linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27
  28#include "xhci.h"
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  38                                        unsigned int cycle_state, gfp_t flags)
  39{
  40        struct xhci_segment *seg;
  41        dma_addr_t      dma;
  42        int             i;
  43
  44        seg = kzalloc(sizeof *seg, flags);
  45        if (!seg)
  46                return NULL;
  47
  48        seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  49        if (!seg->trbs) {
  50                kfree(seg);
  51                return NULL;
  52        }
  53
  54        memset(seg->trbs, 0, SEGMENT_SIZE);
  55        /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  56        if (cycle_state == 0) {
  57                for (i = 0; i < TRBS_PER_SEGMENT; i++)
  58                        seg->trbs[i].link.control |= TRB_CYCLE;
  59        }
  60        seg->dma = dma;
  61        seg->next = NULL;
  62
  63        return seg;
  64}
  65
  66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  67{
  68        if (seg->trbs) {
  69                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70                seg->trbs = NULL;
  71        }
  72        kfree(seg);
  73}
  74
  75static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  76                                struct xhci_segment *first)
  77{
  78        struct xhci_segment *seg;
  79
  80        seg = first->next;
  81        while (seg != first) {
  82                struct xhci_segment *next = seg->next;
  83                xhci_segment_free(xhci, seg);
  84                seg = next;
  85        }
  86        xhci_segment_free(xhci, first);
  87}
  88
  89/*
  90 * Make the prev segment point to the next segment.
  91 *
  92 * Change the last TRB in the prev segment to be a Link TRB which points to the
  93 * DMA address of the next segment.  The caller needs to set any Link TRB
  94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  95 */
  96static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  97                struct xhci_segment *next, enum xhci_ring_type type)
  98{
  99        u32 val;
 100
 101        if (!prev || !next)
 102                return;
 103        prev->next = next;
 104        if (type != TYPE_EVENT) {
 105                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 106                        cpu_to_le64(next->dma);
 107
 108                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 109                val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 110                val &= ~TRB_TYPE_BITMASK;
 111                val |= TRB_TYPE(TRB_LINK);
 112                /* Always set the chain bit with 0.95 hardware */
 113                /* Set chain bit for isoc rings on AMD 0.96 host */
 114                if (xhci_link_trb_quirk(xhci) ||
 115                                (type == TYPE_ISOC &&
 116                                 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 117                        val |= TRB_CHAIN;
 118                prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119        }
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127                struct xhci_segment *first, struct xhci_segment *last,
 128                unsigned int num_segs)
 129{
 130        struct xhci_segment *next;
 131
 132        if (!ring || !first || !last)
 133                return;
 134
 135        next = ring->enq_seg->next;
 136        xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 137        xhci_link_segments(xhci, last, next, ring->type);
 138        ring->num_segs += num_segs;
 139        ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 140
 141        if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 142                ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 143                        &= ~cpu_to_le32(LINK_TOGGLE);
 144                last->trbs[TRBS_PER_SEGMENT-1].link.control
 145                        |= cpu_to_le32(LINK_TOGGLE);
 146                ring->last_seg = last;
 147        }
 148}
 149
 150/* XXX: Do we need the hcd structure in all these functions? */
 151void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 152{
 153        if (!ring)
 154                return;
 155
 156        if (ring->first_seg)
 157                xhci_free_segments_for_ring(xhci, ring->first_seg);
 158
 159        kfree(ring);
 160}
 161
 162static void xhci_initialize_ring_info(struct xhci_ring *ring,
 163                                        unsigned int cycle_state)
 164{
 165        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 166        ring->enqueue = ring->first_seg->trbs;
 167        ring->enq_seg = ring->first_seg;
 168        ring->dequeue = ring->enqueue;
 169        ring->deq_seg = ring->first_seg;
 170        /* The ring is initialized to 0. The producer must write 1 to the cycle
 171         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 172         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 173         *
 174         * New rings are initialized with cycle state equal to 1; if we are
 175         * handling ring expansion, set the cycle state equal to the old ring.
 176         */
 177        ring->cycle_state = cycle_state;
 178        /* Not necessary for new rings, but needed for re-initialized rings */
 179        ring->enq_updates = 0;
 180        ring->deq_updates = 0;
 181
 182        /*
 183         * Each segment has a link TRB, and leave an extra TRB for SW
 184         * accounting purpose
 185         */
 186        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 187}
 188
 189/* Allocate segments and link them for a ring */
 190static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 191                struct xhci_segment **first, struct xhci_segment **last,
 192                unsigned int num_segs, unsigned int cycle_state,
 193                enum xhci_ring_type type, gfp_t flags)
 194{
 195        struct xhci_segment *prev;
 196
 197        prev = xhci_segment_alloc(xhci, cycle_state, flags);
 198        if (!prev)
 199                return -ENOMEM;
 200        num_segs--;
 201
 202        *first = prev;
 203        while (num_segs > 0) {
 204                struct xhci_segment     *next;
 205
 206                next = xhci_segment_alloc(xhci, cycle_state, flags);
 207                if (!next) {
 208                        xhci_free_segments_for_ring(xhci, *first);
 209                        return -ENOMEM;
 210                }
 211                xhci_link_segments(xhci, prev, next, type);
 212
 213                prev = next;
 214                num_segs--;
 215        }
 216        xhci_link_segments(xhci, prev, *first, type);
 217        *last = prev;
 218
 219        return 0;
 220}
 221
 222/**
 223 * Create a new ring with zero or more segments.
 224 *
 225 * Link each segment together into a ring.
 226 * Set the end flag and the cycle toggle bit on the last segment.
 227 * See section 4.9.1 and figures 15 and 16.
 228 */
 229static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 230                unsigned int num_segs, unsigned int cycle_state,
 231                enum xhci_ring_type type, gfp_t flags)
 232{
 233        struct xhci_ring        *ring;
 234        int ret;
 235
 236        ring = kzalloc(sizeof *(ring), flags);
 237        if (!ring)
 238                return NULL;
 239
 240        ring->num_segs = num_segs;
 241        INIT_LIST_HEAD(&ring->td_list);
 242        ring->type = type;
 243        if (num_segs == 0)
 244                return ring;
 245
 246        ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 247                        &ring->last_seg, num_segs, cycle_state, type, flags);
 248        if (ret)
 249                goto fail;
 250
 251        /* Only event ring does not use link TRB */
 252        if (type != TYPE_EVENT) {
 253                /* See section 4.9.2.1 and 6.4.4.1 */
 254                ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 255                        cpu_to_le32(LINK_TOGGLE);
 256        }
 257        xhci_initialize_ring_info(ring, cycle_state);
 258        return ring;
 259
 260fail:
 261        xhci_ring_free(xhci, ring);
 262        return NULL;
 263}
 264
 265void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 266                struct xhci_virt_device *virt_dev,
 267                unsigned int ep_index)
 268{
 269        int rings_cached;
 270
 271        rings_cached = virt_dev->num_rings_cached;
 272        if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 273                virt_dev->ring_cache[rings_cached] =
 274                        virt_dev->eps[ep_index].ring;
 275                virt_dev->num_rings_cached++;
 276                xhci_dbg(xhci, "Cached old ring, "
 277                                "%d ring%s cached\n",
 278                                virt_dev->num_rings_cached,
 279                                (virt_dev->num_rings_cached > 1) ? "s" : "");
 280        } else {
 281                xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 282                xhci_dbg(xhci, "Ring cache full (%d rings), "
 283                                "freeing ring\n",
 284                                virt_dev->num_rings_cached);
 285        }
 286        virt_dev->eps[ep_index].ring = NULL;
 287}
 288
 289/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 290 * pointers to the beginning of the ring.
 291 */
 292static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 293                        struct xhci_ring *ring, unsigned int cycle_state,
 294                        enum xhci_ring_type type)
 295{
 296        struct xhci_segment     *seg = ring->first_seg;
 297        int i;
 298
 299        do {
 300                memset(seg->trbs, 0,
 301                                sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 302                if (cycle_state == 0) {
 303                        for (i = 0; i < TRBS_PER_SEGMENT; i++)
 304                                seg->trbs[i].link.control |= TRB_CYCLE;
 305                }
 306                /* All endpoint rings have link TRBs */
 307                xhci_link_segments(xhci, seg, seg->next, type);
 308                seg = seg->next;
 309        } while (seg != ring->first_seg);
 310        ring->type = type;
 311        xhci_initialize_ring_info(ring, cycle_state);
 312        /* td list should be empty since all URBs have been cancelled,
 313         * but just in case...
 314         */
 315        INIT_LIST_HEAD(&ring->td_list);
 316}
 317
 318/*
 319 * Expand an existing ring.
 320 * Look for a cached ring or allocate a new ring which has same segment numbers
 321 * and link the two rings.
 322 */
 323int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 324                                unsigned int num_trbs, gfp_t flags)
 325{
 326        struct xhci_segment     *first;
 327        struct xhci_segment     *last;
 328        unsigned int            num_segs;
 329        unsigned int            num_segs_needed;
 330        int                     ret;
 331
 332        num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 333                                (TRBS_PER_SEGMENT - 1);
 334
 335        /* Allocate number of segments we needed, or double the ring size */
 336        num_segs = ring->num_segs > num_segs_needed ?
