linux/drivers/net/wan/farsync.c
<<
>>
Prefs
   1/*
   2 *      FarSync WAN driver for Linux (2.6.x kernel version)
   3 *
   4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
   5 *
   6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
   7 *      www.farsite.co.uk
   8 *
   9 *      This program is free software; you can redistribute it and/or
  10 *      modify it under the terms of the GNU General Public License
  11 *      as published by the Free Software Foundation; either version
  12 *      2 of the License, or (at your option) any later version.
  13 *
  14 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
  15 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/kernel.h>
  22#include <linux/version.h>
  23#include <linux/pci.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/ioport.h>
  27#include <linux/init.h>
  28#include <linux/interrupt.h>
  29#include <linux/if.h>
  30#include <linux/hdlc.h>
  31#include <asm/io.h>
  32#include <asm/uaccess.h>
  33
  34#include "farsync.h"
  35
  36/*
  37 *      Module info
  38 */
  39MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
  40MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
  41MODULE_LICENSE("GPL");
  42
  43/*      Driver configuration and global parameters
  44 *      ==========================================
  45 */
  46
  47/*      Number of ports (per card) and cards supported
  48 */
  49#define FST_MAX_PORTS           4
  50#define FST_MAX_CARDS           32
  51
  52/*      Default parameters for the link
  53 */
  54#define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
  55                                         * useful */
  56#define FST_TXQ_DEPTH           16      /* This one is for the buffering
  57                                         * of frames on the way down to the card
  58                                         * so that we can keep the card busy
  59                                         * and maximise throughput
  60                                         */
  61#define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
  62                                         * network layer */
  63#define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
  64                                         * control from network layer */
  65#define FST_MAX_MTU             8000    /* Huge but possible */
  66#define FST_DEF_MTU             1500    /* Common sane value */
  67
  68#define FST_TX_TIMEOUT          (2*HZ)
  69
  70#ifdef ARPHRD_RAWHDLC
  71#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
  72#else
  73#define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
  74#endif
  75
  76/*
  77 * Modules parameters and associated variables
  78 */
  79static int fst_txq_low = FST_LOW_WATER_MARK;
  80static int fst_txq_high = FST_HIGH_WATER_MARK;
  81static int fst_max_reads = 7;
  82static int fst_excluded_cards = 0;
  83static int fst_excluded_list[FST_MAX_CARDS];
  84
  85module_param(fst_txq_low, int, 0);
  86module_param(fst_txq_high, int, 0);
  87module_param(fst_max_reads, int, 0);
  88module_param(fst_excluded_cards, int, 0);
  89module_param_array(fst_excluded_list, int, NULL, 0);
  90
  91/*      Card shared memory layout
  92 *      =========================
  93 */
  94#pragma pack(1)
  95
  96/*      This information is derived in part from the FarSite FarSync Smc.h
  97 *      file. Unfortunately various name clashes and the non-portability of the
  98 *      bit field declarations in that file have meant that I have chosen to
  99 *      recreate the information here.
 100 *
 101 *      The SMC (Shared Memory Configuration) has a version number that is
 102 *      incremented every time there is a significant change. This number can
 103 *      be used to check that we have not got out of step with the firmware
 104 *      contained in the .CDE files.
 105 */
 106#define SMC_VERSION 24
 107
 108#define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
 109
 110#define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
 111                                 * configuration structure */
 112#define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
 113                                 * buffers */
 114
 115#define LEN_TX_BUFFER 8192      /* Size of packet buffers */
 116#define LEN_RX_BUFFER 8192
 117
 118#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
 119#define LEN_SMALL_RX_BUFFER 256
 120
 121#define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
 122#define NUM_RX_BUFFER 8
 123
 124/* Interrupt retry time in milliseconds */
 125#define INT_RETRY_TIME 2
 126
 127/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
 128 *      of buffer descriptors. The structure is almost identical to that used
 129 *      in the LANCE Ethernet controllers. Details available as PDF from the
 130 *      AMD web site: http://www.amd.com/products/epd/processors/\
 131 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
 132 */
 133struct txdesc {                 /* Transmit descriptor */
 134        volatile u16 ladr;      /* Low order address of packet. This is a
 135                                 * linear address in the Am186 memory space
 136                                 */
 137        volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
 138                                 * bits must be zero
 139                                 */
 140        volatile u8 bits;       /* Status and config */
 141        volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
 142                                 * Transmit terminal count interrupt enable in
 143                                 * top bit.
 144                                 */
 145        u16 unused;             /* Not used in Tx */
 146};
 147
 148struct rxdesc {                 /* Receive descriptor */
 149        volatile u16 ladr;      /* Low order address of packet */
 150        volatile u8 hadr;       /* High order address */
 151        volatile u8 bits;       /* Status and config */
 152        volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
 153                                 * Receive terminal count interrupt enable in
 154                                 * top bit.
 155                                 */
 156        volatile u16 mcnt;      /* Message byte count (15 bits) */
 157};
 158
 159/* Convert a length into the 15 bit 2's complement */
 160/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
 161/* Since we need to set the high bit to enable the completion interrupt this
 162 * can be made a lot simpler
 163 */
 164#define cnv_bcnt(len)   (-(len))
 165
 166/* Status and config bits for the above */
 167#define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
 168#define TX_STP          0x02    /* Tx: start of packet */
 169#define TX_ENP          0x01    /* Tx: end of packet */
 170#define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
 171#define RX_FRAM         0x20    /* Rx: framing error */
 172#define RX_OFLO         0x10    /* Rx: overflow error */
 173#define RX_CRC          0x08    /* Rx: CRC error */
 174#define RX_HBUF         0x04    /* Rx: buffer error */
 175#define RX_STP          0x02    /* Rx: start of packet */
 176#define RX_ENP          0x01    /* Rx: end of packet */
 177
 178/* Interrupts from the card are caused by various events which are presented
 179 * in a circular buffer as several events may be processed on one physical int
 180 */
 181#define MAX_CIRBUFF     32
 182
 183struct cirbuff {
 184        u8 rdindex;             /* read, then increment and wrap */
 185        u8 wrindex;             /* write, then increment and wrap */
 186        u8 evntbuff[MAX_CIRBUFF];
 187};
 188
 189/* Interrupt event codes.
 190 * Where appropriate the two low order bits indicate the port number
 191 */
 192#define CTLA_CHG        0x18    /* Control signal changed */
 193#define CTLB_CHG        0x19
 194#define CTLC_CHG        0x1A
 195#define CTLD_CHG        0x1B
 196
 197#define INIT_CPLT       0x20    /* Initialisation complete */
 198#define INIT_FAIL       0x21    /* Initialisation failed */
 199
 200#define ABTA_SENT       0x24    /* Abort sent */
 201#define ABTB_SENT       0x25
 202#define ABTC_SENT       0x26
 203#define ABTD_SENT       0x27
 204
 205#define TXA_UNDF        0x28    /* Transmission underflow */
 206#define TXB_UNDF        0x29
 207#define TXC_UNDF        0x2A
 208#define TXD_UNDF        0x2B
 209
 210#define F56_INT         0x2C
 211#define M32_INT         0x2D
 212
 213#define TE1_ALMA        0x30
 214
 215/* Port physical configuration. See farsync.h for field values */
 216struct port_cfg {
 217        u16 lineInterface;      /* Physical interface type */
 218        u8 x25op;               /* Unused at present */
 219        u8 internalClock;       /* 1 => internal clock, 0 => external */
 220        u8 transparentMode;     /* 1 => on, 0 => off */
 221        u8 invertClock;         /* 0 => normal, 1 => inverted */
 222        u8 padBytes[6];         /* Padding */
 223        u32 lineSpeed;          /* Speed in bps */
 224};
 225
 226/* TE1 port physical configuration */
 227struct su_config {
 228        u32 dataRate;
 229        u8 clocking;
 230        u8 framing;
 231        u8 structure;
 232        u8 interface;
 233        u8 coding;
 234        u8 lineBuildOut;
 235        u8 equalizer;
 236        u8 transparentMode;
 237        u8 loopMode;
 238        u8 range;
 239        u8 txBufferMode;
 240        u8 rxBufferMode;
 241        u8 startingSlot;
 242        u8 losThreshold;
 243        u8 enableIdleCode;
 244        u8 idleCode;
 245        u8 spare[44];
 246};
 247
 248/* TE1 Status */
 249struct su_status {
 250        u32 receiveBufferDelay;
 251        u32 framingErrorCount;
 252        u32 codeViolationCount;
 253        u32 crcErrorCount;
 254        u32 lineAttenuation;
 255        u8 portStarted;
 256        u8 lossOfSignal;
 257        u8 receiveRemoteAlarm;
 258        u8 alarmIndicationSignal;
 259        u8 spare[40];
 260};
 261
 262/* Finally sling all the above together into the shared memory structure.
 263 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
 264 * evolving under NT for some time so I guess we're stuck with it.
 265 * The structure starts at offset SMC_BASE.
 266 * See farsync.h for some field values.
 267 */
 268struct fst_shared {
 269        /* DMA descriptor rings */
 270        struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
 271        struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
 272
 273        /* Obsolete small buffers */
 274        u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
 275        u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
 276
 277        u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
 278                                 * 0xFF => halted
 279                                 */
 280
 281        u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
 282                                 * set to 0xEE by host to acknowledge interrupt
 283                                 */
 284
 285        u16 smcVersion;         /* Must match SMC_VERSION */
 286
 287        u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
 288                                 * version, RR = revision and BB = build
 289                                 */
 290
 291        u16 txa_done;           /* Obsolete completion flags */
 292        u16 rxa_done;
 293        u16 txb_done;
 294        u16 rxb_done;
 295        u16 txc_done;
 296        u16 rxc_done;
 297        u16 txd_done;
 298        u16 rxd_done;
 299
 300        u16 mailbox[4];         /* Diagnostics mailbox. Not used */
 301
 302        struct cirbuff interruptEvent;  /* interrupt causes */
 303
 304        u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
 305        u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
 306
 307        struct port_cfg portConfig[FST_MAX_PORTS];
 308
 309        u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
 310
 311        u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
 312
 313        u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
 314        u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
 315
 316        u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
 317        u16 cardMailbox[4];     /* Not used */
 318
 319        /* Number of times the card thinks the host has
 320         * missed an interrupt by not acknowledging
 321         * within 2mS (I guess NT has problems)
 322         */
 323        u32 interruptRetryCount;
 324
 325        /* Driver private data used as an ID. We'll not
 326         * use this as I'd rather keep such things
 327         * in main memory rather than on the PCI bus
 328         */
 329        u32 portHandle[FST_MAX_PORTS];
 330
 331        /* Count of Tx underflows for stats */
 332        u32 transmitBufferUnderflow[FST_MAX_PORTS];
 333
 334        /* Debounced V.24 control input status */
 335        u32 v24DebouncedSts[FST_MAX_PORTS];
 336
 337        /* Adapter debounce timers. Don't touch */
 338        u32 ctsTimer[FST_MAX_PORTS];
 339        u32 ctsTimerRun[FST_MAX_PORTS];
 340        u32 dcdTimer[FST_MAX_PORTS];
 341        u32 dcdTimerRun[FST_MAX_PORTS];
 342
 343        u32 numberOfPorts;      /* Number of ports detected at startup */
 344
 345        u16 _reserved[64];
 346
 347        u16 cardMode;           /* Bit-mask to enable features:
 348                                 * Bit 0: 1 enables LED identify mode
 349                                 */
 350
 351        u16 portScheduleOffset;
 352
 353        struct su_config suConfig;      /* TE1 Bits */
 354        struct su_status suStatus;
 355
 356        u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
 357                                 * the structure and marks the end of shared
 358                                 * memory. Adapter code initializes it as
 359                                 * END_SIG.
