1#ifndef _LINUX_PTRACE_H 2#define _LINUX_PTRACE_H 3 4#include <linux/compiler.h> /* For unlikely. */ 5#include <linux/sched.h> /* For struct task_struct. */ 6#include <linux/err.h> /* for IS_ERR_VALUE */ 7#include <linux/bug.h> /* For BUG_ON. */ 8#include <uapi/linux/ptrace.h> 9 10/* 11 * Ptrace flags 12 * 13 * The owner ship rules for task->ptrace which holds the ptrace 14 * flags is simple. When a task is running it owns it's task->ptrace 15 * flags. When the a task is stopped the ptracer owns task->ptrace. 16 */ 17 18#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 19#define PT_PTRACED 0x00000001 20#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 21#define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */ 22 23#define PT_OPT_FLAG_SHIFT 3 24/* PT_TRACE_* event enable flags */ 25#define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) 26#define PT_TRACESYSGOOD PT_EVENT_FLAG(0) 27#define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 28#define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 29#define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 30#define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 31#define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 32#define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 33#define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) 34 35/* single stepping state bits (used on ARM and PA-RISC) */ 36#define PT_SINGLESTEP_BIT 31 37#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 38#define PT_BLOCKSTEP_BIT 30 39#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 40 41extern long arch_ptrace(struct task_struct *child, long request, 42 unsigned long addr, unsigned long data); 43extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 44extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 45extern void ptrace_disable(struct task_struct *); 46extern int ptrace_check_attach(struct task_struct *task, bool ignore_state); 47extern int ptrace_request(struct task_struct *child, long request, 48 unsigned long addr, unsigned long data); 49extern void ptrace_notify(int exit_code); 50extern void __ptrace_link(struct task_struct *child, 51 struct task_struct *new_parent); 52extern void __ptrace_unlink(struct task_struct *child); 53extern void exit_ptrace(struct task_struct *tracer); 54#define PTRACE_MODE_READ 0x01 55#define PTRACE_MODE_ATTACH 0x02 56#define PTRACE_MODE_NOAUDIT 0x04 57/* Returns true on success, false on denial. */ 58extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 59 60static inline int ptrace_reparented(struct task_struct *child) 61{ 62 return !same_thread_group(child->real_parent, child->parent); 63} 64 65static inline void ptrace_unlink(struct task_struct *child) 66{ 67 if (unlikely(child->ptrace)) 68 __ptrace_unlink(child); 69} 70 71int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 72 unsigned long data); 73int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 74 unsigned long data); 75 76/** 77 * ptrace_parent - return the task that is tracing the given task 78 * @task: task to consider 79 * 80 * Returns %NULL if no one is tracing @task, or the &struct task_struct 81 * pointer to its tracer. 82 * 83 * Must called under rcu_read_lock(). The pointer returned might be kept 84 * live only by RCU. During exec, this may be called with task_lock() held 85 * on @task, still held from when check_unsafe_exec() was called. 86 */ 87static inline struct task_struct *ptrace_parent(struct task_struct *task) 88{ 89 if (unlikely(task->ptrace)) 90 return rcu_dereference(task->parent); 91 return NULL; 92} 93 94/** 95 * ptrace_event_enabled - test whether a ptrace event is enabled 96 * @task: ptracee of interest 97 * @event: %PTRACE_EVENT_* to test 98 * 99 * Test whether @event is enabled for ptracee @task. 100 * 101 * Returns %true if @event is enabled, %false otherwise. 102 */ 103static inline bool ptrace_event_enabled(struct task_struct *task, int event) 104{ 105 return task->ptrace & PT_EVENT_FLAG(event); 106} 107 108/** 109 * ptrace_event - possibly stop for a ptrace event notification 110 * @event: %PTRACE_EVENT_* value to report 111 * @message: value for %PTRACE_GETEVENTMSG to return 112 * 113 * Check whether @event is enabled and, if so, report @event and @message 114 * to the ptrace parent. 115 * 116 * Called without locks. 