 337                        ring->num_segs : num_segs_needed;
 338
 339        ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 340                        num_segs, ring->cycle_state, ring->type, flags);
 341        if (ret)
 342                return -ENOMEM;
 343
 344        xhci_link_rings(xhci, ring, first, last, num_segs);
 345        xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
 346                        ring->num_segs);
 347
 348        return 0;
 349}
 350
 351#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 352
 353static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 354                                                    int type, gfp_t flags)
 355{
 356        struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 357        if (!ctx)
 358                return NULL;
 359
 360        BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 361        ctx->type = type;
 362        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 363        if (type == XHCI_CTX_TYPE_INPUT)
 364                ctx->size += CTX_SIZE(xhci->hcc_params);
 365
 366        ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 367        memset(ctx->bytes, 0, ctx->size);
 368        return ctx;
 369}
 370
 371static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 372                             struct xhci_container_ctx *ctx)
 373{
 374        if (!ctx)
 375                return;
 376        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 377        kfree(ctx);
 378}
 379
 380struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 381                                              struct xhci_container_ctx *ctx)
 382{
 383        BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 384        return (struct xhci_input_control_ctx *)ctx->bytes;
 385}
 386
 387struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 388                                        struct xhci_container_ctx *ctx)
 389{
 390        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 391                return (struct xhci_slot_ctx *)ctx->bytes;
 392
 393        return (struct xhci_slot_ctx *)
 394                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 395}
 396
 397struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 398                                    struct xhci_container_ctx *ctx,
 399                                    unsigned int ep_index)
 400{
 401        /* increment ep index by offset of start of ep ctx array */
 402        ep_index++;
 403        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 404                ep_index++;
 405
 406        return (struct xhci_ep_ctx *)
 407                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 408}
 409
 410
 411/***************** Streams structures manipulation *************************/
 412
 413static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 414                unsigned int num_stream_ctxs,
 415                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 416{
 417        struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 418
 419        if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 420                dma_free_coherent(&pdev->dev,
 421                                sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 422                                stream_ctx, dma);
 423        else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 424                return dma_pool_free(xhci->small_streams_pool,
 425                                stream_ctx, dma);
 426        else
 427                return dma_pool_free(xhci->medium_streams_pool,
 428                                stream_ctx, dma);
 429}
 430
 431/*
 432 * The stream context array for each endpoint with bulk streams enabled can
 433 * vary in size, based on:
 434 *  - how many streams the endpoint supports,
 435 *  - the maximum primary stream array size the host controller supports,
 436 *  - and how many streams the device driver asks for.
 437 *
 438 * The stream context array must be a power of 2, and can be as small as
 439 * 64 bytes or as large as 1MB.
 440 */
 441static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 442                unsigned int num_stream_ctxs, dma_addr_t *dma,
 443                gfp_t mem_flags)
 444{
 445        struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 446
 447        if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 448                return dma_alloc_coherent(&pdev->dev,
 449                                sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 450                                dma, mem_flags);
 451        else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 452                return dma_pool_alloc(xhci->small_streams_pool,
 453                                mem_flags, dma);
 454        else
 455                return dma_pool_alloc(xhci->medium_streams_pool,
 456                                mem_flags, dma);
 457}
 458
 459struct xhci_ring *xhci_dma_to_transfer_ring(
 460                struct xhci_virt_ep *ep,
 461                u64 address)
 462{
 463        if (ep->ep_state & EP_HAS_STREAMS)
 464                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 465                                address >> SEGMENT_SHIFT);
 466        return ep->ring;
 467}
 468
 469/* Only use this when you know stream_info is valid */
 470#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 471static struct xhci_ring *dma_to_stream_ring(
 472                struct xhci_stream_info *stream_info,
 473                u64 address)
 474{
 475        return radix_tree_lookup(&stream_info->trb_address_map,
 476                        address >> SEGMENT_SHIFT);
 477}
 478#endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
 479
 480struct xhci_ring *xhci_stream_id_to_ring(
 481                struct xhci_virt_device *dev,
 482                unsigned int ep_index,
 483                unsigned int stream_id)
 484{
 485        struct xhci_virt_ep *ep = &dev->eps[ep_index];
 486
 487        if (stream_id == 0)
 488                return ep->ring;
 489        if (!ep->stream_info)
 490                return NULL;
 491
 492        if (stream_id > ep->stream_info->num_streams)
 493                return NULL;
 494        return ep->stream_info->stream_rings[stream_id];
 495}
 496
 497#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 498static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 499                unsigned int num_streams,
 500                struct xhci_stream_info *stream_info)
 501{
 502        u32 cur_stream;
 503        struct xhci_ring *cur_ring;
 504        u64 addr;
 505
 506        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 507                struct xhci_ring *mapped_ring;
 508                int trb_size = sizeof(union xhci_trb);
 509
 510                cur_ring = stream_info->stream_rings[cur_stream];
 511                for (addr = cur_ring->first_seg->dma;
 512                                addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 513                                addr += trb_size) {
 514                        mapped_ring = dma_to_stream_ring(stream_info, addr);
 515                        if (cur_ring != mapped_ring) {
 516                                xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 517                                                "didn't map to stream ID %u; "
 518                                                "mapped to ring %p\n",
 519                                                (unsigned long long) addr,
 520                                                cur_stream,
 521                                                mapped_ring);
 522                                return -EINVAL;
 523                        }
 524                }
 525                /* One TRB after the end of the ring segment shouldn't return a
 526                 * pointer to the current ring (although it may be a part of a
 527                 * different ring).
 528                 */
 529                mapped_ring = dma_to_stream_ring(stream_info, addr);
 530                if (mapped_ring != cur_ring) {
 531                        /* One TRB before should also fail */
 532                        addr = cur_ring->first_seg->dma - trb_size;
 533                        mapped_ring = dma_to_stream_ring(stream_info, addr);
 534                }
 535                if (mapped_ring == cur_ring) {
 536                        xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 537                                        "mapped to valid stream ID %u; "
 538                                        "mapped ring = %p\n",
 539                                        (unsigned long long) addr,
 540                                        cur_stream,
 541                                        mapped_ring);
 542                        return -EINVAL;
 543                }
 544        }
 545        return 0;
 546}
 547#endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
 548
 549/*
 550 * Change an endpoint's internal structure so it supports stream IDs.  The
 551 * number of requested streams includes stream 0, which cannot be used by device
 552 * drivers.
 553 *
 554 * The number of stream contexts in the stream context array may be bigger than
 555 * the number of streams the driver wants to use.  This is because the number of
 556 * stream context array entries must be a power of two.
 557 *
 558 * We need a radix tree for mapping physical addresses of TRBs to which stream
 559 * ID they belong to.  We need to do this because the host controller won't tell
 560 * us which stream ring the TRB came from.  We could store the stream ID in an
 561 * event data TRB, but that doesn't help us for the cancellation case, since the
 562 * endpoint may stop before it reaches that event data TRB.
 563 *
 564 * The radix tree maps the upper portion of the TRB DMA address to a ring
 565 * segment that has the same upper portion of DMA addresses.  For example, say I
 566 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 567 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 568 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 569 * pass the radix tree a key to get the right stream ID:
 570 *
 571 *      0x10c90fff >> 10 = 0x43243
 572 *      0x10c912c0 >> 10 = 0x43244
 573 *      0x10c91400 >> 10 = 0x43245
 574 *
 575 * Obviously, only those TRBs with DMA addresses that are within the segment
 576 * will make the radix tree return the stream ID for that ring.
 577 *
 578 * Caveats for the radix tree:
 579 *
 580 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 581 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 582 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 583 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 584 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 585 * extended systems (where the DMA address can be bigger than 32-bits),
 586 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 587 */
 588struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 589                unsigned int num_stream_ctxs,
 590                unsigned int num_streams, gfp_t mem_flags)
 591{
 592        struct xhci_stream_info *stream_info;
 593        u32 cur_stream;
 594        struct xhci_ring *cur_ring;
 595        unsigned long key;
 596        u64 addr;
 597        int ret;
 598
 599        xhci_dbg(xhci, "Allocating %u streams and %u "
 600                        "stream context array entries.\n",
 601                        num_streams, num_stream_ctxs);
 602        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 603                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 604                return NULL;
 605        }
 606        xhci->cmd_ring_reserved_trbs++;
 607
 608        stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 609        if (!stream_info)
 610                goto cleanup_trbs;
 611
 612        stream_info->num_streams = num_streams;
 613        stream_info->num_stream_ctxs = num_stream_ctxs;
 614
 615        /* Initialize the array of virtual pointers to stream rings. */
 616        stream_info->stream_rings = kzalloc(
 617                        sizeof(struct xhci_ring *)*num_streams,
 618                        mem_flags);
 619        if (!stream_info->stream_rings)
 620                goto cleanup_info;
 621
 622        /* Initialize the array of DMA addresses for stream rings for the HW. */
 623        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 624                        num_stream_ctxs, &stream_info->ctx_array_dma,
 625                        mem_flags);
 626        if (!stream_info->stream_ctx_array)
 627                goto cleanup_ctx;
 628        memset(stream_info->stream_ctx_array, 0,
 629                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 630
 631        /* Allocate everything needed to free the stream rings later */
 632        stream_info->free_streams_command =
 633                xhci_alloc_command(xhci, true, true, mem_flags);
 634        if (!stream_info->free_streams_command)
 635                goto cleanup_ctx;
 636
 637        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 638
 639        /* Allocate rings for all the streams that the driver will use,
 640         * and add their segment DMA addresses to the radix tree.
 641         * Stream 0 is reserved.
 642         */
 643        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 644                stream_info->stream_rings[cur_stream] =
 645                        xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 646                cur_ring = stream_info->stream_rings[cur_stream];
 647                if (!cur_ring)
 648                        goto cleanup_rings;
 649                cur_ring->stream_id = cur_stream;
 650                /* Set deq ptr, cycle bit, and stream context type */
 651                addr = cur_ring->first_seg->dma |
 652                        SCT_FOR_CTX(SCT_PRI_TR) |
 653                        cur_ring->cycle_state;
 654                stream_info->stream_ctx_array[cur_stream].stream_ring =
 655                        cpu_to_le64(addr);
 656                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 657                                cur_stream, (unsigned long long) addr);
 658
 659                key = (unsigned long)
 660                        (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 661                ret = radix_tree_insert(&stream_info->trb_address_map,
 662                                key, cur_ring);
 663                if (ret) {
 664                        xhci_ring_free(xhci, cur_ring);
 665                        stream_info->stream_rings[cur_stream] = NULL;
 666                        goto cleanup_rings;
 667                }
 668        }
 669        /* Leave the other unused stream ring pointers in the stream context
 670         * array initialized to zero.  This will cause the xHC to give us an
 671         * error if the device asks for a stream ID we don't have setup (if it
 672         * was any other way, the host controller would assume the ring is
 673         * "empty" and wait forever for data to be queued to that stream ID).