 360                                 */
 361};
 362
 363/* endOfSmcSignature value */
 364#define END_SIG                 0x12345678
 365
 366/* Mailbox values. (portMailbox) */
 367#define NOP             0       /* No operation */
 368#define ACK             1       /* Positive acknowledgement to PC driver */
 369#define NAK             2       /* Negative acknowledgement to PC driver */
 370#define STARTPORT       3       /* Start an HDLC port */
 371#define STOPPORT        4       /* Stop an HDLC port */
 372#define ABORTTX         5       /* Abort the transmitter for a port */
 373#define SETV24O         6       /* Set V24 outputs */
 374
 375/* PLX Chip Register Offsets */
 376#define CNTRL_9052      0x50    /* Control Register */
 377#define CNTRL_9054      0x6c    /* Control Register */
 378
 379#define INTCSR_9052     0x4c    /* Interrupt control/status register */
 380#define INTCSR_9054     0x68    /* Interrupt control/status register */
 381
 382/* 9054 DMA Registers */
 383/*
 384 * Note that we will be using DMA Channel 0 for copying rx data
 385 * and Channel 1 for copying tx data
 386 */
 387#define DMAMODE0        0x80
 388#define DMAPADR0        0x84
 389#define DMALADR0        0x88
 390#define DMASIZ0         0x8c
 391#define DMADPR0         0x90
 392#define DMAMODE1        0x94
 393#define DMAPADR1        0x98
 394#define DMALADR1        0x9c
 395#define DMASIZ1         0xa0
 396#define DMADPR1         0xa4
 397#define DMACSR0         0xa8
 398#define DMACSR1         0xa9
 399#define DMAARB          0xac
 400#define DMATHR          0xb0
 401#define DMADAC0         0xb4
 402#define DMADAC1         0xb8
 403#define DMAMARBR        0xac
 404
 405#define FST_MIN_DMA_LEN 64
 406#define FST_RX_DMA_INT  0x01
 407#define FST_TX_DMA_INT  0x02
 408#define FST_CARD_INT    0x04
 409
 410/* Larger buffers are positioned in memory at offset BFM_BASE */
 411struct buf_window {
 412        u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
 413        u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
 414};
 415
 416/* Calculate offset of a buffer object within the shared memory window */
 417#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
 418
 419#pragma pack()
 420
 421/*      Device driver private information
 422 *      =================================
 423 */
 424/*      Per port (line or channel) information
 425 */
 426struct fst_port_info {
 427        struct net_device *dev; /* Device struct - must be first */
 428        struct fst_card_info *card;     /* Card we're associated with */
 429        int index;              /* Port index on the card */
 430        int hwif;               /* Line hardware (lineInterface copy) */
 431        int run;                /* Port is running */
 432        int mode;               /* Normal or FarSync raw */
 433        int rxpos;              /* Next Rx buffer to use */
 434        int txpos;              /* Next Tx buffer to use */
 435        int txipos;             /* Next Tx buffer to check for free */
 436        int start;              /* Indication of start/stop to network */
 437        /*
 438         * A sixteen entry transmit queue
 439         */
 440        int txqs;               /* index to get next buffer to tx */
 441        int txqe;               /* index to queue next packet */
 442        struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
 443        int rxqdepth;
 444};
 445
 446/*      Per card information
 447 */
 448struct fst_card_info {
 449        char __iomem *mem;      /* Card memory mapped to kernel space */
 450        char __iomem *ctlmem;   /* Control memory for PCI cards */
 451        unsigned int phys_mem;  /* Physical memory window address */
 452        unsigned int phys_ctlmem;       /* Physical control memory address */
 453        unsigned int irq;       /* Interrupt request line number */
 454        unsigned int nports;    /* Number of serial ports */
 455        unsigned int type;      /* Type index of card */
 456        unsigned int state;     /* State of card */
 457        spinlock_t card_lock;   /* Lock for SMP access */
 458        unsigned short pci_conf;        /* PCI card config in I/O space */
 459        /* Per port info */
 460        struct fst_port_info ports[FST_MAX_PORTS];
 461        struct pci_dev *device; /* Information about the pci device */
 462        int card_no;            /* Inst of the card on the system */
 463        int family;             /* TxP or TxU */
 464        int dmarx_in_progress;
 465        int dmatx_in_progress;
 466        unsigned long int_count;
 467        unsigned long int_time_ave;
 468        void *rx_dma_handle_host;
 469        dma_addr_t rx_dma_handle_card;
 470        void *tx_dma_handle_host;
 471        dma_addr_t tx_dma_handle_card;
 472        struct sk_buff *dma_skb_rx;
 473        struct fst_port_info *dma_port_rx;
 474        struct fst_port_info *dma_port_tx;
 475        int dma_len_rx;
 476        int dma_len_tx;
 477        int dma_txpos;
 478        int dma_rxpos;
 479};
 480
 481/* Convert an HDLC device pointer into a port info pointer and similar */
 482#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
 483#define port_to_dev(P)  ((P)->dev)
 484
 485
 486/*
 487 *      Shared memory window access macros
 488 *
 489 *      We have a nice memory based structure above, which could be directly
 490 *      mapped on i386 but might not work on other architectures unless we use
 491 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
 492 *      physical offsets so we have to convert. The only saving grace is that
 493 *      this should all collapse back to a simple indirection eventually.
 494 */
 495#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
 496
 497#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
 498#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
 499#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
 500
 501#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
 502#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
 503#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
 504
 505/*
 506 *      Debug support
 507 */
 508#if FST_DEBUG
 509
 510static int fst_debug_mask = { FST_DEBUG };
 511
 512/* Most common debug activity is to print something if the corresponding bit
 513 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
 514 * support variable numbers of macro parameters. The inverted if prevents us
 515 * eating someone else's else clause.
 516 */
 517#define dbg(F, fmt, args...)                                    \
 518do {                                                            \
 519        if (fst_debug_mask & (F))                               \
 520                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 521} while (0)
 522#else
 523#define dbg(F, fmt, args...)                                    \
 524do {                                                            \
 525        if (0)                                                  \
 526                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 527} while (0)
 528#endif
 529
 530/*
 531 *      PCI ID lookup table
 532 */
 533static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
 534        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
 535         PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
 536
 537        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
 538         PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
 539
 540        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
 541         PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
 542
 543        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
 544         PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
 545
 546        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
 547         PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
 548
 549        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
 550         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 551
 552        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
 553         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 554        {0,}                    /* End */
 555};
 556
 557MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
 558
 559/*
 560 *      Device Driver Work Queues
 561 *
 562 *      So that we don't spend too much time processing events in the 
 563 *      Interrupt Service routine, we will declare a work queue per Card 
 564 *      and make the ISR schedule a task in the queue for later execution.
 565 *      In the 2.4 Kernel we used to use the immediate queue for BH's
 566 *      Now that they are gone, tasklets seem to be much better than work 
 567 *      queues.
 568 */
 569
 570static void do_bottom_half_tx(struct fst_card_info *card);
 571static void do_bottom_half_rx(struct fst_card_info *card);
 572static void fst_process_tx_work_q(unsigned long work_q);
 573static void fst_process_int_work_q(unsigned long work_q);
 574
 575static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
 576static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
 577
 578static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
 579static spinlock_t fst_work_q_lock;
 580static u64 fst_work_txq;
 581static u64 fst_work_intq;
 582
 583static void
 584fst_q_work_item(u64 * queue, int card_index)
 585{
 586        unsigned long flags;
 587        u64 mask;
 588
 589        /*
 590         * Grab the queue exclusively
 591         */
 592        spin_lock_irqsave(&fst_work_q_lock, flags);
 593
 594        /*
 595         * Making an entry in the queue is simply a matter of setting
 596         * a bit for the card indicating that there is work to do in the
 597         * bottom half for the card.  Note the limitation of 64 cards.
 598         * That ought to be enough
 599         */
 600        mask = (u64)1 << card_index;
 601        *queue |= mask;
 602        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 603}
 604
 605static void
 606fst_process_tx_work_q(unsigned long /*void **/work_q)
 607{
 608        unsigned long flags;
 609        u64 work_txq;
 610        int i;
 611
 612        /*
 613         * Grab the queue exclusively
 614         */
 615        dbg(DBG_TX, "fst_process_tx_work_q\n");
 616        spin_lock_irqsave(&fst_work_q_lock, flags);
 617        work_txq = fst_work_txq;
 618        fst_work_txq = 0;
 619        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 620
 621        /*
 622         * Call the bottom half for each card with work waiting
 623         */
 624        for (i = 0; i < FST_MAX_CARDS; i++) {
 625                if (work_txq & 0x01) {
 626                        if (fst_card_array[i] != NULL) {
 627                                dbg(DBG_TX, "Calling tx bh for card %d\n", i);
 628                                do_bottom_half_tx(fst_card_array[i]);
 629                        }
 630                }
 631                work_txq = work_txq >> 1;
 632        }
 633}
 634
 635static void
 636fst_process_int_work_q(unsigned long /*void **/work_q)
 637{
 638        unsigned long flags;
 639        u64 work_intq;
 640        int i;
 641
 642        /*
 643         * Grab the queue exclusively
 644         */
 645        dbg(DBG_INTR, "fst_process_int_work_q\n");
 646        spin_lock_irqsave(&fst_work_q_lock, flags);
 647        work_intq = fst_work_intq;
 648        fst_work_intq = 0;
 649        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 650
 651        /*
 652         * Call the bottom half for each card with work waiting
 653         */
 654        for (i = 0; i < FST_MAX_CARDS; i++) {
 655                if (work_intq & 0x01) {
 656                        if (fst_card_array[i] != NULL) {
 657                                dbg(DBG_INTR,
 658                                    "Calling rx & tx bh for card %d\n", i);
 659                                do_bottom_half_rx(fst_card_array[i]);
 660                                do_bottom_half_tx(fst_card_array[i]);
 661                        }
 662                }
 663                work_intq = work_intq >> 1;
 664        }
 665}
 666
 667/*      Card control functions
 668 *      ======================
 669 */
 670/*      Place the processor in reset state
 671 *
 672 * Used to be a simple write to card control space but a glitch in the latest
 673 * AMD Am186CH processor means that we now have to do it by asserting and de-
 674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
 675 * at offset 9052_CNTRL.  Note the updates for the TXU.
