linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2011 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10/* Theory of operation:
  11 *
  12 * PTP support is assisted by firmware running on the MC, which provides
  13 * the hardware timestamping capabilities.  Both transmitted and received
  14 * PTP event packets are queued onto internal queues for subsequent processing;
  15 * this is because the MC operations are relatively long and would block
  16 * block NAPI/interrupt operation.
  17 *
  18 * Receive event processing:
  19 *      The event contains the packet's UUID and sequence number, together
  20 *      with the hardware timestamp.  The PTP receive packet queue is searched
  21 *      for this UUID/sequence number and, if found, put on a pending queue.
  22 *      Packets not matching are delivered without timestamps (MCDI events will
  23 *      always arrive after the actual packet).
  24 *      It is important for the operation of the PTP protocol that the ordering
  25 *      of packets between the event and general port is maintained.
  26 *
  27 * Work queue processing:
  28 *      If work waiting, synchronise host/hardware time
  29 *
  30 *      Transmit: send packet through MC, which returns the transmission time
  31 *      that is converted to an appropriate timestamp.
  32 *
  33 *      Receive: the packet's reception time is converted to an appropriate
  34 *      timestamp.
  35 */
  36#include <linux/ip.h>
  37#include <linux/udp.h>
  38#include <linux/time.h>
  39#include <linux/ktime.h>
  40#include <linux/module.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/pps_kernel.h>
  43#include <linux/ptp_clock_kernel.h>
  44#include "net_driver.h"
  45#include "efx.h"
  46#include "mcdi.h"
  47#include "mcdi_pcol.h"
  48#include "io.h"
  49#include "regs.h"
  50#include "nic.h"
  51
  52/* Maximum number of events expected to make up a PTP event */
  53#define MAX_EVENT_FRAGS                 3
  54
  55/* Maximum delay, ms, to begin synchronisation */
  56#define MAX_SYNCHRONISE_WAIT_MS         2
  57
  58/* How long, at most, to spend synchronising */
  59#define SYNCHRONISE_PERIOD_NS           250000
  60
  61/* How often to update the shared memory time */
  62#define SYNCHRONISATION_GRANULARITY_NS  200
  63
  64/* Minimum permitted length of a (corrected) synchronisation time */
  65#define MIN_SYNCHRONISATION_NS          120
  66
  67/* Maximum permitted length of a (corrected) synchronisation time */
  68#define MAX_SYNCHRONISATION_NS          1000
  69
  70/* How many (MC) receive events that can be queued */
  71#define MAX_RECEIVE_EVENTS              8
  72
  73/* Length of (modified) moving average. */
  74#define AVERAGE_LENGTH                  16
  75
  76/* How long an unmatched event or packet can be held */
  77#define PKT_EVENT_LIFETIME_MS           10
  78
  79/* Offsets into PTP packet for identification.  These offsets are from the
  80 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  81 * PTP V2 permit the use of IPV4 options.
  82 */
  83#define PTP_DPORT_OFFSET        22
  84
  85#define PTP_V1_VERSION_LENGTH   2
  86#define PTP_V1_VERSION_OFFSET   28
  87
  88#define PTP_V1_UUID_LENGTH      6
  89#define PTP_V1_UUID_OFFSET      50
  90
  91#define PTP_V1_SEQUENCE_LENGTH  2
  92#define PTP_V1_SEQUENCE_OFFSET  58
  93
  94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  95 * includes IP header.
  96 */
  97#define PTP_V1_MIN_LENGTH       64
  98
  99#define PTP_V2_VERSION_LENGTH   1
 100#define PTP_V2_VERSION_OFFSET   29
 101
 102/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 103 * the MC only captures the last six bytes of the clock identity. These values
 104 * reflect those, not the ones used in the standard.  The standard permits
 105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 106 */
 107#define PTP_V2_MC_UUID_LENGTH   6
 108#define PTP_V2_MC_UUID_OFFSET   50
 109
 110#define PTP_V2_SEQUENCE_LENGTH  2
 111#define PTP_V2_SEQUENCE_OFFSET  58
 112
 113/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 114 * includes IP header.
 115 */
 116#define PTP_V2_MIN_LENGTH       63
 117
 118#define PTP_MIN_LENGTH          63
 119
 120#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 121#define PTP_EVENT_PORT          319
 122#define PTP_GENERAL_PORT        320
 123
 124/* Annoyingly the format of the version numbers are different between
 125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 126 */
 127#define PTP_VERSION_V1          1
 128
 129#define PTP_VERSION_V2          2
 130#define PTP_VERSION_V2_MASK     0x0f
 131
 132enum ptp_packet_state {
 133        PTP_PACKET_STATE_UNMATCHED = 0,
 134        PTP_PACKET_STATE_MATCHED,
 135        PTP_PACKET_STATE_TIMED_OUT,
 136        PTP_PACKET_STATE_MATCH_UNWANTED
 137};
 138
 139/* NIC synchronised with single word of time only comprising
 140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 141 */
 142#define MC_NANOSECOND_BITS      30
 143#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 144#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 145
 146/* Maximum parts-per-billion adjustment that is acceptable */
 147#define MAX_PPB                 1000000
 148
 149/* Number of bits required to hold the above */
 150#define MAX_PPB_BITS            20
 151
 152/* Number of extra bits allowed when calculating fractional ns.
 153 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
 154 * be less than 63.
 155 */
 156#define PPB_EXTRA_BITS          2
 157
 158/* Precalculate scale word to avoid long long division at runtime */
 159#define PPB_SCALE_WORD  ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
 160                        MAX_PPB_BITS)) / 1000000000LL)
 161
 162#define PTP_SYNC_ATTEMPTS       4
 163
 164/**
 165 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 166 * @words: UUID and (partial) sequence number
 167 * @expiry: Time after which the packet should be delivered irrespective of
 168 *            event arrival.
 169 * @state: The state of the packet - whether it is ready for processing or
 170 *         whether that is of no interest.