 674         */
 675#if XHCI_DEBUG
 676        /* Do a little test on the radix tree to make sure it returns the
 677         * correct values.
 678         */
 679        if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 680                goto cleanup_rings;
 681#endif
 682
 683        return stream_info;
 684
 685cleanup_rings:
 686        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 687                cur_ring = stream_info->stream_rings[cur_stream];
 688                if (cur_ring) {
 689                        addr = cur_ring->first_seg->dma;
 690                        radix_tree_delete(&stream_info->trb_address_map,
 691                                        addr >> SEGMENT_SHIFT);
 692                        xhci_ring_free(xhci, cur_ring);
 693                        stream_info->stream_rings[cur_stream] = NULL;
 694                }
 695        }
 696        xhci_free_command(xhci, stream_info->free_streams_command);
 697cleanup_ctx:
 698        kfree(stream_info->stream_rings);
 699cleanup_info:
 700        kfree(stream_info);
 701cleanup_trbs:
 702        xhci->cmd_ring_reserved_trbs--;
 703        return NULL;
 704}
 705/*
 706 * Sets the MaxPStreams field and the Linear Stream Array field.
 707 * Sets the dequeue pointer to the stream context array.
 708 */
 709void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 710                struct xhci_ep_ctx *ep_ctx,
 711                struct xhci_stream_info *stream_info)
 712{
 713        u32 max_primary_streams;
 714        /* MaxPStreams is the number of stream context array entries, not the
 715         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 716         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 717         */
 718        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 719        xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 720                        1 << (max_primary_streams + 1));
 721        ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 722        ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 723                                       | EP_HAS_LSA);
 724        ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 725}
 726
 727/*
 728 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 729 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 730 * not at the beginning of the ring).
 731 */
 732void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 733                struct xhci_ep_ctx *ep_ctx,
 734                struct xhci_virt_ep *ep)
 735{
 736        dma_addr_t addr;
 737        ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 738        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 739        ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 740}
 741
 742/* Frees all stream contexts associated with the endpoint,
 743 *
 744 * Caller should fix the endpoint context streams fields.
 745 */
 746void xhci_free_stream_info(struct xhci_hcd *xhci,
 747                struct xhci_stream_info *stream_info)
 748{
 749        int cur_stream;
 750        struct xhci_ring *cur_ring;
 751        dma_addr_t addr;
 752
 753        if (!stream_info)
 754                return;
 755
 756        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 757                        cur_stream++) {
 758                cur_ring = stream_info->stream_rings[cur_stream];
 759                if (cur_ring) {
 760                        addr = cur_ring->first_seg->dma;
 761                        radix_tree_delete(&stream_info->trb_address_map,
 762                                        addr >> SEGMENT_SHIFT);
 763                        xhci_ring_free(xhci, cur_ring);
 764                        stream_info->stream_rings[cur_stream] = NULL;
 765                }
 766        }
 767        xhci_free_command(xhci, stream_info->free_streams_command);
 768        xhci->cmd_ring_reserved_trbs--;
 769        if (stream_info->stream_ctx_array)
 770                xhci_free_stream_ctx(xhci,
 771                                stream_info->num_stream_ctxs,
 772                                stream_info->stream_ctx_array,
 773                                stream_info->ctx_array_dma);
 774
 775        if (stream_info)
 776                kfree(stream_info->stream_rings);
 777        kfree(stream_info);
 778}
 779
 780
 781/***************** Device context manipulation *************************/
 782
 783static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 784                struct xhci_virt_ep *ep)
 785{
 786        init_timer(&ep->stop_cmd_timer);
 787        ep->stop_cmd_timer.data = (unsigned long) ep;
 788        ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 789        ep->xhci = xhci;
 790}
 791
 792static void xhci_free_tt_info(struct xhci_hcd *xhci,
 793                struct xhci_virt_device *virt_dev,
 794                int slot_id)
 795{
 796        struct list_head *tt_list_head;
 797        struct xhci_tt_bw_info *tt_info, *next;
 798        bool slot_found = false;
 799
 800        /* If the device never made it past the Set Address stage,
 801         * it may not have the real_port set correctly.
 802         */
 803        if (virt_dev->real_port == 0 ||
 804                        virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 805                xhci_dbg(xhci, "Bad real port.\n");
 806                return;
 807        }
 808
 809        tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 810        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 811                /* Multi-TT hubs will have more than one entry */
 812                if (tt_info->slot_id == slot_id) {
 813                        slot_found = true;
 814                        list_del(&tt_info->tt_list);
 815                        kfree(tt_info);
 816                } else if (slot_found) {
 817                        break;
 818                }
 819        }
 820}
 821
 822int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 823                struct xhci_virt_device *virt_dev,
 824                struct usb_device *hdev,
 825                struct usb_tt *tt, gfp_t mem_flags)
 826{
 827        struct xhci_tt_bw_info          *tt_info;
 828        unsigned int                    num_ports;
 829        int                             i, j;
 830
 831        if (!tt->multi)
 832                num_ports = 1;
 833        else
 834                num_ports = hdev->maxchild;
 835
 836        for (i = 0; i < num_ports; i++, tt_info++) {
 837                struct xhci_interval_bw_table *bw_table;
 838
 839                tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 840                if (!tt_info)
 841                        goto free_tts;
 842                INIT_LIST_HEAD(&tt_info->tt_list);
 843                list_add(&tt_info->tt_list,
 844                                &xhci->rh_bw[virt_dev->real_port - 1].tts);
 845                tt_info->slot_id = virt_dev->udev->slot_id;
 846                if (tt->multi)
 847                        tt_info->ttport = i+1;
 848                bw_table = &tt_info->bw_table;
 849                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 850                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 851        }
 852        return 0;
 853
 854free_tts:
 855        xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 856        return -ENOMEM;
 857}
 858
 859
 860/* All the xhci_tds in the ring's TD list should be freed at this point.
 861 * Should be called with xhci->lock held if there is any chance the TT lists
 862 * will be manipulated by the configure endpoint, allocate device, or update
 863 * hub functions while this function is removing the TT entries from the list.
 864 */
 865void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 866{
 867        struct xhci_virt_device *dev;
 868        int i;
 869        int old_active_eps = 0;
 870
 871        /* Slot ID 0 is reserved */
 872        if (slot_id == 0 || !xhci->devs[slot_id])
 873                return;
 874
 875        dev = xhci->devs[slot_id];
 876        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 877        if (!dev)
 878                return;
 879
 880        if (dev->tt_info)
 881                old_active_eps = dev->tt_info->active_eps;
 882
 883        for (i = 0; i < 31; ++i) {
 884                if (dev->eps[i].ring)
 885                        xhci_ring_free(xhci, dev->eps[i].ring);
 886                if (dev->eps[i].stream_info)
 887                        xhci_free_stream_info(xhci,
 888                                        dev->eps[i].stream_info);
 889                /* Endpoints on the TT/root port lists should have been removed
 890                 * when usb_disable_device() was called for the device.
 891                 * We can't drop them anyway, because the udev might have gone
 892                 * away by this point, and we can't tell what speed it was.
 893                 */
 894                if (!list_empty(&dev->eps[i].bw_endpoint_list))
 895                        xhci_warn(xhci, "Slot %u endpoint %u "
 896                                        "not removed from BW list!\n",
 897                                        slot_id, i);
 898        }
 899        /* If this is a hub, free the TT(s) from the TT list */
 900        xhci_free_tt_info(xhci, dev, slot_id);
 901        /* If necessary, update the number of active TTs on this root port */
 902        xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 903
 904        if (dev->ring_cache) {
 905                for (i = 0; i < dev->num_rings_cached; i++)
 906                        xhci_ring_free(xhci, dev->ring_cache[i]);
 907                kfree(dev->ring_cache);
 908        }
 909
 910        if (dev->in_ctx)
 911                xhci_free_container_ctx(xhci, dev->in_ctx);
 912        if (dev->out_ctx)
 913                xhci_free_container_ctx(xhci, dev->out_ctx);
 914
 915        kfree(xhci->devs[slot_id]);
 916        xhci->devs[slot_id] = NULL;
 917}
 918
 919int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 920                struct usb_device *udev, gfp_t flags)
 921{
 922        struct xhci_virt_device *dev;
 923        int i;
 924
 925        /* Slot ID 0 is reserved */
 926        if (slot_id == 0 || xhci->devs[slot_id]) {
 927                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 928                return 0;
 929        }
 930
 931        xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 932        if (!xhci->devs[slot_id])
 933                return 0;
 934        dev = xhci->devs[slot_id];
 935
 936        /* Allocate the (output) device context that will be used in the HC. */
 937        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 938        if (!dev->out_ctx)
 939                goto fail;
 940
 941        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 942                        (unsigned long long)dev->out_ctx->dma);
 943
 944        /* Allocate the (input) device context for address device command */
 945        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 946        if (!dev->in_ctx)
 947                goto fail;
 948
 949        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 950                        (unsigned long long)dev->in_ctx->dma);
 951
 952        /* Initialize the cancellation list and watchdog timers for each ep */
 953        for (i = 0; i < 31; i++) {
 954                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 955                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 956                INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 957        }
 958
 959        /* Allocate endpoint 0 ring */
 960        dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
 961        if (!dev->eps[0].ring)
 962                goto fail;
 963
 964        /* Allocate pointers to the ring cache */
 965        dev->ring_cache = kzalloc(
 966                        sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 967                        flags);
 968        if (!dev->ring_cache)
 969                goto fail;
 970        dev->num_rings_cached = 0;
 971
 972        init_completion(&dev->cmd_completion);
 973        INIT_LIST_HEAD(&dev->cmd_list);
 974        dev->udev = udev;
 975
 976        /* Point to output device context in dcbaa. */
 977        xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 978        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 979                 slot_id,
 980                 &xhci->dcbaa->dev_context_ptrs[slot_id],
 981                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 982
 983        return 1;
 984fail:
 985        xhci_free_virt_device(xhci, slot_id);
 986        return 0;
 987}
 988
 989void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 990                struct usb_device *udev)
 991{
 992        struct xhci_virt_device *virt_dev;
 993        struct xhci_ep_ctx      *ep0_ctx;
 994        struct xhci_ring        *ep_ring;
 995
 996        virt_dev = xhci->devs[udev->slot_id];
 997        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 998        ep_ring = virt_dev->eps[0].ring;
 999        /*
1000         * FIXME we don't keep track of the dequeue pointer very well after a
1001         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1002         * host to our enqueue pointer.  This should only be called after a
1003         * configured device has reset, so all control transfers should have
1004         * been completed or cancelled before the reset.