 676 */
 677static inline void
 678fst_cpureset(struct fst_card_info *card)
 679{
 680        unsigned char interrupt_line_register;
 681        unsigned long j = jiffies + 1;
 682        unsigned int regval;
 683
 684        if (card->family == FST_FAMILY_TXU) {
 685                if (pci_read_config_byte
 686                    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
 687                        dbg(DBG_ASS,
 688                            "Error in reading interrupt line register\n");
 689                }
 690                /*
 691                 * Assert PLX software reset and Am186 hardware reset
 692                 * and then deassert the PLX software reset but 186 still in reset
 693                 */
 694                outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
 695                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 696                /*
 697                 * We are delaying here to allow the 9054 to reset itself
 698                 */
 699                j = jiffies + 1;
 700                while (jiffies < j)
 701                        /* Do nothing */ ;
 702                outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
 703                /*
 704                 * We are delaying here to allow the 9054 to reload its eeprom
 705                 */
 706                j = jiffies + 1;
 707                while (jiffies < j)
 708                        /* Do nothing */ ;
 709                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 710
 711                if (pci_write_config_byte
 712                    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
 713                        dbg(DBG_ASS,
 714                            "Error in writing interrupt line register\n");
 715                }
 716
 717        } else {
 718                regval = inl(card->pci_conf + CNTRL_9052);
 719
 720                outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
 721                outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
 722        }
 723}
 724
 725/*      Release the processor from reset
 726 */
 727static inline void
 728fst_cpurelease(struct fst_card_info *card)
 729{
 730        if (card->family == FST_FAMILY_TXU) {
 731                /*
 732                 * Force posted writes to complete
 733                 */
 734                (void) readb(card->mem);
 735
 736                /*
 737                 * Release LRESET DO = 1
 738                 * Then release Local Hold, DO = 1
 739                 */
 740                outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
 741                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 742        } else {
 743                (void) readb(card->ctlmem);
 744        }
 745}
 746
 747/*      Clear the cards interrupt flag
 748 */
 749static inline void
 750fst_clear_intr(struct fst_card_info *card)
 751{
 752        if (card->family == FST_FAMILY_TXU) {
 753                (void) readb(card->ctlmem);
 754        } else {
 755                /* Poke the appropriate PLX chip register (same as enabling interrupts)
 756                 */
 757                outw(0x0543, card->pci_conf + INTCSR_9052);
 758        }
 759}
 760
 761/*      Enable card interrupts
 762 */
 763static inline void
 764fst_enable_intr(struct fst_card_info *card)
 765{
 766        if (card->family == FST_FAMILY_TXU) {
 767                outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
 768        } else {
 769                outw(0x0543, card->pci_conf + INTCSR_9052);
 770        }
 771}
 772
 773/*      Disable card interrupts
 774 */
 775static inline void
 776fst_disable_intr(struct fst_card_info *card)
 777{
 778        if (card->family == FST_FAMILY_TXU) {
 779                outl(0x00000000, card->pci_conf + INTCSR_9054);
 780        } else {
 781                outw(0x0000, card->pci_conf + INTCSR_9052);
 782        }
 783}
 784
 785/*      Process the result of trying to pass a received frame up the stack
 786 */
 787static void
 788fst_process_rx_status(int rx_status, char *name)
 789{
 790        switch (rx_status) {
 791        case NET_RX_SUCCESS:
 792                {
 793                        /*
 794                         * Nothing to do here
 795                         */
 796                        break;
 797                }
 798        case NET_RX_DROP:
 799                {
 800                        dbg(DBG_ASS, "%s: Received packet dropped\n", name);
 801                        break;
 802                }
 803        }
 804}
 805
 806/*      Initilaise DMA for PLX 9054
 807 */
 808static inline void
 809fst_init_dma(struct fst_card_info *card)
 810{
 811        /*
 812         * This is only required for the PLX 9054
 813         */
 814        if (card->family == FST_FAMILY_TXU) {
 815                pci_set_master(card->device);
 816                outl(0x00020441, card->pci_conf + DMAMODE0);
 817                outl(0x00020441, card->pci_conf + DMAMODE1);
 818                outl(0x0, card->pci_conf + DMATHR);
 819        }
 820}
 821
 822/*      Tx dma complete interrupt
 823 */
 824static void
 825fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 826                    int len, int txpos)
 827{
 828        struct net_device *dev = port_to_dev(port);
 829
 830        /*
 831         * Everything is now set, just tell the card to go
 832         */
 833        dbg(DBG_TX, "fst_tx_dma_complete\n");
 834        FST_WRB(card, txDescrRing[port->index][txpos].bits,
 835                DMA_OWN | TX_STP | TX_ENP);
 836        dev->stats.tx_packets++;
 837        dev->stats.tx_bytes += len;
 838        dev->trans_start = jiffies;
 839}
 840
 841/*
 842 * Mark it for our own raw sockets interface
 843 */
 844static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
 845{
 846        skb->dev = dev;
 847        skb_reset_mac_header(skb);
 848        skb->pkt_type = PACKET_HOST;
 849        return htons(ETH_P_CUST);
 850}
 851
 852/*      Rx dma complete interrupt
 853 */
 854static void
 855fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 856                    int len, struct sk_buff *skb, int rxp)
 857{
 858        struct net_device *dev = port_to_dev(port);
 859        int pi;
 860        int rx_status;
 861
 862        dbg(DBG_TX, "fst_rx_dma_complete\n");
 863        pi = port->index;
 864        memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
 865
 866        /* Reset buffer descriptor */
 867        FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
 868
 869        /* Update stats */
 870        dev->stats.rx_packets++;
 871        dev->stats.rx_bytes += len;
 872
 873        /* Push upstream */
 874        dbg(DBG_RX, "Pushing the frame up the stack\n");
 875        if (port->mode == FST_RAW)
 876                skb->protocol = farsync_type_trans(skb, dev);
 877        else
 878                skb->protocol = hdlc_type_trans(skb, dev);
 879        rx_status = netif_rx(skb);
 880        fst_process_rx_status(rx_status, port_to_dev(port)->name);
 881        if (rx_status == NET_RX_DROP)
 882                dev->stats.rx_dropped++;
 883}
 884
 885/*
 886 *      Receive a frame through the DMA
 887 */
 888static inline void
 889fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
 890           dma_addr_t mem, int len)
 891{
 892        /*
 893         * This routine will setup the DMA and start it
 894         */
 895
 896        dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
 897            (unsigned long) skb, (unsigned long) mem, len);
 898        if (card->dmarx_in_progress) {
 899                dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
 900        }
 901
 902        outl(skb, card->pci_conf + DMAPADR0);   /* Copy to here */
 903        outl(mem, card->pci_conf + DMALADR0);   /* from here */
 904        outl(len, card->pci_conf + DMASIZ0);    /* for this length */
 905        outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
 906
 907        /*
 908         * We use the dmarx_in_progress flag to flag the channel as busy
 909         */
 910        card->dmarx_in_progress = 1;
 911        outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
 912}
 913
 914/*
 915 *      Send a frame through the DMA
 916 */
 917static inline void
 918fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
 919           unsigned char *mem, int len)
 920{
 921        /*
 922         * This routine will setup the DMA and start it.
 923         */
 924
 925        dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
 926        if (card->dmatx_in_progress) {
 927                dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
 928        }
 929
 930        outl((unsigned long) skb, card->pci_conf + DMAPADR1);   /* Copy from here */
 931        outl((unsigned long) mem, card->pci_conf + DMALADR1);   /* to here */
 932        outl(len, card->pci_conf + DMASIZ1);    /* for this length */
 933        outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
 934
 935        /*
 936         * We use the dmatx_in_progress to flag the channel as busy
 937         */
 938        card->dmatx_in_progress = 1;
 939        outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
 940}
 941
 942/*      Issue a Mailbox command for a port.
 943 *      Note we issue them on a fire and forget basis, not expecting to see an
 944 *      error and not waiting for completion.