 171 */
 172struct efx_ptp_match {
 173        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 174        unsigned long expiry;
 175        enum ptp_packet_state state;
 176};
 177
 178/**
 179 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 180 * @seq0: First part of (PTP) UUID
 181 * @seq1: Second part of (PTP) UUID and sequence number
 182 * @hwtimestamp: Event timestamp
 183 */
 184struct efx_ptp_event_rx {
 185        struct list_head link;
 186        u32 seq0;
 187        u32 seq1;
 188        ktime_t hwtimestamp;
 189        unsigned long expiry;
 190};
 191
 192/**
 193 * struct efx_ptp_timeset - Synchronisation between host and MC
 194 * @host_start: Host time immediately before hardware timestamp taken
 195 * @seconds: Hardware timestamp, seconds
 196 * @nanoseconds: Hardware timestamp, nanoseconds
 197 * @host_end: Host time immediately after hardware timestamp taken
 198 * @waitns: Number of nanoseconds between hardware timestamp being read and
 199 *          host end time being seen
 200 * @window: Difference of host_end and host_start
 201 * @valid: Whether this timeset is valid
 202 */
 203struct efx_ptp_timeset {
 204        u32 host_start;
 205        u32 seconds;
 206        u32 nanoseconds;
 207        u32 host_end;
 208        u32 waitns;
 209        u32 window;     /* Derived: end - start, allowing for wrap */
 210};
 211
 212/**
 213 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 214 * @channel: The PTP channel
 215 * @rxq: Receive queue (awaiting timestamps)
 216 * @txq: Transmit queue
 217 * @evt_list: List of MC receive events awaiting packets
 218 * @evt_free_list: List of free events
 219 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 220 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 221 * @workwq: Work queue for processing pending PTP operations
 222 * @work: Work task
 223 * @reset_required: A serious error has occurred and the PTP task needs to be
 224 *                  reset (disable, enable).
 225 * @rxfilter_event: Receive filter when operating
 226 * @rxfilter_general: Receive filter when operating
 227 * @config: Current timestamp configuration
 228 * @enabled: PTP operation enabled
 229 * @mode: Mode in which PTP operating (PTP version)
 230 * @evt_frags: Partly assembled PTP events
 231 * @evt_frag_idx: Current fragment number
 232 * @evt_code: Last event code
 233 * @start: Address at which MC indicates ready for synchronisation
 234 * @host_time_pps: Host time at last PPS
 235 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
 236 * @base_sync_ns: Number of nanoseconds for last synchronisation.
 237 * @base_sync_valid: Whether base_sync_time is valid.
 238 * @current_adjfreq: Current ppb adjustment.
 239 * @phc_clock: Pointer to registered phc device
 240 * @phc_clock_info: Registration structure for phc device
 241 * @pps_work: pps work task for handling pps events
 242 * @pps_workwq: pps work queue
 243 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 244 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 245 *         allocations in main data path).
 246 * @debug_ptp_dir: PTP debugfs directory
 247 * @missed_rx_sync: Number of packets received without syncrhonisation.
 248 * @good_syncs: Number of successful synchronisations.
 249 * @no_time_syncs: Number of synchronisations with no good times.
 250 * @bad_sync_durations: Number of synchronisations with bad durations.
 251 * @bad_syncs: Number of failed synchronisations.
 252 * @last_sync_time: Number of nanoseconds for last synchronisation.
 253 * @sync_timeouts: Number of synchronisation timeouts
 254 * @fast_syncs: Number of synchronisations requiring short delay
 255 * @min_sync_delta: Minimum time between event and synchronisation
 256 * @max_sync_delta: Maximum time between event and synchronisation
 257 * @average_sync_delta: Average time between event and synchronisation.
 258 *                      Modified moving average.
 259 * @last_sync_delta: Last time between event and synchronisation
 260 * @mc_stats: Context value for MC statistics
 261 * @timeset: Last set of synchronisation statistics.
 262 */
 263struct efx_ptp_data {
 264        struct efx_channel *channel;
 265        struct sk_buff_head rxq;
 266        struct sk_buff_head txq;
 267        struct list_head evt_list;
 268        struct list_head evt_free_list;
 269        spinlock_t evt_lock;
 270        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 271        struct workqueue_struct *workwq;
 272        struct work_struct work;
 273        bool reset_required;
 274        u32 rxfilter_event;
 275        u32 rxfilter_general;
 276        bool rxfilter_installed;
 277        struct hwtstamp_config config;
 278        bool enabled;
 279        unsigned int mode;
 280        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 281        int evt_frag_idx;
 282        int evt_code;
 283        struct efx_buffer start;
 284        struct pps_event_time host_time_pps;
 285        unsigned last_sync_ns;
 286        unsigned base_sync_ns;
 287        bool base_sync_valid;
 288        s64 current_adjfreq;
 289        struct ptp_clock *phc_clock;
 290        struct ptp_clock_info phc_clock_info;
 291        struct work_struct pps_work;
 292        struct workqueue_struct *pps_workwq;
 293        bool nic_ts_enabled;
 294        u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(
 295                               MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)];
 296        struct efx_ptp_timeset
 297        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 298};
 299
 300static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 301static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 302static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
 303static int efx_phc_settime(struct ptp_clock_info *ptp,
 304                           const struct timespec *e_ts);
 305static int efx_phc_enable(struct ptp_clock_info *ptp,
 306                          struct ptp_clock_request *request, int on);
 307
 308/* Enable MCDI PTP support. */
 309static int efx_ptp_enable(struct efx_nic *efx)
 310{
 311        u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN];
 312
 313        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 314        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 315                       efx->ptp_data->channel->channel);
 316        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 317
 318        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 319                            NULL, 0, NULL);
 320}
 321
 322/* Disable MCDI PTP support.
 323 *
 324 * Note that this function should never rely on the presence of ptp_data -
 325 * may be called before that exists.
 326 */
 327static int efx_ptp_disable(struct efx_nic *efx)
 328{
 329        u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN];
 330
 331        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 332        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 333                            NULL, 0, NULL);
 334}
 335
 336static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 337{
 338        struct sk_buff *skb;
 339
 340        while ((skb = skb_dequeue(q))) {
 341                local_bh_disable();
 342                netif_receive_skb(skb);
 343                local_bh_enable();
 344        }
 345}
 346
 347static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 348{
 349        netif_err(efx, drv, efx->net_dev,
 350                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 351                  "vector. PTP disabled\n");
 352}
 353
 354/* Repeatedly send the host time to the MC which will capture the hardware
 355 * time.