1005         */
1006        ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1007                                                        ep_ring->enqueue)
1008                                   | ep_ring->cycle_state);
1009}
1010
1011/*
1012 * The xHCI roothub may have ports of differing speeds in any order in the port
1013 * status registers.  xhci->port_array provides an array of the port speed for
1014 * each offset into the port status registers.
1015 *
1016 * The xHCI hardware wants to know the roothub port number that the USB device
1017 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1018 * know is the index of that port under either the USB 2.0 or the USB 3.0
1019 * roothub, but that doesn't give us the real index into the HW port status
1020 * registers.  Scan through the xHCI roothub port array, looking for the Nth
1021 * entry of the correct port speed.  Return the port number of that entry.
1022 */
1023static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1024                struct usb_device *udev)
1025{
1026        struct usb_device *top_dev;
1027        unsigned int num_similar_speed_ports;
1028        unsigned int faked_port_num;
1029        int i;
1030
1031        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1032                        top_dev = top_dev->parent)
1033                /* Found device below root hub */;
1034        faked_port_num = top_dev->portnum;
1035        for (i = 0, num_similar_speed_ports = 0;
1036                        i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1037                u8 port_speed = xhci->port_array[i];
1038
1039                /*
1040                 * Skip ports that don't have known speeds, or have duplicate
1041                 * Extended Capabilities port speed entries.
1042                 */
1043                if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1044                        continue;
1045
1046                /*
1047                 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1048                 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1049                 * matches the device speed, it's a similar speed port.
1050                 */
1051                if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1052                        num_similar_speed_ports++;
1053                if (num_similar_speed_ports == faked_port_num)
1054                        /* Roothub ports are numbered from 1 to N */
1055                        return i+1;
1056        }
1057        return 0;
1058}
1059
1060/* Setup an xHCI virtual device for a Set Address command */
1061int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1062{
1063        struct xhci_virt_device *dev;
1064        struct xhci_ep_ctx      *ep0_ctx;
1065        struct xhci_slot_ctx    *slot_ctx;
1066        u32                     port_num;
1067        struct usb_device *top_dev;
1068
1069        dev = xhci->devs[udev->slot_id];
1070        /* Slot ID 0 is reserved */
1071        if (udev->slot_id == 0 || !dev) {
1072                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073                                udev->slot_id);
1074                return -EINVAL;
1075        }
1076        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1077        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078
1079        /* 3) Only the control endpoint is valid - one endpoint context */
1080        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081        switch (udev->speed) {
1082        case USB_SPEED_SUPER:
1083                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1084                break;
1085        case USB_SPEED_HIGH:
1086                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1087                break;
1088        case USB_SPEED_FULL:
1089                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1090                break;
1091        case USB_SPEED_LOW:
1092                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1093                break;
1094        case USB_SPEED_WIRELESS:
1095                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1096                return -EINVAL;
1097                break;
1098        default:
1099                /* Speed was set earlier, this shouldn't happen. */
1100                BUG();
1101        }
1102        /* Find the root hub port this device is under */
1103        port_num = xhci_find_real_port_number(xhci, udev);
1104        if (!port_num)
1105                return -EINVAL;
1106        slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1107        /* Set the port number in the virtual_device to the faked port number */
1108        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1109                        top_dev = top_dev->parent)
1110                /* Found device below root hub */;
1111        dev->fake_port = top_dev->portnum;
1112        dev->real_port = port_num;
1113        xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1114        xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1115
1116        /* Find the right bandwidth table that this device will be a part of.
1117         * If this is a full speed device attached directly to a root port (or a
1118         * decendent of one), it counts as a primary bandwidth domain, not a
1119         * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1120         * will never be created for the HS root hub.
1121         */
1122        if (!udev->tt || !udev->tt->hub->parent) {
1123                dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1124        } else {
1125                struct xhci_root_port_bw_info *rh_bw;
1126                struct xhci_tt_bw_info *tt_bw;
1127
1128                rh_bw = &xhci->rh_bw[port_num - 1];
1129                /* Find the right TT. */
1130                list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1131                        if (tt_bw->slot_id != udev->tt->hub->slot_id)
1132                                continue;
1133
1134                        if (!dev->udev->tt->multi ||
1135                                        (udev->tt->multi &&
1136                                         tt_bw->ttport == dev->udev->ttport)) {
1137                                dev->bw_table = &tt_bw->bw_table;
1138                                dev->tt_info = tt_bw;
1139                                break;
1140                        }
1141                }
1142                if (!dev->tt_info)
1143                        xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1144        }
1145
1146        /* Is this a LS/FS device under an external HS hub? */
1147        if (udev->tt && udev->tt->hub->parent) {
1148                slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1149                                                (udev->ttport << 8));
1150                if (udev->tt->multi)
1151                        slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1152        }
1153        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1154        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1155
1156        /* Step 4 - ring already allocated */
1157        /* Step 5 */
1158        ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1159        /*
1160         * XXX: Not sure about wireless USB devices.
1161         */
1162        switch (udev->speed) {
1163        case USB_SPEED_SUPER:
1164                ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1165                break;
1166        case USB_SPEED_HIGH:
1167        /* USB core guesses at a 64-byte max packet first for FS devices */
1168        case USB_SPEED_FULL:
1169                ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1170                break;
1171        case USB_SPEED_LOW:
1172                ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1173                break;
1174        case USB_SPEED_WIRELESS:
1175                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1176                return -EINVAL;
1177                break;
1178        default:
1179                /* New speed? */
1180                BUG();
1181        }
1182        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1183        ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1184
1185        ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1186                                   dev->eps[0].ring->cycle_state);
1187
1188        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1189
1190        return 0;
1191}
1192
1193/*
1194 * Convert interval expressed as 2^(bInterval - 1) == interval into
1195 * straight exponent value 2^n == interval.
1196 *
1197 */
1198static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1199                struct usb_host_endpoint *ep)
1200{
1201        unsigned int interval;
1202
1203        interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1204        if (interval != ep->desc.bInterval - 1)
1205                dev_warn(&udev->dev,
1206                         "ep %#x - rounding interval to %d %sframes\n",
1207                         ep->desc.bEndpointAddress,
1208                         1 << interval,
1209                         udev->speed == USB_SPEED_FULL ? "" : "micro");
1210
1211        if (udev->speed == USB_SPEED_FULL) {
1212                /*
1213                 * Full speed isoc endpoints specify interval in frames,
1214                 * not microframes. We are using microframes everywhere,
1215                 * so adjust accordingly.
1216                 */
1217                interval += 3;  /* 1 frame = 2^3 uframes */
1218        }
1219
1220        return interval;
1221}
1222
1223/*
1224 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1225 * microframes, rounded down to nearest power of 2.
1226 */
1227static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1228                struct usb_host_endpoint *ep, unsigned int desc_interval,
1229                unsigned int min_exponent, unsigned int max_exponent)
1230{
1231        unsigned int interval;
1232
1233        interval = fls(desc_interval) - 1;
1234        interval = clamp_val(interval, min_exponent, max_exponent);
1235        if ((1 << interval) != desc_interval)
1236                dev_warn(&udev->dev,
1237                         "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1238                         ep->desc.bEndpointAddress,
1239                         1 << interval,
1240                         desc_interval);
1241
1242        return interval;
1243}
1244
1245static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1246                struct usb_host_endpoint *ep)
1247{
1248        return xhci_microframes_to_exponent(udev, ep,
1249                        ep->desc.bInterval, 0, 15);
1250}
1251
1252
1253static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1254                struct usb_host_endpoint *ep)
1255{
1256        return xhci_microframes_to_exponent(udev, ep,
1257                        ep->desc.bInterval * 8, 3, 10);
1258}
1259
1260/* Return the polling or NAK interval.
1261 *
1262 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1263 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1264 *
1265 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1266 * is set to 0.
1267 */
1268static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1269                struct usb_host_endpoint *ep)
1270{
1271        unsigned int interval = 0;
1272
1273        switch (udev->speed) {
1274        case USB_SPEED_HIGH:
1275                /* Max NAK rate */
1276                if (usb_endpoint_xfer_control(&ep->desc) ||
1277                    usb_endpoint_xfer_bulk(&ep->desc)) {
1278                        interval = xhci_parse_microframe_interval(udev, ep);
1279                        break;
1280                }
1281                /* Fall through - SS and HS isoc/int have same decoding */
1282
1283        case USB_SPEED_SUPER:
1284                if (usb_endpoint_xfer_int(&ep->desc) ||
1285                    usb_endpoint_xfer_isoc(&ep->desc)) {
1286                        interval = xhci_parse_exponent_interval(udev, ep);
1287                }
1288                break;
1289
1290        case USB_SPEED_FULL:
1291                if (usb_endpoint_xfer_isoc(&ep->desc)) {
1292                        interval = xhci_parse_exponent_interval(udev, ep);
1293                        break;
1294                }
1295                /*
1296                 * Fall through for interrupt endpoint interval decoding
1297                 * since it uses the same rules as low speed interrupt
1298                 * endpoints.