 945 */
 946static void
 947fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
 948{
 949        struct fst_card_info *card;
 950        unsigned short mbval;
 951        unsigned long flags;
 952        int safety;
 953
 954        card = port->card;
 955        spin_lock_irqsave(&card->card_lock, flags);
 956        mbval = FST_RDW(card, portMailbox[port->index][0]);
 957
 958        safety = 0;
 959        /* Wait for any previous command to complete */
 960        while (mbval > NAK) {
 961                spin_unlock_irqrestore(&card->card_lock, flags);
 962                schedule_timeout_uninterruptible(1);
 963                spin_lock_irqsave(&card->card_lock, flags);
 964
 965                if (++safety > 2000) {
 966                        pr_err("Mailbox safety timeout\n");
 967                        break;
 968                }
 969
 970                mbval = FST_RDW(card, portMailbox[port->index][0]);
 971        }
 972        if (safety > 0) {
 973                dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
 974        }
 975        if (mbval == NAK) {
 976                dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
 977        }
 978
 979        FST_WRW(card, portMailbox[port->index][0], cmd);
 980
 981        if (cmd == ABORTTX || cmd == STARTPORT) {
 982                port->txpos = 0;
 983                port->txipos = 0;
 984                port->start = 0;
 985        }
 986
 987        spin_unlock_irqrestore(&card->card_lock, flags);
 988}
 989
 990/*      Port output signals control
 991 */
 992static inline void
 993fst_op_raise(struct fst_port_info *port, unsigned int outputs)
 994{
 995        outputs |= FST_RDL(port->card, v24OpSts[port->index]);
 996        FST_WRL(port->card, v24OpSts[port->index], outputs);
 997
 998        if (port->run)
 999                fst_issue_cmd(port, SETV24O);
1000}
1001
1002static inline void
1003fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004{
1005        outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006        FST_WRL(port->card, v24OpSts[port->index], outputs);
1007
1008        if (port->run)
1009                fst_issue_cmd(port, SETV24O);
1010}
1011
1012/*
1013 *      Setup port Rx buffers
1014 */
1015static void
1016fst_rx_config(struct fst_port_info *port)
1017{
1018        int i;
1019        int pi;
1020        unsigned int offset;
1021        unsigned long flags;
1022        struct fst_card_info *card;
1023
1024        pi = port->index;
1025        card = port->card;
1026        spin_lock_irqsave(&card->card_lock, flags);
1027        for (i = 0; i < NUM_RX_BUFFER; i++) {
1028                offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029
1030                FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031                FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032                FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033                FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034                FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035        }
1036        port->rxpos = 0;
1037        spin_unlock_irqrestore(&card->card_lock, flags);
1038}
1039
1040/*
1041 *      Setup port Tx buffers
1042 */
1043static void
1044fst_tx_config(struct fst_port_info *port)
1045{
1046        int i;
1047        int pi;
1048        unsigned int offset;
1049        unsigned long flags;
1050        struct fst_card_info *card;
1051
1052        pi = port->index;
1053        card = port->card;
1054        spin_lock_irqsave(&card->card_lock, flags);
1055        for (i = 0; i < NUM_TX_BUFFER; i++) {
1056                offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057
1058                FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059                FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060                FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061                FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062        }
1063        port->txpos = 0;
1064        port->txipos = 0;
1065        port->start = 0;
1066        spin_unlock_irqrestore(&card->card_lock, flags);
1067}
1068
1069/*      TE1 Alarm change interrupt event
1070 */
1071static void
1072fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073{
1074        u8 los;
1075        u8 rra;
1076        u8 ais;
1077
1078        los = FST_RDB(card, suStatus.lossOfSignal);
1079        rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080        ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081
1082        if (los) {
1083                /*
1084                 * Lost the link
1085                 */
1086                if (netif_carrier_ok(port_to_dev(port))) {
1087                        dbg(DBG_INTR, "Net carrier off\n");
1088                        netif_carrier_off(port_to_dev(port));
1089                }
1090        } else {
1091                /*
1092                 * Link available
1093                 */
1094                if (!netif_carrier_ok(port_to_dev(port))) {
1095                        dbg(DBG_INTR, "Net carrier on\n");
1096                        netif_carrier_on(port_to_dev(port));
1097                }
1098        }
1099
1100        if (los)
1101                dbg(DBG_INTR, "Assert LOS Alarm\n");
1102        else
1103                dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104        if (rra)
1105                dbg(DBG_INTR, "Assert RRA Alarm\n");
1106        else
1107                dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108
1109        if (ais)
1110                dbg(DBG_INTR, "Assert AIS Alarm\n");
1111        else
1112                dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113}
1114
1115/*      Control signal change interrupt event
1116 */
1117static void
1118fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119{
1120        int signals;
1121
1122        signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123
1124        if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125                       ? IPSTS_INDICATE : IPSTS_DCD)) {
1126                if (!netif_carrier_ok(port_to_dev(port))) {
1127                        dbg(DBG_INTR, "DCD active\n");
1128                        netif_carrier_on(port_to_dev(port));
1129                }
1130        } else {
1131                if (netif_carrier_ok(port_to_dev(port))) {
1132                        dbg(DBG_INTR, "DCD lost\n");
1133                        netif_carrier_off(port_to_dev(port));
1134                }
1135        }
1136}
1137
1138/*      Log Rx Errors
1139 */
1140static void
1141fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142                 unsigned char dmabits, int rxp, unsigned short len)
1143{
1144        struct net_device *dev = port_to_dev(port);
1145
1146        /*
1147         * Increment the appropriate error counter
1148         */
1149        dev->stats.rx_errors++;
1150        if (dmabits & RX_OFLO) {
1151                dev->stats.rx_fifo_errors++;
1152                dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153                    card->card_no, port->index, rxp);
1154        }
1155        if (dmabits & RX_CRC) {
1156                dev->stats.rx_crc_errors++;
1157                dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158                    card->card_no, port->index);
1159        }
1160        if (dmabits & RX_FRAM) {
1161                dev->stats.rx_frame_errors++;
1162                dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163                    card->card_no, port->index);
1164        }
1165        if (dmabits == (RX_STP | RX_ENP)) {
1166                dev->stats.rx_length_errors++;
1167                dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168                    len, card->card_no, port->index);
1169        }
1170}
1171
1172/*      Rx Error Recovery
1173 */
1174static void
1175fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176                     unsigned char dmabits, int rxp, unsigned short len)
1177{
1178        int i;
1179        int pi;
1180
1181        pi = port->index;
1182        /* 
1183         * Discard buffer descriptors until we see the start of the
1184         * next frame.  Note that for long frames this could be in
1185         * a subsequent interrupt. 
1186         */
1187        i = 0;
1188        while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190                rxp = (rxp+1) % NUM_RX_BUFFER;
1191                if (++i > NUM_RX_BUFFER) {
1192                        dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193                            " than we have\n");
1194                        break;
1195                }
1196                dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197                dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198        }
1199        dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200
1201        /* Discard the terminal buffer */
1202        if (!(dmabits & DMA_OWN)) {
1203                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204                rxp = (rxp+1) % NUM_RX_BUFFER;
1205        }
1206        port->rxpos = rxp;
1207        return;
1208
1209}
1210
1211/*      Rx complete interrupt
1212 */
1213static void
1214fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215{
1216        unsigned char dmabits;
1217        int pi;
1218        int rxp;
1219        int rx_status;
1220        unsigned short len;
1221        struct sk_buff *skb;
1222        struct net_device *dev = port_to_dev(port);
1223
1224        /* Check we have a buffer to process */
1225        pi = port->index;
1226        rxp = port->rxpos;
1227        dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228        if (dmabits & DMA_OWN) {
1229                dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230                    pi, rxp);
1231                return;
1232        }
1233        if (card->dmarx_in_progress) {
1234                return;
1235        }
1236
1237        /* Get buffer length */
1238        len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239        /* Discard the CRC */
1240        len -= 2;
1241        if (len == 0) {
1242                /*
1243                 * This seems to happen on the TE1 interface sometimes
1244                 * so throw the frame away and log the event.
1245                 */
1246                pr_err("Frame received with 0 length. Card %d Port %d\n",
1247                       card->card_no, port->index);
1248                /* Return descriptor to card */
1249                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250
1251                rxp = (rxp+1) % NUM_RX_BUFFER;
1252                port->rxpos = rxp;
1253                return;
1254        }
1255
1256        /* Check buffer length and for other errors. We insist on one packet
1257         * in one buffer. This simplifies things greatly and since we've
1258         * allocated 8K it shouldn't be a real world limitation
1259         */
1260        dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261        if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262                fst_log_rx_error(card, port, dmabits, rxp, len);
1263                fst_recover_rx_error(card, port, dmabits, rxp, len);
1264                return;
1265        }
1266
1267        /* Allocate SKB */
1268        if ((skb = dev_alloc_skb(len)) == NULL) {
1269                dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270
1271                dev->stats.rx_dropped++;
1272
1273                /* Return descriptor to card */
1274                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275
1276                rxp = (rxp+1) % NUM_RX_BUFFER;
1277                port->rxpos = rxp;
1278                return;
1279        }
1280
1281        /*
1282         * We know the length we need to receive, len.
1283         * It's not worth using the DMA for reads of less than
1284         * FST_MIN_DMA_LEN
1285         */
1286
1287        if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288                memcpy_fromio(skb_put(skb, len),
1289                              card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290                              len);
1291
1292                /* Reset buffer descriptor */
1293                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294
1295                /* Update stats */
1296                dev->stats.rx_packets++;
1297                dev->stats.rx_bytes += len;
1298
1299                /* Push upstream */
1300                dbg(DBG_RX, "Pushing frame up the stack\n");
1301                if (port->mode == FST_RAW)
1302                        skb->protocol = farsync_type_trans(skb, dev);
1303                else
1304                        skb->protocol = hdlc_type_trans(skb, dev);
1305                rx_status = netif_rx(skb);
1306                fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307                if (rx_status == NET_RX_DROP)
1308                        dev->stats.rx_dropped++;
1309        } else {
1310                card->dma_skb_rx = skb;
1311                card->dma_port_rx = port;
1312                card->dma_len_rx = len;
1313                card->dma_rxpos = rxp;
1314                fst_rx_dma(card, card->rx_dma_handle_card,
1315                           BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316        }
1317        if (rxp != port->rxpos) {
1318                dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319                dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320        }
1321        rxp = (rxp+1) % NUM_RX_BUFFER;
1322        port->rxpos = rxp;
1323}
1324
1325/*
1326 *      The bottom halfs to the ISR
1327 *
1328 */
1329
1330static void
1331do_bottom_half_tx(struct fst_card_info *card)
1332{
1333        struct fst_port_info *port;
1334        int pi;
1335        int txq_length;
1336        struct sk_buff *skb;
1337        unsigned long flags;
1338        struct net_device *dev;
1339
1340        /*
1341         *  Find a free buffer for the transmit
1342         *  Step through each port on this card
1343         */
1344
1345        dbg(DBG_TX, "do_bottom_half_tx\n");
1346        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347                if (!port->run)
1348                        continue;
1349
1350                dev = port_to_dev(port);
1351                while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352                         DMA_OWN) &&
1353                       !(card->dmatx_in_progress)) {
1354                        /*
1355                         * There doesn't seem to be a txdone event per-se
1356                         * We seem to have to deduce it, by checking the DMA_OWN
1357                         * bit on the next buffer we think we can use
1358                         */
1359                        spin_lock_irqsave(&card->card_lock, flags);
1360                        if ((txq_length = port->txqe - port->txqs) < 0) {
1361                                /*
1362                                 * This is the case where one has wrapped and the
1363                                 * maths gives us a negative number
1364                                 */
1365                                txq_length = txq_length + FST_TXQ_DEPTH;
1366                        }
1367                        spin_unlock_irqrestore(&card->card_lock, flags);
1368                        if (txq_length > 0) {
1369                                /*
1370                                 * There is something to send
1371                                 */
1372                                spin_lock_irqsave(&card->card_lock, flags);
1373                                skb = port->txq[port->txqs];
1374                                port->txqs++;
1375                                if (port->txqs == FST_TXQ_DEPTH) {
1376                                        port->txqs = 0;
1377                                }
1378                                spin_unlock_irqrestore(&card->card_lock, flags);
1379                                /*
1380                                 * copy the data and set the required indicators on the
1381                                 * card.
