linux/arch/alpha/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/alpha/kernel/process.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the architecture-dependent parts of process handling.
   9 */
  10
  11#include <linux/errno.h>
  12#include <linux/module.h>
  13#include <linux/sched.h>
  14#include <linux/kernel.h>
  15#include <linux/mm.h>
  16#include <linux/smp.h>
  17#include <linux/stddef.h>
  18#include <linux/unistd.h>
  19#include <linux/ptrace.h>
  20#include <linux/user.h>
  21#include <linux/time.h>
  22#include <linux/major.h>
  23#include <linux/stat.h>
  24#include <linux/vt.h>
  25#include <linux/mman.h>
  26#include <linux/elfcore.h>
  27#include <linux/reboot.h>
  28#include <linux/tty.h>
  29#include <linux/console.h>
  30#include <linux/slab.h>
  31#include <linux/rcupdate.h>
  32
  33#include <asm/reg.h>
  34#include <asm/uaccess.h>
  35#include <asm/io.h>
  36#include <asm/pgtable.h>
  37#include <asm/hwrpb.h>
  38#include <asm/fpu.h>
  39
  40#include "proto.h"
  41#include "pci_impl.h"
  42
  43/*
  44 * Power off function, if any
  45 */
  46void (*pm_power_off)(void) = machine_power_off;
  47EXPORT_SYMBOL(pm_power_off);
  48
  49void
  50cpu_idle(void)
  51{
  52        current_thread_info()->status |= TS_POLLING;
  53
  54        while (1) {
  55                /* FIXME -- EV6 and LCA45 know how to power down
  56                   the CPU.  */
  57
  58                rcu_idle_enter();
  59                while (!need_resched())
  60                        cpu_relax();
  61
  62                rcu_idle_exit();
  63                schedule_preempt_disabled();
  64        }
  65}
  66
  67
  68struct halt_info {
  69        int mode;
  70        char *restart_cmd;
  71};
  72
  73static void
  74common_shutdown_1(void *generic_ptr)
  75{
  76        struct halt_info *how = (struct halt_info *)generic_ptr;
  77        struct percpu_struct *cpup;
  78        unsigned long *pflags, flags;
  79        int cpuid = smp_processor_id();
  80
  81        /* No point in taking interrupts anymore. */
  82        local_irq_disable();
  83
  84        cpup = (struct percpu_struct *)
  85                        ((unsigned long)hwrpb + hwrpb->processor_offset
  86                         + hwrpb->processor_size * cpuid);
  87        pflags = &cpup->flags;
  88        flags = *pflags;
  89
  90        /* Clear reason to "default"; clear "bootstrap in progress". */
  91        flags &= ~0x00ff0001UL;
  92
  93#ifdef CONFIG_SMP
  94        /* Secondaries halt here. */
  95        if (cpuid != boot_cpuid) {
  96                flags |= 0x00040000UL; /* "remain halted" */
  97                *pflags = flags;
  98                set_cpu_present(cpuid, false);
  99                set_cpu_possible(cpuid, false);
 100                halt();
 101        }
 102#endif
 103
 104        if (how->mode == LINUX_REBOOT_CMD_RESTART) {
 105                if (!how->restart_cmd) {
 106                        flags |= 0x00020000UL; /* "cold bootstrap" */
 107                } else {
 108                        /* For SRM, we could probably set environment
 109                           variables to get this to work.  We'd have to
 110                           delay this until after srm_paging_stop unless
 111                           we ever got srm_fixup working.
