linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "check-integrity.h"
  29#include "rcu-string.h"
  30
  31/*
  32 * This is only the first step towards a full-features scrub. It reads all
  33 * extent and super block and verifies the checksums. In case a bad checksum
  34 * is found or the extent cannot be read, good data will be written back if
  35 * any can be found.
  36 *
  37 * Future enhancements:
  38 *  - In case an unrepairable extent is encountered, track which files are
  39 *    affected and report them
  40 *  - track and record media errors, throw out bad devices
  41 *  - add a mode to also read unallocated space
  42 */
  43
  44struct scrub_block;
  45struct scrub_dev;
  46
  47#define SCRUB_PAGES_PER_BIO     16      /* 64k per bio */
  48#define SCRUB_BIOS_PER_DEV      16      /* 1 MB per device in flight */
  49#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  50
  51struct scrub_page {
  52        struct scrub_block      *sblock;
  53        struct page             *page;
  54        struct btrfs_device     *dev;
  55        u64                     flags;  /* extent flags */
  56        u64                     generation;
  57        u64                     logical;
  58        u64                     physical;
  59        struct {
  60                unsigned int    mirror_num:8;
  61                unsigned int    have_csum:1;
  62                unsigned int    io_error:1;
  63        };
  64        u8                      csum[BTRFS_CSUM_SIZE];
  65};
  66
  67struct scrub_bio {
  68        int                     index;
  69        struct scrub_dev        *sdev;
  70        struct bio              *bio;
  71        int                     err;
  72        u64                     logical;
  73        u64                     physical;
  74        struct scrub_page       *pagev[SCRUB_PAGES_PER_BIO];
  75        int                     page_count;
  76        int                     next_free;
  77        struct btrfs_work       work;
  78};
  79
  80struct scrub_block {
  81        struct scrub_page       pagev[SCRUB_MAX_PAGES_PER_BLOCK];
  82        int                     page_count;
  83        atomic_t                outstanding_pages;
  84        atomic_t                ref_count; /* free mem on transition to zero */
  85        struct scrub_dev        *sdev;
  86        struct {
  87                unsigned int    header_error:1;
  88                unsigned int    checksum_error:1;
  89                unsigned int    no_io_error_seen:1;
  90                unsigned int    generation_error:1; /* also sets header_error */
  91        };
  92};
  93
  94struct scrub_dev {
  95        struct scrub_bio        *bios[SCRUB_BIOS_PER_DEV];
  96        struct btrfs_device     *dev;
  97        int                     first_free;
  98        int                     curr;
  99        atomic_t                in_flight;
 100        atomic_t                fixup_cnt;
 101        spinlock_t              list_lock;
 102        wait_queue_head_t       list_wait;
 103        u16                     csum_size;
 104        struct list_head        csum_list;
 105        atomic_t                cancel_req;
 106        int                     readonly;
 107        int                     pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
 108        u32                     sectorsize;
 109        u32                     nodesize;
 110        u32                     leafsize;
 111        /*
 112         * statistics
 113         */
 114        struct btrfs_scrub_progress stat;
 115        spinlock_t              stat_lock;
 116};
 117
 118struct scrub_fixup_nodatasum {
 119        struct scrub_dev        *sdev;
 120        u64                     logical;
 121        struct btrfs_root       *root;
 122        struct btrfs_work       work;
 123        int                     mirror_num;
 124};
 125
 126struct scrub_warning {
 127        struct btrfs_path       *path;
 128        u64                     extent_item_size;
 129        char                    *scratch_buf;
 130        char                    *msg_buf;
 131        const char              *errstr;
 132        sector_t                sector;
 133        u64                     logical;
 134        struct btrfs_device     *dev;
 135        int                     msg_bufsize;
 136        int                     scratch_bufsize;
 137};
 138
 139
 140static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 141static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 142                                     struct btrfs_mapping_tree *map_tree,
 143                                     u64 length, u64 logical,
 144                                     struct scrub_block *sblock);
 145static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
 146                               struct scrub_block *sblock, int is_metadata,
 147                               int have_csum, u8 *csum, u64 generation,
 148                               u16 csum_size);
 149static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 150                                         struct scrub_block *sblock,
 151                                         int is_metadata, int have_csum,
 152                                         const u8 *csum, u64 generation,
 153                                         u16 csum_size);
 154static void scrub_complete_bio_end_io(struct bio *bio, int err);
 155static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 156                                             struct scrub_block *sblock_good,
 157                                             int force_write);
 158static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 159                                            struct scrub_block *sblock_good,
 160                                            int page_num, int force_write);
 161static int scrub_checksum_data(struct scrub_block *sblock);
 162static int scrub_checksum_tree_block(struct scrub_block *sblock);
 163static int scrub_checksum_super(struct scrub_block *sblock);
 164static void scrub_block_get(struct scrub_block *sblock);
 165static void scrub_block_put(struct scrub_block *sblock);
 166static int scrub_add_page_to_bio(struct scrub_dev *sdev,
 167                                 struct scrub_page *spage);
 168static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
 169                       u64 physical, u64 flags, u64 gen, int mirror_num,
 170                       u8 *csum, int force);
 171static void scrub_bio_end_io(struct bio *bio, int err);
 172static void scrub_bio_end_io_worker(struct btrfs_work *work);
 173static void scrub_block_complete(struct scrub_block *sblock);
 174
 175
 176static void scrub_free_csums(struct scrub_dev *sdev)
 177{
 178        while (!list_empty(&sdev->csum_list)) {
 179                struct btrfs_ordered_sum *sum;
 180                sum = list_first_entry(&sdev->csum_list,
 181                                       struct btrfs_ordered_sum, list);
 182                list_del(&sum->list);
 183                kfree(sum);
 184        }
 185}
 186
 187static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
 188{
 189        int i;
 190
 191        if (!sdev)
 192                return;
 193
 194        /* this can happen when scrub is cancelled */
 195        if (sdev->curr != -1) {
 196                struct scrub_bio *sbio = sdev->bios[sdev->curr];
 197
 198                for (i = 0; i < sbio->page_count; i++) {
 199                        BUG_ON(!sbio->pagev[i]);
 200                        BUG_ON(!sbio->pagev[i]->page);
 201                        scrub_block_put(sbio->pagev[i]->sblock);
 202                }
 203                bio_put(sbio->bio);
 204        }
 205
 206        for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 207                struct scrub_bio *sbio = sdev->bios[i];
 208
 209                if (!sbio)
 210                        break;
 211                kfree(sbio);
 212        }
 213
 214        scrub_free_csums(sdev);
 215        kfree(sdev);
 216}
 217
 218static noinline_for_stack
 219struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
 220{
 221        struct scrub_dev *sdev;
 222        int             i;
 223        struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 224        int pages_per_bio;
 225
 226        pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
 227                              bio_get_nr_vecs(dev->bdev));
 228        sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
 229        if (!sdev)
 230                goto nomem;
 231        sdev->dev = dev;
 232        sdev->pages_per_bio = pages_per_bio;
 233        sdev->curr = -1;
 234        for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 235                struct scrub_bio *sbio;
 236
 237                sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 238                if (!sbio)
 239                        goto nomem;
 240                sdev->bios[i] = sbio;
 241
 242                sbio->index = i;
 243                sbio->sdev = sdev;
 244                sbio->page_count = 0;
 245                sbio->work.func = scrub_bio_end_io_worker;
 246
 247                if (i != SCRUB_BIOS_PER_DEV-1)
 248                        sdev->bios[i]->next_free = i + 1;
 249                else
 250                        sdev->bios[i]->next_free = -1;
 251        }
 252        sdev->first_free = 0;
 253        sdev->nodesize = dev->dev_root->nodesize;
 254        sdev->leafsize = dev->dev_root->leafsize;
 255        sdev->sectorsize = dev->dev_root->sectorsize;
 256        atomic_set(&sdev->in_flight, 0);
 257        atomic_set(&sdev->fixup_cnt, 0);
 258        atomic_set(&sdev->cancel_req, 0);
 259        sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 260        INIT_LIST_HEAD(&sdev->csum_list);
 261
 262        spin_lock_init(&sdev->list_lock);
 263        spin_lock_init(&sdev->stat_lock);
 264        init_waitqueue_head(&sdev->list_wait);
 265        return sdev;
 266
 267nomem:
 268        scrub_free_dev(sdev);
 269        return ERR_PTR(-ENOMEM);
 270}
 271
 272static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
 273{
 274        u64 isize;
 275        u32 nlink;
 276        int ret;
 277        int i;
 278        struct extent_buffer *eb;
 279        struct btrfs_inode_item *inode_item;
 280        struct scrub_warning *swarn = ctx;
 281        struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 282        struct inode_fs_paths *ipath = NULL;
 283        struct btrfs_root *local_root;
 284        struct btrfs_key root_key;
 285
 286        root_key.objectid = root;
 287        root_key.type = BTRFS_ROOT_ITEM_KEY;
 288        root_key.offset = (u64)-1;
 289        local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 290        if (IS_ERR(local_root)) {
 291                ret = PTR_ERR(local_root);
 292                goto err;
 293        }
 294
 295        ret = inode_item_info(inum, 0, local_root, swarn->path);
 296        if (ret) {
 297                btrfs_release_path(swarn->path);
 298                goto err;
 299        }
 300
 301        eb = swarn->path->nodes[0];
 302        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 303                                        struct btrfs_inode_item);
 304        isize = btrfs_inode_size(eb, inode_item);
 305        nlink = btrfs_inode_nlink(eb, inode_item);
 306        btrfs_release_path(swarn->path);
 307
 308        ipath = init_ipath(4096, local_root, swarn->path);
 309        if (IS_ERR(ipath)) {
 310                ret = PTR_ERR(ipath);
 311                ipath = NULL;
 312                goto err;
 313        }
 314        ret = paths_from_inode(inum, ipath);
 315
 316        if (ret < 0)
 317                goto err;
 318
 319        /*
 320         * we deliberately ignore the bit ipath might have been too small to
 321         * hold all of the paths here
 322         */
 323        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 324                printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 325                        "%s, sector %llu, root %llu, inode %llu, offset %llu, "
 326                        "length %llu, links %u (path: %s)\n", swarn->errstr,
 327                        swarn->logical, rcu_str_deref(swarn->dev->name),
 328                        (unsigned long long)swarn->sector, root, inum, offset,
 329                        min(isize - offset, (u64)PAGE_SIZE), nlink,
 330                        (char *)(unsigned long)ipath->fspath->val[i]);
 331
 332        free_ipath(ipath);
 333        return 0;
 334
 335err:
 336        printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 337                "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 338                "resolving failed with ret=%d\n", swarn->errstr,
 339                swarn->logical, rcu_str_deref(swarn->dev->name),
 340                (unsigned long long)swarn->sector, root, inum, offset, ret);