1299                 */
1300
1301        case USB_SPEED_LOW:
1302                if (usb_endpoint_xfer_int(&ep->desc) ||
1303                    usb_endpoint_xfer_isoc(&ep->desc)) {
1304
1305                        interval = xhci_parse_frame_interval(udev, ep);
1306                }
1307                break;
1308
1309        default:
1310                BUG();
1311        }
1312        return EP_INTERVAL(interval);
1313}
1314
1315/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1316 * High speed endpoint descriptors can define "the number of additional
1317 * transaction opportunities per microframe", but that goes in the Max Burst
1318 * endpoint context field.
1319 */
1320static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1321                struct usb_host_endpoint *ep)
1322{
1323        if (udev->speed != USB_SPEED_SUPER ||
1324                        !usb_endpoint_xfer_isoc(&ep->desc))
1325                return 0;
1326        return ep->ss_ep_comp.bmAttributes;
1327}
1328
1329static u32 xhci_get_endpoint_type(struct usb_device *udev,
1330                struct usb_host_endpoint *ep)
1331{
1332        int in;
1333        u32 type;
1334
1335        in = usb_endpoint_dir_in(&ep->desc);
1336        if (usb_endpoint_xfer_control(&ep->desc)) {
1337                type = EP_TYPE(CTRL_EP);
1338        } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1339                if (in)
1340                        type = EP_TYPE(BULK_IN_EP);
1341                else
1342                        type = EP_TYPE(BULK_OUT_EP);
1343        } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1344                if (in)
1345                        type = EP_TYPE(ISOC_IN_EP);
1346                else
1347                        type = EP_TYPE(ISOC_OUT_EP);
1348        } else if (usb_endpoint_xfer_int(&ep->desc)) {
1349                if (in)
1350                        type = EP_TYPE(INT_IN_EP);
1351                else
1352                        type = EP_TYPE(INT_OUT_EP);
1353        } else {
1354                BUG();
1355        }
1356        return type;
1357}
1358
1359/* Return the maximum endpoint service interval time (ESIT) payload.
1360 * Basically, this is the maxpacket size, multiplied by the burst size
1361 * and mult size.
1362 */
1363static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1364                struct usb_device *udev,
1365                struct usb_host_endpoint *ep)
1366{
1367        int max_burst;
1368        int max_packet;
1369
1370        /* Only applies for interrupt or isochronous endpoints */
1371        if (usb_endpoint_xfer_control(&ep->desc) ||
1372                        usb_endpoint_xfer_bulk(&ep->desc))
1373                return 0;
1374
1375        if (udev->speed == USB_SPEED_SUPER)
1376                return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1377
1378        max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1379        max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1380        /* A 0 in max burst means 1 transfer per ESIT */
1381        return max_packet * (max_burst + 1);
1382}
1383
1384/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1385 * Drivers will have to call usb_alloc_streams() to do that.
1386 */
1387int xhci_endpoint_init(struct xhci_hcd *xhci,
1388                struct xhci_virt_device *virt_dev,
1389                struct usb_device *udev,
1390                struct usb_host_endpoint *ep,
1391                gfp_t mem_flags)
1392{
1393        unsigned int ep_index;
1394        struct xhci_ep_ctx *ep_ctx;
1395        struct xhci_ring *ep_ring;
1396        unsigned int max_packet;
1397        unsigned int max_burst;
1398        enum xhci_ring_type type;
1399        u32 max_esit_payload;
1400
1401        ep_index = xhci_get_endpoint_index(&ep->desc);
1402        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1403
1404        type = usb_endpoint_type(&ep->desc);
1405        /* Set up the endpoint ring */
1406        virt_dev->eps[ep_index].new_ring =
1407                xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1408        if (!virt_dev->eps[ep_index].new_ring) {
1409                /* Attempt to use the ring cache */
1410                if (virt_dev->num_rings_cached == 0)
1411                        return -ENOMEM;
1412                virt_dev->eps[ep_index].new_ring =
1413                        virt_dev->ring_cache[virt_dev->num_rings_cached];
1414                virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1415                virt_dev->num_rings_cached--;
1416                xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1417                                        1, type);
1418        }
1419        virt_dev->eps[ep_index].skip = false;
1420        ep_ring = virt_dev->eps[ep_index].new_ring;
1421        ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1422
1423        ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1424                                      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1425
1426        /* FIXME dig Mult and streams info out of ep companion desc */
1427
1428        /* Allow 3 retries for everything but isoc;
1429         * CErr shall be set to 0 for Isoch endpoints.
1430         */
1431        if (!usb_endpoint_xfer_isoc(&ep->desc))
1432                ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1433        else
1434                ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1435
1436        ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1437
1438        /* Set the max packet size and max burst */
1439        switch (udev->speed) {
1440        case USB_SPEED_SUPER:
1441                max_packet = usb_endpoint_maxp(&ep->desc);
1442                ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1443                /* dig out max burst from ep companion desc */
1444                max_packet = ep->ss_ep_comp.bMaxBurst;
1445                ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1446                break;
1447        case USB_SPEED_HIGH:
1448                /* bits 11:12 specify the number of additional transaction
1449                 * opportunities per microframe (USB 2.0, section 9.6.6)
1450                 */
1451                if (usb_endpoint_xfer_isoc(&ep->desc) ||
1452                                usb_endpoint_xfer_int(&ep->desc)) {
1453                        max_burst = (usb_endpoint_maxp(&ep->desc)
1454                                     & 0x1800) >> 11;
1455                        ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1456                }
1457                /* Fall through */
1458        case USB_SPEED_FULL:
1459        case USB_SPEED_LOW:
1460                max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461                ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1462                break;
1463        default:
1464                BUG();
1465        }
1466        max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1467        ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1468
1469        /*
1470         * XXX no idea how to calculate the average TRB buffer length for bulk
1471         * endpoints, as the driver gives us no clue how big each scatter gather
1472         * list entry (or buffer) is going to be.
1473         *
1474         * For isochronous and interrupt endpoints, we set it to the max
1475         * available, until we have new API in the USB core to allow drivers to
1476         * declare how much bandwidth they actually need.
1477         *
1478         * Normally, it would be calculated by taking the total of the buffer
1479         * lengths in the TD and then dividing by the number of TRBs in a TD,
1480         * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1481         * use Event Data TRBs, and we don't chain in a link TRB on short
1482         * transfers, we're basically dividing by 1.
1483         *
1484         * xHCI 1.0 specification indicates that the Average TRB Length should
1485         * be set to 8 for control endpoints.
1486         */
1487        if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1488                ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1489        else
1490                ep_ctx->tx_info |=
1491                         cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1492
1493        /* FIXME Debug endpoint context */
1494        return 0;
1495}
1496
1497void xhci_endpoint_zero(struct xhci_hcd *xhci,
1498                struct xhci_virt_device *virt_dev,
1499                struct usb_host_endpoint *ep)
1500{
1501        unsigned int ep_index;
1502        struct xhci_ep_ctx *ep_ctx;
1503
1504        ep_index = xhci_get_endpoint_index(&ep->desc);
1505        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1506
1507        ep_ctx->ep_info = 0;
1508        ep_ctx->ep_info2 = 0;
1509        ep_ctx->deq = 0;
1510        ep_ctx->tx_info = 0;
1511        /* Don't free the endpoint ring until the set interface or configuration
1512         * request succeeds.
1513         */
1514}
1515
1516void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1517{
1518        bw_info->ep_interval = 0;
1519        bw_info->mult = 0;
1520        bw_info->num_packets = 0;
1521        bw_info->max_packet_size = 0;
1522        bw_info->type = 0;
1523        bw_info->max_esit_payload = 0;
1524}
1525
1526void xhci_update_bw_info(struct xhci_hcd *xhci,
1527                struct xhci_container_ctx *in_ctx,
1528                struct xhci_input_control_ctx *ctrl_ctx,
1529                struct xhci_virt_device *virt_dev)
1530{
1531        struct xhci_bw_info *bw_info;
1532        struct xhci_ep_ctx *ep_ctx;
1533        unsigned int ep_type;
1534        int i;
1535
1536        for (i = 1; i < 31; ++i) {
1537                bw_info = &virt_dev->eps[i].bw_info;
1538
1539                /* We can't tell what endpoint type is being dropped, but
1540                 * unconditionally clearing the bandwidth info for non-periodic
1541                 * endpoints should be harmless because the info will never be
1542                 * set in the first place.
1543                 */
1544                if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1545                        /* Dropped endpoint */
1546                        xhci_clear_endpoint_bw_info(bw_info);
1547                        continue;
1548                }
1549
1550                if (EP_IS_ADDED(ctrl_ctx, i)) {
1551                        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1552                        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1553
1554                        /* Ignore non-periodic endpoints */
1555                        if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1556                                        ep_type != ISOC_IN_EP &&
1557                                        ep_type != INT_IN_EP)
1558                                continue;
1559
1560                        /* Added or changed endpoint */
1561                        bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1562                                        le32_to_cpu(ep_ctx->ep_info));
1563                        /* Number of packets and mult are zero-based in the
1564                         * input context, but we want one-based for the
1565                         * interval table.
1566                         */
1567                        bw_info->mult = CTX_TO_EP_MULT(
1568                                        le32_to_cpu(ep_ctx->ep_info)) + 1;
1569                        bw_info->num_packets = CTX_TO_MAX_BURST(
1570                                        le32_to_cpu(ep_ctx->ep_info2)) + 1;
1571                        bw_info->max_packet_size = MAX_PACKET_DECODED(
1572                                        le32_to_cpu(ep_ctx->ep_info2));
1573                        bw_info->type = ep_type;
1574                        bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1575                                        le32_to_cpu(ep_ctx->tx_info));
1576                }
1577        }
1578}
1579
1580/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1581 * Useful when you want to change one particular aspect of the endpoint and then
1582 * issue a configure endpoint command.
