADDR_H2,
2976                         (u16)filter[2] | ((u16)filter[3] << 8));
2977        gma_write16(hw, port, GM_MC_ADDR_H3,
2978                         (u16)filter[4] | ((u16)filter[5] << 8));
2979        gma_write16(hw, port, GM_MC_ADDR_H4,
2980                         (u16)filter[6] | ((u16)filter[7] << 8));
2981
2982        gma_write16(hw, port, GM_RX_CTRL, reg);
2983}
2984
2985static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2986{
2987        if (is_genesis(hw))
2988                return status >> XMR_FS_LEN_SHIFT;
2989        else
2990                return status >> GMR_FS_LEN_SHIFT;
2991}
2992
2993static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2994{
2995        if (is_genesis(hw))
2996                return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2997        else
2998                return (status & GMR_FS_ANY_ERR) ||
2999                        (status & GMR_FS_RX_OK) == 0;
3000}
3001
3002static void skge_set_multicast(struct net_device *dev)
3003{
3004        struct skge_port *skge = netdev_priv(dev);
3005
3006        if (is_genesis(skge->hw))
3007                genesis_set_multicast(dev);
3008        else
3009                yukon_set_multicast(dev);
3010
3011}
3012
3013
3014/* Get receive buffer from descriptor.
3015 * Handles copy of small buffers and reallocation failures
3016 */
3017static struct sk_buff *skge_rx_get(struct net_device *dev,
3018                                   struct skge_element *e,
3019                                   u32 control, u32 status, u16 csum)
3020{
3021        struct skge_port *skge = netdev_priv(dev);
3022        struct sk_buff *skb;
3023        u16 len = control & BMU_BBC;
3024
3025        netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3026                     "rx slot %td status 0x%x len %d\n",
3027                     e - skge->rx_ring.start, status, len);
3028
3029        if (len > skge->rx_buf_size)
3030                goto error;
3031
3032        if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3033                goto error;
3034
3035        if (bad_phy_status(skge->hw, status))
3036                goto error;
3037
3038        if (phy_length(skge->hw, status) != len)
3039                goto error;
3040
3041        if (len < RX_COPY_THRESHOLD) {
3042                skb = netdev_alloc_skb_ip_align(dev, len);
3043                if (!skb)
3044                        goto resubmit;
3045
3046                pci_dma_sync_single_for_cpu(skge->hw->pdev,
3047                                            dma_unmap_addr(e, mapaddr),
3048                                            len, PCI_DMA_FROMDEVICE);
3049                skb_copy_from_linear_data(e->skb, skb->data, len);
3050                pci_dma_sync_single_for_device(skge->hw->pdev,
3051                                               dma_unmap_addr(e, mapaddr),
3052                                               len, PCI_DMA_FROMDEVICE);
3053                skge_rx_reuse(e, skge->rx_buf_size);
3054        } else {
3055                struct sk_buff *nskb;
3056
3057                nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3058                if (!nskb)
3059                        goto resubmit;
3060
3061                pci_unmap_single(skge->hw->pdev,
3062                                 dma_unmap_addr(e, mapaddr),
3063                                 dma_unmap_len(e, maplen),
3064                                 PCI_DMA_FROMDEVICE);
3065                skb = e->skb;
3066                prefetch(skb->data);
3067                skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3068        }
3069
3070        skb_put(skb, len);
3071
3072        if (dev->features & NETIF_F_RXCSUM) {
3073                skb->csum = csum;
3074                skb->ip_summed = CHECKSUM_COMPLETE;
3075        }
3076
3077        skb->protocol = eth_type_trans(skb, dev);
3078
3079        return skb;
3080error:
3081
3082        netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3083                     "rx err, slot %td control 0x%x status 0x%x\n",
3084                     e - skge->rx_ring.start, control, status);
3085
3086        if (is_genesis(skge->hw)) {
3087                if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3088                        dev->stats.rx_length_errors++;
3089                if (status & XMR_FS_FRA_ERR)
3090                        dev->stats.rx_frame_errors++;
3091                if (status & XMR_FS_FCS_ERR)
3092                        dev->stats.rx_crc_errors++;
3093        } else {
3094                if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3095                        dev->stats.rx_length_errors++;
3096                if (status & GMR_FS_FRAGMENT)
3097                        dev->stats.rx_frame_errors++;
3098                if (status & GMR_FS_CRC_ERR)
3099                        dev->stats.rx_crc_errors++;
3100        }
3101
3102resubmit:
3103        skge_rx_reuse(e, skge->rx_buf_size);
3104        return NULL;
3105}
3106
3107/* Free all buffers in Tx ring which are no longer owned by device */
3108static void skge_tx_done(struct net_device *dev)
3109{
3110        struct skge_port *skge = netdev_priv(dev);
3111        struct skge_ring *ring = &skge->tx_ring;
3112        struct skge_element *e;
3113        unsigned int bytes_compl = 0, pkts_compl = 0;
3114
3115        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3116
3117        for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3118                u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3119
3120                if (control & BMU_OWN)
3121                        break;
3122
3123                skge_tx_unmap(skge->hw->pdev, e, control);
3124
3125                if (control & BMU_EOF) {
3126                        netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3127                                     "tx done slot %td\n",
3128                                     e - skge->tx_ring.start);
3129
3130                        pkts_compl++;
3131                        bytes_compl += e->skb->len;
3132
3133                        dev_kfree_skb(e->skb);
3134                }
3135        }
3136        netdev_completed_queue(dev, pkts_compl, bytes_compl);
3137        skge->tx_ring.to_clean = e;
3138
3139        /* Can run lockless until we need to synchronize to restart queue. */
3140        smp_mb();
3141
3142        if (unlikely(netif_queue_stopped(dev) &&
3143                     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3144                netif_tx_lock(dev);
