linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70#include <linux/compat.h>
  71
  72#include "audit.h"
  73
  74/* flags stating the success for a syscall */
  75#define AUDITSC_INVALID 0
  76#define AUDITSC_SUCCESS 1
  77#define AUDITSC_FAILURE 2
  78
  79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  80 * for saving names from getname().  If we get more names we will allocate
  81 * a name dynamically and also add those to the list anchored by names_list. */
  82#define AUDIT_NAMES     5
  83
  84/* no execve audit message should be longer than this (userspace limits) */
  85#define MAX_EXECVE_AUDIT_LEN 7500
  86
  87/* number of audit rules */
  88int audit_n_rules;
  89
  90/* determines whether we collect data for signals sent */
  91int audit_signals;
  92
  93struct audit_cap_data {
  94        kernel_cap_t            permitted;
  95        kernel_cap_t            inheritable;
  96        union {
  97                unsigned int    fE;             /* effective bit of a file capability */
  98                kernel_cap_t    effective;      /* effective set of a process */
  99        };
 100};
 101
 102/* When fs/namei.c:getname() is called, we store the pointer in name and
 103 * we don't let putname() free it (instead we free all of the saved
 104 * pointers at syscall exit time).
 105 *
 106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
 107 */
 108struct audit_names {
 109        struct list_head        list;           /* audit_context->names_list */
 110        struct filename *name;
 111        unsigned long           ino;
 112        dev_t                   dev;
 113        umode_t                 mode;
 114        kuid_t                  uid;
 115        kgid_t                  gid;
 116        dev_t                   rdev;
 117        u32                     osid;
 118        struct audit_cap_data    fcap;
 119        unsigned int            fcap_ver;
 120        int                     name_len;       /* number of name's characters to log */
 121        unsigned char           type;           /* record type */
 122        bool                    name_put;       /* call __putname() for this name */
 123        /*
 124         * This was an allocated audit_names and not from the array of
 125         * names allocated in the task audit context.  Thus this name
 126         * should be freed on syscall exit
 127         */
 128        bool                    should_free;
 129};
 130
 131struct audit_aux_data {
 132        struct audit_aux_data   *next;
 133        int                     type;
 134};
 135
 136#define AUDIT_AUX_IPCPERM       0
 137
 138/* Number of target pids per aux struct. */
 139#define AUDIT_AUX_PIDS  16
 140
 141struct audit_aux_data_execve {
 142        struct audit_aux_data   d;
 143        int argc;
 144        int envc;
 145        struct mm_struct *mm;
 146};
 147
 148struct audit_aux_data_pids {
 149        struct audit_aux_data   d;
 150        pid_t                   target_pid[AUDIT_AUX_PIDS];
 151        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 152        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 153        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 154        u32                     target_sid[AUDIT_AUX_PIDS];
 155        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 156        int                     pid_count;
 157};
 158
 159struct audit_aux_data_bprm_fcaps {
 160        struct audit_aux_data   d;
 161        struct audit_cap_data   fcap;
 162        unsigned int            fcap_ver;
 163        struct audit_cap_data   old_pcap;
 164        struct audit_cap_data   new_pcap;
 165};
 166
 167struct audit_aux_data_capset {
 168        struct audit_aux_data   d;
 169        pid_t                   pid;
 170        struct audit_cap_data   cap;
 171};
 172
 173struct audit_tree_refs {
 174        struct audit_tree_refs *next;
 175        struct audit_chunk *c[31];
 176};
 177
 178/* The per-task audit context. */
 179struct audit_context {
 180        int                 dummy;      /* must be the first element */
 181        int                 in_syscall; /* 1 if task is in a syscall */
 182        enum audit_state    state, current_state;
 183        unsigned int        serial;     /* serial number for record */
 184        int                 major;      /* syscall number */
 185        struct timespec     ctime;      /* time of syscall entry */
 186        unsigned long       argv[4];    /* syscall arguments */
 187        long                return_code;/* syscall return code */
 188        u64                 prio;
 189        int                 return_valid; /* return code is valid */
 190        /*
 191         * The names_list is the list of all audit_names collected during this
 192         * syscall.  The first AUDIT_NAMES entries in the names_list will
 193         * actually be from the preallocated_names array for performance
 194         * reasons.  Except during allocation they should never be referenced
 195         * through the preallocated_names array and should only be found/used
 196         * by running the names_list.
 197         */
 198        struct audit_names  preallocated_names[AUDIT_NAMES];
 199        int                 name_count; /* total records in names_list */
 200        struct list_head    names_list; /* anchor for struct audit_names->list */
 201        char *              filterkey;  /* key for rule that triggered record */
 202        struct path         pwd;
 203        struct audit_context *previous; /* For nested syscalls */
 204        struct audit_aux_data *aux;
 205        struct audit_aux_data *aux_pids;
 206        struct sockaddr_storage *sockaddr;
 207        size_t sockaddr_len;
 208                                /* Save things to print about task_struct */
 209        pid_t               pid, ppid;
 210        kuid_t              uid, euid, suid, fsuid;
 211        kgid_t              gid, egid, sgid, fsgid;
 212        unsigned long       personality;
 213        int                 arch;
 214
 215        pid_t               target_pid;
 216        kuid_t              target_auid;
 217        kuid_t              target_uid;
 218        unsigned int        target_sessionid;
 219        u32                 target_sid;
 220        char                target_comm[TASK_COMM_LEN];
 221
 222        struct audit_tree_refs *trees, *first_trees;
 223        struct list_head killed_trees;
 224        int tree_count;
 225
 226        int type;
 227        union {
 228                struct {
 229                        int nargs;
 230                        long args[6];
 231                } socketcall;
 232                struct {
 233                        kuid_t                  uid;
 234                        kgid_t                  gid;
 235                        umode_t                 mode;
 236                        u32                     osid;
 237                        int                     has_perm;
 238                        uid_t                   perm_uid;
 239                        gid_t                   perm_gid;
 240                        umode_t                 perm_mode;
 241                        unsigned long           qbytes;
 242                } ipc;
 243                struct {
 244                        mqd_t                   mqdes;
 245                        struct mq_attr          mqstat;
 246                } mq_getsetattr;
 247                struct {
 248                        mqd_t                   mqdes;
 249                        int                     sigev_signo;
 250                } mq_notify;
 251                struct {
 252                        mqd_t                   mqdes;
 253                        size_t                  msg_len;
 254                        unsigned int            msg_prio;
 255                        struct timespec         abs_timeout;
 256                } mq_sendrecv;
 257                struct {
 258                        int                     oflag;
 259                        umode_t                 mode;
 260                        struct mq_attr          attr;
 261                } mq_open;
 262                struct {
 263                        pid_t                   pid;
 264                        struct audit_cap_data   cap;
 265                } capset;
 266                struct {
 267                        int                     fd;
 268                        int                     flags;
 269                } mmap;
 270        };
 271        int fds[2];
 272
 273#if AUDIT_DEBUG
 274        int                 put_count;
 275        int                 ino_count;
 276#endif
 277};
 278
 279static inline int open_arg(int flags, int mask)
 280{
 281        int n = ACC_MODE(flags);
 282        if (flags & (O_TRUNC | O_CREAT))
 283                n |= AUDIT_PERM_WRITE;
 284        return n & mask;
 285}
 286
 287static int audit_match_perm(struct audit_context *ctx, int mask)
 288{
 289        unsigned n;
 290        if (unlikely(!ctx))
 291                return 0;
 292        n = ctx->major;
 293
 294        switch (audit_classify_syscall(ctx->arch, n)) {
 295        case 0: /* native */
 296                if ((mask & AUDIT_PERM_WRITE) &&
 297                     audit_match_class(AUDIT_CLASS_WRITE, n))
 298                        return 1;
 299                if ((mask & AUDIT_PERM_READ) &&
 300                     audit_match_class(AUDIT_CLASS_READ, n))
 301                        return 1;
 302                if ((mask & AUDIT_PERM_ATTR) &&
 303                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 304                        return 1;
 305                return 0;
 306        case 1: /* 32bit on biarch */
 307                if ((mask & AUDIT_PERM_WRITE) &&
 308                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 309                        return 1;
 310                if ((mask & AUDIT_PERM_READ) &&
 311                     audit_match_class(AUDIT_CLASS_READ_32, n))
 312                        return 1;
 313                if ((mask & AUDIT_PERM_ATTR) &&
 314                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 315                        return 1;
 316                return 0;
 317        case 2: /* open */
 318                return mask & ACC_MODE(ctx->argv[1]);
 319        case 3: /* openat */
 320                return mask & ACC_MODE(ctx->argv[2]);
 321        case 4: /* socketcall */
 322                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 323        case 5: /* execve */
 324                return mask & AUDIT_PERM_EXEC;
 325        default:
 326                return 0;
 327        }
 328}
 329
 330static int audit_match_filetype(struct audit_context *ctx, int val)
 331{
 332        struct audit_names *n;
 333        umode_t mode = (umode_t)val;
 334
 335        if (unlikely(!ctx))
 336                return 0;
 337
 338        list_for_each_entry(n, &ctx->names_list, list) {
 339                if ((n->ino != -1) &&
 340                    ((n->mode & S_IFMT) == mode))
 341                        return 1;
 342        }
 343
 344        return 0;
 345}
 346
 347/*
 348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 349 * ->first_trees points to its beginning, ->trees - to the current end of data.
 350 * ->tree_count is the number of free entries in array pointed to by ->trees.
 351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 352 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 353 * it's going to remain 1-element for almost any setup) until we free context itself.