1583 */
1584void xhci_endpoint_copy(struct xhci_hcd *xhci,
1585                struct xhci_container_ctx *in_ctx,
1586                struct xhci_container_ctx *out_ctx,
1587                unsigned int ep_index)
1588{
1589        struct xhci_ep_ctx *out_ep_ctx;
1590        struct xhci_ep_ctx *in_ep_ctx;
1591
1592        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1593        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1594
1595        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1596        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1597        in_ep_ctx->deq = out_ep_ctx->deq;
1598        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1599}
1600
1601/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command.  Only the context entries field matters,
1604 * but we'll copy the whole thing anyway.
1605 */
1606void xhci_slot_copy(struct xhci_hcd *xhci,
1607                struct xhci_container_ctx *in_ctx,
1608                struct xhci_container_ctx *out_ctx)
1609{
1610        struct xhci_slot_ctx *in_slot_ctx;
1611        struct xhci_slot_ctx *out_slot_ctx;
1612
1613        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615
1616        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620}
1621
1622/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624{
1625        int i;
1626        struct device *dev = xhci_to_hcd(xhci)->self.controller;
1627        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629        xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1630
1631        if (!num_sp)
1632                return 0;
1633
1634        xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1635        if (!xhci->scratchpad)
1636                goto fail_sp;
1637
1638        xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1639                                     num_sp * sizeof(u64),
1640                                     &xhci->scratchpad->sp_dma, flags);
1641        if (!xhci->scratchpad->sp_array)
1642                goto fail_sp2;
1643
1644        xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1645        if (!xhci->scratchpad->sp_buffers)
1646                goto fail_sp3;
1647
1648        xhci->scratchpad->sp_dma_buffers =
1649                kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1650
1651        if (!xhci->scratchpad->sp_dma_buffers)
1652                goto fail_sp4;
1653
1654        xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1655        for (i = 0; i < num_sp; i++) {
1656                dma_addr_t dma;
1657                void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1658                                flags);
1659                if (!buf)
1660                        goto fail_sp5;
1661
1662                xhci->scratchpad->sp_array[i] = dma;
1663                xhci->scratchpad->sp_buffers[i] = buf;
1664                xhci->scratchpad->sp_dma_buffers[i] = dma;
1665        }
1666
1667        return 0;
1668
1669 fail_sp5:
1670        for (i = i - 1; i >= 0; i--) {
1671                dma_free_coherent(dev, xhci->page_size,
1672                                    xhci->scratchpad->sp_buffers[i],
1673                                    xhci->scratchpad->sp_dma_buffers[i]);
1674        }
1675        kfree(xhci->scratchpad->sp_dma_buffers);
1676
1677 fail_sp4:
1678        kfree(xhci->scratchpad->sp_buffers);
1679
1680 fail_sp3:
1681        dma_free_coherent(dev, num_sp * sizeof(u64),
1682                            xhci->scratchpad->sp_array,
1683                            xhci->scratchpad->sp_dma);
1684
1685 fail_sp2:
1686        kfree(xhci->scratchpad);
1687        xhci->scratchpad = NULL;
1688
1689 fail_sp:
1690        return -ENOMEM;
1691}
1692
1693static void scratchpad_free(struct xhci_hcd *xhci)
1694{
1695        int num_sp;
1696        int i;
1697        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1698
1699        if (!xhci->scratchpad)
1700                return;
1701
1702        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704        for (i = 0; i < num_sp; i++) {
1705                dma_free_coherent(&pdev->dev, xhci->page_size,
1706                                    xhci->scratchpad->sp_buffers[i],
1707                                    xhci->scratchpad->sp_dma_buffers[i]);
1708        }
1709        kfree(xhci->scratchpad->sp_dma_buffers);
1710        kfree(xhci->scratchpad->sp_buffers);
1711        dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1712                            xhci->scratchpad->sp_array,
1713                            xhci->scratchpad->sp_dma);
1714        kfree(xhci->scratchpad);
1715        xhci->scratchpad = NULL;
1716}
1717
1718struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1719                bool allocate_in_ctx, bool allocate_completion,
1720                gfp_t mem_flags)
1721{
1722        struct xhci_command *command;
1723
1724        command = kzalloc(sizeof(*command), mem_flags);
1725        if (!command)
1726                return NULL;
1727
1728        if (allocate_in_ctx) {
1729                command->in_ctx =
1730                        xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1731                                        mem_flags);
1732                if (!command->in_ctx) {
1733                        kfree(command);
1734                        return NULL;
1735                }
1736        }
1737
1738        if (allocate_completion) {
1739                command->completion =
1740                        kzalloc(sizeof(struct completion), mem_flags);
1741                if (!command->completion) {
1742                        xhci_free_container_ctx(xhci, command->in_ctx);
1743                        kfree(command);
1744                        return NULL;
1745                }
1746                init_completion(command->completion);
1747        }
1748
1749        command->status = 0;
1750        INIT_LIST_HEAD(&command->cmd_list);
1751        return command;
1752}
1753
1754void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1755{
1756        if (urb_priv) {
1757                kfree(urb_priv->td[0]);
1758                kfree(urb_priv);
1759        }
1760}
1761
1762void xhci_free_command(struct xhci_hcd *xhci,
1763                struct xhci_command *command)
1764{
1765        xhci_free_container_ctx(xhci,
1766                        command->in_ctx);
1767        kfree(command->completion);
1768        kfree(command);
1769}
1770
1771void xhci_mem_cleanup(struct xhci_hcd *xhci)
1772{
1773        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1774        struct dev_info *dev_info, *next;
1775        struct xhci_cd  *cur_cd, *next_cd;
1776        unsigned long   flags;
1777        int size;
1778        int i, j, num_ports;
1779
1780        /* Free the Event Ring Segment Table and the actual Event Ring */
1781        size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1782        if (xhci->erst.entries)
1783                dma_free_coherent(&pdev->dev, size,
1784                                xhci->erst.entries, xhci->erst.erst_dma_addr);
1785        xhci->erst.entries = NULL;
1786        xhci_dbg(xhci, "Freed ERST\n");
1787        if (xhci->event_ring)
1788                xhci_ring_free(xhci, xhci->event_ring);
1789        xhci->event_ring = NULL;
1790        xhci_dbg(xhci, "Freed event ring\n");
1791
1792        if (xhci->lpm_command)
1793                xhci_free_command(xhci, xhci->lpm_command);
1794        xhci->cmd_ring_reserved_trbs = 0;
1795        if (xhci->cmd_ring)
1796                xhci_ring_free(xhci, xhci->cmd_ring);
1797        xhci->cmd_ring = NULL;
1798        xhci_dbg(xhci, "Freed command ring\n");
1799        list_for_each_entry_safe(cur_cd, next_cd,
1800                        &xhci->cancel_cmd_list, cancel_cmd_list) {
1801                list_del(&cur_cd->cancel_cmd_list);
1802                kfree(cur_cd);
1803        }
1804
1805        for (i = 1; i < MAX_HC_SLOTS; ++i)
1806                xhci_free_virt_device(xhci, i);
1807
1808        if (xhci->segment_pool)
1809                dma_pool_destroy(xhci->segment_pool);
1810        xhci->segment_pool = NULL;
1811        xhci_dbg(xhci, "Freed segment pool\n");
1812
1813        if (xhci->device_pool)
1814                dma_pool_destroy(xhci->device_pool);
1815        xhci->device_pool = NULL;
1816        xhci_dbg(xhci, "Freed device context pool\n");
1817
1818        if (xhci->small_streams_pool)
1819                dma_pool_destroy(xhci->small_streams_pool);
1820        xhci->small_streams_pool = NULL;
1821        xhci_dbg(xhci, "Freed small stream array pool\n");
1822
1823        if (xhci->medium_streams_pool)
1824                dma_pool_destroy(xhci->medium_streams_pool);
1825        xhci->medium_streams_pool = NULL;
1826        xhci_dbg(xhci, "Freed medium stream array pool\n");
1827
1828        if (xhci->dcbaa)
1829                dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1830                                xhci->dcbaa, xhci->dcbaa->dma);
1831        xhci->dcbaa = NULL;
1832
1833        scratchpad_free(xhci);
1834
1835        spin_lock_irqsave(&xhci->lock, flags);
1836        list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1837                list_del(&dev_info->list);
1838                kfree(dev_info);
1839        }
1840        spin_unlock_irqrestore(&xhci->lock, flags);
1841
1842        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843        for (i = 0; i < num_ports; i++) {
1844                struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845                for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846                        struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847                        while (!list_empty(ep))
1848                                list_del_init(ep->next);
1849                }
1850        }
1851
1852        for (i = 0; i < num_ports; i++) {
1853                struct xhci_tt_bw_info *tt, *n;
1854                list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1855                        list_del(&tt->tt_list);
1856                        kfree(tt);
1857                }
1858        }
1859
1860        xhci->num_usb2_ports = 0;
1861        xhci->num_usb3_ports = 0;
1862        xhci->num_active_eps = 0;
1863        kfree(xhci->usb2_ports);
1864        kfree(xhci->usb3_ports);
1865        kfree(xhci->port_array);
1866        kfree(xhci->rh_bw);
1867
1868        xhci->page_size = 0;
1869        xhci->page_shift = 0;
1870        xhci->bus_state[0].bus_suspended = 0;
1871        xhci->bus_state[1].bus_suspended = 0;
1872}
1873
1874static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1875                struct xhci_segment *input_seg,
1876                union xhci_trb *start_trb,
1877                union xhci_trb *end_trb,
1878                dma_addr_t input_dma,
1879                struct xhci_segment *result_seg,
1880                char *test_name, int test_number)
1881{
1882        unsigned long long start_dma;
1883        unsigned long long end_dma;
1884        struct xhci_segment *seg;
1885
1886        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1887        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1888
1889        seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1890        if (seg != result_seg) {
1891                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1892                                test_name, test_number);
1893                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1894                                "input DMA 0x%llx\n",
1895                                input_seg,
1896                                (unsigned long long) input_dma);
1897                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1898                                "ending TRB %p (0x%llx DMA)\n",
1899                                start_trb, start_dma,
1900                                end_trb, end_dma);
1901                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1902                                result_seg, seg);
1903                return -1;
1904        }
1905        return 0;
1906}
1907
1908/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1909static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1910{
1911        struct {
1912                dma_addr_t              input_dma;
1913                struct xhci_segment     *result_seg;
1914        } simple_test_vector [] = {
1915                /* A zeroed DMA field should fail */
1916                { 0, NULL },
1917                /* One TRB before the ring start should fail */
1918                { xhci->event_ring->first_seg->dma - 16, NULL },