 341
 342        free_ipath(ipath);
 343        return 0;
 344}
 345
 346static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 347{
 348        struct btrfs_device *dev = sblock->sdev->dev;
 349        struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 350        struct btrfs_path *path;
 351        struct btrfs_key found_key;
 352        struct extent_buffer *eb;
 353        struct btrfs_extent_item *ei;
 354        struct scrub_warning swarn;
 355        unsigned long ptr = 0;
 356        u64 extent_item_pos;
 357        u64 flags = 0;
 358        u64 ref_root;
 359        u32 item_size;
 360        u8 ref_level;
 361        const int bufsize = 4096;
 362        int ret;
 363
 364        path = btrfs_alloc_path();
 365
 366        swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 367        swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 368        BUG_ON(sblock->page_count < 1);
 369        swarn.sector = (sblock->pagev[0].physical) >> 9;
 370        swarn.logical = sblock->pagev[0].logical;
 371        swarn.errstr = errstr;
 372        swarn.dev = dev;
 373        swarn.msg_bufsize = bufsize;
 374        swarn.scratch_bufsize = bufsize;
 375
 376        if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 377                goto out;
 378
 379        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 380                                  &flags);
 381        if (ret < 0)
 382                goto out;
 383
 384        extent_item_pos = swarn.logical - found_key.objectid;
 385        swarn.extent_item_size = found_key.offset;
 386
 387        eb = path->nodes[0];
 388        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 389        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 390        btrfs_release_path(path);
 391
 392        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 393                do {
 394                        ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 395                                                        &ref_root, &ref_level);
 396                        printk_in_rcu(KERN_WARNING
 397                                "btrfs: %s at logical %llu on dev %s, "
 398                                "sector %llu: metadata %s (level %d) in tree "
 399                                "%llu\n", errstr, swarn.logical,
 400                                rcu_str_deref(dev->name),
 401                                (unsigned long long)swarn.sector,
 402                                ref_level ? "node" : "leaf",
 403                                ret < 0 ? -1 : ref_level,
 404                                ret < 0 ? -1 : ref_root);
 405                } while (ret != 1);
 406        } else {
 407                swarn.path = path;
 408                iterate_extent_inodes(fs_info, found_key.objectid,
 409                                        extent_item_pos, 1,
 410                                        scrub_print_warning_inode, &swarn);
 411        }
 412
 413out:
 414        btrfs_free_path(path);
 415        kfree(swarn.scratch_buf);
 416        kfree(swarn.msg_buf);
 417}
 418
 419static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
 420{
 421        struct page *page = NULL;
 422        unsigned long index;
 423        struct scrub_fixup_nodatasum *fixup = ctx;
 424        int ret;
 425        int corrected = 0;
 426        struct btrfs_key key;
 427        struct inode *inode = NULL;
 428        u64 end = offset + PAGE_SIZE - 1;
 429        struct btrfs_root *local_root;
 430
 431        key.objectid = root;
 432        key.type = BTRFS_ROOT_ITEM_KEY;
 433        key.offset = (u64)-1;
 434        local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
 435        if (IS_ERR(local_root))
 436                return PTR_ERR(local_root);
 437
 438        key.type = BTRFS_INODE_ITEM_KEY;
 439        key.objectid = inum;
 440        key.offset = 0;
 441        inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
 442        if (IS_ERR(inode))
 443                return PTR_ERR(inode);
 444
 445        index = offset >> PAGE_CACHE_SHIFT;
 446
 447        page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 448        if (!page) {
 449                ret = -ENOMEM;
 450                goto out;
 451        }
 452
 453        if (PageUptodate(page)) {
 454                struct btrfs_mapping_tree *map_tree;
 455                if (PageDirty(page)) {
 456                        /*
 457                         * we need to write the data to the defect sector. the
 458                         * data that was in that sector is not in memory,
 459                         * because the page was modified. we must not write the
 460                         * modified page to that sector.
 461                         *
 462                         * TODO: what could be done here: wait for the delalloc
 463                         *       runner to write out that page (might involve
 464                         *       COW) and see whether the sector is still
 465                         *       referenced afterwards.
 466                         *
 467                         * For the meantime, we'll treat this error
 468                         * incorrectable, although there is a chance that a
 469                         * later scrub will find the bad sector again and that
 470                         * there's no dirty page in memory, then.
 471                         */
 472                        ret = -EIO;
 473                        goto out;
 474                }
 475                map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
 476                ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
 477                                        fixup->logical, page,
 478                                        fixup->mirror_num);
 479                unlock_page(page);
 480                corrected = !ret;
 481        } else {
 482                /*
 483                 * we need to get good data first. the general readpage path
 484                 * will call repair_io_failure for us, we just have to make
 485                 * sure we read the bad mirror.
 486                 */
 487                ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 488                                        EXTENT_DAMAGED, GFP_NOFS);
 489                if (ret) {
 490                        /* set_extent_bits should give proper error */
 491                        WARN_ON(ret > 0);
 492                        if (ret > 0)
 493                                ret = -EFAULT;
 494                        goto out;
 495                }
 496
 497                ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 498                                                btrfs_get_extent,
 499                                                fixup->mirror_num);
 500                wait_on_page_locked(page);
 501
 502                corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 503                                                end, EXTENT_DAMAGED, 0, NULL);
 504                if (!corrected)
 505                        clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 506                                                EXTENT_DAMAGED, GFP_NOFS);
 507        }
 508
 509out:
 510        if (page)
 511                put_page(page);
 512        if (inode)
 513                iput(inode);
 514
 515        if (ret < 0)
 516                return ret;
 517
 518        if (ret == 0 && corrected) {
 519                /*
 520                 * we only need to call readpage for one of the inodes belonging
 521                 * to this extent. so make iterate_extent_inodes stop
 522                 */
 523                return 1;
 524        }
 525
 526        return -EIO;
 527}
 528
 529static void scrub_fixup_nodatasum(struct btrfs_work *work)
 530{
 531        int ret;
 532        struct scrub_fixup_nodatasum *fixup;
 533        struct scrub_dev *sdev;
 534        struct btrfs_trans_handle *trans = NULL;
 535        struct btrfs_fs_info *fs_info;
 536        struct btrfs_path *path;
 537        int uncorrectable = 0;
 538
 539        fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 540        sdev = fixup->sdev;
 541        fs_info = fixup->root->fs_info;
 542
 543        path = btrfs_alloc_path();
 544        if (!path) {
 545                spin_lock(&sdev->stat_lock);
 546                ++sdev->stat.malloc_errors;
 547                spin_unlock(&sdev->stat_lock);
 548                uncorrectable = 1;
 549                goto out;
 550        }
 551
 552        trans = btrfs_join_transaction(fixup->root);
 553        if (IS_ERR(trans)) {
 554                uncorrectable = 1;
 555                goto out;
 556        }
 557
 558        /*
 559         * the idea is to trigger a regular read through the standard path. we
 560         * read a page from the (failed) logical address by specifying the
 561         * corresponding copynum of the failed sector. thus, that readpage is
 562         * expected to fail.
 563         * that is the point where on-the-fly error correction will kick in
 564         * (once it's finished) and rewrite the failed sector if a good copy
 565         * can be found.
 566         */
 567        ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 568                                                path, scrub_fixup_readpage,
 569                                                fixup);
 570        if (ret < 0) {
 571                uncorrectable = 1;
 572                goto out;
 573        }
 574        WARN_ON(ret != 1);
 575
 576        spin_lock(&sdev->stat_lock);
 577        ++sdev->stat.corrected_errors;
 578        spin_unlock(&sdev->stat_lock);
 579
 580out:
 581        if (trans && !IS_ERR(trans))
 582                btrfs_end_transaction(trans, fixup->root);
 583        if (uncorrectable) {
 584                spin_lock(&sdev->stat_lock);
 585                ++sdev->stat.uncorrectable_errors;
 586                spin_unlock(&sdev->stat_lock);
 587
 588                printk_ratelimited_in_rcu(KERN_ERR
 589                        "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 590                        (unsigned long long)fixup->logical,
 591                        rcu_str_deref(sdev->dev->name));
 592        }
 593
 594        btrfs_free_path(path);
 595        kfree(fixup);
 596
 597        /* see caller why we're pretending to be paused in the scrub counters */
 598        mutex_lock(&fs_info->scrub_lock);
 599        atomic_dec(&fs_info->scrubs_running);
 600        atomic_dec(&fs_info->scrubs_paused);
 601        mutex_unlock(&fs_info->scrub_lock);
 602        atomic_dec(&sdev->fixup_cnt);
 603        wake_up(&fs_info->scrub_pause_wait);
 604        wake_up(&sdev->list_wait);
 605}
 606
 607/*
 608 * scrub_handle_errored_block gets called when either verification of the
 609 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 610 * case, this function handles all pages in the bio, even though only one
 611 * may be bad.
 612 * The goal of this function is to repair the errored block by using the
 613 * contents of one of the mirrors.
 614 */
 615static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 616{
 617        struct scrub_dev *sdev = sblock_to_check->sdev;
 618        struct btrfs_fs_info *fs_info;
 619        u64 length;
 620        u64 logical;
 621        u64 generation;
 622        unsigned int failed_mirror_index;
 623        unsigned int is_metadata;
 624        unsigned int have_csum;
 625        u8 *csum;
 626        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 627        struct scrub_block *sblock_bad;
 628        int ret;
 629        int mirror_index;
 630        int page_num;
 631        int success;
 632        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 633                                      DEFAULT_RATELIMIT_BURST);
 634
 635        BUG_ON(sblock_to_check->page_count < 1);
 636        fs_info = sdev->dev->dev_root->fs_info;
 637        length = sblock_to_check->page_count * PAGE_SIZE;
 638        logical = sblock_to_check->pagev[0].logical;
 639        generation = sblock_to_check->pagev[0].generation;
 640        BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
 641        failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
 642        is_metadata = !(sblock_to_check->pagev[0].flags &
 643                        BTRFS_EXTENT_FLAG_DATA);
 644        have_csum = sblock_to_check->pagev[0].have_csum;
 645        csum = sblock_to_check->pagev[0].csum;
 646
 647        /*
 648         * read all mirrors one after the other. This includes to
 649         * re-read the extent or metadata block that failed (that was
 650         * the cause that this fixup code is called) another time,
 651         * page by page this time in order to know which pages
 652         * caused I/O errors and which ones are good (for all mirrors).