3145                if (unlikely(netif_queue_stopped(dev) &&
3146                             skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3147                        netif_wake_queue(dev);
3148
3149                }
3150                netif_tx_unlock(dev);
3151        }
3152}
3153
3154static int skge_poll(struct napi_struct *napi, int to_do)
3155{
3156        struct skge_port *skge = container_of(napi, struct skge_port, napi);
3157        struct net_device *dev = skge->netdev;
3158        struct skge_hw *hw = skge->hw;
3159        struct skge_ring *ring = &skge->rx_ring;
3160        struct skge_element *e;
3161        int work_done = 0;
3162
3163        skge_tx_done(dev);
3164
3165        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3166
3167        for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3168                struct skge_rx_desc *rd = e->desc;
3169                struct sk_buff *skb;
3170                u32 control;
3171
3172                rmb();
3173                control = rd->control;
3174                if (control & BMU_OWN)
3175                        break;
3176
3177                skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3178                if (likely(skb)) {
3179                        napi_gro_receive(napi, skb);
3180                        ++work_done;
3181                }
3182        }
3183        ring->to_clean = e;
3184
3185        /* restart receiver */
3186        wmb();
3187        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3188
3189        if (work_done < to_do) {
3190                unsigned long flags;
3191
3192                napi_gro_flush(napi, false);
3193                spin_lock_irqsave(&hw->hw_lock, flags);
3194                __napi_complete(napi);
3195                hw->intr_mask |= napimask[skge->port];
3196                skge_write32(hw, B0_IMSK, hw->intr_mask);
3197                skge_read32(hw, B0_IMSK);
3198                spin_unlock_irqrestore(&hw->hw_lock, flags);
3199        }
3200
3201        return work_done;
3202}
3203
3204/* Parity errors seem to happen when Genesis is connected to a switch
3205 * with no other ports present. Heartbeat error??
3206 */
3207static void skge_mac_parity(struct skge_hw *hw, int port)
3208{
3209        struct net_device *dev = hw->dev[port];
3210
3211        ++dev->stats.tx_heartbeat_errors;
3212
3213        if (is_genesis(hw))
3214                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3215                             MFF_CLR_PERR);
3216        else
3217                /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3218                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3219                            (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3220                            ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3221}
3222
3223static void skge_mac_intr(struct skge_hw *hw, int port)
3224{
3225        if (is_genesis(hw))
3226                genesis_mac_intr(hw, port);
3227        else
3228                yukon_mac_intr(hw, port);
3229}
3230
3231/* Handle device specific framing and timeout interrupts */
3232static void skge_error_irq(struct skge_hw *hw)
3233{
3234        struct pci_dev *pdev = hw->pdev;
3235        u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3236
3237        if (is_genesis(hw)) {
3238                /* clear xmac errors */
3239                if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3240                        skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3241                if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3242                        skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3243        } else {
3244                /* Timestamp (unused) overflow */
3245                if (hwstatus & IS_IRQ_TIST_OV)
3246                        skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3247        }
3248
3249        if (hwstatus & IS_RAM_RD_PAR) {
3250                dev_err(&pdev->dev, "Ram read data parity error\n");
3251                skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3252        }
3253
3254        if (hwstatus & IS_RAM_WR_PAR) {
3255                dev_err(&pdev->dev, "Ram write data parity error\n");
3256                skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3257        }
3258
3259        if (hwstatus & IS_M1_PAR_ERR)
3260                skge_mac_parity(hw, 0);
3261
3262        if (hwstatus & IS_M2_PAR_ERR)
3263                skge_mac_parity(hw, 1);
3264
3265        if (hwstatus & IS_R1_PAR_ERR) {
3266                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3267                        hw->dev[0]->name);
3268                skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3269        }
3270
3271        if (hwstatus & IS_R2_PAR_ERR) {
3272                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3273                        hw->dev[1]->name);
3274                skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3275        }
3276
3277        if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3278                u16 pci_status, pci_cmd;
3279
3280                pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3281                pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3282
3283                dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3284                        pci_cmd, pci_status);
3285
3286                /* Write the error bits back to clear them. */
3287                pci_status &= PCI_STATUS_ERROR_BITS;
3288                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3289                pci_write_config_word(pdev, PCI_COMMAND,
3290                                      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3291                pci_write_config_word(pdev, PCI_STATUS, pci_status);
3292                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3293
3294                /* if error still set then just ignore it */
3295                hwstatus = skge_read32(hw, B0_HWE_ISRC);
3296                if (hwstatus & IS_IRQ_STAT) {
3297                        dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3298                        hw->intr_mask &= ~IS_HW_ERR;
3299                }
3300        }
3301}
3302
3303/*
3304 * Interrupt from PHY are handled in tasklet (softirq)
3305 * because accessing phy registers requires spin wait which might
3306 * cause excess interrupt latency.