1919                /* One byte before the ring start should fail */
1920                { xhci->event_ring->first_seg->dma - 1, NULL },
1921                /* Starting TRB should succeed */
1922                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1923                /* Ending TRB should succeed */
1924                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1925                        xhci->event_ring->first_seg },
1926                /* One byte after the ring end should fail */
1927                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1928                /* One TRB after the ring end should fail */
1929                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1930                /* An address of all ones should fail */
1931                { (dma_addr_t) (~0), NULL },
1932        };
1933        struct {
1934                struct xhci_segment     *input_seg;
1935                union xhci_trb          *start_trb;
1936                union xhci_trb          *end_trb;
1937                dma_addr_t              input_dma;
1938                struct xhci_segment     *result_seg;
1939        } complex_test_vector [] = {
1940                /* Test feeding a valid DMA address from a different ring */
1941                {       .input_seg = xhci->event_ring->first_seg,
1942                        .start_trb = xhci->event_ring->first_seg->trbs,
1943                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1944                        .input_dma = xhci->cmd_ring->first_seg->dma,
1945                        .result_seg = NULL,
1946                },
1947                /* Test feeding a valid end TRB from a different ring */
1948                {       .input_seg = xhci->event_ring->first_seg,
1949                        .start_trb = xhci->event_ring->first_seg->trbs,
1950                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1951                        .input_dma = xhci->cmd_ring->first_seg->dma,
1952                        .result_seg = NULL,
1953                },
1954                /* Test feeding a valid start and end TRB from a different ring */
1955                {       .input_seg = xhci->event_ring->first_seg,
1956                        .start_trb = xhci->cmd_ring->first_seg->trbs,
1957                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1958                        .input_dma = xhci->cmd_ring->first_seg->dma,
1959                        .result_seg = NULL,
1960                },
1961                /* TRB in this ring, but after this TD */
1962                {       .input_seg = xhci->event_ring->first_seg,
1963                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
1964                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
1965                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1966                        .result_seg = NULL,
1967                },
1968                /* TRB in this ring, but before this TD */
1969                {       .input_seg = xhci->event_ring->first_seg,
1970                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
1971                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
1972                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1973                        .result_seg = NULL,
1974                },
1975                /* TRB in this ring, but after this wrapped TD */
1976                {       .input_seg = xhci->event_ring->first_seg,
1977                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1978                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1979                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1980                        .result_seg = NULL,
1981                },
1982                /* TRB in this ring, but before this wrapped TD */
1983                {       .input_seg = xhci->event_ring->first_seg,
1984                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1985                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1986                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1987                        .result_seg = NULL,
1988                },
1989                /* TRB not in this ring, and we have a wrapped TD */
1990                {       .input_seg = xhci->event_ring->first_seg,
1991                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1992                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1993                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1994                        .result_seg = NULL,
1995                },
1996        };
1997
1998        unsigned int num_tests;
1999        int i, ret;
2000
2001        num_tests = ARRAY_SIZE(simple_test_vector);
2002        for (i = 0; i < num_tests; i++) {
2003                ret = xhci_test_trb_in_td(xhci,
2004                                xhci->event_ring->first_seg,
2005                                xhci->event_ring->first_seg->trbs,
2006                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007                                simple_test_vector[i].input_dma,
2008                                simple_test_vector[i].result_seg,
2009                                "Simple", i);
2010                if (ret < 0)
2011                        return ret;
2012        }
2013
2014        num_tests = ARRAY_SIZE(complex_test_vector);
2015        for (i = 0; i < num_tests; i++) {
2016                ret = xhci_test_trb_in_td(xhci,
2017                                complex_test_vector[i].input_seg,
2018                                complex_test_vector[i].start_trb,
2019                                complex_test_vector[i].end_trb,
2020                                complex_test_vector[i].input_dma,
2021                                complex_test_vector[i].result_seg,
2022                                "Complex", i);
2023                if (ret < 0)
2024                        return ret;
2025        }
2026        xhci_dbg(xhci, "TRB math tests passed.\n");
2027        return 0;
2028}
2029
2030static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2031{
2032        u64 temp;
2033        dma_addr_t deq;
2034
2035        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2036                        xhci->event_ring->dequeue);
2037        if (deq == 0 && !in_interrupt())
2038                xhci_warn(xhci, "WARN something wrong with SW event ring "
2039                                "dequeue ptr.\n");
2040        /* Update HC event ring dequeue pointer */
2041        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2042        temp &= ERST_PTR_MASK;
2043        /* Don't clear the EHB bit (which is RW1C) because
2044         * there might be more events to service.
2045         */
2046        temp &= ~ERST_EHB;
2047        xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2048                        "preserving EHB bit\n");
2049        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2050                        &xhci->ir_set->erst_dequeue);
2051}
2052
2053static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2054                __le32 __iomem *addr, u8 major_revision)
2055{
2056        u32 temp, port_offset, port_count;
2057        int i;
2058
2059        if (major_revision > 0x03) {
2060                xhci_warn(xhci, "Ignoring unknown port speed, "
2061                                "Ext Cap %p, revision = 0x%x\n",
2062                                addr, major_revision);
2063                /* Ignoring port protocol we can't understand. FIXME */
2064                return;
2065        }
2066
2067        /* Port offset and count in the third dword, see section 7.2 */
2068        temp = xhci_readl(xhci, addr + 2);
2069        port_offset = XHCI_EXT_PORT_OFF(temp);
2070        port_count = XHCI_EXT_PORT_COUNT(temp);
2071        xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2072                        "count = %u, revision = 0x%x\n",
2073                        addr, port_offset, port_count, major_revision);
2074        /* Port count includes the current port offset */
2075        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2076                /* WTF? "Valid values are ‘1’ to MaxPorts" */
2077                return;
2078
2079        /* Check the host's USB2 LPM capability */
2080        if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2081                        (temp & XHCI_L1C)) {
2082                xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2083                xhci->sw_lpm_support = 1;
2084        }
2085
2086        if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2087                xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2088                xhci->sw_lpm_support = 1;
2089                if (temp & XHCI_HLC) {
2090                        xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2091                        xhci->hw_lpm_support = 1;
2092                }
2093        }
2094
2095        port_offset--;
2096        for (i = port_offset; i < (port_offset + port_count); i++) {
2097                /* Duplicate entry.  Ignore the port if the revisions differ. */
2098                if (xhci->port_array[i] != 0) {
2099                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2100                                        " port %u\n", addr, i);
2101                        xhci_warn(xhci, "Port was marked as USB %u, "
2102                                        "duplicated as USB %u\n",
2103                                        xhci->port_array[i], major_revision);
2104                        /* Only adjust the roothub port counts if we haven't
2105                         * found a similar duplicate.
2106                         */
2107                        if (xhci->port_array[i] != major_revision &&
2108                                xhci->port_array[i] != DUPLICATE_ENTRY) {
2109                                if (xhci->port_array[i] == 0x03)
2110                                        xhci->num_usb3_ports--;
2111                                else
2112                                        xhci->num_usb2_ports--;
2113                                xhci->port_array[i] = DUPLICATE_ENTRY;
2114                        }
2115                        /* FIXME: Should we disable the port? */
2116                        continue;
2117                }
2118                xhci->port_array[i] = major_revision;
2119                if (major_revision == 0x03)
2120                        xhci->num_usb3_ports++;
2121                else
2122                        xhci->num_usb2_ports++;
2123        }
2124        /* FIXME: Should we disable ports not in the Extended Capabilities? */
2125}
2126
2127/*
2128 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2129 * specify what speeds each port is supposed to be.  We can't count on the port
2130 * speed bits in the PORTSC register being correct until a device is connected,
2131 * but we need to set up the two fake roothubs with the correct number of USB
2132 * 3.0 and USB 2.0 ports at host controller initialization time.
2133 */
2134static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2135{
2136        __le32 __iomem *addr;
2137        u32 offset;
2138        unsigned int num_ports;
2139        int i, j, port_index;
2140
2141        addr = &xhci->cap_regs->hcc_params;
2142        offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2143        if (offset == 0) {
2144                xhci_err(xhci, "No Extended Capability registers, "
2145                                "unable to set up roothub.\n");
2146                return -ENODEV;
2147        }
2148
2149        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2150        xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2151        if (!xhci->port_array)
2152                return -ENOMEM;
2153
2154        xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2155        if (!xhci->rh_bw)
2156                return -ENOMEM;
2157        for (i = 0; i < num_ports; i++) {
2158                struct xhci_interval_bw_table *bw_table;
2159
2160                INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2161                bw_table = &xhci->rh_bw[i].bw_table;
2162                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2163                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2164        }
2165
2166        /*
2167         * For whatever reason, the first capability offset is from the
2168         * capability register base, not from the HCCPARAMS register.
2169         * See section 5.3.6 for offset calculation.