 653         * It is the goal to handle the situation when more than one
 654         * mirror contains I/O errors, but the errors do not
 655         * overlap, i.e. the data can be repaired by selecting the
 656         * pages from those mirrors without I/O error on the
 657         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 658         * would be that mirror #1 has an I/O error on the first page,
 659         * the second page is good, and mirror #2 has an I/O error on
 660         * the second page, but the first page is good.
 661         * Then the first page of the first mirror can be repaired by
 662         * taking the first page of the second mirror, and the
 663         * second page of the second mirror can be repaired by
 664         * copying the contents of the 2nd page of the 1st mirror.
 665         * One more note: if the pages of one mirror contain I/O
 666         * errors, the checksum cannot be verified. In order to get
 667         * the best data for repairing, the first attempt is to find
 668         * a mirror without I/O errors and with a validated checksum.
 669         * Only if this is not possible, the pages are picked from
 670         * mirrors with I/O errors without considering the checksum.
 671         * If the latter is the case, at the end, the checksum of the
 672         * repaired area is verified in order to correctly maintain
 673         * the statistics.
 674         */
 675
 676        sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 677                                     sizeof(*sblocks_for_recheck),
 678                                     GFP_NOFS);
 679        if (!sblocks_for_recheck) {
 680                spin_lock(&sdev->stat_lock);
 681                sdev->stat.malloc_errors++;
 682                sdev->stat.read_errors++;
 683                sdev->stat.uncorrectable_errors++;
 684                spin_unlock(&sdev->stat_lock);
 685                btrfs_dev_stat_inc_and_print(sdev->dev,
 686                                             BTRFS_DEV_STAT_READ_ERRS);
 687                goto out;
 688        }
 689
 690        /* setup the context, map the logical blocks and alloc the pages */
 691        ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
 692                                        logical, sblocks_for_recheck);
 693        if (ret) {
 694                spin_lock(&sdev->stat_lock);
 695                sdev->stat.read_errors++;
 696                sdev->stat.uncorrectable_errors++;
 697                spin_unlock(&sdev->stat_lock);
 698                btrfs_dev_stat_inc_and_print(sdev->dev,
 699                                             BTRFS_DEV_STAT_READ_ERRS);
 700                goto out;
 701        }
 702        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 703        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 704
 705        /* build and submit the bios for the failed mirror, check checksums */
 706        ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 707                                  csum, generation, sdev->csum_size);
 708        if (ret) {
 709                spin_lock(&sdev->stat_lock);
 710                sdev->stat.read_errors++;
 711                sdev->stat.uncorrectable_errors++;
 712                spin_unlock(&sdev->stat_lock);
 713                btrfs_dev_stat_inc_and_print(sdev->dev,
 714                                             BTRFS_DEV_STAT_READ_ERRS);
 715                goto out;
 716        }
 717
 718        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 719            sblock_bad->no_io_error_seen) {
 720                /*
 721                 * the error disappeared after reading page by page, or
 722                 * the area was part of a huge bio and other parts of the
 723                 * bio caused I/O errors, or the block layer merged several
 724                 * read requests into one and the error is caused by a
 725                 * different bio (usually one of the two latter cases is
 726                 * the cause)
 727                 */
 728                spin_lock(&sdev->stat_lock);
 729                sdev->stat.unverified_errors++;
 730                spin_unlock(&sdev->stat_lock);
 731
 732                goto out;
 733        }
 734
 735        if (!sblock_bad->no_io_error_seen) {
 736                spin_lock(&sdev->stat_lock);
 737                sdev->stat.read_errors++;
 738                spin_unlock(&sdev->stat_lock);
 739                if (__ratelimit(&_rs))
 740                        scrub_print_warning("i/o error", sblock_to_check);
 741                btrfs_dev_stat_inc_and_print(sdev->dev,
 742                                             BTRFS_DEV_STAT_READ_ERRS);
 743        } else if (sblock_bad->checksum_error) {
 744                spin_lock(&sdev->stat_lock);
 745                sdev->stat.csum_errors++;
 746                spin_unlock(&sdev->stat_lock);
 747                if (__ratelimit(&_rs))
 748                        scrub_print_warning("checksum error", sblock_to_check);
 749                btrfs_dev_stat_inc_and_print(sdev->dev,
 750                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 751        } else if (sblock_bad->header_error) {
 752                spin_lock(&sdev->stat_lock);
 753                sdev->stat.verify_errors++;
 754                spin_unlock(&sdev->stat_lock);
 755                if (__ratelimit(&_rs))
 756                        scrub_print_warning("checksum/header error",
 757                                            sblock_to_check);
 758                if (sblock_bad->generation_error)
 759                        btrfs_dev_stat_inc_and_print(sdev->dev,
 760                                BTRFS_DEV_STAT_GENERATION_ERRS);
 761                else
 762                        btrfs_dev_stat_inc_and_print(sdev->dev,
 763                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 764        }
 765
 766        if (sdev->readonly)
 767                goto did_not_correct_error;
 768
 769        if (!is_metadata && !have_csum) {
 770                struct scrub_fixup_nodatasum *fixup_nodatasum;
 771
 772                /*
 773                 * !is_metadata and !have_csum, this means that the data
 774                 * might not be COW'ed, that it might be modified
 775                 * concurrently. The general strategy to work on the
 776                 * commit root does not help in the case when COW is not
 777                 * used.
 778                 */
 779                fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 780                if (!fixup_nodatasum)
 781                        goto did_not_correct_error;
 782                fixup_nodatasum->sdev = sdev;
 783                fixup_nodatasum->logical = logical;
 784                fixup_nodatasum->root = fs_info->extent_root;
 785                fixup_nodatasum->mirror_num = failed_mirror_index + 1;
 786                /*
 787                 * increment scrubs_running to prevent cancel requests from
 788                 * completing as long as a fixup worker is running. we must also
 789                 * increment scrubs_paused to prevent deadlocking on pause
 790                 * requests used for transactions commits (as the worker uses a
 791                 * transaction context). it is safe to regard the fixup worker
 792                 * as paused for all matters practical. effectively, we only
 793                 * avoid cancellation requests from completing.
 794                 */
 795                mutex_lock(&fs_info->scrub_lock);
 796                atomic_inc(&fs_info->scrubs_running);
 797                atomic_inc(&fs_info->scrubs_paused);
 798                mutex_unlock(&fs_info->scrub_lock);
 799                atomic_inc(&sdev->fixup_cnt);
 800                fixup_nodatasum->work.func = scrub_fixup_nodatasum;
 801                btrfs_queue_worker(&fs_info->scrub_workers,
 802                                   &fixup_nodatasum->work);
 803                goto out;
 804        }
 805
 806        /*
 807         * now build and submit the bios for the other mirrors, check
 808         * checksums
 809         */
 810        for (mirror_index = 0;
 811             mirror_index < BTRFS_MAX_MIRRORS &&
 812             sblocks_for_recheck[mirror_index].page_count > 0;
 813             mirror_index++) {
 814                if (mirror_index == failed_mirror_index)
 815                        continue;
 816
 817                /* build and submit the bios, check checksums */
 818                ret = scrub_recheck_block(fs_info,
 819                                          sblocks_for_recheck + mirror_index,
 820                                          is_metadata, have_csum, csum,
 821                                          generation, sdev->csum_size);
 822                if (ret)
 823                        goto did_not_correct_error;
 824        }
 825
 826        /*
 827         * first try to pick the mirror which is completely without I/O
 828         * errors and also does not have a checksum error.
 829         * If one is found, and if a checksum is present, the full block
 830         * that is known to contain an error is rewritten. Afterwards
 831         * the block is known to be corrected.
 832         * If a mirror is found which is completely correct, and no
 833         * checksum is present, only those pages are rewritten that had
 834         * an I/O error in the block to be repaired, since it cannot be
 835         * determined, which copy of the other pages is better (and it
 836         * could happen otherwise that a correct page would be
 837         * overwritten by a bad one).
 838         */
 839        for (mirror_index = 0;
 840             mirror_index < BTRFS_MAX_MIRRORS &&
 841             sblocks_for_recheck[mirror_index].page_count > 0;
 842             mirror_index++) {
 843                struct scrub_block *sblock_other = sblocks_for_recheck +
 844                                                   mirror_index;
 845
 846                if (!sblock_other->header_error &&
 847                    !sblock_other->checksum_error &&
 848                    sblock_other->no_io_error_seen) {
 849                        int force_write = is_metadata || have_csum;
 850
 851                        ret = scrub_repair_block_from_good_copy(sblock_bad,
 852                                                                sblock_other,
 853                                                                force_write);
 854                        if (0 == ret)
 855                                goto corrected_error;
 856                }
 857        }
 858
 859        /*
 860         * in case of I/O errors in the area that is supposed to be
 861         * repaired, continue by picking good copies of those pages.
 862         * Select the good pages from mirrors to rewrite bad pages from
 863         * the area to fix. Afterwards verify the checksum of the block
 864         * that is supposed to be repaired. This verification step is
 865         * only done for the purpose of statistic counting and for the
 866         * final scrub report, whether errors remain.
 867         * A perfect algorithm could make use of the checksum and try
 868         * all possible combinations of pages from the different mirrors
 869         * until the checksum verification succeeds. For example, when
 870         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
 871         * of mirror #2 is readable but the final checksum test fails,
 872         * then the 2nd page of mirror #3 could be tried, whether now
 873         * the final checksum succeedes. But this would be a rare
 874         * exception and is therefore not implemented. At least it is
 875         * avoided that the good copy is overwritten.
 876         * A more useful improvement would be to pick the sectors
 877         * without I/O error based on sector sizes (512 bytes on legacy
 878         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
 879         * mirror could be repaired by taking 512 byte of a different
 880         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
 881         * area are unreadable.