 354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 355 */
 356
 357#ifdef CONFIG_AUDIT_TREE
 358static void audit_set_auditable(struct audit_context *ctx)
 359{
 360        if (!ctx->prio) {
 361                ctx->prio = 1;
 362                ctx->current_state = AUDIT_RECORD_CONTEXT;
 363        }
 364}
 365
 366static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 367{
 368        struct audit_tree_refs *p = ctx->trees;
 369        int left = ctx->tree_count;
 370        if (likely(left)) {
 371                p->c[--left] = chunk;
 372                ctx->tree_count = left;
 373                return 1;
 374        }
 375        if (!p)
 376                return 0;
 377        p = p->next;
 378        if (p) {
 379                p->c[30] = chunk;
 380                ctx->trees = p;
 381                ctx->tree_count = 30;
 382                return 1;
 383        }
 384        return 0;
 385}
 386
 387static int grow_tree_refs(struct audit_context *ctx)
 388{
 389        struct audit_tree_refs *p = ctx->trees;
 390        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 391        if (!ctx->trees) {
 392                ctx->trees = p;
 393                return 0;
 394        }
 395        if (p)
 396                p->next = ctx->trees;
 397        else
 398                ctx->first_trees = ctx->trees;
 399        ctx->tree_count = 31;
 400        return 1;
 401}
 402#endif
 403
 404static void unroll_tree_refs(struct audit_context *ctx,
 405                      struct audit_tree_refs *p, int count)
 406{
 407#ifdef CONFIG_AUDIT_TREE
 408        struct audit_tree_refs *q;
 409        int n;
 410        if (!p) {
 411                /* we started with empty chain */
 412                p = ctx->first_trees;
 413                count = 31;
 414                /* if the very first allocation has failed, nothing to do */
 415                if (!p)
 416                        return;
 417        }
 418        n = count;
 419        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 420                while (n--) {
 421                        audit_put_chunk(q->c[n]);
 422                        q->c[n] = NULL;
 423                }
 424        }
 425        while (n-- > ctx->tree_count) {
 426                audit_put_chunk(q->c[n]);
 427                q->c[n] = NULL;
 428        }
 429        ctx->trees = p;
 430        ctx->tree_count = count;
 431#endif
 432}
 433
 434static void free_tree_refs(struct audit_context *ctx)
 435{
 436        struct audit_tree_refs *p, *q;
 437        for (p = ctx->first_trees; p; p = q) {
 438                q = p->next;
 439                kfree(p);
 440        }
 441}
 442
 443static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 444{
 445#ifdef CONFIG_AUDIT_TREE
 446        struct audit_tree_refs *p;
 447        int n;
 448        if (!tree)
 449                return 0;
 450        /* full ones */
 451        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 452                for (n = 0; n < 31; n++)
 453                        if (audit_tree_match(p->c[n], tree))
 454                                return 1;
 455        }
 456        /* partial */
 457        if (p) {
 458                for (n = ctx->tree_count; n < 31; n++)
 459                        if (audit_tree_match(p->c[n], tree))
 460                                return 1;
 461        }
 462#endif
 463        return 0;
 464}
 465
 466static int audit_compare_uid(kuid_t uid,
 467                             struct audit_names *name,
 468                             struct audit_field *f,
 469                             struct audit_context *ctx)
 470{
 471        struct audit_names *n;
 472        int rc;
 473 
 474        if (name) {
 475                rc = audit_uid_comparator(uid, f->op, name->uid);
 476                if (rc)
 477                        return rc;
 478        }
 479 
 480        if (ctx) {
 481                list_for_each_entry(n, &ctx->names_list, list) {
 482                        rc = audit_uid_comparator(uid, f->op, n->uid);
 483                        if (rc)
 484                                return rc;
 485                }
 486        }
 487        return 0;
 488}
 489
 490static int audit_compare_gid(kgid_t gid,
 491                             struct audit_names *name,
 492                             struct audit_field *f,
 493                             struct audit_context *ctx)
 494{
 495        struct audit_names *n;
 496        int rc;
 497 
 498        if (name) {
 499                rc = audit_gid_comparator(gid, f->op, name->gid);
 500                if (rc)
 501                        return rc;
 502        }
 503 
 504        if (ctx) {
 505                list_for_each_entry(n, &ctx->names_list, list) {
 506                        rc = audit_gid_comparator(gid, f->op, n->gid);
 507                        if (rc)
 508                                return rc;
 509                }
 510        }
 511        return 0;
 512}
 513
 514static int audit_field_compare(struct task_struct *tsk,
 515                               const struct cred *cred,
 516                               struct audit_field *f,
 517                               struct audit_context *ctx,
 518                               struct audit_names *name)
 519{
 520        switch (f->val) {
 521        /* process to file object comparisons */
 522        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 523                return audit_compare_uid(cred->uid, name, f, ctx);
 524        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 525                return audit_compare_gid(cred->gid, name, f, ctx);
 526        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 527                return audit_compare_uid(cred->euid, name, f, ctx);
 528        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 529                return audit_compare_gid(cred->egid, name, f, ctx);
 530        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 531                return audit_compare_uid(tsk->loginuid, name, f, ctx);
 532        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 533                return audit_compare_uid(cred->suid, name, f, ctx);
 534        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 535                return audit_compare_gid(cred->sgid, name, f, ctx);
 536        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 537                return audit_compare_uid(cred->fsuid, name, f, ctx);
 538        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 539                return audit_compare_gid(cred->fsgid, name, f, ctx);
 540        /* uid comparisons */
 541        case AUDIT_COMPARE_UID_TO_AUID:
 542                return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 543        case AUDIT_COMPARE_UID_TO_EUID:
 544                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 545        case AUDIT_COMPARE_UID_TO_SUID:
 546                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 547        case AUDIT_COMPARE_UID_TO_FSUID:
 548                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 549        /* auid comparisons */
 550        case AUDIT_COMPARE_AUID_TO_EUID:
 551                return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 552        case AUDIT_COMPARE_AUID_TO_SUID:
 553                return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 554        case AUDIT_COMPARE_AUID_TO_FSUID:
 555                return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 556        /* euid comparisons */
 557        case AUDIT_COMPARE_EUID_TO_SUID:
 558                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 559        case AUDIT_COMPARE_EUID_TO_FSUID:
 560                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 561        /* suid comparisons */
 562        case AUDIT_COMPARE_SUID_TO_FSUID:
 563                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 564        /* gid comparisons */
 565        case AUDIT_COMPARE_GID_TO_EGID:
 566                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 567        case AUDIT_COMPARE_GID_TO_SGID:
 568                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 569        case AUDIT_COMPARE_GID_TO_FSGID:
 570                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 571        /* egid comparisons */
 572        case AUDIT_COMPARE_EGID_TO_SGID:
 573                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 574        case AUDIT_COMPARE_EGID_TO_FSGID:
 575                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 576        /* sgid comparison */
 577        case AUDIT_COMPARE_SGID_TO_FSGID:
 578                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 579        default:
 580                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 581                return 0;
 582        }
 583        return 0;
 584}
 585
 586/* Determine if any context name data matches a rule's watch data */
 587/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 588 * otherwise.
 589 *
 590 * If task_creation is true, this is an explicit indication that we are
 591 * filtering a task rule at task creation time.  This and tsk == current are
 592 * the only situations where tsk->cred may be accessed without an rcu read lock.
 593 */
 594static int audit_filter_rules(struct task_struct *tsk,
 595                              struct audit_krule *rule,
 596                              struct audit_context *ctx,
 597                              struct audit_names *name,
 598                              enum audit_state *state,
 599                              bool task_creation)
 600{
 601        const struct cred *cred;
 602        int i, need_sid = 1;
 603        u32 sid;
 604
 605        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 606
 607        for (i = 0; i < rule->field_count; i++) {
 608                struct audit_field *f = &rule->fields[i];
 609                struct audit_names *n;
 610                int result = 0;
 611
 612                switch (f->type) {
 613                case AUDIT_PID:
 614                        result = audit_comparator(tsk->pid, f->op, f->val);
 615                        break;
 616                case AUDIT_PPID:
 617                        if (ctx) {
 618                                if (!ctx->ppid)
 619                                        ctx->ppid = sys_getppid();
 620                                result = audit_comparator(ctx->ppid, f->op, f->val);
 621                        }
 622                        break;
 623                case AUDIT_UID:
 624                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 625                        break;
 626                case AUDIT_EUID:
 627                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 628                        break;
 629                case AUDIT_SUID:
 630                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 631                        break;
 632                case AUDIT_FSUID:
 633                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 634                        break;
 635                case AUDIT_GID:
 636                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 637                        break;
 638                case AUDIT_EGID:
 639                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 640                        break;
 641                case AUDIT_SGID:
 642                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 643                        break;
 644                case AUDIT_FSGID:
 645                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 646                        break;
 647                case AUDIT_PERS:
 648                        result = audit_comparator(tsk->personality, f->op, f->val);
 649                        break;
 650                case AUDIT_ARCH:
 651                        if (ctx)
 652                                result = audit_comparator(ctx->arch, f->op, f->val);
 653                        break;
 654
 655                case AUDIT_EXIT:
 656                        if (ctx && ctx->return_valid)
 657                                result = audit_comparator(ctx->return_code, f->op, f->val);
 658                        break;
 659                case AUDIT_SUCCESS:
 660                        if (ctx && ctx->return_valid) {
 661                                if (f->val)
 662                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 663                                else
 664                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 665                        }
 666                        break;
 667                case AUDIT_DEVMAJOR:
 668                        if (name) {
 669                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 670                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 671                                        ++result;
 672                        } else if (ctx) {
 673                                list_for_each_entry(n, &ctx->names_list, list) {
 674                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 675                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 676                                                ++result;
 677                                                break;
 678                                        }
 679                                }
 680                        }
 681                        break;
 682                case AUDIT_DEVMINOR:
 683                        if (name) {
 684                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 685                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 686                                        ++result;
 687                        } else if (ctx) {
 688                                list_for_each_entry(n, &ctx->names_list, list) {
 689                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 690                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 691                                                ++result;
 692                                                break;
 693                                        }
 694                                }
 695                        }
 696                        break;
 697                case AUDIT_INODE:
 698                        if (name)
 699                                result = (name->ino == f->val);
 700                        else if (ctx) {
 701                                list_for_each_entry(n, &ctx->names_list, list) {
 702                                        if (audit_comparator(n->ino, f->op, f->val)) {
 703                                                ++result;
 704                                                break;
 705                                        }
 706                                }
 707                        }
 708                        break;
 709                case AUDIT_OBJ_UID:
 710                        if (name) {
 711                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 712                        } else if (ctx) {
 713                                list_for_each_entry(n, &ctx->names_list, list) {
 714                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 715                                                ++result;
 716                                                break;
 717                                        }
 718                                }
 719                        }
 720                        break;
 721                case AUDIT_OBJ_GID:
 722                        if (name) {
 723                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 724                        } else if (ctx) {
 725                                list_for_each_entry(n, &ctx->names_list, list) {
 726                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 727                                                ++result;
 728                                                break;
 729                                        }
 730                                }
 731                        }
 732                        break;
 733                case AUDIT_WATCH:
 734                        if (name)
 735                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 736                        break;
 737                case AUDIT_DIR:
 738                        if (ctx)
 739                                result = match_tree_refs(ctx, rule->tree);
 740                        break;
 741                case AUDIT_LOGINUID:
 742                        result = 0;
 743                        if (ctx)
 744                                result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 745                        break;
 746                case AUDIT_SUBJ_USER:
 747                case AUDIT_SUBJ_ROLE:
 748                case AUDIT_SUBJ_TYPE:
 749                case AUDIT_SUBJ_SEN:
 750                case AUDIT_SUBJ_CLR:
 751                        /* NOTE: this may return negative values indicating
 752                           a temporary error.  We simply treat this as a
 753                           match for now to avoid losing information that
 754                           may be wanted.   An error message will also be
 755                           logged upon error */
 756                        if (f->lsm_rule) {
 757                                if (need_sid) {
 758                                        security_task_getsecid(tsk, &sid);
 759                                        need_sid = 0;
 760                                }
 761                                result = security_audit_rule_match(sid, f->type,
 762                                                                  f->op,
 763                                                                  f->lsm_rule,
 764                                                                  ctx);
 765                        }
 766                        break;
 767                case AUDIT_OBJ_USER:
 768                case AUDIT_OBJ_ROLE:
 769                case AUDIT_OBJ_TYPE:
 770                case AUDIT_OBJ_LEV_LOW:
 771                case AUDIT_OBJ_LEV_HIGH:
 772                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 773                           also applies here */
 774                        if (f->lsm_rule) {
 775                                /* Find files that match */
 776                                if (name) {
 777                                        result = security_audit_rule_match(
 778                                                   name->osid, f->type, f->op,
 779                                                   f->lsm_rule, ctx);
 780                                } else if (ctx) {
 781                                        list_for_each_entry(n, &ctx->names_list, list) {
 782                                                if (security_audit_rule_match(n->osid, f->type,
 783                                                                              f->op, f->lsm_rule,
 784                                                                              ctx)) {
 785                                                        ++result;
 786                                                        break;
 787                                                }
 788                                        }
 789                                }
 790                                /* Find ipc objects that match */
 791                                if (!ctx || ctx->type != AUDIT_IPC)
 792                                        break;
 793                                if (security_audit_rule_match(ctx->ipc.osid,
 794                                                              f->type, f->op,
 795                                                              f->lsm_rule, ctx))
 796                                        ++result;
 797                        }
 798                        break;
 799                case AUDIT_ARG0:
 800                case AUDIT_ARG1:
 801                case AUDIT_ARG2:
 802                case AUDIT_ARG3:
 803                        if (ctx)
 804                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 805                        break;
 806                case AUDIT_FILTERKEY:
 807                        /* ignore this field for filtering */
 808                        result = 1;
 809                        break;
 810                case AUDIT_PERM:
 811                        result = audit_match_perm(ctx, f->val);
 812                        break;
 813                case AUDIT_FILETYPE:
 814                        result = audit_match_filetype(ctx, f->val);
 815                        break;
 816                case AUDIT_FIELD_COMPARE:
 817                        result = audit_field_compare(tsk, cred, f, ctx, name);
 818                        break;
 819                }
 820                if (!result)
 821                        return 0;
 822        }
 823
 824        if (ctx) {
 825                if (rule->prio <= ctx->prio)
 826                        return 0;
 827                if (rule->filterkey) {
 828                        kfree(ctx->filterkey);
 829                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 830                }
 831                ctx->prio = rule->prio;
 832        }
 833        switch (rule->action) {
 834        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 835        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 836        }
 837        return 1;
 838}
 839
 840/* At process creation time, we can determine if system-call auditing is
 841 * completely disabled for this task.  Since we only have the task
 842 * structure at this point, we can only check uid and gid.