3307 */
3308static void skge_extirq(unsigned long arg)
3309{
3310        struct skge_hw *hw = (struct skge_hw *) arg;
3311        int port;
3312
3313        for (port = 0; port < hw->ports; port++) {
3314                struct net_device *dev = hw->dev[port];
3315
3316                if (netif_running(dev)) {
3317                        struct skge_port *skge = netdev_priv(dev);
3318
3319                        spin_lock(&hw->phy_lock);
3320                        if (!is_genesis(hw))
3321                                yukon_phy_intr(skge);
3322                        else if (hw->phy_type == SK_PHY_BCOM)
3323                                bcom_phy_intr(skge);
3324                        spin_unlock(&hw->phy_lock);
3325                }
3326        }
3327
3328        spin_lock_irq(&hw->hw_lock);
3329        hw->intr_mask |= IS_EXT_REG;
3330        skge_write32(hw, B0_IMSK, hw->intr_mask);
3331        skge_read32(hw, B0_IMSK);
3332        spin_unlock_irq(&hw->hw_lock);
3333}
3334
3335static irqreturn_t skge_intr(int irq, void *dev_id)
3336{
3337        struct skge_hw *hw = dev_id;
3338        u32 status;
3339        int handled = 0;
3340
3341        spin_lock(&hw->hw_lock);
3342        /* Reading this register masks IRQ */
3343        status = skge_read32(hw, B0_SP_ISRC);
3344        if (status == 0 || status == ~0)
3345                goto out;
3346
3347        handled = 1;
3348        status &= hw->intr_mask;
3349        if (status & IS_EXT_REG) {
3350                hw->intr_mask &= ~IS_EXT_REG;
3351                tasklet_schedule(&hw->phy_task);
3352        }
3353
3354        if (status & (IS_XA1_F|IS_R1_F)) {
3355                struct skge_port *skge = netdev_priv(hw->dev[0]);
3356                hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3357                napi_schedule(&skge->napi);
3358        }
3359
3360        if (status & IS_PA_TO_TX1)
3361                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3362
3363        if (status & IS_PA_TO_RX1) {
3364                ++hw->dev[0]->stats.rx_over_errors;
3365                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3366        }
3367
3368
3369        if (status & IS_MAC1)
3370                skge_mac_intr(hw, 0);
3371
3372        if (hw->dev[1]) {
3373                struct skge_port *skge = netdev_priv(hw->dev[1]);
3374
3375                if (status & (IS_XA2_F|IS_R2_F)) {
3376                        hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3377                        napi_schedule(&skge->napi);
3378                }
3379
3380                if (status & IS_PA_TO_RX2) {
3381                        ++hw->dev[1]->stats.rx_over_errors;
3382                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3383                }
3384
3385                if (status & IS_PA_TO_TX2)
3386                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3387
3388                if (status & IS_MAC2)
3389                        skge_mac_intr(hw, 1);
3390        }
3391
3392        if (status & IS_HW_ERR)
3393                skge_error_irq(hw);
3394
3395        skge_write32(hw, B0_IMSK, hw->intr_mask);
3396        skge_read32(hw, B0_IMSK);
3397out:
3398        spin_unlock(&hw->hw_lock);
3399
3400        return IRQ_RETVAL(handled);
3401}
3402
3403#ifdef CONFIG_NET_POLL_CONTROLLER
3404static void skge_netpoll(struct net_device *dev)
3405{
3406        struct skge_port *skge = netdev_priv(dev);
3407
3408        disable_irq(dev->irq);
3409        skge_intr(dev->irq, skge->hw);
3410        enable_irq(dev->irq);
3411}
3412#endif
3413
3414static int skge_set_mac_address(struct net_device *dev, void *p)
3415{
3416        struct skge_port *skge = netdev_priv(dev);
3417        struct skge_hw *hw = skge->hw;
3418        unsigned port = skge->port;
3419        const struct sockaddr *addr = p;
3420        u16 ctrl;
3421
3422        if (!is_valid_ether_addr(addr->sa_data))
3423                return -EADDRNOTAVAIL;
3424
3425        memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3426
3427        if (!netif_running(dev)) {
3428                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3429                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3430        } else {
3431                /* disable Rx */
3432                spin_lock_bh(&hw->phy_lock);
3433                ctrl = gma_read16(hw, port, GM_GP_CTRL);
3434                gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3435
3436                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3437                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3438
3439                if (is_genesis(hw))
3440                        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3441                else {
3442                        gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3443                        gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3444                }
3445
3446                gma_write16(hw, port, GM_GP_CTRL, ctrl);
3447                spin_unlock_bh(&hw->phy_lock);
3448        }
3449
3450        return 0;
3451}
3452