1382                                 */
1383                                FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384                                        cnv_bcnt(skb->len));
1385                                if ((skb->len < FST_MIN_DMA_LEN) ||
1386                                    (card->family == FST_FAMILY_TXP)) {
1387                                        /* Enqueue the packet with normal io */
1388                                        memcpy_toio(card->mem +
1389                                                    BUF_OFFSET(txBuffer[pi]
1390                                                               [port->
1391                                                                txpos][0]),
1392                                                    skb->data, skb->len);
1393                                        FST_WRB(card,
1394                                                txDescrRing[pi][port->txpos].
1395                                                bits,
1396                                                DMA_OWN | TX_STP | TX_ENP);
1397                                        dev->stats.tx_packets++;
1398                                        dev->stats.tx_bytes += skb->len;
1399                                        dev->trans_start = jiffies;
1400                                } else {
1401                                        /* Or do it through dma */
1402                                        memcpy(card->tx_dma_handle_host,
1403                                               skb->data, skb->len);
1404                                        card->dma_port_tx = port;
1405                                        card->dma_len_tx = skb->len;
1406                                        card->dma_txpos = port->txpos;
1407                                        fst_tx_dma(card,
1408                                                   (char *) card->
1409                                                   tx_dma_handle_card,
1410                                                   (char *)
1411                                                   BUF_OFFSET(txBuffer[pi]
1412                                                              [port->txpos][0]),
1413                                                   skb->len);
1414                                }
1415                                if (++port->txpos >= NUM_TX_BUFFER)
1416                                        port->txpos = 0;
1417                                /*
1418                                 * If we have flow control on, can we now release it?
1419                                 */
1420                                if (port->start) {
1421                                        if (txq_length < fst_txq_low) {
1422                                                netif_wake_queue(port_to_dev
1423                                                                 (port));
1424                                                port->start = 0;
1425                                        }
1426                                }
1427                                dev_kfree_skb(skb);
1428                        } else {
1429                                /*
1430                                 * Nothing to send so break out of the while loop
1431                                 */
1432                                break;
1433                        }
1434                }
1435        }
1436}
1437
1438static void
1439do_bottom_half_rx(struct fst_card_info *card)
1440{
1441        struct fst_port_info *port;
1442        int pi;
1443        int rx_count = 0;
1444
1445        /* Check for rx completions on all ports on this card */
1446        dbg(DBG_RX, "do_bottom_half_rx\n");
1447        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448                if (!port->run)
1449                        continue;
1450
1451                while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452                         & DMA_OWN) && !(card->dmarx_in_progress)) {
1453                        if (rx_count > fst_max_reads) {
1454                                /*
1455                                 * Don't spend forever in receive processing
1456                                 * Schedule another event
1457                                 */
1458                                fst_q_work_item(&fst_work_intq, card->card_no);
1459                                tasklet_schedule(&fst_int_task);
1460                                break;  /* Leave the loop */
1461                        }
1462                        fst_intr_rx(card, port);
1463                        rx_count++;
1464                }
1465        }
1466}
1467
1468/*
1469 *      The interrupt service routine
1470 *      Dev_id is our fst_card_info pointer
1471 */
1472static irqreturn_t
1473fst_intr(int dummy, void *dev_id)
1474{
1475        struct fst_card_info *card = dev_id;
1476        struct fst_port_info *port;
1477        int rdidx;              /* Event buffer indices */
1478        int wridx;
1479        int event;              /* Actual event for processing */
1480        unsigned int dma_intcsr = 0;
1481        unsigned int do_card_interrupt;
1482        unsigned int int_retry_count;
1483
1484        /*
1485         * Check to see if the interrupt was for this card
1486         * return if not
1487         * Note that the call to clear the interrupt is important
1488         */
1489        dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490        if (card->state != FST_RUNNING) {
1491                pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492                       card->card_no, card->state);
1493
1494                /* 
1495                 * It is possible to really be running, i.e. we have re-loaded
1496                 * a running card
1497                 * Clear and reprime the interrupt source 
1498                 */
1499                fst_clear_intr(card);
1500                return IRQ_HANDLED;
1501        }
1502
1503        /* Clear and reprime the interrupt source */
1504        fst_clear_intr(card);
1505
1506        /*
1507         * Is the interrupt for this card (handshake == 1)
1508         */
1509        do_card_interrupt = 0;
1510        if (FST_RDB(card, interruptHandshake) == 1) {
1511                do_card_interrupt += FST_CARD_INT;
1512                /* Set the software acknowledge */
1513                FST_WRB(card, interruptHandshake, 0xEE);
1514        }
1515        if (card->family == FST_FAMILY_TXU) {
1516                /*
1517                 * Is it a DMA Interrupt
1518                 */
1519                dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520                if (dma_intcsr & 0x00200000) {
1521                        /*
1522                         * DMA Channel 0 (Rx transfer complete)
1523                         */
1524                        dbg(DBG_RX, "DMA Rx xfer complete\n");
1525                        outb(0x8, card->pci_conf + DMACSR0);
1526                        fst_rx_dma_complete(card, card->dma_port_rx,
1527                                            card->dma_len_rx, card->dma_skb_rx,
1528                                            card->dma_rxpos);
1529                        card->dmarx_in_progress = 0;
1530                        do_card_interrupt += FST_RX_DMA_INT;
1531                }
1532                if (dma_intcsr & 0x00400000) {
1533                        /*
1534                         * DMA Channel 1 (Tx transfer complete)
1535                         */
1536                        dbg(DBG_TX, "DMA Tx xfer complete\n");
1537                        outb(0x8, card->pci_conf + DMACSR1);
1538                        fst_tx_dma_complete(card, card->dma_port_tx,
1539                                            card->dma_len_tx, card->dma_txpos);
1540                        card->dmatx_in_progress = 0;
1541                        do_card_interrupt += FST_TX_DMA_INT;
1542                }
1543        }
1544
1545        /*
1546         * Have we been missing Interrupts
1547         */
1548        int_retry_count = FST_RDL(card, interruptRetryCount);
1549        if (int_retry_count) {
1550                dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1551                    card->card_no, int_retry_count);
1552                FST_WRL(card, interruptRetryCount, 0);
1553        }
1554
1555        if (!do_card_interrupt) {
1556                return IRQ_HANDLED;
1557        }
1558
1559        /* Scehdule the bottom half of the ISR */
1560        fst_q_work_item(&fst_work_intq, card->card_no);
1561        tasklet_schedule(&fst_int_task);
1562
1563        /* Drain the event queue */
1564        rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565        wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566        while (rdidx != wridx) {
1567                event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568                port = &card->ports[event & 0x03];
1569
1570                dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571
1572                switch (event) {
1573                case TE1_ALMA:
1574                        dbg(DBG_INTR, "TE1 Alarm intr\n");
1575                        if (port->run)
1576                                fst_intr_te1_alarm(card, port);
1577                        break;
1578
1579                case CTLA_CHG:
1580                case CTLB_CHG:
1581                case CTLC_CHG:
1582                case CTLD_CHG:
1583                        if (port->run)
1584                                fst_intr_ctlchg(card, port);
1585                        break;
1586
1587                case ABTA_SENT:
1588                case ABTB_SENT:
1589                case ABTC_SENT:
1590                case ABTD_SENT:
1591                        dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592                        break;
1593
1594                case TXA_UNDF:
1595                case TXB_UNDF:
1596                case TXC_UNDF:
1597                case TXD_UNDF:
1598                        /* Difficult to see how we'd get this given that we
1599                         * always load up the entire packet for DMA.
1600                         */
1601                        dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602                        port_to_dev(port)->stats.tx_errors++;
1603                        port_to_dev(port)->stats.tx_fifo_errors++;
1604                        dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605                            card->card_no, port->index);
1606                        break;
1607
1608                case INIT_CPLT:
1609                        dbg(DBG_INIT, "Card init OK intr\n");
1610                        break;
1611
1612                case INIT_FAIL:
1613                        dbg(DBG_INIT, "Card init FAILED intr\n");
1614                        card->state = FST_IFAILED;
1615                        break;
1616
1617                default:
1618                        pr_err("intr: unknown card event %d. ignored\n", event);
1619                        break;
1620                }
1621
1622                /* Bump and wrap the index */
1623                if (++rdidx >= MAX_CIRBUFF)
1624                        rdidx = 0;
1625        }
1626        FST_WRB(card, interruptEvent.rdindex, rdidx);
1627        return IRQ_HANDLED;
1628}
1629
1630/*      Check that the shared memory configuration is one that we can handle
1631 *      and that some basic parameters are correct
1632 */
1633static void
1634check_started_ok(struct fst_card_info *card)
1635{
1636        int i;
1637
1638        /* Check structure version and end marker */
1639        if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640                pr_err("Bad shared memory version %d expected %d\n",
1641                       FST_RDW(card, smcVersion), SMC_VERSION);
1642                card->state = FST_BADVERSION;
1643                return;
1644        }
1645        if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646                pr_err("Missing shared memory signature\n");
1647                card->state = FST_BADVERSION;
1648                return;
1649        }
1650        /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651        if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652                card->state = FST_RUNNING;
1653        } else if (i == 0xFF) {
1654                pr_err("Firmware initialisation failed. Card halted\n");
1655                card->state = FST_HALTED;
1656                return;
1657        } else if (i != 0x00) {
1658                pr_err("Unknown firmware status 0x%x\n", i);
1659                card->state = FST_HALTED;
1660                return;
1661        }
1662
1663        /* Finally check the number of ports reported by firmware against the
1664         * number we assumed at card detection. Should never happen with
1665         * existing firmware etc so we just report it for the moment.
1666         */
1667        if (FST_RDL(card, numberOfPorts) != card->nports) {
1668                pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1669                        card->card_no,
1670                        FST_RDL(card, numberOfPorts), card->nports);
1671        }
1672}
1673
1674static int
1675set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676                   struct fstioc_info *info)
1677{
1678        int err;
1679        unsigned char my_framing;
1680
1681        /* Set things according to the user set valid flags 
1682         * Several of the old options have been invalidated/replaced by the 
1683         * generic hdlc package.