 112
 113                           At the moment, SRM will use the last boot device,
 114                           but the file and flags will be the defaults, when
 115                           doing a "warm" bootstrap.  */
 116                        flags |= 0x00030000UL; /* "warm bootstrap" */
 117                }
 118        } else {
 119                flags |= 0x00040000UL; /* "remain halted" */
 120        }
 121        *pflags = flags;
 122
 123#ifdef CONFIG_SMP
 124        /* Wait for the secondaries to halt. */
 125        set_cpu_present(boot_cpuid, false);
 126        set_cpu_possible(boot_cpuid, false);
 127        while (cpumask_weight(cpu_present_mask))
 128                barrier();
 129#endif
 130
 131        /* If booted from SRM, reset some of the original environment. */
 132        if (alpha_using_srm) {
 133#ifdef CONFIG_DUMMY_CONSOLE
 134                /* If we've gotten here after SysRq-b, leave interrupt
 135                   context before taking over the console. */
 136                if (in_interrupt())
 137                        irq_exit();
 138                /* This has the effect of resetting the VGA video origin.  */
 139                take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
 140#endif
 141                pci_restore_srm_config();
 142                set_hae(srm_hae);
 143        }
 144
 145        if (alpha_mv.kill_arch)
 146                alpha_mv.kill_arch(how->mode);
 147
 148        if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
 149                /* Unfortunately, since MILO doesn't currently understand
 150                   the hwrpb bits above, we can't reliably halt the 
 151                   processor and keep it halted.  So just loop.  */
 152                return;
 153        }
 154
 155        if (alpha_using_srm)
 156                srm_paging_stop();
 157
 158        halt();
 159}
 160
 161static void
 162common_shutdown(int mode, char *restart_cmd)
 163{
 164        struct halt_info args;
 165        args.mode = mode;
 166        args.restart_cmd = restart_cmd;
 167        on_each_cpu(common_shutdown_1, &args, 0);
 168}
 169
 170void
 171machine_restart(char *restart_cmd)
 172{
 173        common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
 174}
 175
 176
 177void
 178machine_halt(void)
 179{
 180        common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
 181}
 182
 183
 184void
 185machine_power_off(void)
 186{
 187        common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
 188}
 189
 190
 191/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
 192   saved in the context it's used.  */
 193
 194void
 195show_regs(struct pt_regs *regs)
 196{
 197        dik_show_regs(regs, NULL);
 198}
 199
 200/*
 201 * Re-start a thread when doing execve()
 202 */
 203void
 204start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 205{
 206        regs->pc = pc;
 207        regs->ps = 8;
 208        wrusp(sp);
 209}
 210EXPORT_SYMBOL(start_thread);
 211
 212/*
 213 * Free current thread data structures etc..
 214 */
 215void
 216exit_thread(void)
 217{
 218}
 219
 220void
 221flush_thread(void)
 222{
 223        /* Arrange for each exec'ed process to start off with a clean slate
 224           with respect to the FPU.  This is all exceptions disabled.  */
 225        current_thread_info()->ieee_state = 0;
 226        wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
 227
 228        /* Clean slate for TLS.  */
 229        current_thread_info()->pcb.unique = 0;
 230}
 231
 232void
 233release_thread(struct task_struct *dead_task)
 234{
 235}
 236
 237/*
 238 * Copy an alpha thread..
 239 */
 240
 241int
 242copy_thread(unsigned long clone_flags, unsigned long usp,
 243            unsigned long arg,
 244            struct task_struct *p)
 245{
 246        extern void ret_from_fork(void);
 247        extern void ret_from_kernel_thread(void);
 248
 249        struct thread_info *childti = task_thread_info(p);
 250        struct pt_regs *childregs = task_pt_regs(p);
 251        struct pt_regs *regs = current_pt_regs();
 252        struct switch_stack *childstack, *stack;
 253        unsigned long settls;
 254
 255        childstack = ((struct switch_stack *) childregs) - 1;
 256        childti->pcb.ksp = (unsigned long) childstack;
 257        childti->pcb.flags = 1; /* set FEN, clear everything else */
 258
 259        if (unlikely(p->flags & PF_KTHREAD)) {
 260                /* kernel thread */
 261                memset(childstack, 0,
 262                        sizeof(struct switch_stack) + sizeof(struct pt_regs));
 263                childstack->r26 = (unsigned long) ret_from_kernel_thread;
 264                childstack->r9 = usp;   /* function */
 265                childstack->r10 = arg;
 266                childregs->hae = alpha_mv.hae_cache,
 267                childti->pcb.usp = 0;
 268                return 0;
 269        }
 270        /* Note: if CLONE_SETTLS is not set, then we must inherit the
 271           value from the parent, which will have been set by the block
 272           copy in dup_task_struct.  This is non-intuitive, but is
 273           required for proper operation in the case of a threaded
 274           application calling fork.  */
 275        if (clone_flags & CLONE_SETTLS)
 276                childti->pcb.unique = regs->r20;
 277        childti->pcb.usp = usp ?: rdusp();
 278        *childregs = *regs;
 279        childregs->r0 = 0;
 280        childregs->r19 = 0;
 281        childregs->r20 = 1;     /* OSF/1 has some strange fork() semantics.  */
 282        regs->r20 = 0;
 283        stack = ((struct switch_stack *) regs) - 1;
 284        *childstack = *stack;
 285        childstack->r26 = (unsigned long) ret_from_fork;
 286        return 0;
 287}
 288
 289/*
 290 * Fill in the user structure for a ELF core dump.