 356 */
 357static void efx_ptp_send_times(struct efx_nic *efx,
 358                               struct pps_event_time *last_time)
 359{
 360        struct pps_event_time now;
 361        struct timespec limit;
 362        struct efx_ptp_data *ptp = efx->ptp_data;
 363        struct timespec start;
 364        int *mc_running = ptp->start.addr;
 365
 366        pps_get_ts(&now);
 367        start = now.ts_real;
 368        limit = now.ts_real;
 369        timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 370
 371        /* Write host time for specified period or until MC is done */
 372        while ((timespec_compare(&now.ts_real, &limit) < 0) &&
 373               ACCESS_ONCE(*mc_running)) {
 374                struct timespec update_time;
 375                unsigned int host_time;
 376
 377                /* Don't update continuously to avoid saturating the PCIe bus */
 378                update_time = now.ts_real;
 379                timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 380                do {
 381                        pps_get_ts(&now);
 382                } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
 383                         ACCESS_ONCE(*mc_running));
 384
 385                /* Synchronise NIC with single word of time only */
 386                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 387                             now.ts_real.tv_nsec);
 388                /* Update host time in NIC memory */
 389                _efx_writed(efx, cpu_to_le32(host_time),
 390                            FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
 391        }
 392        *last_time = now;
 393}
 394
 395/* Read a timeset from the MC's results and partial process. */
 396static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
 397{
 398        unsigned start_ns, end_ns;
 399
 400        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 401        timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
 402        timeset->nanoseconds = MCDI_DWORD(data,
 403                                         PTP_OUT_SYNCHRONIZE_NANOSECONDS);
 404        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 405        timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 406
 407        /* Ignore seconds */
 408        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 409        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 410        /* Allow for rollover */
 411        if (end_ns < start_ns)
 412                end_ns += NSEC_PER_SEC;
 413        /* Determine duration of operation */
 414        timeset->window = end_ns - start_ns;
 415}
 416
 417/* Process times received from MC.
 418 *
 419 * Extract times from returned results, and establish the minimum value
 420 * seen.  The minimum value represents the "best" possible time and events
 421 * too much greater than this are rejected - the machine is, perhaps, too
 422 * busy. A number of readings are taken so that, hopefully, at least one good
 423 * synchronisation will be seen in the results.
 424 */
 425static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
 426                                 size_t response_length,
 427                                 const struct pps_event_time *last_time)
 428{
 429        unsigned number_readings = (response_length /
 430                               MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN);
 431        unsigned i;
 432        unsigned min;
 433        unsigned min_set = 0;
 434        unsigned total;
 435        unsigned ngood = 0;
 436        unsigned last_good = 0;
 437        struct efx_ptp_data *ptp = efx->ptp_data;
 438        bool min_valid = false;
 439        u32 last_sec;
 440        u32 start_sec;
 441        struct timespec delta;
 442
 443        if (number_readings == 0)
 444                return -EAGAIN;
 445
 446        /* Find minimum value in this set of results, discarding clearly
 447         * erroneous results.
 448         */
 449        for (i = 0; i < number_readings; i++) {
 450                efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]);
 451                synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN;
 452                if (ptp->timeset[i].window > SYNCHRONISATION_GRANULARITY_NS) {
 453                        if (min_valid) {
 454                                if (ptp->timeset[i].window < min_set)
 455                                        min_set = ptp->timeset[i].window;
 456                        } else {
 457                                min_valid = true;
 458                                min_set = ptp->timeset[i].window;
 459                        }
 460                }
 461        }
 462
 463        if (min_valid) {
 464                if (ptp->base_sync_valid && (min_set > ptp->base_sync_ns))
 465                        min = ptp->base_sync_ns;
 466                else
 467                        min = min_set;
 468        } else {
 469                min = SYNCHRONISATION_GRANULARITY_NS;
 470        }
 471
 472        /* Discard excessively long synchronise durations.  The MC times
 473         * when it finishes reading the host time so the corrected window
 474         * time should be fairly constant for a given platform.
 475         */
 476        total = 0;
 477        for (i = 0; i < number_readings; i++)
 478                if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
 479                        unsigned win;
 480
 481                        win = ptp->timeset[i].window - ptp->timeset[i].waitns;
 482                        if (win >= MIN_SYNCHRONISATION_NS &&
 483                            win < MAX_SYNCHRONISATION_NS) {
 484                                total += ptp->timeset[i].window;
 485                                ngood++;
 486                                last_good = i;
 487                        }
 488                }
 489
 490        if (ngood == 0) {
 491                netif_warn(efx, drv, efx->net_dev,
 492                           "PTP no suitable synchronisations %dns %dns\n",
 493                           ptp->base_sync_ns, min_set);
 494                return -EAGAIN;
 495        }
 496
 497        /* Average minimum this synchronisation */
 498        ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
 499        if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
 500                ptp->base_sync_valid = true;
 501                ptp->base_sync_ns = ptp->last_sync_ns;
 502        }
 503
 504        /* Calculate delay from actual PPS to last_time */
 505        delta.tv_nsec =
 506                ptp->timeset[last_good].nanoseconds +
 507                last_time->ts_real.tv_nsec -
 508                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 509
 510        /* It is possible that the seconds rolled over between taking
 511         * the start reading and the last value written by the host.  The
 512         * timescales are such that a gap of more than one second is never
 513         * expected.