1684         */
1685        err = 0;
1686        if (info->valid & FSTVAL_PROTO) {
1687                if (info->proto == FST_RAW)
1688                        port->mode = FST_RAW;
1689                else
1690                        port->mode = FST_GEN_HDLC;
1691        }
1692
1693        if (info->valid & FSTVAL_CABLE)
1694                err = -EINVAL;
1695
1696        if (info->valid & FSTVAL_SPEED)
1697                err = -EINVAL;
1698
1699        if (info->valid & FSTVAL_PHASE)
1700                FST_WRB(card, portConfig[port->index].invertClock,
1701                        info->invertClock);
1702        if (info->valid & FSTVAL_MODE)
1703                FST_WRW(card, cardMode, info->cardMode);
1704        if (info->valid & FSTVAL_TE1) {
1705                FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706                FST_WRB(card, suConfig.clocking, info->clockSource);
1707                my_framing = FRAMING_E1;
1708                if (info->framing == E1)
1709                        my_framing = FRAMING_E1;
1710                if (info->framing == T1)
1711                        my_framing = FRAMING_T1;
1712                if (info->framing == J1)
1713                        my_framing = FRAMING_J1;
1714                FST_WRB(card, suConfig.framing, my_framing);
1715                FST_WRB(card, suConfig.structure, info->structure);
1716                FST_WRB(card, suConfig.interface, info->interface);
1717                FST_WRB(card, suConfig.coding, info->coding);
1718                FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719                FST_WRB(card, suConfig.equalizer, info->equalizer);
1720                FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721                FST_WRB(card, suConfig.loopMode, info->loopMode);
1722                FST_WRB(card, suConfig.range, info->range);
1723                FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724                FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725                FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726                FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727                if (info->idleCode)
1728                        FST_WRB(card, suConfig.enableIdleCode, 1);
1729                else
1730                        FST_WRB(card, suConfig.enableIdleCode, 0);
1731                FST_WRB(card, suConfig.idleCode, info->idleCode);
1732#if FST_DEBUG
1733                if (info->valid & FSTVAL_TE1) {
1734                        printk("Setting TE1 data\n");
1735                        printk("Line Speed = %d\n", info->lineSpeed);
1736                        printk("Start slot = %d\n", info->startingSlot);
1737                        printk("Clock source = %d\n", info->clockSource);
1738                        printk("Framing = %d\n", my_framing);
1739                        printk("Structure = %d\n", info->structure);
1740                        printk("interface = %d\n", info->interface);
1741                        printk("Coding = %d\n", info->coding);
1742                        printk("Line build out = %d\n", info->lineBuildOut);
1743                        printk("Equaliser = %d\n", info->equalizer);
1744                        printk("Transparent mode = %d\n",
1745                               info->transparentMode);
1746                        printk("Loop mode = %d\n", info->loopMode);
1747                        printk("Range = %d\n", info->range);
1748                        printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749                        printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750                        printk("LOS Threshold = %d\n", info->losThreshold);
1751                        printk("Idle Code = %d\n", info->idleCode);
1752                }
1753#endif
1754        }
1755#if FST_DEBUG
1756        if (info->valid & FSTVAL_DEBUG) {
1757                fst_debug_mask = info->debug;
1758        }
1759#endif
1760
1761        return err;
1762}
1763
1764static void
1765gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766                 struct fstioc_info *info)
1767{
1768        int i;
1769
1770        memset(info, 0, sizeof (struct fstioc_info));
1771
1772        i = port->index;
1773        info->kernelVersion = LINUX_VERSION_CODE;
1774        info->nports = card->nports;
1775        info->type = card->type;
1776        info->state = card->state;
1777        info->proto = FST_GEN_HDLC;
1778        info->index = i;
1779#if FST_DEBUG
1780        info->debug = fst_debug_mask;
1781#endif
1782
1783        /* Only mark information as valid if card is running.
1784         * Copy the data anyway in case it is useful for diagnostics
1785         */
1786        info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787#if FST_DEBUG
1788            | FSTVAL_DEBUG
1789#endif
1790            ;
1791
1792        info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793        info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794        info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795        info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796        info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797        info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798        info->clockStatus = FST_RDW(card, clockStatus[i]);
1799        info->cableStatus = FST_RDW(card, cableStatus);
1800        info->cardMode = FST_RDW(card, cardMode);
1801        info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803        /*
1804         * The T2U can report cable presence for both A or B
1805         * in bits 0 and 1 of cableStatus.  See which port we are and 
1806         * do the mapping.
1807         */
1808        if (card->family == FST_FAMILY_TXU) {
1809                if (port->index == 0) {
1810                        /*
1811                         * Port A
1812                         */
1813                        info->cableStatus = info->cableStatus & 1;
1814                } else {
1815                        /*
1816                         * Port B
1817                         */
1818                        info->cableStatus = info->cableStatus >> 1;
1819                        info->cableStatus = info->cableStatus & 1;
1820                }
1821        }
1822        /*
1823         * Some additional bits if we are TE1
1824         */
1825        if (card->type == FST_TYPE_TE1) {
1826                info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827                info->clockSource = FST_RDB(card, suConfig.clocking);
1828                info->framing = FST_RDB(card, suConfig.framing);
1829                info->structure = FST_RDB(card, suConfig.structure);
1830                info->interface = FST_RDB(card, suConfig.interface);
1831                info->coding = FST_RDB(card, suConfig.coding);
1832                info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833                info->equalizer = FST_RDB(card, suConfig.equalizer);
1834                info->loopMode = FST_RDB(card, suConfig.loopMode);
1835                info->range = FST_RDB(card, suConfig.range);
1836                info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837                info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838                info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839                info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840                if (FST_RDB(card, suConfig.enableIdleCode))
1841                        info->idleCode = FST_RDB(card, suConfig.idleCode);
1842                else
1843                        info->idleCode = 0;
1844                info->receiveBufferDelay =
1845                    FST_RDL(card, suStatus.receiveBufferDelay);
1846                info->framingErrorCount =
1847                    FST_RDL(card, suStatus.framingErrorCount);
1848                info->codeViolationCount =
1849                    FST_RDL(card, suStatus.codeViolationCount);
1850                info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851                info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852                info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853                info->receiveRemoteAlarm =
1854                    FST_RDB(card, suStatus.receiveRemoteAlarm);
1855                info->alarmIndicationSignal =
1856                    FST_RDB(card, suStatus.alarmIndicationSignal);
1857        }
1858}
1859
1860static int
1861fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862              struct ifreq *ifr)
1863{
1864        sync_serial_settings sync;
1865        int i;
1866
1867        if (ifr->ifr_settings.size != sizeof (sync)) {
1868                return -ENOMEM;
1869        }
1870
1871        if (copy_from_user
1872            (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873                return -EFAULT;
1874        }
1875
1876        if (sync.loopback)
1877                return -EINVAL;
1878
1879        i = port->index;
1880
1881        switch (ifr->ifr_settings.type) {
1882        case IF_IFACE_V35:
1883                FST_WRW(card, portConfig[i].lineInterface, V35);
1884                port->hwif = V35;
1885                break;
1886
1887        case IF_IFACE_V24:
1888                FST_WRW(card, portConfig[i].lineInterface, V24);
1889                port->hwif = V24;
1890                break;
1891
1892        case IF_IFACE_X21:
1893                FST_WRW(card, portConfig[i].lineInterface, X21);
1894                port->hwif = X21;
1895                break;
1896
1897        case IF_IFACE_X21D:
1898                FST_WRW(card, portConfig[i].lineInterface, X21D);
1899                port->hwif = X21D;
1900                break;
1901
1902        case IF_IFACE_T1:
1903                FST_WRW(card, portConfig[i].lineInterface, T1);
1904                port->hwif = T1;
1905                break;
1906
1907        case IF_IFACE_E1:
1908                FST_WRW(card, portConfig[i].lineInterface, E1);
1909                port->hwif = E1;
1910                break;
1911
1912        case IF_IFACE_SYNC_SERIAL:
1913                break;
1914
1915        default:
1916                return -EINVAL;
1917        }
1918
1919        switch (sync.clock_type) {
1920        case CLOCK_EXT:
1921                FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922                break;
1923
1924        case CLOCK_INT:
1925                FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926                break;
1927
1928        default:
1929                return -EINVAL;
1930        }
1931        FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932        return 0;
1933}
1934
1935static int
1936fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937              struct ifreq *ifr)
1938{
1939        sync_serial_settings sync;
1940        int i;
1941
1942        /* First check what line type is set, we'll default to reporting X.21
1943         * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944         * changed
1945         */
1946        switch (port->hwif) {
1947        case E1:
1948                ifr->ifr_settings.type = IF_IFACE_E1;
1949                break;
1950        case T1:
1951                ifr->ifr_settings.type = IF_IFACE_T1;
1952                break;
1953        case V35:
1954                ifr->ifr_settings.type = IF_IFACE_V35;
1955                break;
1956        case V24:
1957                ifr->ifr_settings.type = IF_IFACE_V24;
1958                break;
1959        case X21D:
1960                ifr->ifr_settings.type = IF_IFACE_X21D;
1961                break;
1962        case X21:
1963        default:
1964                ifr->ifr_settings.type = IF_IFACE_X21;
1965                break;
1966        }
1967        if (ifr->ifr_settings.size == 0) {
1968                return 0;       /* only type requested */
1969        }
1970        if (ifr->ifr_settings.size < sizeof (sync)) {
1971                return -ENOMEM;
1972        }
1973
1974        i = port->index;
1975        sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976        /* Lucky card and linux use same encoding here */
1977        sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978            INTCLK ? CLOCK_INT : CLOCK_EXT;
1979        sync.loopback = 0;
1980
1981        if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982                return -EFAULT;
1983        }
1984
1985        ifr->ifr_settings.size = sizeof (sync);
1986        return 0;
1987}
1988
1989static int
1990fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991{
1992        struct fst_card_info *card;
1993        struct fst_port_info *port;
1994        struct fstioc_write wrthdr;
1995        struct fstioc_info info;
1996        unsigned long flags;
1997        void *buf;
1998
1999        dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001        port = dev_to_port(dev);
2002        card = port->card;
2003
2004        if (!capable(CAP_NET_ADMIN))