 843 */
 844static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 845{
 846        struct audit_entry *e;
 847        enum audit_state   state;
 848
 849        rcu_read_lock();
 850        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 851                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 852                                       &state, true)) {
 853                        if (state == AUDIT_RECORD_CONTEXT)
 854                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 855                        rcu_read_unlock();
 856                        return state;
 857                }
 858        }
 859        rcu_read_unlock();
 860        return AUDIT_BUILD_CONTEXT;
 861}
 862
 863/* At syscall entry and exit time, this filter is called if the
 864 * audit_state is not low enough that auditing cannot take place, but is
 865 * also not high enough that we already know we have to write an audit
 866 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 867 */
 868static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 869                                             struct audit_context *ctx,
 870                                             struct list_head *list)
 871{
 872        struct audit_entry *e;
 873        enum audit_state state;
 874
 875        if (audit_pid && tsk->tgid == audit_pid)
 876                return AUDIT_DISABLED;
 877
 878        rcu_read_lock();
 879        if (!list_empty(list)) {
 880                int word = AUDIT_WORD(ctx->major);
 881                int bit  = AUDIT_BIT(ctx->major);
 882
 883                list_for_each_entry_rcu(e, list, list) {
 884                        if ((e->rule.mask[word] & bit) == bit &&
 885                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 886                                               &state, false)) {
 887                                rcu_read_unlock();
 888                                ctx->current_state = state;
 889                                return state;
 890                        }
 891                }
 892        }
 893        rcu_read_unlock();
 894        return AUDIT_BUILD_CONTEXT;
 895}
 896
 897/*
 898 * Given an audit_name check the inode hash table to see if they match.
 899 * Called holding the rcu read lock to protect the use of audit_inode_hash
 900 */
 901static int audit_filter_inode_name(struct task_struct *tsk,
 902                                   struct audit_names *n,
 903                                   struct audit_context *ctx) {
 904        int word, bit;
 905        int h = audit_hash_ino((u32)n->ino);
 906        struct list_head *list = &audit_inode_hash[h];
 907        struct audit_entry *e;
 908        enum audit_state state;
 909
 910        word = AUDIT_WORD(ctx->major);
 911        bit  = AUDIT_BIT(ctx->major);
 912
 913        if (list_empty(list))
 914                return 0;
 915
 916        list_for_each_entry_rcu(e, list, list) {
 917                if ((e->rule.mask[word] & bit) == bit &&
 918                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 919                        ctx->current_state = state;
 920                        return 1;
 921                }
 922        }
 923
 924        return 0;
 925}
 926
 927/* At syscall exit time, this filter is called if any audit_names have been
 928 * collected during syscall processing.  We only check rules in sublists at hash
 929 * buckets applicable to the inode numbers in audit_names.
 930 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 931 */
 932void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 933{
 934        struct audit_names *n;
 935
 936        if (audit_pid && tsk->tgid == audit_pid)
 937                return;
 938
 939        rcu_read_lock();
 940
 941        list_for_each_entry(n, &ctx->names_list, list) {
 942                if (audit_filter_inode_name(tsk, n, ctx))
 943                        break;
 944        }
 945        rcu_read_unlock();
 946}
 947
 948static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 949                                                      int return_valid,
 950                                                      long return_code)
 951{
 952        struct audit_context *context = tsk->audit_context;
 953
 954        if (!context)
 955                return NULL;
 956        context->return_valid = return_valid;
 957
 958        /*
 959         * we need to fix up the return code in the audit logs if the actual
 960         * return codes are later going to be fixed up by the arch specific
 961         * signal handlers
 962         *
 963         * This is actually a test for:
 964         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 965         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 966         *
 967         * but is faster than a bunch of ||
 968         */
 969        if (unlikely(return_code <= -ERESTARTSYS) &&
 970            (return_code >= -ERESTART_RESTARTBLOCK) &&
 971            (return_code != -ENOIOCTLCMD))
 972                context->return_code = -EINTR;
 973        else
 974                context->return_code  = return_code;
 975
 976        if (context->in_syscall && !context->dummy) {
 977                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 978                audit_filter_inodes(tsk, context);
 979        }
 980
 981        tsk->audit_context = NULL;
 982        return context;
 983}
 984
 985static inline void audit_free_names(struct audit_context *context)
 986{
 987        struct audit_names *n, *next;
 988
 989#if AUDIT_DEBUG == 2
 990        if (context->put_count + context->ino_count != context->name_count) {
 991                printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 992                       " name_count=%d put_count=%d"
 993                       " ino_count=%d [NOT freeing]\n",
 994                       __FILE__, __LINE__,
 995                       context->serial, context->major, context->in_syscall,
 996                       context->name_count, context->put_count,
 997                       context->ino_count);
 998                list_for_each_entry(n, &context->names_list, list) {
 999                        printk(KERN_ERR "names[%d] = %p = %s\n", i,
1000                               n->name, n->name->name ?: "(null)");
1001                }
1002                dump_stack();
1003                return;
1004        }
1005#endif
1006#if AUDIT_DEBUG
1007        context->put_count  = 0;
1008        context->ino_count  = 0;
1009#endif
1010
1011        list_for_each_entry_safe(n, next, &context->names_list, list) {
1012                list_del(&n->list);
1013                if (n->name && n->name_put)
1014                        __putname(n->name);
1015                if (n->should_free)
1016                        kfree(n);
1017        }
1018        context->name_count = 0;
1019        path_put(&context->pwd);
1020        context->pwd.dentry = NULL;
1021        context->pwd.mnt = NULL;
1022}
1023
1024static inline void audit_free_aux(struct audit_context *context)
1025{
1026        struct audit_aux_data *aux;
1027
1028        while ((aux = context->aux)) {
1029                context->aux = aux->next;
1030                kfree(aux);
1031        }
1032        while ((aux = context->aux_pids)) {
1033                context->aux_pids = aux->next;
1034                kfree(aux);
1035        }
1036}
1037
1038static inline void audit_zero_context(struct audit_context *context,
1039                                      enum audit_state state)
1040{
1041        memset(context, 0, sizeof(*context));
1042        context->state      = state;
1043        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1044}
1045
1046static inline struct audit_context *audit_alloc_context(enum audit_state state)
1047{
1048        struct audit_context *context;
1049
1050        if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1051                return NULL;
1052        audit_zero_context(context, state);
1053        INIT_LIST_HEAD(&context->killed_trees);
1054        INIT_LIST_HEAD(&context->names_list);
1055        return context;
1056}
1057
1058/**
1059 * audit_alloc - allocate an audit context block for a task
1060 * @tsk: task
1061 *
1062 * Filter on the task information and allocate a per-task audit context
1063 * if necessary.  Doing so turns on system call auditing for the
1064 * specified task.  This is called from copy_process, so no lock is
1065 * needed.