 514         */
 515        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 516        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 517        if (start_sec != last_sec) {
 518                if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 519                        netif_warn(efx, hw, efx->net_dev,
 520                                   "PTP bad synchronisation seconds\n");
 521                        return -EAGAIN;
 522                } else {
 523                        delta.tv_sec = 1;
 524                }
 525        } else {
 526                delta.tv_sec = 0;
 527        }
 528
 529        ptp->host_time_pps = *last_time;
 530        pps_sub_ts(&ptp->host_time_pps, delta);
 531
 532        return 0;
 533}
 534
 535/* Synchronize times between the host and the MC */
 536static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 537{
 538        struct efx_ptp_data *ptp = efx->ptp_data;
 539        u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX];
 540        size_t response_length;
 541        int rc;
 542        unsigned long timeout;
 543        struct pps_event_time last_time = {};
 544        unsigned int loops = 0;
 545        int *start = ptp->start.addr;
 546
 547        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
 548        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
 549                       num_readings);
 550        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO,
 551                       (u32)ptp->start.dma_addr);
 552        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
 553                       (u32)((u64)ptp->start.dma_addr >> 32));
 554
 555        /* Clear flag that signals MC ready */
 556        ACCESS_ONCE(*start) = 0;
 557        efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
 558                           MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
 559
 560        /* Wait for start from MCDI (or timeout) */
 561        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
 562        while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
 563                udelay(20);     /* Usually start MCDI execution quickly */
 564                loops++;
 565        }
 566
 567        if (ACCESS_ONCE(*start))
 568                efx_ptp_send_times(efx, &last_time);
 569
 570        /* Collect results */
 571        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
 572                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
 573                                 synch_buf, sizeof(synch_buf),
 574                                 &response_length);
 575        if (rc == 0)
 576                rc = efx_ptp_process_times(efx, synch_buf, response_length,
 577                                           &last_time);
 578
 579        return rc;
 580}
 581
 582/* Transmit a PTP packet, via the MCDI interface, to the wire. */
 583static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
 584{
 585        u8 *txbuf = efx->ptp_data->txbuf;
 586        struct skb_shared_hwtstamps timestamps;
 587        int rc = -EIO;
 588        /* MCDI driver requires word aligned lengths */
 589        size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4);
 590        u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN];
 591
 592        MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
 593        MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
 594        if (skb_shinfo(skb)->nr_frags != 0) {
 595                rc = skb_linearize(skb);
 596                if (rc != 0)
 597                        goto fail;
 598        }
 599
 600        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 601                rc = skb_checksum_help(skb);
 602                if (rc != 0)
 603                        goto fail;
 604        }
 605        skb_copy_from_linear_data(skb,
 606                                  &txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST],
 607                                  len);
 608        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime,
 609                          sizeof(txtime), &len);
 610        if (rc != 0)
 611                goto fail;
 612
 613        memset(&timestamps, 0, sizeof(timestamps));
 614        timestamps.hwtstamp = ktime_set(
 615                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
 616                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
 617
 618        skb_tstamp_tx(skb, &timestamps);
 619
 620        rc = 0;
 621
 622fail:
 623        dev_kfree_skb(skb);
 624
 625        return rc;
 626}
 627
 628static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
 629{
 630        struct efx_ptp_data *ptp = efx->ptp_data;
 631        struct list_head *cursor;
 632        struct list_head *next;
 633
 634        /* Drop time-expired events */
 635        spin_lock_bh(&ptp->evt_lock);
 636        if (!list_empty(&ptp->evt_list)) {
 637                list_for_each_safe(cursor, next, &ptp->evt_list) {
 638                        struct efx_ptp_event_rx *evt;
 639
 640                        evt = list_entry(cursor, struct efx_ptp_event_rx,
 641                                         link);
 642                        if (time_after(jiffies, evt->expiry)) {
 643                                list_move(&evt->link, &ptp->evt_free_list);
 644                                netif_warn(efx, hw, efx->net_dev,
 645                                           "PTP rx event dropped\n");
 646                        }
 647                }
 648        }
 649        spin_unlock_bh(&ptp->evt_lock);
 650}
 651
 652static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
 653                                              struct sk_buff *skb)
 654{
 655        struct efx_ptp_data *ptp = efx->ptp_data;
 656        bool evts_waiting;
 657        struct list_head *cursor;
 658        struct list_head *next;
 659        struct efx_ptp_match *match;
 660        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
 661
 662        spin_lock_bh(&ptp->evt_lock);
 663        evts_waiting = !list_empty(&ptp->evt_list);
 664        spin_unlock_bh(&ptp->evt_lock);
 665
 666        if (!evts_waiting)
 667                return PTP_PACKET_STATE_UNMATCHED;
 668
 669        match = (struct efx_ptp_match *)skb->cb;
 670        /* Look for a matching timestamp in the event queue */
 671        spin_lock_bh(&ptp->evt_lock);
 672        list_for_each_safe(cursor, next, &ptp->evt_list) {
 673                struct efx_ptp_event_rx *evt;
 674
 675                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
 676                if ((evt->seq0 == match->words[0]) &&
 677                    (evt->seq1 == match->words[1])) {
 678                        struct skb_shared_hwtstamps *timestamps;
 679
 680                        /* Match - add in hardware timestamp */
 681                        timestamps = skb_hwtstamps(skb);
 682                        timestamps->hwtstamp = evt->hwtimestamp;
 683
 684                        match->state = PTP_PACKET_STATE_MATCHED;
 685                        rc = PTP_PACKET_STATE_MATCHED;
 686                        list_move(&evt->link, &ptp->evt_free_list);
 687                        break;
 688                }
 689        }
 690        spin_unlock_bh(&ptp->evt_lock);
 691
 692        return rc;
 693}
 694
 695/* Process any queued receive events and corresponding packets
 696 *
 697 * q is returned with all the packets that are ready for delivery.
 698 * true is returned if at least one of those packets requires
 699 * synchronisation.