3453static const struct {
3454        u8 id;
3455        const char *name;
3456} skge_chips[] = {
3457        { CHIP_ID_GENESIS,      "Genesis" },
3458        { CHIP_ID_YUKON,         "Yukon" },
3459        { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
3460        { CHIP_ID_YUKON_LP,      "Yukon-LP"},
3461};
3462
3463static const char *skge_board_name(const struct skge_hw *hw)
3464{
3465        int i;
3466        static char buf[16];
3467
3468        for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3469                if (skge_chips[i].id == hw->chip_id)
3470                        return skge_chips[i].name;
3471
3472        snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3473        return buf;
3474}
3475
3476
3477/*
3478 * Setup the board data structure, but don't bring up
3479 * the port(s)
3480 */
3481static int skge_reset(struct skge_hw *hw)
3482{
3483        u32 reg;
3484        u16 ctst, pci_status;
3485        u8 t8, mac_cfg, pmd_type;
3486        int i;
3487
3488        ctst = skge_read16(hw, B0_CTST);
3489
3490        /* do a SW reset */
3491        skge_write8(hw, B0_CTST, CS_RST_SET);
3492        skge_write8(hw, B0_CTST, CS_RST_CLR);
3493
3494        /* clear PCI errors, if any */
3495        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3496        skge_write8(hw, B2_TST_CTRL2, 0);
3497
3498        pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3499        pci_write_config_word(hw->pdev, PCI_STATUS,
3500                              pci_status | PCI_STATUS_ERROR_BITS);
3501        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3502        skge_write8(hw, B0_CTST, CS_MRST_CLR);
3503
3504        /* restore CLK_RUN bits (for Yukon-Lite) */
3505        skge_write16(hw, B0_CTST,
3506                     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3507
3508        hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3509        hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3510        pmd_type = skge_read8(hw, B2_PMD_TYP);
3511        hw->copper = (pmd_type == 'T' || pmd_type == '1');
3512
3513        switch (hw->chip_id) {
3514        case CHIP_ID_GENESIS:
3515#ifdef CONFIG_SKGE_GENESIS
3516                switch (hw->phy_type) {
3517                case SK_PHY_XMAC:
3518                        hw->phy_addr = PHY_ADDR_XMAC;
3519                        break;
3520                case SK_PHY_BCOM:
3521                        hw->phy_addr = PHY_ADDR_BCOM;
3522                        break;
3523                default:
3524                        dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3525                               hw->phy_type);
3526                        return -EOPNOTSUPP;
3527                }
3528                break;
3529#else
3530                dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3531                return -EOPNOTSUPP;
3532#endif
3533
3534        case CHIP_ID_YUKON:
3535        case CHIP_ID_YUKON_LITE:
3536        case CHIP_ID_YUKON_LP:
3537                if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3538                        hw->copper = 1;
3539
3540                hw->phy_addr = PHY_ADDR_MARV;
3541                break;
3542
3543        default:
3544                dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3545                       hw->chip_id);
3546                return -EOPNOTSUPP;
3547        }
3548
3549        mac_cfg = skge_read8(hw, B2_MAC_CFG);
3550        hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3551        hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3552
3553        /* read the adapters RAM size */
3554        t8 = skge_read8(hw, B2_E_0);
3555        if (is_genesis(hw)) {
3556                if (t8 == 3) {
3557                        /* special case: 4 x 64k x 36, offset = 0x80000 */
3558                        hw->ram_size = 0x100000;
3559                        hw->ram_offset = 0x80000;
3560                } else
3561                        hw->ram_size = t8 * 512;
3562        } else if (t8 == 0)
3563                hw->ram_size = 0x20000;
3564        else
3565                hw->ram_size = t8 * 4096;
3566
3567        hw->intr_mask = IS_HW_ERR;
3568
3569        /* Use PHY IRQ for all but fiber based Genesis board */
3570        if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3571                hw->intr_mask |= IS_EXT_REG;
3572
3573        if (is_genesis(hw))
3574                genesis_init(hw);
3575        else {
3576                /* switch power to VCC (WA for VAUX problem) */
3577                skge_write8(hw, B0_POWER_CTRL,
3578                            PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3579
3580                /* avoid boards with stuck Hardware error bits */
3581                if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3582                    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3583                        dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3584                        hw->intr_mask &= ~IS_HW_ERR;
3585                }
3586
3587                /* Clear PHY COMA */