 882         */
 883
 884        /* can only fix I/O errors from here on */
 885        if (sblock_bad->no_io_error_seen)
 886                goto did_not_correct_error;
 887
 888        success = 1;
 889        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 890                struct scrub_page *page_bad = sblock_bad->pagev + page_num;
 891
 892                if (!page_bad->io_error)
 893                        continue;
 894
 895                for (mirror_index = 0;
 896                     mirror_index < BTRFS_MAX_MIRRORS &&
 897                     sblocks_for_recheck[mirror_index].page_count > 0;
 898                     mirror_index++) {
 899                        struct scrub_block *sblock_other = sblocks_for_recheck +
 900                                                           mirror_index;
 901                        struct scrub_page *page_other = sblock_other->pagev +
 902                                                        page_num;
 903
 904                        if (!page_other->io_error) {
 905                                ret = scrub_repair_page_from_good_copy(
 906                                        sblock_bad, sblock_other, page_num, 0);
 907                                if (0 == ret) {
 908                                        page_bad->io_error = 0;
 909                                        break; /* succeeded for this page */
 910                                }
 911                        }
 912                }
 913
 914                if (page_bad->io_error) {
 915                        /* did not find a mirror to copy the page from */
 916                        success = 0;
 917                }
 918        }
 919
 920        if (success) {
 921                if (is_metadata || have_csum) {
 922                        /*
 923                         * need to verify the checksum now that all
 924                         * sectors on disk are repaired (the write
 925                         * request for data to be repaired is on its way).
 926                         * Just be lazy and use scrub_recheck_block()
 927                         * which re-reads the data before the checksum
 928                         * is verified, but most likely the data comes out
 929                         * of the page cache.
 930                         */
 931                        ret = scrub_recheck_block(fs_info, sblock_bad,
 932                                                  is_metadata, have_csum, csum,
 933                                                  generation, sdev->csum_size);
 934                        if (!ret && !sblock_bad->header_error &&
 935                            !sblock_bad->checksum_error &&
 936                            sblock_bad->no_io_error_seen)
 937                                goto corrected_error;
 938                        else
 939                                goto did_not_correct_error;
 940                } else {
 941corrected_error:
 942                        spin_lock(&sdev->stat_lock);
 943                        sdev->stat.corrected_errors++;
 944                        spin_unlock(&sdev->stat_lock);
 945                        printk_ratelimited_in_rcu(KERN_ERR
 946                                "btrfs: fixed up error at logical %llu on dev %s\n",
 947                                (unsigned long long)logical,
 948                                rcu_str_deref(sdev->dev->name));
 949                }
 950        } else {
 951did_not_correct_error:
 952                spin_lock(&sdev->stat_lock);
 953                sdev->stat.uncorrectable_errors++;
 954                spin_unlock(&sdev->stat_lock);
 955                printk_ratelimited_in_rcu(KERN_ERR
 956                        "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
 957                        (unsigned long long)logical,
 958                        rcu_str_deref(sdev->dev->name));
 959        }
 960
 961out:
 962        if (sblocks_for_recheck) {
 963                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
 964                     mirror_index++) {
 965                        struct scrub_block *sblock = sblocks_for_recheck +
 966                                                     mirror_index;
 967                        int page_index;
 968
 969                        for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
 970                             page_index++)
 971                                if (sblock->pagev[page_index].page)
 972                                        __free_page(
 973                                                sblock->pagev[page_index].page);
 974                }
 975                kfree(sblocks_for_recheck);
 976        }
 977
 978        return 0;
 979}
 980
 981static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 982                                     struct btrfs_mapping_tree *map_tree,
 983                                     u64 length, u64 logical,
 984                                     struct scrub_block *sblocks_for_recheck)
 985{
 986        int page_index;
 987        int mirror_index;
 988        int ret;
 989
 990        /*
 991         * note: the three members sdev, ref_count and outstanding_pages
 992         * are not used (and not set) in the blocks that are used for
 993         * the recheck procedure
 994         */
 995
 996        page_index = 0;
 997        while (length > 0) {
 998                u64 sublen = min_t(u64, length, PAGE_SIZE);
 999                u64 mapped_length = sublen;
1000                struct btrfs_bio *bbio = NULL;
1001
1002                /*
1003                 * with a length of PAGE_SIZE, each returned stripe
1004                 * represents one mirror
1005                 */
1006                ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1007                                      &bbio, 0);
1008                if (ret || !bbio || mapped_length < sublen) {
1009                        kfree(bbio);
1010                        return -EIO;
1011                }
1012
1013                BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1014                for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1015                     mirror_index++) {
1016                        struct scrub_block *sblock;
1017                        struct scrub_page *page;
1018
1019                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1020                                continue;
1021
1022                        sblock = sblocks_for_recheck + mirror_index;
1023                        page = sblock->pagev + page_index;
1024                        page->logical = logical;
1025                        page->physical = bbio->stripes[mirror_index].physical;
1026                        /* for missing devices, dev->bdev is NULL */
1027                        page->dev = bbio->stripes[mirror_index].dev;
1028                        page->mirror_num = mirror_index + 1;
1029                        page->page = alloc_page(GFP_NOFS);
1030                        if (!page->page) {
1031                                spin_lock(&sdev->stat_lock);
1032                                sdev->stat.malloc_errors++;
1033                                spin_unlock(&sdev->stat_lock);
1034                                kfree(bbio);
1035                                return -ENOMEM;
1036                        }
1037                        sblock->page_count++;
1038                }
1039                kfree(bbio);
1040                length -= sublen;
1041                logical += sublen;
1042                page_index++;
1043        }
1044
1045        return 0;
1046}
1047
1048/*
1049 * this function will check the on disk data for checksum errors, header
1050 * errors and read I/O errors. If any I/O errors happen, the exact pages
1051 * which are errored are marked as being bad. The goal is to enable scrub
1052 * to take those pages that are not errored from all the mirrors so that
1053 * the pages that are errored in the just handled mirror can be repaired.
1054 */
1055static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1056                               struct scrub_block *sblock, int is_metadata,
1057                               int have_csum, u8 *csum, u64 generation,
1058                               u16 csum_size)
1059{
1060        int page_num;
1061
1062        sblock->no_io_error_seen = 1;
1063        sblock->header_error = 0;
1064        sblock->checksum_error = 0;
1065
1066        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1067                struct bio *bio;
1068                int ret;
1069                struct scrub_page *page = sblock->pagev + page_num;
1070                DECLARE_COMPLETION_ONSTACK(complete);
1071
1072                if (page->dev->bdev == NULL) {
1073                        page->io_error = 1;
1074                        sblock->no_io_error_seen = 0;
1075                        continue;
1076                }
1077
1078                BUG_ON(!page->page);
1079                bio = bio_alloc(GFP_NOFS, 1);
1080                if (!bio)
1081                        return -EIO;
1082                bio->bi_bdev = page->dev->bdev;
1083                bio->bi_sector = page->physical >> 9;
1084                bio->bi_end_io = scrub_complete_bio_end_io;
1085                bio->bi_private = &complete;
1086
1087                ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1088                if (PAGE_SIZE != ret) {
1089                        bio_put(bio);
1090                        return -EIO;
1091                }
1092                btrfsic_submit_bio(READ, bio);
1093
1094                /* this will also unplug the queue */
1095                wait_for_completion(&complete);
1096
1097                page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1098                if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1099                        sblock->no_io_error_seen = 0;
1100                bio_put(bio);
1101        }
1102
1103        if (sblock->no_io_error_seen)
1104                scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1105                                             have_csum, csum, generation,
1106                                             csum_size);
1107
1108        return 0;
1109}
1110
1111static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1112                                         struct scrub_block *sblock,
1113                                         int is_metadata, int have_csum,
1114                                         const u8 *csum, u64 generation,
1115                                         u16 csum_size)
1116{
1117        int page_num;
1118        u8 calculated_csum[BTRFS_CSUM_SIZE];
1119        u32 crc = ~(u32)0;
1120        struct btrfs_root *root = fs_info->extent_root;
1121        void *mapped_buffer;
1122
1123        BUG_ON(!sblock->pagev[0].page);
1124        if (is_metadata) {
1125                struct btrfs_header *h;
1126
1127                mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1128                h = (struct btrfs_header *)mapped_buffer;
1129
1130                if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1131                    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1132                    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1133                           BTRFS_UUID_SIZE)) {
1134                        sblock->header_error = 1;