 700 */
 701static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
 702{
 703        struct efx_ptp_data *ptp = efx->ptp_data;
 704        bool rc = false;
 705        struct sk_buff *skb;
 706
 707        while ((skb = skb_dequeue(&ptp->rxq))) {
 708                struct efx_ptp_match *match;
 709
 710                match = (struct efx_ptp_match *)skb->cb;
 711                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
 712                        __skb_queue_tail(q, skb);
 713                } else if (efx_ptp_match_rx(efx, skb) ==
 714                           PTP_PACKET_STATE_MATCHED) {
 715                        rc = true;
 716                        __skb_queue_tail(q, skb);
 717                } else if (time_after(jiffies, match->expiry)) {
 718                        match->state = PTP_PACKET_STATE_TIMED_OUT;
 719                        netif_warn(efx, rx_err, efx->net_dev,
 720                                   "PTP packet - no timestamp seen\n");
 721                        __skb_queue_tail(q, skb);
 722                } else {
 723                        /* Replace unprocessed entry and stop */
 724                        skb_queue_head(&ptp->rxq, skb);
 725                        break;
 726                }
 727        }
 728
 729        return rc;
 730}
 731
 732/* Complete processing of a received packet */
 733static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
 734{
 735        local_bh_disable();
 736        netif_receive_skb(skb);
 737        local_bh_enable();
 738}
 739
 740static int efx_ptp_start(struct efx_nic *efx)
 741{
 742        struct efx_ptp_data *ptp = efx->ptp_data;
 743        struct efx_filter_spec rxfilter;
 744        int rc;
 745
 746        ptp->reset_required = false;
 747
 748        /* Must filter on both event and general ports to ensure
 749         * that there is no packet re-ordering.
 750         */
 751        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
 752                           efx_rx_queue_index(
 753                                   efx_channel_get_rx_queue(ptp->channel)));
 754        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
 755                                       htonl(PTP_ADDRESS),
 756                                       htons(PTP_EVENT_PORT));
 757        if (rc != 0)
 758                return rc;
 759
 760        rc = efx_filter_insert_filter(efx, &rxfilter, true);
 761        if (rc < 0)
 762                return rc;
 763        ptp->rxfilter_event = rc;
 764
 765        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
 766                           efx_rx_queue_index(
 767                                   efx_channel_get_rx_queue(ptp->channel)));
 768        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
 769                                       htonl(PTP_ADDRESS),
 770                                       htons(PTP_GENERAL_PORT));
 771        if (rc != 0)
 772                goto fail;
 773
 774        rc = efx_filter_insert_filter(efx, &rxfilter, true);
 775        if (rc < 0)
 776                goto fail;
 777        ptp->rxfilter_general = rc;
 778
 779        rc = efx_ptp_enable(efx);
 780        if (rc != 0)
 781                goto fail2;
 782
 783        ptp->evt_frag_idx = 0;
 784        ptp->current_adjfreq = 0;
 785        ptp->rxfilter_installed = true;
 786
 787        return 0;
 788
 789fail2:
 790        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 791                                  ptp->rxfilter_general);
 792fail:
 793        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 794                                  ptp->rxfilter_event);
 795
 796        return rc;
 797}
 798
 799static int efx_ptp_stop(struct efx_nic *efx)
 800{
 801        struct efx_ptp_data *ptp = efx->ptp_data;
 802        int rc = efx_ptp_disable(efx);
 803        struct list_head *cursor;
 804        struct list_head *next;
 805
 806        if (ptp->rxfilter_installed) {
 807                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 808                                          ptp->rxfilter_general);
 809                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 810                                          ptp->rxfilter_event);
 811                ptp->rxfilter_installed = false;
 812        }
 813
 814        /* Make sure RX packets are really delivered */
 815        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
 816        skb_queue_purge(&efx->ptp_data->txq);
 817
 818        /* Drop any pending receive events */
 819        spin_lock_bh(&efx->ptp_data->evt_lock);
 820        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
 821                list_move(cursor, &efx->ptp_data->evt_free_list);
 822        }
 823        spin_unlock_bh(&efx->ptp_data->evt_lock);
 824
 825        return rc;
 826}
 827
 828static void efx_ptp_pps_worker(struct work_struct *work)
 829{
 830        struct efx_ptp_data *ptp =
 831                container_of(work, struct efx_ptp_data, pps_work);
 832        struct efx_nic *efx = ptp->channel->efx;
 833        struct ptp_clock_event ptp_evt;
 834
 835        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
 836                return;
 837
 838        ptp_evt.type = PTP_CLOCK_PPSUSR;
 839        ptp_evt.pps_times = ptp->host_time_pps;
 840        ptp_clock_event(ptp->phc_clock, &ptp_evt);
 841}
 842
 843/* Process any pending transmissions and timestamp any received packets.
 844 */
 845static void efx_ptp_worker(struct work_struct *work)
 846{
 847        struct efx_ptp_data *ptp_data =
 848                container_of(work, struct efx_ptp_data, work);
 849        struct efx_nic *efx = ptp_data->channel->efx;
 850        struct sk_buff *skb;
 851        struct sk_buff_head tempq;
 852
 853        if (ptp_data->reset_required) {
 854                efx_ptp_stop(efx);
 855                efx_ptp_start(efx);
 856                return;
 857        }
 858
 859        efx_ptp_drop_time_expired_events(efx);
 860
 861        __skb_queue_head_init(&tempq);
 862        if (efx_ptp_process_events(efx, &tempq) ||
 863            !skb_queue_empty(&ptp_data->txq)) {
 864
 865                while ((skb = skb_dequeue(&ptp_data->txq)))
 866                        efx_ptp_xmit_skb(efx, skb);
 867        }
 868
 869        while ((skb = __skb_dequeue(&tempq)))
 870                efx_ptp_process_rx(efx, skb);
 871}
 872
 873/* Initialise PTP channel and state.