1066 */
1067int audit_alloc(struct task_struct *tsk)
1068{
1069        struct audit_context *context;
1070        enum audit_state     state;
1071        char *key = NULL;
1072
1073        if (likely(!audit_ever_enabled))
1074                return 0; /* Return if not auditing. */
1075
1076        state = audit_filter_task(tsk, &key);
1077        if (state == AUDIT_DISABLED)
1078                return 0;
1079
1080        if (!(context = audit_alloc_context(state))) {
1081                kfree(key);
1082                audit_log_lost("out of memory in audit_alloc");
1083                return -ENOMEM;
1084        }
1085        context->filterkey = key;
1086
1087        tsk->audit_context  = context;
1088        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1089        return 0;
1090}
1091
1092static inline void audit_free_context(struct audit_context *context)
1093{
1094        struct audit_context *previous;
1095        int                  count = 0;
1096
1097        do {
1098                previous = context->previous;
1099                if (previous || (count &&  count < 10)) {
1100                        ++count;
1101                        printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1102                               " freeing multiple contexts (%d)\n",
1103                               context->serial, context->major,
1104                               context->name_count, count);
1105                }
1106                audit_free_names(context);
1107                unroll_tree_refs(context, NULL, 0);
1108                free_tree_refs(context);
1109                audit_free_aux(context);
1110                kfree(context->filterkey);
1111                kfree(context->sockaddr);
1112                kfree(context);
1113                context  = previous;
1114        } while (context);
1115        if (count >= 10)
1116                printk(KERN_ERR "audit: freed %d contexts\n", count);
1117}
1118
1119void audit_log_task_context(struct audit_buffer *ab)
1120{
1121        char *ctx = NULL;
1122        unsigned len;
1123        int error;
1124        u32 sid;
1125
1126        security_task_getsecid(current, &sid);
1127        if (!sid)
1128                return;
1129
1130        error = security_secid_to_secctx(sid, &ctx, &len);
1131        if (error) {
1132                if (error != -EINVAL)
1133                        goto error_path;
1134                return;
1135        }
1136
1137        audit_log_format(ab, " subj=%s", ctx);
1138        security_release_secctx(ctx, len);
1139        return;
1140
1141error_path:
1142        audit_panic("error in audit_log_task_context");
1143        return;
1144}
1145
1146EXPORT_SYMBOL(audit_log_task_context);
1147
1148void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1149{
1150        const struct cred *cred;
1151        char name[sizeof(tsk->comm)];
1152        struct mm_struct *mm = tsk->mm;
1153        char *tty;
1154
1155        if (!ab)
1156                return;
1157
1158        /* tsk == current */
1159        cred = current_cred();
1160
1161        spin_lock_irq(&tsk->sighand->siglock);
1162        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1163                tty = tsk->signal->tty->name;
1164        else
1165                tty = "(none)";
1166        spin_unlock_irq(&tsk->sighand->siglock);
1167
1168
1169        audit_log_format(ab,
1170                         " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1171                         " euid=%u suid=%u fsuid=%u"
1172                         " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1173                         sys_getppid(),
1174                         tsk->pid,
1175                         from_kuid(&init_user_ns, tsk->loginuid),
1176                         from_kuid(&init_user_ns, cred->uid),
1177                         from_kgid(&init_user_ns, cred->gid),
1178                         from_kuid(&init_user_ns, cred->euid),
1179                         from_kuid(&init_user_ns, cred->suid),
1180                         from_kuid(&init_user_ns, cred->fsuid),
1181                         from_kgid(&init_user_ns, cred->egid),
1182                         from_kgid(&init_user_ns, cred->sgid),
1183                         from_kgid(&init_user_ns, cred->fsgid),
1184                         tsk->sessionid, tty);
1185
1186        get_task_comm(name, tsk);
1187        audit_log_format(ab, " comm=");
1188        audit_log_untrustedstring(ab, name);
1189
1190        if (mm) {
1191                down_read(&mm->mmap_sem);
1192                if (mm->exe_file)
1193                        audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1194                up_read(&mm->mmap_sem);
1195        }
1196        audit_log_task_context(ab);
1197}
1198
1199EXPORT_SYMBOL(audit_log_task_info);
1200
1201static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1202                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
1203                                 u32 sid, char *comm)
1204{
1205        struct audit_buffer *ab;
1206        char *ctx = NULL;
1207        u32 len;
1208        int rc = 0;
1209
1210        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1211        if (!ab)
1212                return rc;
1213
1214        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1215                         from_kuid(&init_user_ns, auid),
1216                         from_kuid(&init_user_ns, uid), sessionid);
1217        if (security_secid_to_secctx(sid, &ctx, &len)) {
1218                audit_log_format(ab, " obj=(none)");
1219                rc = 1;
1220        } else {
1221                audit_log_format(ab, " obj=%s", ctx);
1222                security_release_secctx(ctx, len);
1223        }
1224        audit_log_format(ab, " ocomm=");
1225        audit_log_untrustedstring(ab, comm);
1226        audit_log_end(ab);
1227
1228        return rc;
1229}
1230
1231/*
1232 * to_send and len_sent accounting are very loose estimates.  We aren't
1233 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1234 * within about 500 bytes (next page boundary)
1235 *
1236 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1237 * logging that a[%d]= was going to be 16 characters long we would be wasting
1238 * space in every audit message.  In one 7500 byte message we can log up to
1239 * about 1000 min size arguments.  That comes down to about 50% waste of space
1240 * if we didn't do the snprintf to find out how long arg_num_len was.
1241 */
1242static int audit_log_single_execve_arg(struct audit_context *context,
1243                                        struct audit_buffer **ab,
1244                                        int arg_num,
1245                                        size_t *len_sent,
1246                                        const char __user *p,
1247                                        char *buf)
1248{
1249        char arg_num_len_buf[12];
1250        const char __user *tmp_p = p;
1251        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1252        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1253        size_t len, len_left, to_send;
1254        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1255        unsigned int i, has_cntl = 0, too_long = 0;
1256        int ret;
1257
1258        /* strnlen_user includes the null we don't want to send */
1259        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1260
1261        /*
1262         * We just created this mm, if we can't find the strings
1263         * we just copied into it something is _very_ wrong. Similar
1264         * for strings that are too long, we should not have created
1265         * any.
1266         */
1267        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1268                WARN_ON(1);
1269                send_sig(SIGKILL, current, 0);
1270                return -1;
1271        }
1272
1273        /* walk the whole argument looking for non-ascii chars */
1274        do {
1275                if (len_left > MAX_EXECVE_AUDIT_LEN)
1276                        to_send = MAX_EXECVE_AUDIT_LEN;
1277                else
1278                        to_send = len_left;
1279                ret = copy_from_user(buf, tmp_p, to_send);
1280                /*
1281                 * There is no reason for this copy to be short. We just
1282                 * copied them here, and the mm hasn't been exposed to user-
1283                 * space yet.
1284                 */
1285                if (ret) {
1286                        WARN_ON(1);
1287                        send_sig(SIGKILL, current, 0);
1288                        return -1;
1289                }
1290                buf[to_send] = '\0';
1291                has_cntl = audit_string_contains_control(buf, to_send);
1292                if (has_cntl) {
1293                        /*
1294                         * hex messages get logged as 2 bytes, so we can only
1295                         * send half as much in each message
1296                         */
1297                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1298                        break;
1299                }
1300                len_left -= to_send;
1301                tmp_p += to_send;
1302        } while (len_left > 0);
1303
1304        len_left = len;
1305
1306        if (len > max_execve_audit_len)
1307                too_long = 1;
1308
1309        /* rewalk the argument actually logging the message */
1310        for (i = 0; len_left > 0; i++) {
1311                int room_left;
1312
1313                if (len_left > max_execve_audit_len)
1314                        to_send = max_execve_audit_len;
1315                else
1316                        to_send = len_left;
1317
1318                /* do we have space left to send this argument in this ab? */
1319                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1320                if (has_cntl)
1321                        room_left -= (to_send * 2);
1322                else
1323                        room_left -= to_send;
1324                if (room_left < 0) {
1325                        *len_sent = 0;
1326                        audit_log_end(*ab);
1327                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1328                        if (!*ab)
1329                                return 0;
1330                }
1331
1332                /*
1333                 * first record needs to say how long the original string was
1334                 * so we can be sure nothing was lost.
1335                 */
1336                if ((i == 0) && (too_long))
1337                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1338                                         has_cntl ? 2*len : len);
1339
1340                /*
1341                 * normally arguments are small enough to fit and we already
1342                 * filled buf above when we checked for control characters
1343                 * so don't bother with another copy_from_user
1344                 */
1345                if (len >= max_execve_audit_len)
1346                        ret = copy_from_user(buf, p, to_send);
1347                else
1348                        ret = 0;
1349                if (ret) {
1350                        WARN_ON(1);
1351                        send_sig(SIGKILL, current, 0);
1352                        return -1;
1353                }
1354                buf[to_send] = '\0';
1355
1356                /* actually log it */
1357                audit_log_format(*ab, " a%d", arg_num);
1358                if (too_long)
1359                        audit_log_format(*ab, "[%d]", i);
1360                audit_log_format(*ab, "=");
1361                if (has_cntl)
1362                        audit_log_n_hex(*ab, buf, to_send);
1363                else
1364                        audit_log_string(*ab, buf);
1365
1366                p += to_send;
1367                len_left -= to_send;
1368                *len_sent += arg_num_len;
1369                if (has_cntl)
1370                        *len_sent += to_send * 2;
1371                else
1372                        *len_sent += to_send;
1373        }
1374        /* include the null we didn't log */
1375        return len + 1;
1376}
1377
1378static void audit_log_execve_info(struct audit_context *context,
1379                                  struct audit_buffer **ab,
1380                                  struct audit_aux_data_execve *axi)
1381{
1382        int i, len;
1383        size_t len_sent = 0;
1384        const char __user *p;
1385        char *buf;
1386
1387        if (axi->mm != current->mm)
1388                return; /* execve failed, no additional info */
1389
1390        p = (const char __user *)axi->mm->arg_start;
1391
1392        audit_log_format(*ab, "argc=%d", axi->argc);
1393
1394        /*
1395         * we need some kernel buffer to hold the userspace args.  Just
1396         * allocate one big one rather than allocating one of the right size
1397         * for every single argument inside audit_log_single_execve_arg()
1398         * should be <8k allocation so should be pretty safe.