 291 */
 292void
 293dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
 294{
 295        /* switch stack follows right below pt_regs: */
 296        struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
 297
 298        dest[ 0] = pt->r0;
 299        dest[ 1] = pt->r1;
 300        dest[ 2] = pt->r2;
 301        dest[ 3] = pt->r3;
 302        dest[ 4] = pt->r4;
 303        dest[ 5] = pt->r5;
 304        dest[ 6] = pt->r6;
 305        dest[ 7] = pt->r7;
 306        dest[ 8] = pt->r8;
 307        dest[ 9] = sw->r9;
 308        dest[10] = sw->r10;
 309        dest[11] = sw->r11;
 310        dest[12] = sw->r12;
 311        dest[13] = sw->r13;
 312        dest[14] = sw->r14;
 313        dest[15] = sw->r15;
 314        dest[16] = pt->r16;
 315        dest[17] = pt->r17;
 316        dest[18] = pt->r18;
 317        dest[19] = pt->r19;
 318        dest[20] = pt->r20;
 319        dest[21] = pt->r21;
 320        dest[22] = pt->r22;
 321        dest[23] = pt->r23;
 322        dest[24] = pt->r24;
 323        dest[25] = pt->r25;
 324        dest[26] = pt->r26;
 325        dest[27] = pt->r27;
 326        dest[28] = pt->r28;
 327        dest[29] = pt->gp;
 328        dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
 329        dest[31] = pt->pc;
 330
 331        /* Once upon a time this was the PS value.  Which is stupid
 332           since that is always 8 for usermode.  Usurped for the more
 333           useful value of the thread's UNIQUE field.  */
 334        dest[32] = ti->pcb.unique;
 335}
 336EXPORT_SYMBOL(dump_elf_thread);
 337
 338int
 339dump_elf_task(elf_greg_t *dest, struct task_struct *task)
 340{
 341        dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
 342        return 1;
 343}
 344EXPORT_SYMBOL(dump_elf_task);
 345
 346int
 347dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
 348{
 349        struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
 350        memcpy(dest, sw->fp, 32 * 8);
 351        return 1;
 352}
 353EXPORT_SYMBOL(dump_elf_task_fp);
 354
 355/*
 356 * Return saved PC of a blocked thread.  This assumes the frame
 357 * pointer is the 6th saved long on the kernel stack and that the
 358 * saved return address is the first long in the frame.  This all
 359 * holds provided the thread blocked through a call to schedule() ($15
 360 * is the frame pointer in schedule() and $15 is saved at offset 48 by
 361 * entry.S:do_switch_stack).
 362 *
 363 * Under heavy swap load I've seen this lose in an ugly way.  So do
 364 * some extra sanity checking on the ranges we expect these pointers
 365 * to be in so that we can fail gracefully.  This is just for ps after
 366 * all.  -- r~
 367 */
 368
 369unsigned long
 370thread_saved_pc(struct task_struct *t)
 371{
 372        unsigned long base = (unsigned long)task_stack_page(t);
 373        unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
 374
 375        if (sp > base && sp+6*8 < base + 16*1024) {
 376                fp = ((unsigned long*)sp)[6];
 377                if (fp > sp && fp < base + 16*1024)
 378                        return *(unsigned long *)fp;
 379        }
 380
 381        return 0;
 382}
 383
 384unsigned long
 385get_wchan(struct task_struct *p)
 386{
 387        unsigned long schedule_frame;
 388        unsigned long pc;
 389        if (!p || p == current || p->state == TASK_RUNNING)
 390                return 0;
 391        /*
 392         * This one depends on the frame size of schedule().  Do a
 393         * "disass schedule" in gdb to find the frame size.  Also, the
 394         * code assumes that sleep_on() follows immediately after
 395         * interruptible_sleep_on() and that add_timer() follows
 396         * immediately after interruptible_sleep().  Ugly, isn't it?
 397         * Maybe adding a wchan field to task_struct would be better,
 398         * after all...
 399         */
 400
 401        pc = thread_saved_pc(p);
 402        if (in_sched_functions(pc)) {
 403                schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
 404                return ((unsigned long *)schedule_frame)[12];
 405        }
 406        return pc;
 407}
 408