 874 *
 875 * Setting core_index to zero causes the queue to be initialised and doesn't
 876 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
 877 */
 878static int efx_ptp_probe_channel(struct efx_channel *channel)
 879{
 880        struct efx_nic *efx = channel->efx;
 881        struct efx_ptp_data *ptp;
 882        int rc = 0;
 883        unsigned int pos;
 884
 885        channel->irq_moderation = 0;
 886        channel->rx_queue.core_index = 0;
 887
 888        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
 889        efx->ptp_data = ptp;
 890        if (!efx->ptp_data)
 891                return -ENOMEM;
 892
 893        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int));
 894        if (rc != 0)
 895                goto fail1;
 896
 897        ptp->channel = channel;
 898        skb_queue_head_init(&ptp->rxq);
 899        skb_queue_head_init(&ptp->txq);
 900        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
 901        if (!ptp->workwq) {
 902                rc = -ENOMEM;
 903                goto fail2;
 904        }
 905
 906        INIT_WORK(&ptp->work, efx_ptp_worker);
 907        ptp->config.flags = 0;
 908        ptp->config.tx_type = HWTSTAMP_TX_OFF;
 909        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
 910        INIT_LIST_HEAD(&ptp->evt_list);
 911        INIT_LIST_HEAD(&ptp->evt_free_list);
 912        spin_lock_init(&ptp->evt_lock);
 913        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
 914                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
 915
 916        ptp->phc_clock_info.owner = THIS_MODULE;
 917        snprintf(ptp->phc_clock_info.name,
 918                 sizeof(ptp->phc_clock_info.name),
 919                 "%pm", efx->net_dev->perm_addr);
 920        ptp->phc_clock_info.max_adj = MAX_PPB;
 921        ptp->phc_clock_info.n_alarm = 0;
 922        ptp->phc_clock_info.n_ext_ts = 0;
 923        ptp->phc_clock_info.n_per_out = 0;
 924        ptp->phc_clock_info.pps = 1;
 925        ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
 926        ptp->phc_clock_info.adjtime = efx_phc_adjtime;
 927        ptp->phc_clock_info.gettime = efx_phc_gettime;
 928        ptp->phc_clock_info.settime = efx_phc_settime;
 929        ptp->phc_clock_info.enable = efx_phc_enable;
 930
 931        ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
 932                                            &efx->pci_dev->dev);
 933        if (!ptp->phc_clock)
 934                goto fail3;
 935
 936        INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
 937        ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
 938        if (!ptp->pps_workwq) {
 939                rc = -ENOMEM;
 940                goto fail4;
 941        }
 942        ptp->nic_ts_enabled = false;
 943
 944        return 0;
 945fail4:
 946        ptp_clock_unregister(efx->ptp_data->phc_clock);
 947
 948fail3:
 949        destroy_workqueue(efx->ptp_data->workwq);
 950
 951fail2:
 952        efx_nic_free_buffer(efx, &ptp->start);
 953
 954fail1:
 955        kfree(efx->ptp_data);
 956        efx->ptp_data = NULL;
 957
 958        return rc;
 959}
 960
 961static void efx_ptp_remove_channel(struct efx_channel *channel)
 962{
 963        struct efx_nic *efx = channel->efx;
 964
 965        if (!efx->ptp_data)
 966                return;
 967
 968        (void)efx_ptp_disable(channel->efx);
 969
 970        cancel_work_sync(&efx->ptp_data->work);
 971        cancel_work_sync(&efx->ptp_data->pps_work);
 972
 973        skb_queue_purge(&efx->ptp_data->rxq);
 974        skb_queue_purge(&efx->ptp_data->txq);
 975
 976        ptp_clock_unregister(efx->ptp_data->phc_clock);
 977
 978        destroy_workqueue(efx->ptp_data->workwq);
 979        destroy_workqueue(efx->ptp_data->pps_workwq);
 980
 981        efx_nic_free_buffer(efx, &efx->ptp_data->start);
 982        kfree(efx->ptp_data);
 983}
 984
 985static void efx_ptp_get_channel_name(struct efx_channel *channel,
 986                                     char *buf, size_t len)
 987{
 988        snprintf(buf, len, "%s-ptp", channel->efx->name);
 989}
 990
 991/* Determine whether this packet should be processed by the PTP module
 992 * or transmitted conventionally.
 993 */
 994bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
 995{
 996        return efx->ptp_data &&
 997                efx->ptp_data->enabled &&
 998                skb->len >= PTP_MIN_LENGTH &&
 999                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1000                likely(skb->protocol == htons(ETH_P_IP)) &&
1001                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1002                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1003}
1004
1005/* Receive a PTP packet.  Packets are queued until the arrival of
1006 * the receive timestamp from the MC - this will probably occur after the
1007 * packet arrival because of the processing in the MC.
1008 */
1009static void efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1010{
1011        struct efx_nic *efx = channel->efx;
1012        struct efx_ptp_data *ptp = efx->ptp_data;
1013        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1014        u8 *data;
1015        unsigned int version;
1016
1017        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1018
1019        /* Correct version? */
1020        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1021                if (skb->len < PTP_V1_MIN_LENGTH) {
1022                        netif_receive_skb(skb);
1023                        return;
1024                }
1025                version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1026                if (version != PTP_VERSION_V1) {
1027                        netif_receive_skb(skb);
1028                        return;
1029                }
1030        } else {
1031                if (skb->len < PTP_V2_MIN_LENGTH) {
1032                        netif_receive_skb(skb);
1033                        return;
1034                }
1035                version = skb->data[PTP_V2_VERSION_OFFSET];
1036
1037                BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2);
1038                BUILD_BUG_ON(PTP_V1_UUID_OFFSET != PTP_V2_MC_UUID_OFFSET);
1039                BUILD_BUG_ON(PTP_V1_UUID_LENGTH != PTP_V2_MC_UUID_LENGTH);
1040                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1041                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1042
1043                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1044                        netif_receive_skb(skb);
1045                        return;
1046                }
1047        }
1048
1049        /* Does this packet require timestamping? */
1050        if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1051                struct skb_shared_hwtstamps *timestamps;
1052
1053                match->state = PTP_PACKET_STATE_UNMATCHED;
1054
1055                /* Clear all timestamps held: filled in later */
1056                timestamps = skb_hwtstamps(skb);
1057                memset(timestamps, 0, sizeof(*timestamps));
1058
1059                /* Extract UUID/Sequence information */
1060                data = skb->data + PTP_V1_UUID_OFFSET;
1061                match->words[0] = (data[0]         |
1062                                   (data[1] << 8)  |
1063                                   (data[2] << 16) |
1064                                   (data[3] << 24));
1065                match->words[1] = (data[4]         |
1066                                   (data[5] << 8)  |
1067                                   (skb->data[PTP_V1_SEQUENCE_OFFSET +
1068                                              PTP_V1_SEQUENCE_LENGTH - 1] <<
1069                                    16));
1070        } else {
1071                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1072        }
1073
1074        skb_queue_tail(&ptp->rxq, skb);
1075        queue_work(ptp->workwq, &ptp->work);
1076}
1077
1078/* Transmit a PTP packet.  This has to be transmitted by the MC
1079 * itself, through an MCDI call.  MCDI calls aren't permitted
1080 * in the transmit path so defer the actual transmission to a suitable worker.