3588                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3589                pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3590                reg &= ~PCI_PHY_COMA;
3591                pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3592                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3593
3594
3595                for (i = 0; i < hw->ports; i++) {
3596                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3597                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3598                }
3599        }
3600
3601        /* turn off hardware timer (unused) */
3602        skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3603        skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3604        skge_write8(hw, B0_LED, LED_STAT_ON);
3605
3606        /* enable the Tx Arbiters */
3607        for (i = 0; i < hw->ports; i++)
3608                skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3609
3610        /* Initialize ram interface */
3611        skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3612
3613        skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3614        skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3615        skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3616        skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3617        skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3618        skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3619        skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3620        skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3621        skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3622        skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3623        skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3624        skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3625
3626        skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3627
3628        /* Set interrupt moderation for Transmit only
3629         * Receive interrupts avoided by NAPI
3630         */
3631        skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3632        skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3633        skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3634
3635        /* Leave irq disabled until first port is brought up. */
3636        skge_write32(hw, B0_IMSK, 0);
3637
3638        for (i = 0; i < hw->ports; i++) {
3639                if (is_genesis(hw))
3640                        genesis_reset(hw, i);
3641                else
3642                        yukon_reset(hw, i);
3643        }
3644
3645        return 0;
3646}
3647
3648
3649#ifdef CONFIG_SKGE_DEBUG
3650
3651static struct dentry *skge_debug;
3652
3653static int skge_debug_show(struct seq_file *seq, void *v)
3654{
3655        struct net_device *dev = seq->private;
3656        const struct skge_port *skge = netdev_priv(dev);
3657        const struct skge_hw *hw = skge->hw;
3658        const struct skge_element *e;
3659
3660        if (!netif_running(dev))
3661                return -ENETDOWN;
3662
3663        seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3664                   skge_read32(hw, B0_IMSK));
3665
3666        seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3667        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3668                const struct skge_tx_desc *t = e->desc;
3669                seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3670                           t->control, t->dma_hi, t->dma_lo, t->status,
3671                           t->csum_offs, t->csum_write, t->csum_start);
3672        }
3673
3674        seq_printf(seq, "\nRx Ring:\n");
3675        for (e = skge->rx_ring.to_clean; ; e = e->next) {
3676                const struct skge_rx_desc *r = e->desc;
3677
3678                if (r->control & BMU_OWN)
3679                        break;
3680
3681                seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3682                           r->control, r->dma_hi, r->dma_lo, r->status,
3683                           r->timestamp, r->csum1, r->csum1_start);
3684        }
3685
3686        return 0;
3687}
3688
3689static int skge_debug_open(struct inode *inode, struct file *file)
3690{
3691        return single_open(file, skge_debug_show, inode->i_private);
3692}
3693
3694static const struct file_operations skge_debug_fops = {
3695        .owner          = THIS_MODULE,
3696        .open           = skge_debug_open,
3697        .read           = seq_read,
3698        .llseek         = seq_lseek,
3699        .release        = single_release,
3700};
3701
3702/*
3703 * Use network device events to create/remove/rename
3704 * debugfs file entries
3705 */
3706static int skge_device_event(struct notifier_block *unused,
3707                             unsigned long event, void *ptr)
3708{
3709        struct net_device *dev = ptr;
3710        struct skge_port *skge;
3711        struct dentry *d;
3712
3713        if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3714                goto done;
3715
3716        skge = netdev_priv(dev);