2170         */
2171        addr = &xhci->cap_regs->hc_capbase + offset;
2172        while (1) {
2173                u32 cap_id;
2174
2175                cap_id = xhci_readl(xhci, addr);
2176                if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2177                        xhci_add_in_port(xhci, num_ports, addr,
2178                                        (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2179                offset = XHCI_EXT_CAPS_NEXT(cap_id);
2180                if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2181                                == num_ports)
2182                        break;
2183                /*
2184                 * Once you're into the Extended Capabilities, the offset is
2185                 * always relative to the register holding the offset.
2186                 */
2187                addr += offset;
2188        }
2189
2190        if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2191                xhci_warn(xhci, "No ports on the roothubs?\n");
2192                return -ENODEV;
2193        }
2194        xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2195                        xhci->num_usb2_ports, xhci->num_usb3_ports);
2196
2197        /* Place limits on the number of roothub ports so that the hub
2198         * descriptors aren't longer than the USB core will allocate.
2199         */
2200        if (xhci->num_usb3_ports > 15) {
2201                xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2202                xhci->num_usb3_ports = 15;
2203        }
2204        if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2205                xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2206                                USB_MAXCHILDREN);
2207                xhci->num_usb2_ports = USB_MAXCHILDREN;
2208        }
2209
2210        /*
2211         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2212         * Not sure how the USB core will handle a hub with no ports...
2213         */
2214        if (xhci->num_usb2_ports) {
2215                xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2216                                xhci->num_usb2_ports, flags);
2217                if (!xhci->usb2_ports)
2218                        return -ENOMEM;
2219
2220                port_index = 0;
2221                for (i = 0; i < num_ports; i++) {
2222                        if (xhci->port_array[i] == 0x03 ||
2223                                        xhci->port_array[i] == 0 ||
2224                                        xhci->port_array[i] == DUPLICATE_ENTRY)
2225                                continue;
2226
2227                        xhci->usb2_ports[port_index] =
2228                                &xhci->op_regs->port_status_base +
2229                                NUM_PORT_REGS*i;
2230                        xhci_dbg(xhci, "USB 2.0 port at index %u, "
2231                                        "addr = %p\n", i,
2232                                        xhci->usb2_ports[port_index]);
2233                        port_index++;
2234                        if (port_index == xhci->num_usb2_ports)
2235                                break;
2236                }
2237        }
2238        if (xhci->num_usb3_ports) {
2239                xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2240                                xhci->num_usb3_ports, flags);
2241                if (!xhci->usb3_ports)
2242                        return -ENOMEM;
2243
2244                port_index = 0;
2245                for (i = 0; i < num_ports; i++)
2246                        if (xhci->port_array[i] == 0x03) {
2247                                xhci->usb3_ports[port_index] =
2248                                        &xhci->op_regs->port_status_base +
2249                                        NUM_PORT_REGS*i;
2250                                xhci_dbg(xhci, "USB 3.0 port at index %u, "
2251                                                "addr = %p\n", i,
2252                                                xhci->usb3_ports[port_index]);
2253                                port_index++;
2254                                if (port_index == xhci->num_usb3_ports)
2255                                        break;
2256                        }
2257        }
2258        return 0;
2259}
2260
2261int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2262{
2263        dma_addr_t      dma;
2264        struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2265        unsigned int    val, val2;
2266        u64             val_64;
2267        struct xhci_segment     *seg;
2268        u32 page_size, temp;
2269        int i;
2270
2271        page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2272        xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2273        for (i = 0; i < 16; i++) {
2274                if ((0x1 & page_size) != 0)
2275                        break;
2276                page_size = page_size >> 1;
2277        }
2278        if (i < 16)
2279                xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2280        else
2281                xhci_warn(xhci, "WARN: no supported page size\n");
2282        /* Use 4K pages, since that's common and the minimum the HC supports */
2283        xhci->page_shift = 12;
2284        xhci->page_size = 1 << xhci->page_shift;
2285        xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2286
2287        /*
2288         * Program the Number of Device Slots Enabled field in the CONFIG
2289         * register with the max value of slots the HC can handle.
2290         */
2291        val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2292        xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2293                        (unsigned int) val);
2294        val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2295        val |= (val2 & ~HCS_SLOTS_MASK);
2296        xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2297                        (unsigned int) val);
2298        xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2299
2300        /*
2301         * Section 5.4.8 - doorbell array must be
2302         * "physically contiguous and 64-byte (cache line) aligned".
2303         */
2304        xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2305                        GFP_KERNEL);
2306        if (!xhci->dcbaa)
2307                goto fail;
2308        memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2309        xhci->dcbaa->dma = dma;
2310        xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2311                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2312        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2313
2314        /*
2315         * Initialize the ring segment pool.  The ring must be a contiguous
2316         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2317         * however, the command ring segment needs 64-byte aligned segments,
2318         * so we pick the greater alignment need.
2319         */
2320        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2321                        SEGMENT_SIZE, 64, xhci->page_size);
2322
2323        /* See Table 46 and Note on Figure 55 */
2324        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2325                        2112, 64, xhci->page_size);
2326        if (!xhci->segment_pool || !xhci->device_pool)
2327                goto fail;
2328
2329        /* Linear stream context arrays don't have any boundary restrictions,
2330         * and only need to be 16-byte aligned.
2331         */
2332        xhci->small_streams_pool =
2333                dma_pool_create("xHCI 256 byte stream ctx arrays",
2334                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2335        xhci->medium_streams_pool =
2336                dma_pool_create("xHCI 1KB stream ctx arrays",
2337                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2338        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2339         * will be allocated with dma_alloc_coherent()
2340         */
2341
2342        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2343                goto fail;
2344
2345        /* Set up the command ring to have one segments for now. */
2346        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2347        if (!xhci->cmd_ring)
2348                goto fail;
2349        INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2350        xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2351        xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2352                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
2353
2354        /* Set the address in the Command Ring Control register */
2355        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2356        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2357                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2358                xhci->cmd_ring->cycle_state;
2359        xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2360        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2361        xhci_dbg_cmd_ptrs(xhci);
2362
2363        xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2364        if (!xhci->lpm_command)
2365                goto fail;
2366
2367        /* Reserve one command ring TRB for disabling LPM.
2368         * Since the USB core grabs the shared usb_bus bandwidth mutex before
2369         * disabling LPM, we only need to reserve one TRB for all devices.
2370         */
2371        xhci->cmd_ring_reserved_trbs++;
2372
2373        val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2374        val &= DBOFF_MASK;
2375        xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2376                        " from cap regs base addr\n", val);
2377        xhci->dba = (void __iomem *) xhci->cap_regs + val;
2378        xhci_dbg_regs(xhci);
2379        xhci_print_run_regs(xhci);
2380        /* Set ir_set to interrupt register set 0 */
2381        xhci->ir_set = &xhci->run_regs->ir_set[0];
2382
2383        /*
2384         * Event ring setup: Allocate a normal ring, but also setup
2385         * the event ring segment table (ERST).  Section 4.9.3.
2386         */
2387        xhci_dbg(xhci, "// Allocating event ring\n");
2388        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2389                                                flags);
2390        if (!xhci->event_ring)
2391                goto fail;
2392        if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2393                goto fail;
2394
2395        xhci->erst.entries = dma_alloc_coherent(dev,
2396                        sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2397                        GFP_KERNEL);
2398        if (!xhci->erst.entries)
2399                goto fail;
2400        xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2401                        (unsigned long long)dma);
2402
2403        memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2404        xhci->erst.num_entries = ERST_NUM_SEGS;
2405        xhci->erst.erst_dma_addr = dma;
2406        xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2407                        xhci->erst.num_entries,
2408                        xhci->erst.entries,
2409                        (unsigned long long)xhci->erst.erst_dma_addr);
2410
2411        /* set ring base address and size for each segment table entry */
2412        for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2413                struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2414                entry->seg_addr = cpu_to_le64(seg->dma);
2415                entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2416                entry->rsvd = 0;
2417                seg = seg->next;
2418        }
2419
2420        /* set ERST count with the number of entries in the segment table */
2421        val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2422        val &= ERST_SIZE_MASK;
2423        val |= ERST_NUM_SEGS;
2424        xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2425                        val);
2426        xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2427
2428        xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2429        /* set the segment table base address */
2430        xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2431                        (unsigned long long)xhci->erst.erst_dma_addr);
2432        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2433        val_64 &= ERST_PTR_MASK;
2434        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2435        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2436
2437        /* Set the event ring dequeue address */
2438        xhci_set_hc_event_deq(xhci);
2439        xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2440        xhci_print_ir_set(xhci, 0);
2441
2442        /*
2443         * XXX: Might need to set the Interrupter Moderation Register to
2444         * something other than the default (~1ms minimum between interrupts).
2445         * See section 5.5.1.2.
2446         */
2447        init_completion(&xhci->addr_dev);
2448        for (i = 0; i < MAX_HC_SLOTS; ++i)
2449                xhci->devs[i] = NULL;
2450        for (i = 0; i < USB_MAXCHILDREN; ++i) {
2451                xhci->bus_state[0].resume_done[i] = 0;
2452                xhci->bus_state[1].resume_done[i] = 0;
2453        }
2454
2455        if (scratchpad_alloc(xhci, flags))
2456                goto fail;
2457        if (xhci_setup_port_arrays(xhci, flags))
2458                goto fail;
2459
2460        INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2461
2462        /* Enable USB 3.0 device notifications for function remote wake, which
2463         * is necessary for allowing USB 3.0 devices to do remote wakeup from
2464         * U3 (device suspend).
2465         */
2466        temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2467        temp &= ~DEV_NOTE_MASK;
2468        temp |= DEV_NOTE_FWAKE;
2469        xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2470
2471        return 0;
2472
2473fail:
2474        xhci_warn(xhci, "Couldn't initialize memory\n");
2475        xhci_halt(xhci);
2476        xhci_reset(xhci);
2477        xhci_mem_cleanup(xhci);
2478        return -ENOMEM;
2479}
2480