117 */ 118static inline void ptrace_event(int event, unsigned long message) 119{ 120 if (unlikely(ptrace_event_enabled(current, event))) { 121 current->ptrace_message = message; 122 ptrace_notify((event << 8) | SIGTRAP); 123 } else if (event == PTRACE_EVENT_EXEC) { 124 /* legacy EXEC report via SIGTRAP */ 125 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) 126 send_sig(SIGTRAP, current, 0); 127 } 128} 129 130/** 131 * ptrace_init_task - initialize ptrace state for a new child 132 * @child: new child task 133 * @ptrace: true if child should be ptrace'd by parent's tracer 134 * 135 * This is called immediately after adding @child to its parent's children 136 * list. @ptrace is false in the normal case, and true to ptrace @child. 137 * 138 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 139 */ 140static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 141{ 142 INIT_LIST_HEAD(&child->ptrace_entry); 143 INIT_LIST_HEAD(&child->ptraced); 144#ifdef CONFIG_HAVE_HW_BREAKPOINT 145 atomic_set(&child->ptrace_bp_refcnt, 1); 146#endif 147 child->jobctl = 0; 148 child->ptrace = 0; 149 child->parent = child->real_parent; 150 151 if (unlikely(ptrace) && current->ptrace) { 152 child->ptrace = current->ptrace; 153 __ptrace_link(child, current->parent); 154 155 if (child->ptrace & PT_SEIZED) 156 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 157 else 158 sigaddset(&child->pending.signal, SIGSTOP); 159 160 set_tsk_thread_flag(child, TIF_SIGPENDING); 161 } 162} 163 164/** 165 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 166 * @task: task in %EXIT_DEAD state 167 * 168 * Called with write_lock(&tasklist_lock) held. 169 */ 170static inline void ptrace_release_task(struct task_struct *task) 171{ 172 BUG_ON(!list_empty(&task->ptraced)); 173 ptrace_unlink(task); 174 BUG_ON(!list_empty(&task->ptrace_entry)); 175} 176 177#ifndef force_successful_syscall_return 178/* 179 * System call handlers that, upon successful completion, need to return a 180 * negative value should call force_successful_syscall_return() right before 181 * returning. On architectures where the syscall convention provides for a 182 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 183 * others), this macro can be used to ensure that the error flag will not get 184 * set. On architectures which do not support a separate error flag, the macro 185 * is a no-op and the spurious error condition needs to be filtered out by some 186 * other means (e.g., in user-level, by passing an extra argument to the 187 * syscall handler, or something along those lines). 188 */ 189#define force_successful_syscall_return() do { } while (0) 190#endif 191 192#ifndef is_syscall_success 193/* 194 * On most systems we can tell if a syscall is a success based on if the retval 195 * is an error value. On some systems like ia64 and powerpc they have different 196 * indicators of success/failure and must define their own. 197 */ 198#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 199#endif 200 201/* 202 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 203 * 204 * These do-nothing inlines are used when the arch does not 205 * implement single-step. The kerneldoc comments are here 206 * to document the interface for all arch definitions. 207 */ 208 209#ifndef arch_has_single_step 210/** 211 * arch_has_single_step - does this CPU support user-mode single-step? 212 * 213 * If this is defined, then there must be function declarations or 214 * inlines for user_enable_single_step() and user_disable_single_step(). 215 * arch_has_single_step() should evaluate to nonzero iff the machine 216 * supports instruction single-step for user mode. 217 * It can be a constant or it can test a CPU feature bit. 218 */ 219#define arch_has_single_step() (0) 220 221/** 222 * user_enable_single_step - single-step in user-mode task 223 * @task: either current or a task stopped in %TASK_TRACED 224 * 225 * This can only be called when arch_has_single_step() has returned nonzero. 