1399         */
1400        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1401        if (!buf) {
1402                audit_panic("out of memory for argv string\n");
1403                return;
1404        }
1405
1406        for (i = 0; i < axi->argc; i++) {
1407                len = audit_log_single_execve_arg(context, ab, i,
1408                                                  &len_sent, p, buf);
1409                if (len <= 0)
1410                        break;
1411                p += len;
1412        }
1413        kfree(buf);
1414}
1415
1416static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1417{
1418        int i;
1419
1420        audit_log_format(ab, " %s=", prefix);
1421        CAP_FOR_EACH_U32(i) {
1422                audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1423        }
1424}
1425
1426static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1427{
1428        kernel_cap_t *perm = &name->fcap.permitted;
1429        kernel_cap_t *inh = &name->fcap.inheritable;
1430        int log = 0;
1431
1432        if (!cap_isclear(*perm)) {
1433                audit_log_cap(ab, "cap_fp", perm);
1434                log = 1;
1435        }
1436        if (!cap_isclear(*inh)) {
1437                audit_log_cap(ab, "cap_fi", inh);
1438                log = 1;
1439        }
1440
1441        if (log)
1442                audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1443}
1444
1445static void show_special(struct audit_context *context, int *call_panic)
1446{
1447        struct audit_buffer *ab;
1448        int i;
1449
1450        ab = audit_log_start(context, GFP_KERNEL, context->type);
1451        if (!ab)
1452                return;
1453
1454        switch (context->type) {
1455        case AUDIT_SOCKETCALL: {
1456                int nargs = context->socketcall.nargs;
1457                audit_log_format(ab, "nargs=%d", nargs);
1458                for (i = 0; i < nargs; i++)
1459                        audit_log_format(ab, " a%d=%lx", i,
1460                                context->socketcall.args[i]);
1461                break; }
1462        case AUDIT_IPC: {
1463                u32 osid = context->ipc.osid;
1464
1465                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1466                                 from_kuid(&init_user_ns, context->ipc.uid),
1467                                 from_kgid(&init_user_ns, context->ipc.gid),
1468                                 context->ipc.mode);
1469                if (osid) {
1470                        char *ctx = NULL;
1471                        u32 len;
1472                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1473                                audit_log_format(ab, " osid=%u", osid);
1474                                *call_panic = 1;
1475                        } else {
1476                                audit_log_format(ab, " obj=%s", ctx);
1477                                security_release_secctx(ctx, len);
1478                        }
1479                }
1480                if (context->ipc.has_perm) {
1481                        audit_log_end(ab);
1482                        ab = audit_log_start(context, GFP_KERNEL,
1483                                             AUDIT_IPC_SET_PERM);
1484                        audit_log_format(ab,
1485                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1486                                context->ipc.qbytes,
1487                                context->ipc.perm_uid,
1488                                context->ipc.perm_gid,
1489                                context->ipc.perm_mode);
1490                        if (!ab)
1491                                return;
1492                }
1493                break; }
1494        case AUDIT_MQ_OPEN: {
1495                audit_log_format(ab,
1496                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1497                        "mq_msgsize=%ld mq_curmsgs=%ld",
1498                        context->mq_open.oflag, context->mq_open.mode,
1499                        context->mq_open.attr.mq_flags,
1500                        context->mq_open.attr.mq_maxmsg,
1501                        context->mq_open.attr.mq_msgsize,
1502                        context->mq_open.attr.mq_curmsgs);
1503                break; }
1504        case AUDIT_MQ_SENDRECV: {
1505                audit_log_format(ab,
1506                        "mqdes=%d msg_len=%zd msg_prio=%u "
1507                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1508                        context->mq_sendrecv.mqdes,
1509                        context->mq_sendrecv.msg_len,
1510                        context->mq_sendrecv.msg_prio,
1511                        context->mq_sendrecv.abs_timeout.tv_sec,
1512                        context->mq_sendrecv.abs_timeout.tv_nsec);
1513                break; }
1514        case AUDIT_MQ_NOTIFY: {
1515                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1516                                context->mq_notify.mqdes,
1517                                context->mq_notify.sigev_signo);
1518                break; }
1519        case AUDIT_MQ_GETSETATTR: {
1520                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1521                audit_log_format(ab,
1522                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1523                        "mq_curmsgs=%ld ",
1524                        context->mq_getsetattr.mqdes,
1525                        attr->mq_flags, attr->mq_maxmsg,
1526                        attr->mq_msgsize, attr->mq_curmsgs);
1527                break; }
1528        case AUDIT_CAPSET: {
1529                audit_log_format(ab, "pid=%d", context->capset.pid);
1530                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1531                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1532                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1533                break; }
1534        case AUDIT_MMAP: {
1535                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1536                                 context->mmap.flags);
1537                break; }
1538        }
1539        audit_log_end(ab);
1540}
1541
1542static void audit_log_name(struct audit_context *context, struct audit_names *n,
1543                           int record_num, int *call_panic)
1544{
1545        struct audit_buffer *ab;
1546        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1547        if (!ab)
1548                return; /* audit_panic has been called */
1549
1550        audit_log_format(ab, "item=%d", record_num);
1551
1552        if (n->name) {
1553                switch (n->name_len) {
1554                case AUDIT_NAME_FULL:
1555                        /* log the full path */
1556                        audit_log_format(ab, " name=");
1557                        audit_log_untrustedstring(ab, n->name->name);
1558                        break;
1559                case 0:
1560                        /* name was specified as a relative path and the
1561                         * directory component is the cwd */
1562                        audit_log_d_path(ab, " name=", &context->pwd);
1563                        break;
1564                default:
1565                        /* log the name's directory component */
1566                        audit_log_format(ab, " name=");
1567                        audit_log_n_untrustedstring(ab, n->name->name,
1568                                                    n->name_len);
1569                }
1570        } else
1571                audit_log_format(ab, " name=(null)");
1572
1573        if (n->ino != (unsigned long)-1) {
1574                audit_log_format(ab, " inode=%lu"
1575                                 " dev=%02x:%02x mode=%#ho"
1576                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1577                                 n->ino,
1578                                 MAJOR(n->dev),
1579                                 MINOR(n->dev),
1580                                 n->mode,
1581                                 from_kuid(&init_user_ns, n->uid),
1582                                 from_kgid(&init_user_ns, n->gid),
1583                                 MAJOR(n->rdev),
1584                                 MINOR(n->rdev));
1585        }
1586        if (n->osid != 0) {
1587                char *ctx = NULL;
1588                u32 len;
1589                if (security_secid_to_secctx(
1590                        n->osid, &ctx, &len)) {
1591                        audit_log_format(ab, " osid=%u", n->osid);
1592                        *call_panic = 2;
1593                } else {
1594                        audit_log_format(ab, " obj=%s", ctx);
1595                        security_release_secctx(ctx, len);
1596                }
1597        }
1598
1599        audit_log_fcaps(ab, n);
1600
1601        audit_log_end(ab);
1602}
1603
1604static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1605{
1606        int i, call_panic = 0;
1607        struct audit_buffer *ab;
1608        struct audit_aux_data *aux;
1609        struct audit_names *n;
1610
1611        /* tsk == current */
1612        context->personality = tsk->personality;
1613
1614        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1615        if (!ab)
1616                return;         /* audit_panic has been called */
1617        audit_log_format(ab, "arch=%x syscall=%d",
1618                         context->arch, context->major);
1619        if (context->personality != PER_LINUX)
1620                audit_log_format(ab, " per=%lx", context->personality);
1621        if (context->return_valid)
1622                audit_log_format(ab, " success=%s exit=%ld",
1623                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1624                                 context->return_code);
1625
1626        audit_log_format(ab,
1627                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1628                         context->argv[0],
1629                         context->argv[1],
1630                         context->argv[2],
1631                         context->argv[3],
1632                         context->name_count);
1633
1634        audit_log_task_info(ab, tsk);
1635        audit_log_key(ab, context->filterkey);
1636        audit_log_end(ab);
1637
1638        for (aux = context->aux; aux; aux = aux->next) {
1639
1640                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1641                if (!ab)
1642                        continue; /* audit_panic has been called */
1643
1644                switch (aux->type) {
1645
1646                case AUDIT_EXECVE: {
1647                        struct audit_aux_data_execve *axi = (void *)aux;
1648                        audit_log_execve_info(context, &ab, axi);
1649                        break; }
1650
1651                case AUDIT_BPRM_FCAPS: {
1652                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1653                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1654                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1655                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1656                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1657                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1658                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1659                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1660                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1661                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1662                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1663                        break; }
1664
1665                }
1666                audit_log_end(ab);
1667        }
1668
1669        if (context->type)
1670                show_special(context, &call_panic);
1671
1672        if (context->fds[0] >= 0) {
1673                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1674                if (ab) {
1675                        audit_log_format(ab, "fd0=%d fd1=%d",
1676                                        context->fds[0], context->fds[1]);
1677                        audit_log_end(ab);
1678                }
1679        }
1680
1681        if (context->sockaddr_len) {
1682                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1683                if (ab) {
1684                        audit_log_format(ab, "saddr=");
1685                        audit_log_n_hex(ab, (void *)context->sockaddr,
1686                                        context->sockaddr_len);
1687                        audit_log_end(ab);
1688                }
1689        }
1690
1691        for (aux = context->aux_pids; aux; aux = aux->next) {
1692                struct audit_aux_data_pids *axs = (void *)aux;
1693
1694                for (i = 0; i < axs->pid_count; i++)
1695                        if (audit_log_pid_context(context, axs->target_pid[i],
1696                                                  axs->target_auid[i],
1697                                                  axs->target_uid[i],
1698                                                  axs->target_sessionid[i],
1699                                                  axs->target_sid[i],
1700                                                  axs->target_comm[i]))
1701                                call_panic = 1;
1702        }
1703
1704        if (context->target_pid &&
1705            audit_log_pid_context(context, context->target_pid,
1706                                  context->target_auid, context->target_uid,
1707                                  context->target_sessionid,
1708                                  context->target_sid, context->target_comm))
1709                        call_panic = 1;
1710
1711        if (context->pwd.dentry && context->pwd.mnt) {
1712                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1713                if (ab) {
1714                        audit_log_d_path(ab, " cwd=", &context->pwd);
1715                        audit_log_end(ab);
1716                }
1717        }
1718
1719        i = 0;
1720        list_for_each_entry(n, &context->names_list, list)
1721                audit_log_name(context, n, i++, &call_panic);
1722
1723        /* Send end of event record to help user space know we are finished */
1724        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1725        if (ab)
1726                audit_log_end(ab);
1727        if (call_panic)
1728                audit_panic("error converting sid to string");
1729}
1730
1731/**
1732 * audit_free - free a per-task audit context
1733 * @tsk: task whose audit context block to free
1734 *
1735 * Called from copy_process and do_exit
1736 */
1737void __audit_free(struct task_struct *tsk)
1738{
1739        struct audit_context *context;
1740
1741        context = audit_get_context(tsk, 0, 0);
1742        if (!context)
1743                return;
1744
1745        /* Check for system calls that do not go through the exit
1746         * function (e.g., exit_group), then free context block.
1747         * We use GFP_ATOMIC here because we might be doing this
1748         * in the context of the idle thread */
1749        /* that can happen only if we are called from do_exit() */
1750        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1751                audit_log_exit(context, tsk);
1752        if (!list_empty(&context->killed_trees))
1753                audit_kill_trees(&context->killed_trees);
1754
1755        audit_free_context(context);
1756}
1757
1758/**
1759 * audit_syscall_entry - fill in an audit record at syscall entry
1760 * @arch: architecture type
1761 * @major: major syscall type (function)
1762 * @a1: additional syscall register 1
1763 * @a2: additional syscall register 2
1764 * @a3: additional syscall register 3
1765 * @a4: additional syscall register 4
1766 *
1767 * Fill in audit context at syscall entry.  This only happens if the
1768 * audit context was created when the task was created and the state or
1769 * filters demand the audit context be built.  If the state from the
1770 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1771 * then the record will be written at syscall exit time (otherwise, it
1772 * will only be written if another part of the kernel requests that it
1773 * be written).