1135                } else if (generation != le64_to_cpu(h->generation)) {
1136                        sblock->header_error = 1;
1137                        sblock->generation_error = 1;
1138                }
1139                csum = h->csum;
1140        } else {
1141                if (!have_csum)
1142                        return;
1143
1144                mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1145        }
1146
1147        for (page_num = 0;;) {
1148                if (page_num == 0 && is_metadata)
1149                        crc = btrfs_csum_data(root,
1150                                ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1151                                crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1152                else
1153                        crc = btrfs_csum_data(root, mapped_buffer, crc,
1154                                              PAGE_SIZE);
1155
1156                kunmap_atomic(mapped_buffer);
1157                page_num++;
1158                if (page_num >= sblock->page_count)
1159                        break;
1160                BUG_ON(!sblock->pagev[page_num].page);
1161
1162                mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1163        }
1164
1165        btrfs_csum_final(crc, calculated_csum);
1166        if (memcmp(calculated_csum, csum, csum_size))
1167                sblock->checksum_error = 1;
1168}
1169
1170static void scrub_complete_bio_end_io(struct bio *bio, int err)
1171{
1172        complete((struct completion *)bio->bi_private);
1173}
1174
1175static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1176                                             struct scrub_block *sblock_good,
1177                                             int force_write)
1178{
1179        int page_num;
1180        int ret = 0;
1181
1182        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1183                int ret_sub;
1184
1185                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1186                                                           sblock_good,
1187                                                           page_num,
1188                                                           force_write);
1189                if (ret_sub)
1190                        ret = ret_sub;
1191        }
1192
1193        return ret;
1194}
1195
1196static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1197                                            struct scrub_block *sblock_good,
1198                                            int page_num, int force_write)
1199{
1200        struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1201        struct scrub_page *page_good = sblock_good->pagev + page_num;
1202
1203        BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1204        BUG_ON(sblock_good->pagev[page_num].page == NULL);
1205        if (force_write || sblock_bad->header_error ||
1206            sblock_bad->checksum_error || page_bad->io_error) {
1207                struct bio *bio;
1208                int ret;
1209                DECLARE_COMPLETION_ONSTACK(complete);
1210
1211                bio = bio_alloc(GFP_NOFS, 1);
1212                if (!bio)
1213                        return -EIO;
1214                bio->bi_bdev = page_bad->dev->bdev;
1215                bio->bi_sector = page_bad->physical >> 9;
1216                bio->bi_end_io = scrub_complete_bio_end_io;
1217                bio->bi_private = &complete;
1218
1219                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1220                if (PAGE_SIZE != ret) {
1221                        bio_put(bio);
1222                        return -EIO;
1223                }
1224                btrfsic_submit_bio(WRITE, bio);
1225
1226                /* this will also unplug the queue */
1227                wait_for_completion(&complete);
1228                if (!bio_flagged(bio, BIO_UPTODATE)) {
1229                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1230                                BTRFS_DEV_STAT_WRITE_ERRS);
1231                        bio_put(bio);
1232                        return -EIO;
1233                }
1234                bio_put(bio);
1235        }
1236
1237        return 0;
1238}
1239
1240static void scrub_checksum(struct scrub_block *sblock)
1241{
1242        u64 flags;
1243        int ret;
1244
1245        BUG_ON(sblock->page_count < 1);
1246        flags = sblock->pagev[0].flags;
1247        ret = 0;
1248        if (flags & BTRFS_EXTENT_FLAG_DATA)
1249                ret = scrub_checksum_data(sblock);
1250        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1251                ret = scrub_checksum_tree_block(sblock);
1252        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1253                (void)scrub_checksum_super(sblock);
1254        else
1255                WARN_ON(1);
1256        if (ret)
1257                scrub_handle_errored_block(sblock);
1258}
1259
1260static int scrub_checksum_data(struct scrub_block *sblock)
1261{
1262        struct scrub_dev *sdev = sblock->sdev;
1263        u8 csum[BTRFS_CSUM_SIZE];
1264        u8 *on_disk_csum;
1265        struct page *page;
1266        void *buffer;
1267        u32 crc = ~(u32)0;
1268        int fail = 0;
1269        struct btrfs_root *root = sdev->dev->dev_root;
1270        u64 len;
1271        int index;
1272
1273        BUG_ON(sblock->page_count < 1);
1274        if (!sblock->pagev[0].have_csum)
1275                return 0;
1276
1277        on_disk_csum = sblock->pagev[0].csum;
1278        page = sblock->pagev[0].page;
1279        buffer = kmap_atomic(page);
1280
1281        len = sdev->sectorsize;
1282        index = 0;
1283        for (;;) {
1284                u64 l = min_t(u64, len, PAGE_SIZE);
1285
1286                crc = btrfs_csum_data(root, buffer, crc, l);
1287                kunmap_atomic(buffer);
1288                len -= l;
1289                if (len == 0)
1290                        break;
1291                index++;
1292                BUG_ON(index >= sblock->page_count);
1293                BUG_ON(!sblock->pagev[index].page);
1294                page = sblock->pagev[index].page;
1295                buffer = kmap_atomic(page);
1296        }
1297
1298        btrfs_csum_final(crc, csum);
1299        if (memcmp(csum, on_disk_csum, sdev->csum_size))
1300                fail = 1;
1301
1302        return fail;
1303}
1304
1305static int scrub_checksum_tree_block(struct scrub_block *sblock)
1306{
1307        struct scrub_dev *sdev = sblock->sdev;
1308        struct btrfs_header *h;
1309        struct btrfs_root *root = sdev->dev->dev_root;
1310        struct btrfs_fs_info *fs_info = root->fs_info;
1311        u8 calculated_csum[BTRFS_CSUM_SIZE];
1312        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1313        struct page *page;
1314        void *mapped_buffer;
1315        u64 mapped_size;
1316        void *p;
1317        u32 crc = ~(u32)0;
1318        int fail = 0;
1319        int crc_fail = 0;
1320        u64 len;
1321        int index;
1322
1323        BUG_ON(sblock->page_count < 1);
1324        page = sblock->pagev[0].page;
1325        mapped_buffer = kmap_atomic(page);
1326        h = (struct btrfs_header *)mapped_buffer;
1327        memcpy(on_disk_csum, h->csum, sdev->csum_size);
1328
1329        /*
1330         * we don't use the getter functions here, as we
1331         * a) don't have an extent buffer and
1332         * b) the page is already kmapped
1333         */
1334
1335        if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1336                ++fail;
1337
1338        if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1339                ++fail;
1340
1341        if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1342                ++fail;
1343
1344        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1345                   BTRFS_UUID_SIZE))
1346                ++fail;
1347
1348        BUG_ON(sdev->nodesize != sdev->leafsize);
1349        len = sdev->nodesize - BTRFS_CSUM_SIZE;
1350        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1351        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1352        index = 0;
1353        for (;;) {
1354                u64 l = min_t(u64, len, mapped_size);
1355
1356                crc = btrfs_csum_data(root, p, crc, l);
1357                kunmap_atomic(mapped_buffer);
1358                len -= l;
1359                if (len == 0)
1360                        break;
1361                index++;
1362                BUG_ON(index >= sblock->page_count);
1363                BUG_ON(!sblock->pagev[index].page);
1364                page = sblock->pagev[index].page;
1365                mapped_buffer = kmap_atomic(page);
1366                mapped_size = PAGE_SIZE;
1367                p = mapped_buffer;
1368        }
1369
1370        btrfs_csum_final(crc, calculated_csum);
1371        if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1372                ++crc_fail;
1373
1374        return fail || crc_fail;
1375}
1376
1377static int scrub_checksum_super(struct scrub_block *sblock)
1378{
1379        struct btrfs_super_block *s;
1380        struct scrub_dev *sdev = sblock->sdev;
1381        struct btrfs_root *root = sdev->dev->dev_root;
1382        struct btrfs_fs_info *fs_info = root->fs_info;
1383        u8 calculated_csum[BTRFS_CSUM_SIZE];
1384        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1385        struct page *page;
1386        void *mapped_buffer;
1387        u64 mapped_size;
1388        void *p;
1389        u32 crc = ~(u32)0;
1390        int fail_gen = 0;
1391        int fail_cor = 0;
1392        u64 len;
1393        int index;
1394
1395        BUG_ON(sblock->page_count < 1);
1396        page = sblock->pagev[0].page;
1397        mapped_buffer = kmap_atomic(page);
1398        s = (struct btrfs_super_block *)mapped_buffer;
1399        memcpy(on_disk_csum, s->csum, sdev->csum_size);
1400
1401        if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1402                ++fail_cor;
1403
1404        if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1405                ++fail_gen;
1406
1407        if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1408                ++fail_cor;
1409
1410        len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1411        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1412        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1413        index = 0;
1414        for (;;) {
1415                u64 l = min_t(u64, len, mapped_size);
1416
1417                crc = btrfs_csum_data(root, p, crc, l);
1418                kunmap_atomic(mapped_buffer);
1419                len -= l;
1420                if (len == 0)
1421                        break;
1422                index++;
1423                BUG_ON(index >= sblock->page_count);
1424                BUG_ON(!sblock->pagev[index].page);
1425                page = sblock->pagev[index].page;
1426                mapped_buffer = kmap_atomic(page);
1427                mapped_size = PAGE_SIZE;
1428                p = mapped_buffer;
1429        }
1430
1431        btrfs_csum_final(crc, calculated_csum);
1432        if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1433                ++fail_cor;
1434
1435        if (fail_cor + fail_gen) {
1436                /*
1437                 * if we find an error in a super block, we just report it.