3717        switch (event) {
3718        case NETDEV_CHANGENAME:
3719                if (skge->debugfs) {
3720                        d = debugfs_rename(skge_debug, skge->debugfs,
3721                                           skge_debug, dev->name);
3722                        if (d)
3723                                skge->debugfs = d;
3724                        else {
3725                                netdev_info(dev, "rename failed\n");
3726                                debugfs_remove(skge->debugfs);
3727                        }
3728                }
3729                break;
3730
3731        case NETDEV_GOING_DOWN:
3732                if (skge->debugfs) {
3733                        debugfs_remove(skge->debugfs);
3734                        skge->debugfs = NULL;
3735                }
3736                break;
3737
3738        case NETDEV_UP:
3739                d = debugfs_create_file(dev->name, S_IRUGO,
3740                                        skge_debug, dev,
3741                                        &skge_debug_fops);
3742                if (!d || IS_ERR(d))
3743                        netdev_info(dev, "debugfs create failed\n");
3744                else
3745                        skge->debugfs = d;
3746                break;
3747        }
3748
3749done:
3750        return NOTIFY_DONE;
3751}
3752
3753static struct notifier_block skge_notifier = {
3754        .notifier_call = skge_device_event,
3755};
3756
3757
3758static __init void skge_debug_init(void)
3759{
3760        struct dentry *ent;
3761
3762        ent = debugfs_create_dir("skge", NULL);
3763        if (!ent || IS_ERR(ent)) {
3764                pr_info("debugfs create directory failed\n");
3765                return;
3766        }
3767
3768        skge_debug = ent;
3769        register_netdevice_notifier(&skge_notifier);
3770}
3771
3772static __exit void skge_debug_cleanup(void)
3773{
3774        if (skge_debug) {
3775                unregister_netdevice_notifier(&skge_notifier);
3776                debugfs_remove(skge_debug);
3777                skge_debug = NULL;
3778        }
3779}
3780
3781#else
3782#define skge_debug_init()
3783#define skge_debug_cleanup()
3784#endif
3785
3786static const struct net_device_ops skge_netdev_ops = {
3787        .ndo_open               = skge_up,
3788        .ndo_stop               = skge_down,
3789        .ndo_start_xmit         = skge_xmit_frame,
3790        .ndo_do_ioctl           = skge_ioctl,
3791        .ndo_get_stats          = skge_get_stats,
3792        .ndo_tx_timeout         = skge_tx_timeout,
3793        .ndo_change_mtu         = skge_change_mtu,
3794        .ndo_validate_addr      = eth_validate_addr,
3795        .ndo_set_rx_mode        = skge_set_multicast,
3796        .ndo_set_mac_address    = skge_set_mac_address,
3797#ifdef CONFIG_NET_POLL_CONTROLLER
3798        .ndo_poll_controller    = skge_netpoll,
3799#endif
3800};
3801
3802
3803/* Initialize network device */
3804static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3805                                       int highmem)
3806{
3807        struct skge_port *skge;
3808        struct net_device *dev = alloc_etherdev(sizeof(*skge));
3809
3810        if (!dev)
3811                return NULL;
3812
3813        SET_NETDEV_DEV(dev, &hw->pdev->dev);
3814        dev->netdev_ops = &skge_netdev_ops;
3815        dev->ethtool_ops = &skge_ethtool_ops;
3816        dev->watchdog_timeo = TX_WATCHDOG;
3817        dev->irq = hw->pdev->irq;
3818
3819        if (highmem)
3820                dev->features |= NETIF_F_HIGHDMA;
3821
3822        skge = netdev_priv(dev);
3823        netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3824        skge->netdev = dev;
3825        skge->hw = hw;
3826        skge->msg_enable = netif_msg_init(debug, default_msg);
3827
3828        skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3829        skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3830
3831        /* Auto speed and flow control */
3832        skge->autoneg = AUTONEG_ENABLE;
3833        skge->flow_control = FLOW_MODE_SYM_OR_REM;
3834        skge->duplex = -1;
3835        skge->speed = -1;
3836        skge->advertising = skge_supported_modes(hw);
3837
3838        if (device_can_wakeup(&hw->pdev->dev)) {
3839                skge->wol = wol_supported(hw) & WAKE_MAGIC;
3840                device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3841        }
3842
3843        hw->dev[port] = dev;
3844
3845        skge->port = port;
3846
3847        /* Only used for Genesis XMAC */
3848        if (is_genesis(hw))
3849            setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3850        else {
3851                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3852                                   NETIF_F_RXCSUM;
3853                dev->features |= dev->hw_features;
3854        }
3855
3856        /* read the mac address */
3857        memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3858        memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3859
3860        return dev;
3861}
3862