2005                return -EPERM;
2006
2007        switch (cmd) {
2008        case FSTCPURESET:
2009                fst_cpureset(card);
2010                card->state = FST_RESET;
2011                return 0;
2012
2013        case FSTCPURELEASE:
2014                fst_cpurelease(card);
2015                card->state = FST_STARTING;
2016                return 0;
2017
2018        case FSTWRITE:          /* Code write (download) */
2019
2020                /* First copy in the header with the length and offset of data
2021                 * to write
2022                 */
2023                if (ifr->ifr_data == NULL) {
2024                        return -EINVAL;
2025                }
2026                if (copy_from_user(&wrthdr, ifr->ifr_data,
2027                                   sizeof (struct fstioc_write))) {
2028                        return -EFAULT;
2029                }
2030
2031                /* Sanity check the parameters. We don't support partial writes
2032                 * when going over the top
2033                 */
2034                if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035                    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036                        return -ENXIO;
2037                }
2038
2039                /* Now copy the data to the card. */
2040
2041                buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042                                  wrthdr.size);
2043                if (IS_ERR(buf))
2044                        return PTR_ERR(buf);
2045
2046                memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047                kfree(buf);
2048
2049                /* Writes to the memory of a card in the reset state constitute
2050                 * a download
2051                 */
2052                if (card->state == FST_RESET) {
2053                        card->state = FST_DOWNLOAD;
2054                }
2055                return 0;
2056
2057        case FSTGETCONF:
2058
2059                /* If card has just been started check the shared memory config
2060                 * version and marker
2061                 */
2062                if (card->state == FST_STARTING) {
2063                        check_started_ok(card);
2064
2065                        /* If everything checked out enable card interrupts */
2066                        if (card->state == FST_RUNNING) {
2067                                spin_lock_irqsave(&card->card_lock, flags);
2068                                fst_enable_intr(card);
2069                                FST_WRB(card, interruptHandshake, 0xEE);
2070                                spin_unlock_irqrestore(&card->card_lock, flags);
2071                        }
2072                }
2073
2074                if (ifr->ifr_data == NULL) {
2075                        return -EINVAL;
2076                }
2077
2078                gather_conf_info(card, port, &info);
2079
2080                if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081                        return -EFAULT;
2082                }
2083                return 0;
2084
2085        case FSTSETCONF:
2086
2087                /*
2088                 * Most of the settings have been moved to the generic ioctls
2089                 * this just covers debug and board ident now
2090                 */
2091
2092                if (card->state != FST_RUNNING) {
2093                        pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094                               card->card_no, card->state);
2095                        return -EIO;
2096                }
2097                if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098                        return -EFAULT;
2099                }
2100
2101                return set_conf_from_info(card, port, &info);
2102
2103        case SIOCWANDEV:
2104                switch (ifr->ifr_settings.type) {
2105                case IF_GET_IFACE:
2106                        return fst_get_iface(card, port, ifr);
2107
2108                case IF_IFACE_SYNC_SERIAL:
2109                case IF_IFACE_V35:
2110                case IF_IFACE_V24:
2111                case IF_IFACE_X21:
2112                case IF_IFACE_X21D:
2113                case IF_IFACE_T1:
2114                case IF_IFACE_E1:
2115                        return fst_set_iface(card, port, ifr);
2116
2117                case IF_PROTO_RAW:
2118                        port->mode = FST_RAW;
2119                        return 0;
2120
2121                case IF_GET_PROTO:
2122                        if (port->mode == FST_RAW) {
2123                                ifr->ifr_settings.type = IF_PROTO_RAW;
2124                                return 0;
2125                        }
2126                        return hdlc_ioctl(dev, ifr, cmd);
2127
2128                default:
2129                        port->mode = FST_GEN_HDLC;
2130                        dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131                            ifr->ifr_settings.type);
2132                        return hdlc_ioctl(dev, ifr, cmd);
2133                }
2134
2135        default:
2136                /* Not one of ours. Pass through to HDLC package */
2137                return hdlc_ioctl(dev, ifr, cmd);
2138        }
2139}
2140
2141static void
2142fst_openport(struct fst_port_info *port)
2143{
2144        int signals;
2145        int txq_length;
2146
2147        /* Only init things if card is actually running. This allows open to
2148         * succeed for downloads etc.
2149         */
2150        if (port->card->state == FST_RUNNING) {
2151                if (port->run) {
2152                        dbg(DBG_OPEN, "open: found port already running\n");
2153
2154                        fst_issue_cmd(port, STOPPORT);
2155                        port->run = 0;
2156                }
2157
2158                fst_rx_config(port);
2159                fst_tx_config(port);
2160                fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161
2162                fst_issue_cmd(port, STARTPORT);
2163                port->run = 1;
2164
2165                signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166                if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167                               ? IPSTS_INDICATE : IPSTS_DCD))
2168                        netif_carrier_on(port_to_dev(port));
2169                else
2170                        netif_carrier_off(port_to_dev(port));
2171
2172                txq_length = port->txqe - port->txqs;
2173                port->txqe = 0;
2174                port->txqs = 0;
2175        }
2176
2177}
2178
2179static void
2180fst_closeport(struct fst_port_info *port)
2181{
2182        if (port->card->state == FST_RUNNING) {
2183                if (port->run) {
2184                        port->run = 0;
2185                        fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186
2187                        fst_issue_cmd(port, STOPPORT);
2188                } else {
2189                        dbg(DBG_OPEN, "close: port not running\n");
2190                }
2191        }
2192}
2193
2194static int
2195fst_open(struct net_device *dev)
2196{
2197        int err;
2198        struct fst_port_info *port;
2199
2200        port = dev_to_port(dev);
2201        if (!try_module_get(THIS_MODULE))
2202          return -EBUSY;
2203
2204        if (port->mode != FST_RAW) {
2205                err = hdlc_open(dev);
2206                if (err) {
2207                        module_put(THIS_MODULE);
2208                        return err;
2209                }
2210        }
2211
2212        fst_openport(port);
2213        netif_wake_queue(dev);
2214        return 0;
2215}
2216
2217static int
2218fst_close(struct net_device *dev)
2219{
2220        struct fst_port_info *port;
2221        struct fst_card_info *card;
2222        unsigned char tx_dma_done;
2223        unsigned char rx_dma_done;
2224
2225        port = dev_to_port(dev);
2226        card = port->card;
2227
2228        tx_dma_done = inb(card->pci_conf + DMACSR1);
2229        rx_dma_done = inb(card->pci_conf + DMACSR0);
2230        dbg(DBG_OPEN,
2231            "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2232            card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2233            rx_dma_done);
2234
2235        netif_stop_queue(dev);
2236        fst_closeport(dev_to_port(dev));
2237        if (port->mode != FST_RAW) {
2238                hdlc_close(dev);
2239        }
2240        module_put(THIS_MODULE);
2241        return 0;
2242}
2243
2244static int
2245fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2246{
2247        /*
2248         * Setting currently fixed in FarSync card so we check and forget
2249         */
2250        if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2251                return -EINVAL;
2252        return 0;
2253}
2254
2255static void
2256fst_tx_timeout(struct net_device *dev)
2257{
2258        struct fst_port_info *port;
2259        struct fst_card_info *card;
2260
2261        port = dev_to_port(dev);
2262        card = port->card;
2263        dev->stats.tx_errors++;
2264        dev->stats.tx_aborted_errors++;
2265        dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2266            card->card_no, port->index);
2267        fst_issue_cmd(port, ABORTTX);
2268
2269        dev->trans_start = jiffies;
2270        netif_wake_queue(dev);
2271        port->start = 0;
2272}
2273
2274static netdev_tx_t
2275fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2276{
2277        struct fst_card_info *card;
2278        struct fst_port_info *port;
2279        unsigned long flags;
2280        int txq_length;
2281
2282        port = dev_to_port(dev);
2283        card = port->card;
2284        dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2285
2286        /* Drop packet with error if we don't have carrier */
2287        if (!netif_carrier_ok(dev)) {
2288                dev_kfree_skb(skb);
2289                dev->stats.tx_errors++;
2290                dev->stats.tx_carrier_errors++;
2291                dbg(DBG_ASS,
2292                    "Tried to transmit but no carrier on card %d port %d\n",
2293                    card->card_no, port->index);
2294                return NETDEV_TX_OK;
2295        }
2296
2297        /* Drop it if it's too big! MTU failure ? */
2298        if (skb->len > LEN_TX_BUFFER) {
2299                dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2300                    LEN_TX_BUFFER);
2301                dev_kfree_skb(skb);
2302                dev->stats.tx_errors++;
2303                return NETDEV_TX_OK;
2304        }
2305
2306        /*
2307         * We are always going to queue the packet
2308         * so that the bottom half is the only place we tx from
2309         * Check there is room in the port txq
2310         */
2311        spin_lock_irqsave(&card->card_lock, flags);
2312        if ((txq_length = port->txqe - port->txqs) < 0) {
2313                /*
2314                 * This is the case where the next free has wrapped but the
2315                 * last used hasn't
2316                 */
2317                txq_length = txq_length + FST_TXQ_DEPTH;
2318        }
2319        spin_unlock_irqrestore(&card->card_lock, flags);
2320        if (txq_length > fst_txq_high) {
2321                /*
2322                 * We have got enough buffers in the pipeline.  Ask the network
2323                 * layer to stop sending frames down
2324                 */
2325                netif_stop_queue(dev);
2326                port->start = 1;        /* I'm using this to signal stop sent up */
2327        }
2328
2329        if (txq_length == FST_TXQ_DEPTH - 1) {
2330                /*
2331                 * This shouldn't have happened but such is life
2332                 */
2333                dev_kfree_skb(skb);
2334                dev->stats.tx_errors++;
2335                dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2336                    card->card_no, port->index);
2337                return NETDEV_TX_OK;
2338        }
2339
2340        /*
2341         * queue the buffer
2342         */
2343        spin_lock_irqsave(&card->card_lock, flags);
2344        port->txq[port->txqe] = skb;
2345        port->txqe++;
2346        if (port->txqe == FST_TXQ_DEPTH)
2347                port->txqe = 0;
2348        spin_unlock_irqrestore(&card->card_lock, flags);
2349
2350        /* Scehdule the bottom half which now does transmit processing */
2351        fst_q_work_item(&fst_work_txq, card->card_no);
2352        tasklet_schedule(&fst_tx_task);
2353
2354        return NETDEV_TX_OK;
2355}
2356
2357/*
2358 *      Card setup having checked hardware resources.
2359 *      Should be pretty bizarre if we get an error here (kernel memory
2360 *      exhaustion is one possibility). If we do see a problem we report it
2361 *      via a printk and leave the corresponding interface and all that follow
2362 *      disabled.