1774 */
1775void __audit_syscall_entry(int arch, int major,
1776                         unsigned long a1, unsigned long a2,
1777                         unsigned long a3, unsigned long a4)
1778{
1779        struct task_struct *tsk = current;
1780        struct audit_context *context = tsk->audit_context;
1781        enum audit_state     state;
1782
1783        if (!context)
1784                return;
1785
1786        /*
1787         * This happens only on certain architectures that make system
1788         * calls in kernel_thread via the entry.S interface, instead of
1789         * with direct calls.  (If you are porting to a new
1790         * architecture, hitting this condition can indicate that you
1791         * got the _exit/_leave calls backward in entry.S.)
1792         *
1793         * i386     no
1794         * x86_64   no
1795         * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1796         *
1797         * This also happens with vm86 emulation in a non-nested manner
1798         * (entries without exits), so this case must be caught.
1799         */
1800        if (context->in_syscall) {
1801                struct audit_context *newctx;
1802
1803#if AUDIT_DEBUG
1804                printk(KERN_ERR
1805                       "audit(:%d) pid=%d in syscall=%d;"
1806                       " entering syscall=%d\n",
1807                       context->serial, tsk->pid, context->major, major);
1808#endif
1809                newctx = audit_alloc_context(context->state);
1810                if (newctx) {
1811                        newctx->previous   = context;
1812                        context            = newctx;
1813                        tsk->audit_context = newctx;
1814                } else  {
1815                        /* If we can't alloc a new context, the best we
1816                         * can do is to leak memory (any pending putname
1817                         * will be lost).  The only other alternative is
1818                         * to abandon auditing. */
1819                        audit_zero_context(context, context->state);
1820                }
1821        }
1822        BUG_ON(context->in_syscall || context->name_count);
1823
1824        if (!audit_enabled)
1825                return;
1826
1827        context->arch       = arch;
1828        context->major      = major;
1829        context->argv[0]    = a1;
1830        context->argv[1]    = a2;
1831        context->argv[2]    = a3;
1832        context->argv[3]    = a4;
1833
1834        state = context->state;
1835        context->dummy = !audit_n_rules;
1836        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1837                context->prio = 0;
1838                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1839        }
1840        if (state == AUDIT_DISABLED)
1841                return;
1842
1843        context->serial     = 0;
1844        context->ctime      = CURRENT_TIME;
1845        context->in_syscall = 1;
1846        context->current_state  = state;
1847        context->ppid       = 0;
1848}
1849
1850/**
1851 * audit_syscall_exit - deallocate audit context after a system call
1852 * @success: success value of the syscall
1853 * @return_code: return value of the syscall
1854 *
1855 * Tear down after system call.  If the audit context has been marked as
1856 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1857 * filtering, or because some other part of the kernel wrote an audit
1858 * message), then write out the syscall information.  In call cases,
1859 * free the names stored from getname().
1860 */
1861void __audit_syscall_exit(int success, long return_code)
1862{
1863        struct task_struct *tsk = current;
1864        struct audit_context *context;
1865
1866        if (success)
1867                success = AUDITSC_SUCCESS;
1868        else
1869                success = AUDITSC_FAILURE;
1870
1871        context = audit_get_context(tsk, success, return_code);
1872        if (!context)
1873                return;
1874
1875        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1876                audit_log_exit(context, tsk);
1877
1878        context->in_syscall = 0;
1879        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1880
1881        if (!list_empty(&context->killed_trees))
1882                audit_kill_trees(&context->killed_trees);
1883
1884        if (context->previous) {
1885                struct audit_context *new_context = context->previous;
1886                context->previous  = NULL;
1887                audit_free_context(context);
1888                tsk->audit_context = new_context;
1889        } else {
1890                audit_free_names(context);
1891                unroll_tree_refs(context, NULL, 0);
1892                audit_free_aux(context);
1893                context->aux = NULL;
1894                context->aux_pids = NULL;
1895                context->target_pid = 0;
1896                context->target_sid = 0;
1897                context->sockaddr_len = 0;
1898                context->type = 0;
1899                context->fds[0] = -1;
1900                if (context->state != AUDIT_RECORD_CONTEXT) {
1901                        kfree(context->filterkey);
1902                        context->filterkey = NULL;
1903                }
1904                tsk->audit_context = context;
1905        }
1906}
1907
1908static inline void handle_one(const struct inode *inode)
1909{
1910#ifdef CONFIG_AUDIT_TREE
1911        struct audit_context *context;
1912        struct audit_tree_refs *p;
1913        struct audit_chunk *chunk;
1914        int count;
1915        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1916                return;
1917        context = current->audit_context;
1918        p = context->trees;
1919        count = context->tree_count;
1920        rcu_read_lock();
1921        chunk = audit_tree_lookup(inode);
1922        rcu_read_unlock();
1923        if (!chunk)
1924                return;
1925        if (likely(put_tree_ref(context, chunk)))
1926                return;
1927        if (unlikely(!grow_tree_refs(context))) {
1928                printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1929                audit_set_auditable(context);
1930                audit_put_chunk(chunk);
1931                unroll_tree_refs(context, p, count);
1932                return;
1933        }
1934        put_tree_ref(context, chunk);
1935#endif
1936}
1937
1938static void handle_path(const struct dentry *dentry)
1939{
1940#ifdef CONFIG_AUDIT_TREE
1941        struct audit_context *context;
1942        struct audit_tree_refs *p;
1943        const struct dentry *d, *parent;
1944        struct audit_chunk *drop;
1945        unsigned long seq;
1946        int count;
1947
1948        context = current->audit_context;
1949        p = context->trees;
1950        count = context->tree_count;
1951retry:
1952        drop = NULL;
1953        d = dentry;
1954        rcu_read_lock();
1955        seq = read_seqbegin(&rename_lock);
1956        for(;;) {
1957                struct inode *inode = d->d_inode;
1958                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1959                        struct audit_chunk *chunk;
1960                        chunk = audit_tree_lookup(inode);
1961                        if (chunk) {
1962                                if (unlikely(!put_tree_ref(context, chunk))) {
1963                                        drop = chunk;
1964                                        break;
1965                                }
1966                        }
1967                }
1968                parent = d->d_parent;
1969                if (parent == d)
1970                        break;
1971                d = parent;
1972        }
1973        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1974                rcu_read_unlock();
1975                if (!drop) {
1976                        /* just a race with rename */
1977                        unroll_tree_refs(context, p, count);
1978                        goto retry;
1979                }
1980                audit_put_chunk(drop);
1981                if (grow_tree_refs(context)) {
1982                        /* OK, got more space */
1983                        unroll_tree_refs(context, p, count);
1984                        goto retry;
1985                }
1986                /* too bad */
1987                printk(KERN_WARNING
1988                        "out of memory, audit has lost a tree reference\n");
1989                unroll_tree_refs(context, p, count);
1990                audit_set_auditable(context);
1991                return;
1992        }
1993        rcu_read_unlock();
1994#endif
1995}
1996
1997static struct audit_names *audit_alloc_name(struct audit_context *context,
1998                                                unsigned char type)
1999{
2000        struct audit_names *aname;
2001
2002        if (context->name_count < AUDIT_NAMES) {
2003                aname = &context->preallocated_names[context->name_count];
2004                memset(aname, 0, sizeof(*aname));
2005        } else {
2006                aname = kzalloc(sizeof(*aname), GFP_NOFS);
2007                if (!aname)
2008                        return NULL;
2009                aname->should_free = true;
2010        }
2011
2012        aname->ino = (unsigned long)-1;
2013        aname->type = type;
2014        list_add_tail(&aname->list, &context->names_list);
2015
2016        context->name_count++;
2017#if AUDIT_DEBUG
2018        context->ino_count++;
2019#endif
2020        return aname;
2021}
2022
2023/**
2024 * audit_reusename - fill out filename with info from existing entry
2025 * @uptr: userland ptr to pathname
2026 *
2027 * Search the audit_names list for the current audit context. If there is an
2028 * existing entry with a matching "uptr" then return the filename
2029 * associated with that audit_name. If not, return NULL.
2030 */
2031struct filename *
2032__audit_reusename(const __user char *uptr)
2033{
2034        struct audit_context *context = current->audit_context;
2035        struct audit_names *n;
2036
2037        list_for_each_entry(n, &context->names_list, list) {
2038                if (!n->name)
2039                        continue;
2040                if (n->name->uptr == uptr)
2041                        return n->name;
2042        }
2043        return NULL;
2044}
2045
2046/**
2047 * audit_getname - add a name to the list
2048 * @name: name to add
2049 *
2050 * Add a name to the list of audit names for this context.
2051 * Called from fs/namei.c:getname().
2052 */
2053void __audit_getname(struct filename *name)
2054{
2055        struct audit_context *context = current->audit_context;
2056        struct audit_names *n;
2057
2058        if (!context->in_syscall) {
2059#if AUDIT_DEBUG == 2
2060                printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2061                       __FILE__, __LINE__, context->serial, name);
2062                dump_stack();
2063#endif
2064                return;
2065        }
2066
2067#if AUDIT_DEBUG
2068        /* The filename _must_ have a populated ->name */
2069        BUG_ON(!name->name);
2070#endif
2071
2072        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2073        if (!n)
2074                return;
2075
2076        n->name = name;
2077        n->name_len = AUDIT_NAME_FULL;
2078        n->name_put = true;
2079        name->aname = n;
2080
2081        if (!context->pwd.dentry)
2082                get_fs_pwd(current->fs, &context->pwd);
2083}
2084
2085/* audit_putname - intercept a putname request
2086 * @name: name to intercept and delay for putname
2087 *
2088 * If we have stored the name from getname in the audit context,
2089 * then we delay the putname until syscall exit.
2090 * Called from include/linux/fs.h:putname().