226 * Set @task so that when it returns to user mode, it will trap after the 227 * next single instruction executes. If arch_has_block_step() is defined, 228 * this must clear the effects of user_enable_block_step() too. 229 */ 230static inline void user_enable_single_step(struct task_struct *task) 231{ 232 BUG(); /* This can never be called. */ 233} 234 235/** 236 * user_disable_single_step - cancel user-mode single-step 237 * @task: either current or a task stopped in %TASK_TRACED 238 * 239 * Clear @task of the effects of user_enable_single_step() and 240 * user_enable_block_step(). This can be called whether or not either 241 * of those was ever called on @task, and even if arch_has_single_step() 242 * returned zero. 243 */ 244static inline void user_disable_single_step(struct task_struct *task) 245{ 246} 247#else 248extern void user_enable_single_step(struct task_struct *); 249extern void user_disable_single_step(struct task_struct *); 250#endif /* arch_has_single_step */ 251 252#ifndef arch_has_block_step 253/** 254 * arch_has_block_step - does this CPU support user-mode block-step? 255 * 256 * If this is defined, then there must be a function declaration or inline 257 * for user_enable_block_step(), and arch_has_single_step() must be defined 258 * too. arch_has_block_step() should evaluate to nonzero iff the machine 259 * supports step-until-branch for user mode. It can be a constant or it 260 * can test a CPU feature bit. 261 */ 262#define arch_has_block_step() (0) 263 264/** 265 * user_enable_block_step - step until branch in user-mode task 266 * @task: either current or a task stopped in %TASK_TRACED 267 * 268 * This can only be called when arch_has_block_step() has returned nonzero, 269 * and will never be called when single-instruction stepping is being used. 270 * Set @task so that when it returns to user mode, it will trap after the 271 * next branch or trap taken. 272 */ 273static inline void user_enable_block_step(struct task_struct *task) 274{ 275 BUG(); /* This can never be called. */ 276} 277#else 278extern void user_enable_block_step(struct task_struct *); 279#endif /* arch_has_block_step */ 280 281#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO 282extern void user_single_step_siginfo(struct task_struct *tsk, 283 struct pt_regs *regs, siginfo_t *info); 284#else 285static inline void user_single_step_siginfo(struct task_struct *tsk, 286 struct pt_regs *regs, siginfo_t *info) 287{ 288 memset(info, 0, sizeof(*info)); 289 info->si_signo = SIGTRAP; 290} 291#endif 292 293#ifndef arch_ptrace_stop_needed 294/** 295 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 296 * @code: current->exit_code value ptrace will stop with 297 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 298 * 299 * This is called with the siglock held, to decide whether or not it's 300 * necessary to release the siglock and call arch_ptrace_stop() with the 301 * same @code and @info arguments. It can be defined to a constant if 302 * arch_ptrace_stop() is never required, or always is. On machines where 303 * this makes sense, it should be defined to a quick test to optimize out 304 * calling arch_ptrace_stop() when it would be superfluous. For example, 305 * if the thread has not been back to user mode since the last stop, the 306 * thread state might indicate that nothing needs to be done. 307 */ 308#define arch_ptrace_stop_needed(code, info) (0) 309#endif 310 311#ifndef arch_ptrace_stop 312/** 313 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 314 * @code: current->exit_code value ptrace will stop with 315 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 316 * 317 * This is called with no locks held when arch_ptrace_stop_needed() has 318 * just returned nonzero. It is allowed to block, e.g. for user memory 319 * access. The arch can have machine-specific work to be done before 320 * ptrace stops. On ia64, register backing store gets written back to user 321 * memory here. Since this can be costly (requires dropping the siglock), 322 * we only do it when the arch requires it for this particular stop, as 323 * indicated by arch_ptrace_stop_needed(). 324 */ 325#define arch_ptrace_stop(code, info) do { } while (0) 326#endif 327 328#ifndef current_pt_regs 329#define current_pt_regs() task_pt_regs(current) 330#endif 331 332extern int task_current_syscall(struct task_struct *target, long *callno, 333 unsigned long args[6], unsigned int maxargs, 334 unsigned long *sp, unsigned long *pc); 335 336#ifdef CONFIG_HAVE_HW_BREAKPOINT 337extern int ptrace_get_breakpoints(struct task_struct *tsk); 338extern void ptrace_put_breakpoints(struct task_struct *tsk); 339#else 340static inline void ptrace_put_breakpoints(struct task_struct *tsk) { } 341#endif /* CONFIG_HAVE_HW_BREAKPOINT */ 342 343#endif 344