2363 */
2364static char *type_strings[] __devinitdata = {
2365        "no hardware",          /* Should never be seen */
2366        "FarSync T2P",
2367        "FarSync T4P",
2368        "FarSync T1U",
2369        "FarSync T2U",
2370        "FarSync T4U",
2371        "FarSync TE1"
2372};
2373
2374static void __devinit
2375fst_init_card(struct fst_card_info *card)
2376{
2377        int i;
2378        int err;
2379
2380        /* We're working on a number of ports based on the card ID. If the
2381         * firmware detects something different later (should never happen)
2382         * we'll have to revise it in some way then.
2383         */
2384        for (i = 0; i < card->nports; i++) {
2385                err = register_hdlc_device(card->ports[i].dev);
2386                if (err < 0) {
2387                        int j;
2388                        pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2389                               i, -err);
2390                        for (j = i; j < card->nports; j++) {
2391                                free_netdev(card->ports[j].dev);
2392                                card->ports[j].dev = NULL;
2393                        }
2394                        card->nports = i;
2395                        break;
2396                }
2397        }
2398
2399        pr_info("%s-%s: %s IRQ%d, %d ports\n",
2400                port_to_dev(&card->ports[0])->name,
2401                port_to_dev(&card->ports[card->nports - 1])->name,
2402                type_strings[card->type], card->irq, card->nports);
2403}
2404
2405static const struct net_device_ops fst_ops = {
2406        .ndo_open       = fst_open,
2407        .ndo_stop       = fst_close,
2408        .ndo_change_mtu = hdlc_change_mtu,
2409        .ndo_start_xmit = hdlc_start_xmit,
2410        .ndo_do_ioctl   = fst_ioctl,
2411        .ndo_tx_timeout = fst_tx_timeout,
2412};
2413
2414/*
2415 *      Initialise card when detected.
2416 *      Returns 0 to indicate success, or errno otherwise.
2417 */
2418static int __devinit
2419fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2420{
2421        static int no_of_cards_added = 0;
2422        struct fst_card_info *card;
2423        int err = 0;
2424        int i;
2425
2426        printk_once(KERN_INFO
2427                    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2428                           " (c) 2001-2004 FarSite Communications Ltd.\n"));
2429#if FST_DEBUG
2430        dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2431#endif
2432        /*
2433         * We are going to be clever and allow certain cards not to be
2434         * configured.  An exclude list can be provided in /etc/modules.conf
2435         */
2436        if (fst_excluded_cards != 0) {
2437                /*
2438                 * There are cards to exclude
2439                 *
2440                 */
2441                for (i = 0; i < fst_excluded_cards; i++) {
2442                        if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2443                                pr_info("FarSync PCI device %d not assigned\n",
2444                                        (pdev->devfn) >> 3);
2445                                return -EBUSY;
2446                        }
2447                }
2448        }
2449
2450        /* Allocate driver private data */
2451        card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2452        if (card == NULL) {
2453                pr_err("FarSync card found but insufficient memory for driver storage\n");
2454                return -ENOMEM;
2455        }
2456
2457        /* Try to enable the device */
2458        if ((err = pci_enable_device(pdev)) != 0) {
2459                pr_err("Failed to enable card. Err %d\n", -err);
2460                kfree(card);
2461                return err;
2462        }
2463
2464        if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2465                pr_err("Failed to allocate regions. Err %d\n", -err);
2466                pci_disable_device(pdev);
2467                kfree(card);
2468                return err;
2469        }
2470
2471        /* Get virtual addresses of memory regions */
2472        card->pci_conf = pci_resource_start(pdev, 1);
2473        card->phys_mem = pci_resource_start(pdev, 2);
2474        card->phys_ctlmem = pci_resource_start(pdev, 3);
2475        if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2476                pr_err("Physical memory remap failed\n");
2477                pci_release_regions(pdev);
2478                pci_disable_device(pdev);
2479                kfree(card);
2480                return -ENODEV;
2481        }
2482        if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2483                pr_err("Control memory remap failed\n");
2484                pci_release_regions(pdev);
2485                pci_disable_device(pdev);
2486                iounmap(card->mem);
2487                kfree(card);
2488                return -ENODEV;
2489        }
2490        dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2491
2492        /* Register the interrupt handler */
2493        if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2494                pr_err("Unable to register interrupt %d\n", card->irq);
2495                pci_release_regions(pdev);
2496                pci_disable_device(pdev);
2497                iounmap(card->ctlmem);
2498                iounmap(card->mem);
2499                kfree(card);
2500                return -ENODEV;
2501        }
2502
2503        /* Record info we need */
2504        card->irq = pdev->irq;
2505        card->type = ent->driver_data;
2506        card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2507                        (ent->driver_data == FST_TYPE_T4P))
2508            ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2509        if ((ent->driver_data == FST_TYPE_T1U) ||
2510            (ent->driver_data == FST_TYPE_TE1))
2511                card->nports = 1;
2512        else
2513                card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2514                                (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2515
2516        card->state = FST_UNINIT;
2517        spin_lock_init ( &card->card_lock );
2518
2519        for ( i = 0 ; i < card->nports ; i++ ) {
2520                struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2521                hdlc_device *hdlc;
2522                if (!dev) {
2523                        while (i--)
2524                                free_netdev(card->ports[i].dev);
2525                        pr_err("FarSync: out of memory\n");
2526                        free_irq(card->irq, card);
2527                        pci_release_regions(pdev);
2528                        pci_disable_device(pdev);
2529                        iounmap(card->ctlmem);
2530                        iounmap(card->mem);
2531                        kfree(card);
2532                        return -ENODEV;
2533                }
2534                card->ports[i].dev    = dev;
2535                card->ports[i].card   = card;
2536                card->ports[i].index  = i;
2537                card->ports[i].run    = 0;
2538
2539                hdlc = dev_to_hdlc(dev);
2540
2541                /* Fill in the net device info */
2542                /* Since this is a PCI setup this is purely
2543                 * informational. Give them the buffer addresses
2544                 * and basic card I/O.
2545                 */
2546                dev->mem_start   = card->phys_mem
2547                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2548                dev->mem_end     = card->phys_mem
2549                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2550                dev->base_addr   = card->pci_conf;
2551                dev->irq         = card->irq;
2552
2553                dev->netdev_ops = &fst_ops;
2554                dev->tx_queue_len = FST_TX_QUEUE_LEN;
2555                dev->watchdog_timeo = FST_TX_TIMEOUT;
2556                hdlc->attach = fst_attach;
2557                hdlc->xmit   = fst_start_xmit;
2558        }
2559
2560        card->device = pdev;
2561
2562        dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2563            card->nports, card->irq);
2564        dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2565            card->pci_conf, card->phys_mem, card->phys_ctlmem);
2566
2567        /* Reset the card's processor */
2568        fst_cpureset(card);
2569        card->state = FST_RESET;
2570
2571        /* Initialise DMA (if required) */
2572        fst_init_dma(card);
2573
2574        /* Record driver data for later use */
2575        pci_set_drvdata(pdev, card);
2576
2577        /* Remainder of card setup */
2578        fst_card_array[no_of_cards_added] = card;
2579        card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2580        fst_init_card(card);
2581        if (card->family == FST_FAMILY_TXU) {
2582                /*
2583                 * Allocate a dma buffer for transmit and receives
2584                 */
2585                card->rx_dma_handle_host =
2586                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2587                                         &card->rx_dma_handle_card);
2588                if (card->rx_dma_handle_host == NULL) {
2589                        pr_err("Could not allocate rx dma buffer\n");
2590                        fst_disable_intr(card);
2591                        pci_release_regions(pdev);
2592                        pci_disable_device(pdev);
2593                        iounmap(card->ctlmem);
2594                        iounmap(card->mem);
2595                        kfree(card);
2596                        return -ENOMEM;
2597                }
2598                card->tx_dma_handle_host =
2599                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2600                                         &card->tx_dma_handle_card);
2601                if (card->tx_dma_handle_host == NULL) {
2602                        pr_err("Could not allocate tx dma buffer\n");
2603                        fst_disable_intr(card);
2604                        pci_release_regions(pdev);
2605                        pci_disable_device(pdev);
2606                        iounmap(card->ctlmem);
2607                        iounmap(card->mem);
2608                        kfree(card);
2609                        return -ENOMEM;
2610                }
2611        }
2612        return 0;               /* Success */
2613}
2614
2615/*
2616 *      Cleanup and close down a card
2617 */
2618static void __devexit
2619fst_remove_one(struct pci_dev *pdev)
2620{
2621        struct fst_card_info *card;
2622        int i;
2623
2624        card = pci_get_drvdata(pdev);
2625
2626        for (i = 0; i < card->nports; i++) {
2627                struct net_device *dev = port_to_dev(&card->ports[i]);
2628                unregister_hdlc_device(dev);
2629        }
2630
2631        fst_disable_intr(card);
2632        free_irq(card->irq, card);
2633
2634        iounmap(card->ctlmem);
2635        iounmap(card->mem);
2636        pci_release_regions(pdev);
2637        if (card->family == FST_FAMILY_TXU) {
2638                /*
2639                 * Free dma buffers
2640                 */
2641                pci_free_consistent(card->device, FST_MAX_MTU,
2642                                    card->rx_dma_handle_host,
2643                                    card->rx_dma_handle_card);
2644                pci_free_consistent(card->device, FST_MAX_MTU,
2645                                    card->tx_dma_handle_host,
2646                                    card->tx_dma_handle_card);
2647        }
2648        fst_card_array[card->card_no] = NULL;
2649}
2650
2651static struct pci_driver fst_driver = {
2652        .name           = FST_NAME,
2653        .id_table       = fst_pci_dev_id,
2654        .probe          = fst_add_one,
2655        .remove = __devexit_p(fst_remove_one),
2656        .suspend        = NULL,
2657        .resume = NULL,
2658};
2659
2660static int __init
2661fst_init(void)
2662{
2663        int i;
2664
2665        for (i = 0; i < FST_MAX_CARDS; i++)
2666                fst_card_array[i] = NULL;
2667        spin_lock_init(&fst_work_q_lock);
2668        return pci_register_driver(&fst_driver);
2669}
2670
2671static void __exit
2672fst_cleanup_module(void)
2673{
2674        pr_info("FarSync WAN driver unloading\n");
2675        pci_unregister_driver(&fst_driver);
2676}
2677
2678module_init(fst_init);
2679module_exit(fst_cleanup_module);
2680