2091 */
2092void audit_putname(struct filename *name)
2093{
2094        struct audit_context *context = current->audit_context;
2095
2096        BUG_ON(!context);
2097        if (!context->in_syscall) {
2098#if AUDIT_DEBUG == 2
2099                printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2100                       __FILE__, __LINE__, context->serial, name);
2101                if (context->name_count) {
2102                        struct audit_names *n;
2103                        int i;
2104
2105                        list_for_each_entry(n, &context->names_list, list)
2106                                printk(KERN_ERR "name[%d] = %p = %s\n", i,
2107                                       n->name, n->name->name ?: "(null)");
2108                        }
2109#endif
2110                __putname(name);
2111        }
2112#if AUDIT_DEBUG
2113        else {
2114                ++context->put_count;
2115                if (context->put_count > context->name_count) {
2116                        printk(KERN_ERR "%s:%d(:%d): major=%d"
2117                               " in_syscall=%d putname(%p) name_count=%d"
2118                               " put_count=%d\n",
2119                               __FILE__, __LINE__,
2120                               context->serial, context->major,
2121                               context->in_syscall, name->name,
2122                               context->name_count, context->put_count);
2123                        dump_stack();
2124                }
2125        }
2126#endif
2127}
2128
2129static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2130{
2131        struct cpu_vfs_cap_data caps;
2132        int rc;
2133
2134        if (!dentry)
2135                return 0;
2136
2137        rc = get_vfs_caps_from_disk(dentry, &caps);
2138        if (rc)
2139                return rc;
2140
2141        name->fcap.permitted = caps.permitted;
2142        name->fcap.inheritable = caps.inheritable;
2143        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2144        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2145
2146        return 0;
2147}
2148
2149
2150/* Copy inode data into an audit_names. */
2151static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2152                             const struct inode *inode)
2153{
2154        name->ino   = inode->i_ino;
2155        name->dev   = inode->i_sb->s_dev;
2156        name->mode  = inode->i_mode;
2157        name->uid   = inode->i_uid;
2158        name->gid   = inode->i_gid;
2159        name->rdev  = inode->i_rdev;
2160        security_inode_getsecid(inode, &name->osid);
2161        audit_copy_fcaps(name, dentry);
2162}
2163
2164/**
2165 * __audit_inode - store the inode and device from a lookup
2166 * @name: name being audited
2167 * @dentry: dentry being audited
2168 * @parent: does this dentry represent the parent?
2169 */
2170void __audit_inode(struct filename *name, const struct dentry *dentry,
2171                   unsigned int parent)
2172{
2173        struct audit_context *context = current->audit_context;
2174        const struct inode *inode = dentry->d_inode;
2175        struct audit_names *n;
2176
2177        if (!context->in_syscall)
2178                return;
2179
2180        if (!name)
2181                goto out_alloc;
2182
2183#if AUDIT_DEBUG
2184        /* The struct filename _must_ have a populated ->name */
2185        BUG_ON(!name->name);
2186#endif
2187        /*
2188         * If we have a pointer to an audit_names entry already, then we can
2189         * just use it directly if the type is correct.
2190         */
2191        n = name->aname;
2192        if (n) {
2193                if (parent) {
2194                        if (n->type == AUDIT_TYPE_PARENT ||
2195                            n->type == AUDIT_TYPE_UNKNOWN)
2196                                goto out;
2197                } else {
2198                        if (n->type != AUDIT_TYPE_PARENT)
2199                                goto out;
2200                }
2201        }
2202
2203        list_for_each_entry_reverse(n, &context->names_list, list) {
2204                /* does the name pointer match? */
2205                if (!n->name || n->name->name != name->name)
2206                        continue;
2207
2208                /* match the correct record type */
2209                if (parent) {
2210                        if (n->type == AUDIT_TYPE_PARENT ||
2211                            n->type == AUDIT_TYPE_UNKNOWN)
2212                                goto out;
2213                } else {
2214                        if (n->type != AUDIT_TYPE_PARENT)
2215                                goto out;
2216                }
2217        }
2218
2219out_alloc:
2220        /* unable to find the name from a previous getname(). Allocate a new
2221         * anonymous entry.
2222         */
2223        n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2224        if (!n)
2225                return;
2226out:
2227        if (parent) {
2228                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2229                n->type = AUDIT_TYPE_PARENT;
2230        } else {
2231                n->name_len = AUDIT_NAME_FULL;
2232                n->type = AUDIT_TYPE_NORMAL;
2233        }
2234        handle_path(dentry);
2235        audit_copy_inode(n, dentry, inode);
2236}
2237
2238/**
2239 * __audit_inode_child - collect inode info for created/removed objects
2240 * @parent: inode of dentry parent
2241 * @dentry: dentry being audited
2242 * @type:   AUDIT_TYPE_* value that we're looking for
2243 *
2244 * For syscalls that create or remove filesystem objects, audit_inode
2245 * can only collect information for the filesystem object's parent.
2246 * This call updates the audit context with the child's information.
2247 * Syscalls that create a new filesystem object must be hooked after
2248 * the object is created.  Syscalls that remove a filesystem object
2249 * must be hooked prior, in order to capture the target inode during
2250 * unsuccessful attempts.
2251 */
2252void __audit_inode_child(const struct inode *parent,
2253                         const struct dentry *dentry,
2254                         const unsigned char type)
2255{
2256        struct audit_context *context = current->audit_context;
2257        const struct inode *inode = dentry->d_inode;
2258        const char *dname = dentry->d_name.name;
2259        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2260
2261        if (!context->in_syscall)
2262                return;
2263
2264        if (inode)
2265                handle_one(inode);
2266
2267        /* look for a parent entry first */
2268        list_for_each_entry(n, &context->names_list, list) {
2269                if (!n->name || n->type != AUDIT_TYPE_PARENT)
2270                        continue;
2271
2272                if (n->ino == parent->i_ino &&
2273                    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2274                        found_parent = n;
2275                        break;
2276                }
2277        }
2278
2279        /* is there a matching child entry? */
2280        list_for_each_entry(n, &context->names_list, list) {
2281                /* can only match entries that have a name */
2282                if (!n->name || n->type != type)
2283                        continue;
2284
2285                /* if we found a parent, make sure this one is a child of it */
2286                if (found_parent && (n->name != found_parent->name))
2287                        continue;
2288
2289                if (!strcmp(dname, n->name->name) ||
2290                    !audit_compare_dname_path(dname, n->name->name,
2291                                                found_parent ?
2292                                                found_parent->name_len :
2293                                                AUDIT_NAME_FULL)) {
2294                        found_child = n;
2295                        break;
2296                }
2297        }
2298
2299        if (!found_parent) {
2300                /* create a new, "anonymous" parent record */
2301                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2302                if (!n)
2303                        return;
2304                audit_copy_inode(n, NULL, parent);
2305        }
2306
2307        if (!found_child) {
2308                found_child = audit_alloc_name(context, type);
2309                if (!found_child)
2310                        return;
2311
2312                /* Re-use the name belonging to the slot for a matching parent
2313                 * directory. All names for this context are relinquished in
2314                 * audit_free_names() */
2315                if (found_parent) {
2316                        found_child->name = found_parent->name;
2317                        found_child->name_len = AUDIT_NAME_FULL;
2318                        /* don't call __putname() */
2319                        found_child->name_put = false;
2320                }
2321        }
2322        if (inode)
2323                audit_copy_inode(found_child, dentry, inode);
2324        else
2325                found_child->ino = (unsigned long)-1;
2326}
2327EXPORT_SYMBOL_GPL(__audit_inode_child);
2328
2329/**
2330 * auditsc_get_stamp - get local copies of audit_context values
2331 * @ctx: audit_context for the task
2332 * @t: timespec to store time recorded in the audit_context
2333 * @serial: serial value that is recorded in the audit_context
2334 *
2335 * Also sets the context as auditable.
2336 */
2337int auditsc_get_stamp(struct audit_context *ctx,
2338                       struct timespec *t, unsigned int *serial)
2339{
2340        if (!ctx->in_syscall)
2341                return 0;
2342        if (!ctx->serial)
2343                ctx->serial = audit_serial();
2344        t->tv_sec  = ctx->ctime.tv_sec;
2345        t->tv_nsec = ctx->ctime.tv_nsec;
2346        *serial    = ctx->serial;
2347        if (!ctx->prio) {
2348                ctx->prio = 1;
2349                ctx->current_state = AUDIT_RECORD_CONTEXT;
2350        }
2351        return 1;
2352}
2353
2354/* global counter which is incremented every time something logs in */
2355static atomic_t session_id = ATOMIC_INIT(0);
2356
2357/**
2358 * audit_set_loginuid - set current task's audit_context loginuid
2359 * @loginuid: loginuid value
2360 *
2361 * Returns 0.
2362 *
2363 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2364 */
2365int audit_set_loginuid(kuid_t loginuid)
2366{
2367        struct task_struct *task = current;
2368        struct audit_context *context = task->audit_context;
2369        unsigned int sessionid;
2370
2371#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2372        if (uid_valid(task->loginuid))
2373                return -EPERM;
2374#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2375        if (!capable(CAP_AUDIT_CONTROL))
2376                return -EPERM;
2377#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2378
2379        sessionid = atomic_inc_return(&session_id);
2380        if (context && context->in_syscall) {
2381                struct audit_buffer *ab;
2382
2383                ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2384                if (ab) {
2385                        audit_log_format(ab, "login pid=%d uid=%u "
2386                                "old auid=%u new auid=%u"
2387                                " old ses=%u new ses=%u",
2388                                task->pid,
2389                                from_kuid(&init_user_ns, task_uid(task)),
2390                                from_kuid(&init_user_ns, task->loginuid),
2391                                from_kuid(&init_user_ns, loginuid),
2392                                task->sessionid, sessionid);
2393                        audit_log_end(ab);
2394                }
2395        }
2396        task->sessionid = sessionid;
2397        task->loginuid = loginuid;
2398        return 0;
2399}
2400
2401/**
2402 * __audit_mq_open - record audit data for a POSIX MQ open
2403 * @oflag: open flag
2404 * @mode: mode bits
2405 * @attr: queue attributes
2406 *
2407 */
2408void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2409{
2410        struct audit_context *context = current->audit_context;
2411
2412        if (attr)
2413                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2414        else
2415                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2416
2417        context->mq_open.oflag = oflag;
2418        context->mq_open.mode = mode;
2419
2420        context->type = AUDIT_MQ_OPEN;
2421}
2422
2423/**
2424 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2425 * @mqdes: MQ descriptor
2426 * @msg_len: Message length
2427 * @msg_prio: Message priority
2428 * @abs_timeout: Message timeout in absolute time
2429 *
2430 */
2431void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2432                        const struct timespec *abs_timeout)
2433{
2434        struct audit_context *context = current->audit_context;
2435        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2436
2437        if (abs_timeout)
2438                memcpy(p, abs_timeout, sizeof(struct timespec));
2439        else
2440                memset(p, 0, sizeof(struct timespec));
2441
2442        context->mq_sendrecv.mqdes = mqdes;
2443        context->mq_sendrecv.msg_len = msg_len;
2444        context->mq_sendrecv.msg_prio = msg_prio;
2445
2446        context->type = AUDIT_MQ_SENDRECV;
2447}
2448
2449/**
2450 * __audit_mq_notify - record audit data for a POSIX MQ notify
2451 * @mqdes: MQ descriptor
2452 * @notification: Notification event
2453 *
2454 */
2455
2456void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2457{
2458        struct audit_context *context = current->audit_context;
2459
2460        if (notification)
2461                context->mq_notify.sigev_signo = notification->sigev_signo;
2462        else
2463                context->mq_notify.sigev_signo = 0;
2464
2465        context->mq_notify.mqdes = mqdes;
2466        context->type = AUDIT_MQ_NOTIFY;
2467}
2468
2469/**
2470 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2471 * @mqdes: MQ descriptor
2472 * @mqstat: MQ flags
2473 *
2474 */
2475void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2476{
2477        struct audit_context *context = current->audit_context;
2478        context->mq_getsetattr.mqdes = mqdes;
2479        context->mq_getsetattr.mqstat = *mqstat;
2480        context->type = AUDIT_MQ_GETSETATTR;
2481}
2482
2483/**
2484 * audit_ipc_obj - record audit data for ipc object
2485 * @ipcp: ipc permissions
2486 *
2487 */
2488void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2489{
2490        struct audit_context *context = current->audit_context;
2491        context->ipc.uid = ipcp->uid;
2492        context->ipc.gid = ipcp->gid;
2493        context->ipc.mode = ipcp->mode;
2494        context->ipc.has_perm = 0;
2495        security_ipc_getsecid(ipcp, &context->ipc.osid);
2496        context->type = AUDIT_IPC;
2497}
2498
2499/**
2500 * audit_ipc_set_perm - record audit data for new ipc permissions
2501 * @qbytes: msgq bytes
2502 * @uid: msgq user id
2503 * @gid: msgq group id
2504 * @mode: msgq mode (permissions)
2505 *
2506 * Called only after audit_ipc_obj().