1438                 * They will get written with the next transaction commit
1439                 * anyway
1440                 */
1441                spin_lock(&sdev->stat_lock);
1442                ++sdev->stat.super_errors;
1443                spin_unlock(&sdev->stat_lock);
1444                if (fail_cor)
1445                        btrfs_dev_stat_inc_and_print(sdev->dev,
1446                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1447                else
1448                        btrfs_dev_stat_inc_and_print(sdev->dev,
1449                                BTRFS_DEV_STAT_GENERATION_ERRS);
1450        }
1451
1452        return fail_cor + fail_gen;
1453}
1454
1455static void scrub_block_get(struct scrub_block *sblock)
1456{
1457        atomic_inc(&sblock->ref_count);
1458}
1459
1460static void scrub_block_put(struct scrub_block *sblock)
1461{
1462        if (atomic_dec_and_test(&sblock->ref_count)) {
1463                int i;
1464
1465                for (i = 0; i < sblock->page_count; i++)
1466                        if (sblock->pagev[i].page)
1467                                __free_page(sblock->pagev[i].page);
1468                kfree(sblock);
1469        }
1470}
1471
1472static void scrub_submit(struct scrub_dev *sdev)
1473{
1474        struct scrub_bio *sbio;
1475
1476        if (sdev->curr == -1)
1477                return;
1478
1479        sbio = sdev->bios[sdev->curr];
1480        sdev->curr = -1;
1481        atomic_inc(&sdev->in_flight);
1482
1483        btrfsic_submit_bio(READ, sbio->bio);
1484}
1485
1486static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1487                                 struct scrub_page *spage)
1488{
1489        struct scrub_block *sblock = spage->sblock;
1490        struct scrub_bio *sbio;
1491        int ret;
1492
1493again:
1494        /*
1495         * grab a fresh bio or wait for one to become available
1496         */
1497        while (sdev->curr == -1) {
1498                spin_lock(&sdev->list_lock);
1499                sdev->curr = sdev->first_free;
1500                if (sdev->curr != -1) {
1501                        sdev->first_free = sdev->bios[sdev->curr]->next_free;
1502                        sdev->bios[sdev->curr]->next_free = -1;
1503                        sdev->bios[sdev->curr]->page_count = 0;
1504                        spin_unlock(&sdev->list_lock);
1505                } else {
1506                        spin_unlock(&sdev->list_lock);
1507                        wait_event(sdev->list_wait, sdev->first_free != -1);
1508                }
1509        }
1510        sbio = sdev->bios[sdev->curr];
1511        if (sbio->page_count == 0) {
1512                struct bio *bio;
1513
1514                sbio->physical = spage->physical;
1515                sbio->logical = spage->logical;
1516                bio = sbio->bio;
1517                if (!bio) {
1518                        bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1519                        if (!bio)
1520                                return -ENOMEM;
1521                        sbio->bio = bio;
1522                }
1523
1524                bio->bi_private = sbio;
1525                bio->bi_end_io = scrub_bio_end_io;
1526                bio->bi_bdev = sdev->dev->bdev;
1527                bio->bi_sector = spage->physical >> 9;
1528                sbio->err = 0;
1529        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1530                   spage->physical ||
1531                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1532                   spage->logical) {
1533                scrub_submit(sdev);
1534                goto again;
1535        }
1536
1537        sbio->pagev[sbio->page_count] = spage;
1538        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1539        if (ret != PAGE_SIZE) {
1540                if (sbio->page_count < 1) {
1541                        bio_put(sbio->bio);
1542                        sbio->bio = NULL;
1543                        return -EIO;
1544                }
1545                scrub_submit(sdev);
1546                goto again;
1547        }
1548
1549        scrub_block_get(sblock); /* one for the added page */
1550        atomic_inc(&sblock->outstanding_pages);
1551        sbio->page_count++;
1552        if (sbio->page_count == sdev->pages_per_bio)
1553                scrub_submit(sdev);
1554
1555        return 0;
1556}
1557
1558static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1559                       u64 physical, u64 flags, u64 gen, int mirror_num,
1560                       u8 *csum, int force)
1561{
1562        struct scrub_block *sblock;
1563        int index;
1564
1565        sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1566        if (!sblock) {
1567                spin_lock(&sdev->stat_lock);
1568                sdev->stat.malloc_errors++;
1569                spin_unlock(&sdev->stat_lock);
1570                return -ENOMEM;
1571        }
1572
1573        /* one ref inside this function, plus one for each page later on */
1574        atomic_set(&sblock->ref_count, 1);
1575        sblock->sdev = sdev;
1576        sblock->no_io_error_seen = 1;
1577
1578        for (index = 0; len > 0; index++) {
1579                struct scrub_page *spage = sblock->pagev + index;
1580                u64 l = min_t(u64, len, PAGE_SIZE);
1581
1582                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1583                spage->page = alloc_page(GFP_NOFS);
1584                if (!spage->page) {
1585                        spin_lock(&sdev->stat_lock);
1586                        sdev->stat.malloc_errors++;
1587                        spin_unlock(&sdev->stat_lock);
1588                        while (index > 0) {
1589                                index--;
1590                                __free_page(sblock->pagev[index].page);
1591                        }
1592                        kfree(sblock);
1593                        return -ENOMEM;
1594                }
1595                spage->sblock = sblock;
1596                spage->dev = sdev->dev;
1597                spage->flags = flags;
1598                spage->generation = gen;
1599                spage->logical = logical;
1600                spage->physical = physical;
1601                spage->mirror_num = mirror_num;
1602                if (csum) {
1603                        spage->have_csum = 1;
1604                        memcpy(spage->csum, csum, sdev->csum_size);
1605                } else {
1606                        spage->have_csum = 0;
1607                }
1608                sblock->page_count++;
1609                len -= l;
1610                logical += l;
1611                physical += l;
1612        }
1613
1614        BUG_ON(sblock->page_count == 0);
1615        for (index = 0; index < sblock->page_count; index++) {
1616                struct scrub_page *spage = sblock->pagev + index;
1617                int ret;
1618
1619                ret = scrub_add_page_to_bio(sdev, spage);
1620                if (ret) {
1621                        scrub_block_put(sblock);
1622                        return ret;
1623                }
1624        }
1625
1626        if (force)
1627                scrub_submit(sdev);
1628
1629        /* last one frees, either here or in bio completion for last page */
1630        scrub_block_put(sblock);
1631        return 0;
1632}
1633
1634static void scrub_bio_end_io(struct bio *bio, int err)
1635{
1636        struct scrub_bio *sbio = bio->bi_private;
1637        struct scrub_dev *sdev = sbio->sdev;
1638        struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1639
1640        sbio->err = err;
1641        sbio->bio = bio;
1642
1643        btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1644}
1645
1646static void scrub_bio_end_io_worker(struct btrfs_work *work)
1647{
1648        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1649        struct scrub_dev *sdev = sbio->sdev;
1650        int i;
1651
1652        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1653        if (sbio->err) {
1654                for (i = 0; i < sbio->page_count; i++) {
1655                        struct scrub_page *spage = sbio->pagev[i];
1656
1657                        spage->io_error = 1;
1658                        spage->sblock->no_io_error_seen = 0;
1659                }
1660        }
1661
1662        /* now complete the scrub_block items that have all pages completed */
1663        for (i = 0; i < sbio->page_count; i++) {
1664                struct scrub_page *spage = sbio->pagev[i];
1665                struct scrub_block *sblock = spage->sblock;
1666
1667                if (atomic_dec_and_test(&sblock->outstanding_pages))
1668                        scrub_block_complete(sblock);
1669                scrub_block_put(sblock);
1670        }
1671
1672        bio_put(sbio->bio);
1673        sbio->bio = NULL;
1674        spin_lock(&sdev->list_lock);
1675        sbio->next_free = sdev->first_free;
1676        sdev->first_free = sbio->index;
1677        spin_unlock(&sdev->list_lock);
1678        atomic_dec(&sdev->in_flight);
1679        wake_up(&sdev->list_wait);
1680}
1681
1682static void scrub_block_complete(struct scrub_block *sblock)
1683{
1684        if (!sblock->no_io_error_seen)
1685                scrub_handle_errored_block(sblock);
1686        else
1687                scrub_checksum(sblock);
1688}
1689
1690static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1691                           u8 *csum)
1692{
1693        struct btrfs_ordered_sum *sum = NULL;
1694        int ret = 0;
1695        unsigned long i;
1696        unsigned long num_sectors;
1697
1698        while (!list_empty(&sdev->csum_list)) {
1699                sum = list_first_entry(&sdev->csum_list,
1700                                       struct btrfs_ordered_sum, list);
1701                if (sum->bytenr > logical)
1702                        return 0;
1703                if (sum->bytenr + sum->len > logical)
1704                        break;
1705
1706                ++sdev->stat.csum_discards;
1707                list_del(&sum->list);
1708                kfree(sum);
1709                sum = NULL;
1710        }
1711        if (!sum)
1712                return 0;
1713
1714        num_sectors = sum->len / sdev->sectorsize;
1715        for (i = 0; i < num_sectors; ++i) {
1716                if (sum->sums[i].bytenr == logical) {
1717                        memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1718                        ret = 1;
1719                        break;
1720                }
1721        }
1722        if (ret && i == num_sectors - 1) {
1723                list_del(&sum->list);
1724                kfree(sum);
1725        }
1726        return ret;
1727}
1728
1729/* scrub extent tries to collect up to 64 kB for each bio */
1730static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1731                        u64 physical, u64 flags, u64 gen, int mirror_num)
1732{
1733        int ret;
1734        u8 csum[BTRFS_CSUM_SIZE];
1735        u32 blocksize;
1736
1737        if (flags & BTRFS_EXTENT_FLAG_DATA) {
1738                blocksize = sdev->sectorsize;
1739                spin_lock(&sdev->stat_lock);
1740                sdev->stat.data_extents_scrubbed++;
1741                sdev->stat.data_bytes_scrubbed += len;
1742                spin_unlock(&sdev->stat_lock);
1743        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1744                BUG_ON(sdev->nodesize != sdev->leafsize);
1745                blocksize = sdev->nodesize;
1746                spin_lock(&sdev->stat_lock);
1747                sdev->stat.tree_extents_scrubbed++;
1748                sdev->stat.tree_bytes_scrubbed += len;
1749                spin_unlock(&sdev->stat_lock);
1750        } else {
1751                blocksize = sdev->sectorsize;
1752                BUG_ON(1);
1753        }
1754
1755        while (len) {
1756                u64 l = min_t(u64, len, blocksize);
1757                int have_csum = 0;
1758
1759                if (flags & BTRFS_EXTENT_FLAG_DATA) {
1760                        /* push csums to sbio */
1761                        have_csum = scrub_find_csum(sdev, logical, l, csum);
1762                        if (have_csum == 0)
1763                                ++sdev->stat.no_csum;
1764                }
1765                ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1766                                  mirror_num, have_csum ? csum : NULL, 0);
1767                if (ret)
1768                        return ret;
1769                len -= l;
1770                logical += l;
1771                physical += l;
1772        }
1773        return 0;
1774}
1775
1776static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1777        struct map_lookup *map, int num, u64 base, u64 length)
1778{
1779        struct btrfs_path *path;
1780        struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1781        struct btrfs_root *root = fs_info->extent_root;
1782        struct btrfs_root *csum_root = fs_info->csum_root;
1783        struct btrfs_extent_item *extent;
1784        struct blk_plug plug;
1785        u64 flags;
1786        int ret;
1787        int slot;
1788        int i;
1789        u64 nstripes;
1790        struct extent_buffer *l;
1791        struct btrfs_key key;
1792        u64 physical;
1793        u64 logical;
1794        u64 generation;
1795        int mirror_num;
1796        struct reada_control *reada1;
1797        struct reada_control *reada2;
1798        struct btrfs_key key_start;
1799        struct btrfs_key key_end;
1800
1801        u64 increment = map->stripe_len;
1802        u64 offset;
1803
1804        nstripes = length;
1805        offset = 0;
1806        do_div(nstripes, map->stripe_len);
1807        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1808                offset = map->stripe_len * num;
1809                increment = map->stripe_len * map->num_stripes;
1810                mirror_num = 1;
1811        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1812                int factor = map->num_stripes / map->sub_stripes;
1813                offset = map->stripe_len * (num / map->sub_stripes);
1814                increment = map->stripe_len * factor;
1815                mirror_num = num % map->sub_stripes + 1;
1816        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1817                increment = map->stripe_len;
1818                mirror_num = num % map->num_stripes + 1;
1819        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1820                increment = map->stripe_len;
1821                mirror_num = num % map->num_stripes + 1;
1822        } else {
1823                increment = map->stripe_len;
1824                mirror_num = 1;
1825        }
1826
1827        path = btrfs_alloc_path();
1828        if (!path)
1829                return -ENOMEM;
1830
1831        /*
1832         * work on commit root. The related disk blocks are static as
1833         * long as COW is applied. This means, it is save to rewrite
1834         * them to repair disk errors without any race conditions
1835         */
1836        path->search_commit_root = 1;
1837        path->skip_locking = 1;
1838
1839        /*
1840         * trigger the readahead for extent tree csum tree and wait for
1841         * completion. During readahead, the scrub is officially paused
1842         * to not hold off transaction commits
1843         */
1844        logical = base + offset;
1845
1846        wait_event(sdev->list_wait,
1847                   atomic_read(&sdev->in_flight) == 0);
1848        atomic_inc(&fs_info->scrubs_paused);
1849        wake_up(&fs_info->scrub_pause_wait);
1850
1851        /* FIXME it might be better to start readahead at commit root */
1852        key_start.objectid = logical;
1853        key_start.type = BTRFS_EXTENT_ITEM_KEY;
1854        key_start.offset = (u64)0;
1855        key_end.objectid = base + offset + nstripes * increment;
1856        key_end.type = BTRFS_EXTENT_ITEM_KEY;
1857        key_end.offset = (u64)0;
1858        reada1 = btrfs_reada_add(root, &key_start, &key_end);
1859
1860        key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1861        key_start.type = BTRFS_EXTENT_CSUM_KEY;
1862        key_start.offset = logical;
1863        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1864        key_end.type = BTRFS_EXTENT_CSUM_KEY;
1865        key_end.offset = base + offset + nstripes * increment;
1866        reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1867
1868        if (!IS_ERR(reada1))
1869                btrfs_reada_wait(reada1);
1870        if (!IS_ERR(reada2))
1871                btrfs_reada_wait(reada2);
1872
1873        mutex_lock(&fs_info->scrub_lock);
1874        while (atomic_read(&fs_info->scrub_pause_req)) {
1875                mutex_unlock(&fs_info->scrub_lock);
1876                wait_event(fs_info->scrub_pause_wait,
1877                   atomic_read(&fs_info->scrub_pause_req) == 0);
1878                mutex_lock(&fs_info->scrub_lock);
1879        }
1880        atomic_dec(&fs_info->scrubs_paused);
1881        mutex_unlock(&fs_info->scrub_lock);
1882        wake_up(&fs_info->scrub_pause_wait);
1883
1884        /*
1885         * collect all data csums for the stripe to avoid seeking during
1886         * the scrub. This might currently (crc32) end up to be about 1MB
1887         */
1888        blk_start_plug(&plug);
1889
1890        /*
1891         * now find all extents for each stripe and scrub them
1892         */
1893        logical = base + offset;
1894        physical = map->stripes[num].physical;
1895        ret = 0;
1896        for (i = 0; i < nstripes; ++i) {
1897                /*
1898                 * canceled?