3863static void __devinit skge_show_addr(struct net_device *dev)
3864{
3865        const struct skge_port *skge = netdev_priv(dev);
3866
3867        netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3868}
3869
3870static int only_32bit_dma;
3871
3872static int __devinit skge_probe(struct pci_dev *pdev,
3873                                const struct pci_device_id *ent)
3874{
3875        struct net_device *dev, *dev1;
3876        struct skge_hw *hw;
3877        int err, using_dac = 0;
3878
3879        err = pci_enable_device(pdev);
3880        if (err) {
3881                dev_err(&pdev->dev, "cannot enable PCI device\n");
3882                goto err_out;
3883        }
3884
3885        err = pci_request_regions(pdev, DRV_NAME);
3886        if (err) {
3887                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3888                goto err_out_disable_pdev;
3889        }
3890
3891        pci_set_master(pdev);
3892
3893        if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3894                using_dac = 1;
3895                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3896        } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3897                using_dac = 0;
3898                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3899        }
3900
3901        if (err) {
3902                dev_err(&pdev->dev, "no usable DMA configuration\n");
3903                goto err_out_free_regions;
3904        }
3905
3906#ifdef __BIG_ENDIAN
3907        /* byte swap descriptors in hardware */
3908        {
3909                u32 reg;
3910
3911                pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3912                reg |= PCI_REV_DESC;
3913                pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3914        }
3915#endif
3916
3917        err = -ENOMEM;
3918        /* space for skge@pci:0000:04:00.0 */
3919        hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3920                     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3921        if (!hw) {
3922                dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3923                goto err_out_free_regions;
3924        }
3925        sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3926
3927        hw->pdev = pdev;
3928        spin_lock_init(&hw->hw_lock);
3929        spin_lock_init(&hw->phy_lock);
3930        tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3931
3932        hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3933        if (!hw->regs) {
3934                dev_err(&pdev->dev, "cannot map device registers\n");
3935                goto err_out_free_hw;
3936        }
3937
3938        err = skge_reset(hw);
3939        if (err)
3940                goto err_out_iounmap;
3941
3942        pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3943                DRV_VERSION,
3944                (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3945                skge_board_name(hw), hw->chip_rev);
3946
3947        dev = skge_devinit(hw, 0, using_dac);
3948        if (!dev) {
3949                err = -ENOMEM;
3950                goto err_out_led_off;
3951        }
3952
3953        /* Some motherboards are broken and has zero in ROM. */
3954        if (!is_valid_ether_addr(dev->dev_addr))
3955                dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3956
3957        err = register_netdev(dev);
3958        if (err) {
3959                dev_err(&pdev->dev, "cannot register net device\n");
3960                goto err_out_free_netdev;
3961        }
3962
3963        skge_show_addr(dev);
3964
3965        if (hw->ports > 1) {
3966                dev1 = skge_devinit(hw, 1, using_dac);
3967                if (!dev1) {
3968                        err = -ENOMEM;
3969                        goto err_out_unregister;
3970                }
3971
3972                err = register_netdev(dev1);
3973                if (err) {
3974                        dev_err(&pdev->dev, "cannot register second net device\n");
3975                        goto err_out_free_dev1;
3976                }
3977
3978                err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3979                                  hw->irq_name, hw);
3980                if (err) {
3981                        dev_err(&pdev->dev, "cannot assign irq %d\n",
3982                                pdev->irq);
3983                        goto err_out_unregister_dev1;
3984                }
3985
3986                skge_show_addr(dev1);
3987        }
3988        pci_set_drvdata(pdev, hw);
3989
3990        return 0;
3991
3992err_out_unregister_dev1:
3993        unregister_netdev(dev1);
3994err_out_free_dev1:
3995        free_netdev(dev1);
3996err_out_unregister:
3997        unregister_netdev(dev);
3998err_out_free_netdev:
3999        free_netdev(dev);
4000err_out_led_off:
4001        skge_write16(hw, B0_LED, LED_STAT_OFF);
4002err_out_iounmap:
4003        iounmap(hw->regs);
4004err_out_free_hw:
4005        kfree(hw);
4006err_out_free_regions:
4007        pci_release_regions(pdev);
4008err_out_disable_pdev:
4009        pci_disable_device(pdev);