2507 */
2508void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2509{
2510        struct audit_context *context = current->audit_context;
2511
2512        context->ipc.qbytes = qbytes;
2513        context->ipc.perm_uid = uid;
2514        context->ipc.perm_gid = gid;
2515        context->ipc.perm_mode = mode;
2516        context->ipc.has_perm = 1;
2517}
2518
2519int __audit_bprm(struct linux_binprm *bprm)
2520{
2521        struct audit_aux_data_execve *ax;
2522        struct audit_context *context = current->audit_context;
2523
2524        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2525        if (!ax)
2526                return -ENOMEM;
2527
2528        ax->argc = bprm->argc;
2529        ax->envc = bprm->envc;
2530        ax->mm = bprm->mm;
2531        ax->d.type = AUDIT_EXECVE;
2532        ax->d.next = context->aux;
2533        context->aux = (void *)ax;
2534        return 0;
2535}
2536
2537
2538/**
2539 * audit_socketcall - record audit data for sys_socketcall
2540 * @nargs: number of args
2541 * @args: args array
2542 *
2543 */
2544void __audit_socketcall(int nargs, unsigned long *args)
2545{
2546        struct audit_context *context = current->audit_context;
2547
2548        context->type = AUDIT_SOCKETCALL;
2549        context->socketcall.nargs = nargs;
2550        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2551}
2552
2553/**
2554 * __audit_fd_pair - record audit data for pipe and socketpair
2555 * @fd1: the first file descriptor
2556 * @fd2: the second file descriptor
2557 *
2558 */
2559void __audit_fd_pair(int fd1, int fd2)
2560{
2561        struct audit_context *context = current->audit_context;
2562        context->fds[0] = fd1;
2563        context->fds[1] = fd2;
2564}
2565
2566/**
2567 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2568 * @len: data length in user space
2569 * @a: data address in kernel space
2570 *
2571 * Returns 0 for success or NULL context or < 0 on error.
2572 */
2573int __audit_sockaddr(int len, void *a)
2574{
2575        struct audit_context *context = current->audit_context;
2576
2577        if (!context->sockaddr) {
2578                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2579                if (!p)
2580                        return -ENOMEM;
2581                context->sockaddr = p;
2582        }
2583
2584        context->sockaddr_len = len;
2585        memcpy(context->sockaddr, a, len);
2586        return 0;
2587}
2588
2589void __audit_ptrace(struct task_struct *t)
2590{
2591        struct audit_context *context = current->audit_context;
2592
2593        context->target_pid = t->pid;
2594        context->target_auid = audit_get_loginuid(t);
2595        context->target_uid = task_uid(t);
2596        context->target_sessionid = audit_get_sessionid(t);
2597        security_task_getsecid(t, &context->target_sid);
2598        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2599}
2600
2601/**
2602 * audit_signal_info - record signal info for shutting down audit subsystem
2603 * @sig: signal value
2604 * @t: task being signaled
2605 *
2606 * If the audit subsystem is being terminated, record the task (pid)
2607 * and uid that is doing that.
2608 */
2609int __audit_signal_info(int sig, struct task_struct *t)
2610{
2611        struct audit_aux_data_pids *axp;
2612        struct task_struct *tsk = current;
2613        struct audit_context *ctx = tsk->audit_context;
2614        kuid_t uid = current_uid(), t_uid = task_uid(t);
2615
2616        if (audit_pid && t->tgid == audit_pid) {
2617                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2618                        audit_sig_pid = tsk->pid;
2619                        if (uid_valid(tsk->loginuid))
2620                                audit_sig_uid = tsk->loginuid;
2621                        else
2622                                audit_sig_uid = uid;
2623                        security_task_getsecid(tsk, &audit_sig_sid);
2624                }
2625                if (!audit_signals || audit_dummy_context())
2626                        return 0;
2627        }
2628
2629        /* optimize the common case by putting first signal recipient directly
2630         * in audit_context */
2631        if (!ctx->target_pid) {
2632                ctx->target_pid = t->tgid;
2633                ctx->target_auid = audit_get_loginuid(t);
2634                ctx->target_uid = t_uid;
2635                ctx->target_sessionid = audit_get_sessionid(t);
2636                security_task_getsecid(t, &ctx->target_sid);
2637                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2638                return 0;
2639        }
2640
2641        axp = (void *)ctx->aux_pids;
2642        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2643                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2644                if (!axp)
2645                        return -ENOMEM;
2646
2647                axp->d.type = AUDIT_OBJ_PID;
2648                axp->d.next = ctx->aux_pids;
2649                ctx->aux_pids = (void *)axp;
2650        }
2651        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2652
2653        axp->target_pid[axp->pid_count] = t->tgid;
2654        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2655        axp->target_uid[axp->pid_count] = t_uid;
2656        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2657        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2658        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2659        axp->pid_count++;
2660
2661        return 0;
2662}
2663
2664/**
2665 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2666 * @bprm: pointer to the bprm being processed
2667 * @new: the proposed new credentials
2668 * @old: the old credentials
2669 *
2670 * Simply check if the proc already has the caps given by the file and if not
2671 * store the priv escalation info for later auditing at the end of the syscall
2672 *
2673 * -Eric
2674 */
2675int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2676                           const struct cred *new, const struct cred *old)
2677{
2678        struct audit_aux_data_bprm_fcaps *ax;
2679        struct audit_context *context = current->audit_context;
2680        struct cpu_vfs_cap_data vcaps;
2681        struct dentry *dentry;
2682
2683        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2684        if (!ax)
2685                return -ENOMEM;
2686
2687        ax->d.type = AUDIT_BPRM_FCAPS;
2688        ax->d.next = context->aux;
2689        context->aux = (void *)ax;
2690
2691        dentry = dget(bprm->file->f_dentry);
2692        get_vfs_caps_from_disk(dentry, &vcaps);
2693        dput(dentry);
2694
2695        ax->fcap.permitted = vcaps.permitted;
2696        ax->fcap.inheritable = vcaps.inheritable;
2697        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2698        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2699
2700        ax->old_pcap.permitted   = old->cap_permitted;
2701        ax->old_pcap.inheritable = old->cap_inheritable;
2702        ax->old_pcap.effective   = old->cap_effective;
2703
2704        ax->new_pcap.permitted   = new->cap_permitted;
2705        ax->new_pcap.inheritable = new->cap_inheritable;
2706        ax->new_pcap.effective   = new->cap_effective;
2707        return 0;
2708}
2709
2710/**
2711 * __audit_log_capset - store information about the arguments to the capset syscall
2712 * @pid: target pid of the capset call
2713 * @new: the new credentials
2714 * @old: the old (current) credentials
2715 *
2716 * Record the aguments userspace sent to sys_capset for later printing by the
2717 * audit system if applicable
2718 */
2719void __audit_log_capset(pid_t pid,
2720                       const struct cred *new, const struct cred *old)
2721{
2722        struct audit_context *context = current->audit_context;
2723        context->capset.pid = pid;
2724        context->capset.cap.effective   = new->cap_effective;
2725        context->capset.cap.inheritable = new->cap_effective;
2726        context->capset.cap.permitted   = new->cap_permitted;
2727        context->type = AUDIT_CAPSET;
2728}
2729
2730void __audit_mmap_fd(int fd, int flags)
2731{
2732        struct audit_context *context = current->audit_context;
2733        context->mmap.fd = fd;
2734        context->mmap.flags = flags;
2735        context->type = AUDIT_MMAP;
2736}
2737
2738static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2739{
2740        kuid_t auid, uid;
2741        kgid_t gid;
2742        unsigned int sessionid;
2743
2744        auid = audit_get_loginuid(current);
2745        sessionid = audit_get_sessionid(current);
2746        current_uid_gid(&uid, &gid);
2747
2748        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2749                         from_kuid(&init_user_ns, auid),
2750                         from_kuid(&init_user_ns, uid),
2751                         from_kgid(&init_user_ns, gid),
2752                         sessionid);
2753        audit_log_task_context(ab);
2754        audit_log_format(ab, " pid=%d comm=", current->pid);
2755        audit_log_untrustedstring(ab, current->comm);
2756        audit_log_format(ab, " reason=");
2757        audit_log_string(ab, reason);
2758        audit_log_format(ab, " sig=%ld", signr);
2759}
2760/**
2761 * audit_core_dumps - record information about processes that end abnormally
2762 * @signr: signal value
2763 *
2764 * If a process ends with a core dump, something fishy is going on and we
2765 * should record the event for investigation.
2766 */
2767void audit_core_dumps(long signr)
2768{
2769        struct audit_buffer *ab;
2770
2771        if (!audit_enabled)
2772                return;
2773
2774        if (signr == SIGQUIT)   /* don't care for those */
2775                return;
2776
2777        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2778        audit_log_abend(ab, "memory violation", signr);
2779        audit_log_end(ab);
2780}
2781
2782void __audit_seccomp(unsigned long syscall, long signr, int code)
2783{
2784        struct audit_buffer *ab;
2785
2786        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2787        audit_log_abend(ab, "seccomp", signr);
2788        audit_log_format(ab, " syscall=%ld", syscall);
2789        audit_log_format(ab, " compat=%d", is_compat_task());
2790        audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2791        audit_log_format(ab, " code=0x%x", code);
2792        audit_log_end(ab);
2793}
2794
2795struct list_head *audit_killed_trees(void)
2796{
2797        struct audit_context *ctx = current->audit_context;
2798        if (likely(!ctx || !ctx->in_syscall))
2799                return NULL;
2800        return &ctx->killed_trees;
2801}
2802