1081 */
1082int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1083{
1084        struct efx_ptp_data *ptp = efx->ptp_data;
1085
1086        skb_queue_tail(&ptp->txq, skb);
1087
1088        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1089            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1090                efx_xmit_hwtstamp_pending(skb);
1091        queue_work(ptp->workwq, &ptp->work);
1092
1093        return NETDEV_TX_OK;
1094}
1095
1096static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1097                               unsigned int new_mode)
1098{
1099        if ((enable_wanted != efx->ptp_data->enabled) ||
1100            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1101                int rc;
1102
1103                if (enable_wanted) {
1104                        /* Change of mode requires disable */
1105                        if (efx->ptp_data->enabled &&
1106                            (efx->ptp_data->mode != new_mode)) {
1107                                efx->ptp_data->enabled = false;
1108                                rc = efx_ptp_stop(efx);
1109                                if (rc != 0)
1110                                        return rc;
1111                        }
1112
1113                        /* Set new operating mode and establish
1114                         * baseline synchronisation, which must
1115                         * succeed.
1116                         */
1117                        efx->ptp_data->mode = new_mode;
1118                        rc = efx_ptp_start(efx);
1119                        if (rc == 0) {
1120                                rc = efx_ptp_synchronize(efx,
1121                                                         PTP_SYNC_ATTEMPTS * 2);
1122                                if (rc != 0)
1123                                        efx_ptp_stop(efx);
1124                        }
1125                } else {
1126                        rc = efx_ptp_stop(efx);
1127                }
1128
1129                if (rc != 0)
1130                        return rc;
1131
1132                efx->ptp_data->enabled = enable_wanted;
1133        }
1134
1135        return 0;
1136}
1137
1138static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1139{
1140        bool enable_wanted = false;
1141        unsigned int new_mode;
1142        int rc;
1143
1144        if (init->flags)
1145                return -EINVAL;
1146
1147        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1148            (init->tx_type != HWTSTAMP_TX_ON))
1149                return -ERANGE;
1150
1151        new_mode = efx->ptp_data->mode;
1152        /* Determine whether any PTP HW operations are required */
1153        switch (init->rx_filter) {
1154        case HWTSTAMP_FILTER_NONE:
1155                break;
1156        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1157        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1158        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1159                init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1160                new_mode = MC_CMD_PTP_MODE_V1;
1161                enable_wanted = true;
1162                break;
1163        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1164        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1165        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1166        /* Although these three are accepted only IPV4 packets will be
1167         * timestamped
1168         */
1169                init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1170                new_mode = MC_CMD_PTP_MODE_V2;
1171                enable_wanted = true;
1172                break;
1173        case HWTSTAMP_FILTER_PTP_V2_EVENT:
1174        case HWTSTAMP_FILTER_PTP_V2_SYNC:
1175        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1176        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1177        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1178        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1179                /* Non-IP + IPv6 timestamping not supported */
1180                return -ERANGE;
1181                break;
1182        default:
1183                return -ERANGE;
1184        }
1185
1186        if (init->tx_type != HWTSTAMP_TX_OFF)
1187                enable_wanted = true;
1188
1189        rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1190        if (rc != 0)
1191                return rc;
1192
1193        efx->ptp_data->config = *init;
1194
1195        return 0;
1196}
1197
1198int
1199efx_ptp_get_ts_info(struct net_device *net_dev, struct ethtool_ts_info *ts_info)
1200{
1201        struct efx_nic *efx = netdev_priv(net_dev);
1202        struct efx_ptp_data *ptp = efx->ptp_data;
1203
1204        if (!ptp)
1205                return -EOPNOTSUPP;
1206
1207        ts_info->so_timestamping = (SOF_TIMESTAMPING_TX_HARDWARE |
1208                                    SOF_TIMESTAMPING_RX_HARDWARE |
1209                                    SOF_TIMESTAMPING_RAW_HARDWARE);
1210        ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1211        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1212        ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1213                               1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1214                               1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1215                               1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1216                               1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1217                               1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1218                               1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1219        return 0;
1220}
1221
1222int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1223{
1224        struct hwtstamp_config config;
1225        int rc;
1226
1227        /* Not a PTP enabled port */
1228        if (!efx->ptp_data)
1229                return -EOPNOTSUPP;
1230
1231        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1232                return -EFAULT;
1233
1234        rc = efx_ptp_ts_init(efx, &config);
1235        if (rc != 0)
1236                return rc;
1237
1238        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1239                ? -EFAULT : 0;
1240}
1241
1242static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1243{
1244        struct efx_ptp_data *ptp = efx->ptp_data;
1245
1246        netif_err(efx, hw, efx->net_dev,
1247                "PTP unexpected event length: got %d expected %d\n",
1248                ptp->evt_frag_idx, expected_frag_len);
1249        ptp->reset_required = true;
1250        queue_work(ptp->workwq, &ptp->work);
1251}
1252
1253/* Process a completed receive event.  Put it on the event queue and
1254 * start worker thread.  This is required because event and their
1255 * correspoding packets may come in either order.