4010        pci_set_drvdata(pdev, NULL);
4011err_out:
4012        return err;
4013}
4014
4015static void __devexit skge_remove(struct pci_dev *pdev)
4016{
4017        struct skge_hw *hw  = pci_get_drvdata(pdev);
4018        struct net_device *dev0, *dev1;
4019
4020        if (!hw)
4021                return;
4022
4023        dev1 = hw->dev[1];
4024        if (dev1)
4025                unregister_netdev(dev1);
4026        dev0 = hw->dev[0];
4027        unregister_netdev(dev0);
4028
4029        tasklet_kill(&hw->phy_task);
4030
4031        spin_lock_irq(&hw->hw_lock);
4032        hw->intr_mask = 0;
4033
4034        if (hw->ports > 1) {
4035                skge_write32(hw, B0_IMSK, 0);
4036                skge_read32(hw, B0_IMSK);
4037                free_irq(pdev->irq, hw);
4038        }
4039        spin_unlock_irq(&hw->hw_lock);
4040
4041        skge_write16(hw, B0_LED, LED_STAT_OFF);
4042        skge_write8(hw, B0_CTST, CS_RST_SET);
4043
4044        if (hw->ports > 1)
4045                free_irq(pdev->irq, hw);
4046        pci_release_regions(pdev);
4047        pci_disable_device(pdev);
4048        if (dev1)
4049                free_netdev(dev1);
4050        free_netdev(dev0);
4051
4052        iounmap(hw->regs);
4053        kfree(hw);
4054        pci_set_drvdata(pdev, NULL);
4055}
4056
4057#ifdef CONFIG_PM_SLEEP
4058static int skge_suspend(struct device *dev)
4059{
4060        struct pci_dev *pdev = to_pci_dev(dev);
4061        struct skge_hw *hw  = pci_get_drvdata(pdev);
4062        int i;
4063
4064        if (!hw)
4065                return 0;
4066
4067        for (i = 0; i < hw->ports; i++) {
4068                struct net_device *dev = hw->dev[i];
4069                struct skge_port *skge = netdev_priv(dev);
4070
4071                if (netif_running(dev))
4072                        skge_down(dev);
4073
4074                if (skge->wol)
4075                        skge_wol_init(skge);
4076        }
4077
4078        skge_write32(hw, B0_IMSK, 0);
4079
4080        return 0;
4081}
4082
4083static int skge_resume(struct device *dev)
4084{
4085        struct pci_dev *pdev = to_pci_dev(dev);
4086        struct skge_hw *hw  = pci_get_drvdata(pdev);
4087        int i, err;
4088
4089        if (!hw)
4090                return 0;
4091
4092        err = skge_reset(hw);
4093        if (err)
4094                goto out;
4095
4096        for (i = 0; i < hw->ports; i++) {
4097                struct net_device *dev = hw->dev[i];
4098
4099                if (netif_running(dev)) {
4100                        err = skge_up(dev);
4101
4102                        if (err) {
4103                                netdev_err(dev, "could not up: %d\n", err);
4104                                dev_close(dev);
4105                                goto out;
4106                        }
4107                }
4108        }
4109out:
4110        return err;
4111}
4112
4113static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4114#define SKGE_PM_OPS (&skge_pm_ops)
4115
4116#else
4117
4118#define SKGE_PM_OPS NULL
4119#endif /* CONFIG_PM_SLEEP */
4120
4121static void skge_shutdown(struct pci_dev *pdev)
4122{
4123        struct skge_hw *hw  = pci_get_drvdata(pdev);
4124        int i;
4125
4126        if (!hw)
4127                return;
4128
4129        for (i = 0; i < hw->ports; i++) {
4130                struct net_device *dev = hw->dev[i];
4131                struct skge_port *skge = netdev_priv(dev);
4132
4133                if (skge->wol)
4134                        skge_wol_init(skge);
4135        }
4136
4137        pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4138        pci_set_power_state(pdev, PCI_D3hot);
4139}
4140
4141static struct pci_driver skge_driver = {
4142        .name =         DRV_NAME,
4143        .id_table =     skge_id_table,
4144        .probe =        skge_probe,
4145        .remove =       __devexit_p(skge_remove),
4146        .shutdown =     skge_shutdown,
4147        .driver.pm =    SKGE_PM_OPS,
4148};
4149
4150static struct dmi_system_id skge_32bit_dma_boards[] = {
4151        {
4152                .ident = "Gigabyte nForce boards",
4153                .matches = {
4154                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4155                        DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4156                },
4157        },
4158        {
4159                .ident = "ASUS P5NSLI",
4160                .matches = {
4161                        DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4162                        DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4163                },
4164        },
4165        {}
4166};
4167
4168static int __init skge_init_module(void)
4169{
4170        if (dmi_check_system(skge_32bit_dma_boards))
4171                only_32bit_dma = 1;
4172        skge_debug_init();
4173        return pci_register_driver(&skge_driver);
4174}
4175
4176static void __exit skge_cleanup_module(void)
4177{
4178        pci_unregister_driver(&skge_driver);
4179        skge_debug_cleanup();
4180}
4181
4182module_init(skge_init_module);
4183module_exit(skge_cleanup_module);
4184