1899                 */
1900                if (atomic_read(&fs_info->scrub_cancel_req) ||
1901                    atomic_read(&sdev->cancel_req)) {
1902                        ret = -ECANCELED;
1903                        goto out;
1904                }
1905                /*
1906                 * check to see if we have to pause
1907                 */
1908                if (atomic_read(&fs_info->scrub_pause_req)) {
1909                        /* push queued extents */
1910                        scrub_submit(sdev);
1911                        wait_event(sdev->list_wait,
1912                                   atomic_read(&sdev->in_flight) == 0);
1913                        atomic_inc(&fs_info->scrubs_paused);
1914                        wake_up(&fs_info->scrub_pause_wait);
1915                        mutex_lock(&fs_info->scrub_lock);
1916                        while (atomic_read(&fs_info->scrub_pause_req)) {
1917                                mutex_unlock(&fs_info->scrub_lock);
1918                                wait_event(fs_info->scrub_pause_wait,
1919                                   atomic_read(&fs_info->scrub_pause_req) == 0);
1920                                mutex_lock(&fs_info->scrub_lock);
1921                        }
1922                        atomic_dec(&fs_info->scrubs_paused);
1923                        mutex_unlock(&fs_info->scrub_lock);
1924                        wake_up(&fs_info->scrub_pause_wait);
1925                }
1926
1927                ret = btrfs_lookup_csums_range(csum_root, logical,
1928                                               logical + map->stripe_len - 1,
1929                                               &sdev->csum_list, 1);
1930                if (ret)
1931                        goto out;
1932
1933                key.objectid = logical;
1934                key.type = BTRFS_EXTENT_ITEM_KEY;
1935                key.offset = (u64)0;
1936
1937                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1938                if (ret < 0)
1939                        goto out;
1940                if (ret > 0) {
1941                        ret = btrfs_previous_item(root, path, 0,
1942                                                  BTRFS_EXTENT_ITEM_KEY);
1943                        if (ret < 0)
1944                                goto out;
1945                        if (ret > 0) {
1946                                /* there's no smaller item, so stick with the
1947                                 * larger one */
1948                                btrfs_release_path(path);
1949                                ret = btrfs_search_slot(NULL, root, &key,
1950                                                        path, 0, 0);
1951                                if (ret < 0)
1952                                        goto out;
1953                        }
1954                }
1955
1956                while (1) {
1957                        l = path->nodes[0];
1958                        slot = path->slots[0];
1959                        if (slot >= btrfs_header_nritems(l)) {
1960                                ret = btrfs_next_leaf(root, path);
1961                                if (ret == 0)
1962                                        continue;
1963                                if (ret < 0)
1964                                        goto out;
1965
1966                                break;
1967                        }
1968                        btrfs_item_key_to_cpu(l, &key, slot);
1969
1970                        if (key.objectid + key.offset <= logical)
1971                                goto next;
1972
1973                        if (key.objectid >= logical + map->stripe_len)
1974                                break;
1975
1976                        if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1977                                goto next;
1978
1979                        extent = btrfs_item_ptr(l, slot,
1980                                                struct btrfs_extent_item);
1981                        flags = btrfs_extent_flags(l, extent);
1982                        generation = btrfs_extent_generation(l, extent);
1983
1984                        if (key.objectid < logical &&
1985                            (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1986                                printk(KERN_ERR
1987                                       "btrfs scrub: tree block %llu spanning "
1988                                       "stripes, ignored. logical=%llu\n",
1989                                       (unsigned long long)key.objectid,
1990                                       (unsigned long long)logical);
1991                                goto next;
1992                        }
1993
1994                        /*
1995                         * trim extent to this stripe
1996                         */
1997                        if (key.objectid < logical) {
1998                                key.offset -= logical - key.objectid;
1999                                key.objectid = logical;
2000                        }
2001                        if (key.objectid + key.offset >
2002                            logical + map->stripe_len) {
2003                                key.offset = logical + map->stripe_len -
2004                                             key.objectid;
2005                        }
2006
2007                        ret = scrub_extent(sdev, key.objectid, key.offset,
2008                                           key.objectid - logical + physical,
2009                                           flags, generation, mirror_num);
2010                        if (ret)
2011                                goto out;
2012
2013next:
2014                        path->slots[0]++;
2015                }
2016                btrfs_release_path(path);
2017                logical += increment;
2018                physical += map->stripe_len;
2019                spin_lock(&sdev->stat_lock);
2020                sdev->stat.last_physical = physical;
2021                spin_unlock(&sdev->stat_lock);
2022        }
2023        /* push queued extents */
2024        scrub_submit(sdev);
2025
2026out:
2027        blk_finish_plug(&plug);
2028        btrfs_free_path(path);
2029        return ret < 0 ? ret : 0;
2030}
2031
2032static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2033        u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2034        u64 dev_offset)
2035{
2036        struct btrfs_mapping_tree *map_tree =
2037                &sdev->dev->dev_root->fs_info->mapping_tree;
2038        struct map_lookup *map;
2039        struct extent_map *em;
2040        int i;
2041        int ret = -EINVAL;
2042
2043        read_lock(&map_tree->map_tree.lock);
2044        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2045        read_unlock(&map_tree->map_tree.lock);
2046
2047        if (!em)
2048                return -EINVAL;
2049
2050        map = (struct map_lookup *)em->bdev;
2051        if (em->start != chunk_offset)
2052                goto out;
2053
2054        if (em->len < length)
2055                goto out;
2056
2057        for (i = 0; i < map->num_stripes; ++i) {
2058                if (map->stripes[i].dev == sdev->dev &&
2059                    map->stripes[i].physical == dev_offset) {
2060                        ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2061                        if (ret)
2062                                goto out;
2063                }
2064        }
2065out:
2066        free_extent_map(em);
2067
2068        return ret;
2069}
2070
2071static noinline_for_stack
2072int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2073{
2074        struct btrfs_dev_extent *dev_extent = NULL;
2075        struct btrfs_path *path;
2076        struct btrfs_root *root = sdev->dev->dev_root;
2077        struct btrfs_fs_info *fs_info = root->fs_info;
2078        u64 length;
2079        u64 chunk_tree;
2080        u64 chunk_objectid;
2081        u64 chunk_offset;
2082        int ret;
2083        int slot;
2084        struct extent_buffer *l;
2085        struct btrfs_key key;
2086        struct btrfs_key found_key;
2087        struct btrfs_block_group_cache *cache;
2088
2089        path = btrfs_alloc_path();
2090        if (!path)
2091                return -ENOMEM;
2092
2093        path->reada = 2;
2094        path->search_commit_root = 1;
2095        path->skip_locking = 1;
2096
2097        key.objectid = sdev->dev->devid;
2098        key.offset = 0ull;
2099        key.type = BTRFS_DEV_EXTENT_KEY;
2100
2101
2102        while (1) {
2103                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2104                if (ret < 0)
2105                        break;
2106                if (ret > 0) {
2107                        if (path->slots[0] >=
2108                            btrfs_header_nritems(path->nodes[0])) {
2109                                ret = btrfs_next_leaf(root, path);
2110                                if (ret)
2111                                        break;
2112                        }
2113                }
2114
2115                l = path->nodes[0];
2116                slot = path->slots[0];
2117
2118                btrfs_item_key_to_cpu(l, &found_key, slot);
2119
2120                if (found_key.objectid != sdev->dev->devid)
2121                        break;
2122
2123                if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2124                        break;
2125
2126                if (found_key.offset >= end)
2127                        break;
2128
2129                if (found_key.offset < key.offset)
2130                        break;
2131
2132                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2133                length = btrfs_dev_extent_length(l, dev_extent);
2134
2135                if (found_key.offset + length <= start) {
2136                        key.offset = found_key.offset + length;
2137                        btrfs_release_path(path);
2138                        continue;
2139                }
2140
2141                chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2142                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2143                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2144
2145                /*
2146                 * get a reference on the corresponding block group to prevent
2147                 * the chunk from going away while we scrub it
2148                 */
2149                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2150                if (!cache) {
2151                        ret = -ENOENT;
2152                        break;
2153                }
2154                ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2155                                  chunk_offset, length, found_key.offset);
2156                btrfs_put_block_group(cache);
2157                if (ret)
2158                        break;
2159
2160                key.offset = found_key.offset + length;