1256 */
1257static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1258{
1259        struct efx_ptp_event_rx *evt = NULL;
1260
1261        if (ptp->evt_frag_idx != 3) {
1262                ptp_event_failure(efx, 3);
1263                return;
1264        }
1265
1266        spin_lock_bh(&ptp->evt_lock);
1267        if (!list_empty(&ptp->evt_free_list)) {
1268                evt = list_first_entry(&ptp->evt_free_list,
1269                                       struct efx_ptp_event_rx, link);
1270                list_del(&evt->link);
1271
1272                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1273                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1274                                             MCDI_EVENT_SRC)        |
1275                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1276                                              MCDI_EVENT_SRC) << 8) |
1277                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1278                                              MCDI_EVENT_SRC) << 16));
1279                evt->hwtimestamp = ktime_set(
1280                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1281                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1282                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1283                list_add_tail(&evt->link, &ptp->evt_list);
1284
1285                queue_work(ptp->workwq, &ptp->work);
1286        } else {
1287                netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1288        }
1289        spin_unlock_bh(&ptp->evt_lock);
1290}
1291
1292static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1293{
1294        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1295        if (ptp->evt_frag_idx != 1) {
1296                ptp_event_failure(efx, 1);
1297                return;
1298        }
1299
1300        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1301}
1302
1303static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1304{
1305        if (ptp->nic_ts_enabled)
1306                queue_work(ptp->pps_workwq, &ptp->pps_work);
1307}
1308
1309void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1310{
1311        struct efx_ptp_data *ptp = efx->ptp_data;
1312        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1313
1314        if (!ptp->enabled)
1315                return;
1316
1317        if (ptp->evt_frag_idx == 0) {
1318                ptp->evt_code = code;
1319        } else if (ptp->evt_code != code) {
1320                netif_err(efx, hw, efx->net_dev,
1321                          "PTP out of sequence event %d\n", code);
1322                ptp->evt_frag_idx = 0;
1323        }
1324
1325        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1326        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1327                /* Process resulting event */
1328                switch (code) {
1329                case MCDI_EVENT_CODE_PTP_RX:
1330                        ptp_event_rx(efx, ptp);
1331                        break;
1332                case MCDI_EVENT_CODE_PTP_FAULT:
1333                        ptp_event_fault(efx, ptp);
1334                        break;
1335                case MCDI_EVENT_CODE_PTP_PPS:
1336                        ptp_event_pps(efx, ptp);
1337                        break;
1338                default:
1339                        netif_err(efx, hw, efx->net_dev,
1340                                  "PTP unknown event %d\n", code);
1341                        break;
1342                }
1343                ptp->evt_frag_idx = 0;
1344        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1345                netif_err(efx, hw, efx->net_dev,
1346                          "PTP too many event fragments\n");
1347                ptp->evt_frag_idx = 0;
1348        }
1349}
1350
1351static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1352{
1353        struct efx_ptp_data *ptp_data = container_of(ptp,
1354                                                     struct efx_ptp_data,
1355                                                     phc_clock_info);
1356        struct efx_nic *efx = ptp_data->channel->efx;
1357        u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN];
1358        s64 adjustment_ns;
1359        int rc;
1360
1361        if (delta > MAX_PPB)
1362                delta = MAX_PPB;
1363        else if (delta < -MAX_PPB)
1364                delta = -MAX_PPB;
1365
1366        /* Convert ppb to fixed point ns. */
1367        adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1368                         (PPB_EXTRA_BITS + MAX_PPB_BITS));
1369
1370        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1371        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns);
1372        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
1373                       (u32)(adjustment_ns >> 32));
1374        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1375        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1376        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1377                          NULL, 0, NULL);
1378        if (rc != 0)
1379                return rc;
1380
1381        ptp_data->current_adjfreq = delta;
1382        return 0;
1383}
1384
1385static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1386{
1387        struct efx_ptp_data *ptp_data = container_of(ptp,
1388                                                     struct efx_ptp_data,
1389                                                     phc_clock_info);
1390        struct efx_nic *efx = ptp_data->channel->efx;
1391        struct timespec delta_ts = ns_to_timespec(delta);
1392        u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN];
1393
1394        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1395        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0);
1396        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
1397        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1398        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1399        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1400                            NULL, 0, NULL);
1401}
1402
1403static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1404{
1405        struct efx_ptp_data *ptp_data = container_of(ptp,
1406                                                     struct efx_ptp_data,
1407                                                     phc_clock_info);
1408        struct efx_nic *efx = ptp_data->channel->efx;
1409        u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN];
1410        u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN];
1411        int rc;
1412
1413        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1414
1415        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1416                          outbuf, sizeof(outbuf), NULL);
1417        if (rc != 0)
1418                return rc;
1419
1420        ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1421        ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1422        return 0;
1423}
1424
1425static int efx_phc_settime(struct ptp_clock_info *ptp,
1426                           const struct timespec *e_ts)
1427{
1428        /* Get the current NIC time, efx_phc_gettime.
1429         * Subtract from the desired time to get the offset
1430         * call efx_phc_adjtime with the offset
1431         */
1432        int rc;
1433        struct timespec time_now;
1434        struct timespec delta;
1435
1436        rc = efx_phc_gettime(ptp, &time_now);
1437        if (rc != 0)
1438                return rc;
1439
1440        delta = timespec_sub(*e_ts, time_now);
1441
1442        efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1443        if (rc != 0)
1444                return rc;
1445
1446        return 0;
1447}
1448
1449static int efx_phc_enable(struct ptp_clock_info *ptp,
1450                          struct ptp_clock_request *request,
1451                          int enable)
1452{
1453        struct efx_ptp_data *ptp_data = container_of(ptp,
1454                                                     struct efx_ptp_data,
1455                                                     phc_clock_info);
1456        if (request->type != PTP_CLK_REQ_PPS)
1457                return -EOPNOTSUPP;
1458
1459        ptp_data->nic_ts_enabled = !!enable;
1460        return 0;
1461}
1462
1463static const struct efx_channel_type efx_ptp_channel_type = {
1464        .handle_no_channel      = efx_ptp_handle_no_channel,
1465        .pre_probe              = efx_ptp_probe_channel,
1466        .post_remove            = efx_ptp_remove_channel,
1467        .get_name               = efx_ptp_get_channel_name,
1468        /* no copy operation; there is no need to reallocate this channel */
1469        .receive_skb            = efx_ptp_rx,
1470        .keep_eventq            = false,
1471};
1472
1473void efx_ptp_probe(struct efx_nic *efx)
1474{
1475        /* Check whether PTP is implemented on this NIC.  The DISABLE
1476         * operation will succeed if and only if it is implemented.
1477         */
1478        if (efx_ptp_disable(efx) == 0)
1479                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1480                        &efx_ptp_channel_type;
1481}
1482