2161                btrfs_release_path(path);
2162        }
2163
2164        btrfs_free_path(path);
2165
2166        /*
2167         * ret can still be 1 from search_slot or next_leaf,
2168         * that's not an error
2169         */
2170        return ret < 0 ? ret : 0;
2171}
2172
2173static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2174{
2175        int     i;
2176        u64     bytenr;
2177        u64     gen;
2178        int     ret;
2179        struct btrfs_device *device = sdev->dev;
2180        struct btrfs_root *root = device->dev_root;
2181
2182        if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2183                return -EIO;
2184
2185        gen = root->fs_info->last_trans_committed;
2186
2187        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2188                bytenr = btrfs_sb_offset(i);
2189                if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2190                        break;
2191
2192                ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2193                                     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2194                if (ret)
2195                        return ret;
2196        }
2197        wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2198
2199        return 0;
2200}
2201
2202/*
2203 * get a reference count on fs_info->scrub_workers. start worker if necessary
2204 */
2205static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2206{
2207        struct btrfs_fs_info *fs_info = root->fs_info;
2208        int ret = 0;
2209
2210        mutex_lock(&fs_info->scrub_lock);
2211        if (fs_info->scrub_workers_refcnt == 0) {
2212                btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2213                           fs_info->thread_pool_size, &fs_info->generic_worker);
2214                fs_info->scrub_workers.idle_thresh = 4;
2215                ret = btrfs_start_workers(&fs_info->scrub_workers);
2216                if (ret)
2217                        goto out;
2218        }
2219        ++fs_info->scrub_workers_refcnt;
2220out:
2221        mutex_unlock(&fs_info->scrub_lock);
2222
2223        return ret;
2224}
2225
2226static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2227{
2228        struct btrfs_fs_info *fs_info = root->fs_info;
2229
2230        mutex_lock(&fs_info->scrub_lock);
2231        if (--fs_info->scrub_workers_refcnt == 0)
2232                btrfs_stop_workers(&fs_info->scrub_workers);
2233        WARN_ON(fs_info->scrub_workers_refcnt < 0);
2234        mutex_unlock(&fs_info->scrub_lock);
2235}
2236
2237
2238int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2239                    struct btrfs_scrub_progress *progress, int readonly)
2240{
2241        struct scrub_dev *sdev;
2242        struct btrfs_fs_info *fs_info = root->fs_info;
2243        int ret;
2244        struct btrfs_device *dev;
2245
2246        if (btrfs_fs_closing(root->fs_info))
2247                return -EINVAL;
2248
2249        /*
2250         * check some assumptions
2251         */
2252        if (root->nodesize != root->leafsize) {
2253                printk(KERN_ERR
2254                       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2255                       root->nodesize, root->leafsize);
2256                return -EINVAL;
2257        }
2258
2259        if (root->nodesize > BTRFS_STRIPE_LEN) {
2260                /*
2261                 * in this case scrub is unable to calculate the checksum
2262                 * the way scrub is implemented. Do not handle this
2263                 * situation at all because it won't ever happen.
2264                 */
2265                printk(KERN_ERR
2266                       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2267                       root->nodesize, BTRFS_STRIPE_LEN);
2268                return -EINVAL;
2269        }
2270
2271        if (root->sectorsize != PAGE_SIZE) {
2272                /* not supported for data w/o checksums */
2273                printk(KERN_ERR
2274                       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2275                       root->sectorsize, (unsigned long long)PAGE_SIZE);
2276                return -EINVAL;
2277        }
2278
2279        ret = scrub_workers_get(root);
2280        if (ret)
2281                return ret;
2282
2283        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2284        dev = btrfs_find_device(root, devid, NULL, NULL);
2285        if (!dev || dev->missing) {
2286                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2287                scrub_workers_put(root);
2288                return -ENODEV;
2289        }
2290        mutex_lock(&fs_info->scrub_lock);
2291
2292        if (!dev->in_fs_metadata) {
2293                mutex_unlock(&fs_info->scrub_lock);
2294                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2295                scrub_workers_put(root);
2296                return -ENODEV;
2297        }
2298
2299        if (dev->scrub_device) {
2300                mutex_unlock(&fs_info->scrub_lock);
2301                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2302                scrub_workers_put(root);
2303                return -EINPROGRESS;
2304        }
2305        sdev = scrub_setup_dev(dev);
2306        if (IS_ERR(sdev)) {
2307                mutex_unlock(&fs_info->scrub_lock);
2308                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2309                scrub_workers_put(root);
2310                return PTR_ERR(sdev);
2311        }
2312        sdev->readonly = readonly;
2313        dev->scrub_device = sdev;
2314
2315        atomic_inc(&fs_info->scrubs_running);
2316        mutex_unlock(&fs_info->scrub_lock);
2317        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2318
2319        down_read(&fs_info->scrub_super_lock);
2320        ret = scrub_supers(sdev);
2321        up_read(&fs_info->scrub_super_lock);
2322
2323        if (!ret)
2324                ret = scrub_enumerate_chunks(sdev, start, end);
2325
2326        wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2327        atomic_dec(&fs_info->scrubs_running);
2328        wake_up(&fs_info->scrub_pause_wait);
2329
2330        wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2331
2332        if (progress)
2333                memcpy(progress, &sdev->stat, sizeof(*progress));
2334
2335        mutex_lock(&fs_info->scrub_lock);
2336        dev->scrub_device = NULL;
2337        mutex_unlock(&fs_info->scrub_lock);
2338
2339        scrub_free_dev(sdev);
2340        scrub_workers_put(root);
2341
2342        return ret;
2343}
2344
2345void btrfs_scrub_pause(struct btrfs_root *root)
2346{
2347        struct btrfs_fs_info *fs_info = root->fs_info;
2348
2349        mutex_lock(&fs_info->scrub_lock);
2350        atomic_inc(&fs_info->scrub_pause_req);
2351        while (atomic_read(&fs_info->scrubs_paused) !=
2352               atomic_read(&fs_info->scrubs_running)) {
2353                mutex_unlock(&fs_info->scrub_lock);
2354                wait_event(fs_info->scrub_pause_wait,
2355                           atomic_read(&fs_info->scrubs_paused) ==
2356                           atomic_read(&fs_info->scrubs_running));
2357                mutex_lock(&fs_info->scrub_lock);
2358        }
2359        mutex_unlock(&fs_info->scrub_lock);
2360}
2361
2362void btrfs_scrub_continue(struct btrfs_root *root)
2363{
2364        struct btrfs_fs_info *fs_info = root->fs_info;
2365
2366        atomic_dec(&fs_info->scrub_pause_req);
2367        wake_up(&fs_info->scrub_pause_wait);
2368}
2369
2370void btrfs_scrub_pause_super(struct btrfs_root *root)
2371{
2372        down_write(&root->fs_info->scrub_super_lock);
2373}
2374
2375void btrfs_scrub_continue_super(struct btrfs_root *root)
2376{
2377        up_write(&root->fs_info->scrub_super_lock);
2378}
2379
2380int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2381{
2382
2383        mutex_lock(&fs_info->scrub_lock);
2384        if (!atomic_read(&fs_info->scrubs_running)) {
2385                mutex_unlock(&fs_info->scrub_lock);
2386                return -ENOTCONN;
2387        }
2388
2389        atomic_inc(&fs_info->scrub_cancel_req);
2390        while (atomic_read(&fs_info->scrubs_running)) {
2391                mutex_unlock(&fs_info->scrub_lock);
2392                wait_event(fs_info->scrub_pause_wait,
2393                           atomic_read(&fs_info->scrubs_running) == 0);
2394                mutex_lock(&fs_info->scrub_lock);
2395        }
2396        atomic_dec(&fs_info->scrub_cancel_req);
2397        mutex_unlock(&fs_info->scrub_lock);
2398
2399        return 0;
2400}
2401
2402int btrfs_scrub_cancel(struct btrfs_root *root)
2403{
2404        return __btrfs_scrub_cancel(root->fs_info);
2405}
2406
2407int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2408{
2409        struct btrfs_fs_info *fs_info = root->fs_info;
2410        struct scrub_dev *sdev;
2411
2412        mutex_lock(&fs_info->scrub_lock);
2413        sdev = dev->scrub_device;
2414        if (!sdev) {
2415                mutex_unlock(&fs_info->scrub_lock);
2416                return -ENOTCONN;
2417        }
2418        atomic_inc(&sdev->cancel_req);
2419        while (dev->scrub_device) {
2420                mutex_unlock(&fs_info->scrub_lock);
2421                wait_event(fs_info->scrub_pause_wait,
2422                           dev->scrub_device == NULL);
2423                mutex_lock(&fs_info->scrub_lock);
2424        }
2425        mutex_unlock(&fs_info->scrub_lock);
2426
2427        return 0;
2428}
2429
2430int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2431{
2432        struct btrfs_fs_info *fs_info = root->fs_info;
2433        struct btrfs_device *dev;
2434        int ret;
2435
2436        /*
2437         * we have to hold the device_list_mutex here so the device
2438         * does not go away in cancel_dev. FIXME: find a better solution
2439         */
2440        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2441        dev = btrfs_find_device(root, devid, NULL, NULL);
2442        if (!dev) {
2443                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2444                return -ENODEV;
2445        }
2446        ret = btrfs_scrub_cancel_dev(root, dev);
2447        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2448
2449        return ret;
2450}
2451
2452int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2453                         struct btrfs_scrub_progress *progress)
2454{
2455        struct btrfs_device *dev;
2456        struct scrub_dev *sdev = NULL;
2457
2458        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2459        dev = btrfs_find_device(root, devid, NULL, NULL);
2460        if (dev)
2461                sdev = dev->scrub_device;
2462        if (sdev)
2463                memcpy(progress, &sdev->stat, sizeof(*progress));
2464        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2465
2466        return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2467}
2468