linux/arch/ia64/kernel/ptrace.c
<<
>>
Prefs
   1/*
   2 * Kernel support for the ptrace() and syscall tracing interfaces.
   3 *
   4 * Copyright (C) 1999-2005 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 * Copyright (C) 2006 Intel Co
   7 *  2006-08-12  - IA64 Native Utrace implementation support added by
   8 *      Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * Derived from the x86 and Alpha versions.
  11 */
  12#include <linux/kernel.h>
  13#include <linux/sched.h>
  14#include <linux/mm.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/regset.h>
  22#include <linux/elf.h>
  23#include <linux/tracehook.h>
  24
  25#include <asm/pgtable.h>
  26#include <asm/processor.h>
  27#include <asm/ptrace_offsets.h>
  28#include <asm/rse.h>
  29#include <asm/uaccess.h>
  30#include <asm/unwind.h>
  31#ifdef CONFIG_PERFMON
  32#include <asm/perfmon.h>
  33#endif
  34
  35#include "entry.h"
  36
  37/*
  38 * Bits in the PSR that we allow ptrace() to change:
  39 *      be, up, ac, mfl, mfh (the user mask; five bits total)
  40 *      db (debug breakpoint fault; one bit)
  41 *      id (instruction debug fault disable; one bit)
  42 *      dd (data debug fault disable; one bit)
  43 *      ri (restart instruction; two bits)
  44 *      is (instruction set; one bit)
  45 */
  46#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS      \
  47                   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  48
  49#define MASK(nbits)     ((1UL << (nbits)) - 1)  /* mask with NBITS bits set */
  50#define PFM_MASK        MASK(38)
  51
  52#define PTRACE_DEBUG    0
  53
  54#if PTRACE_DEBUG
  55# define dprintk(format...)     printk(format)
  56# define inline
  57#else
  58# define dprintk(format...)
  59#endif
  60
  61/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
  62
  63static inline int
  64in_syscall (struct pt_regs *pt)
  65{
  66        return (long) pt->cr_ifs >= 0;
  67}
  68
  69/*
  70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  71 * bitset where bit i is set iff the NaT bit of register i is set.
  72 */
  73unsigned long
  74ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  75{
  76#       define GET_BITS(first, last, unat)                              \
  77        ({                                                              \
  78                unsigned long bit = ia64_unat_pos(&pt->r##first);       \
  79                unsigned long nbits = (last - first + 1);               \
  80                unsigned long mask = MASK(nbits) << first;              \
  81                unsigned long dist;                                     \
  82                if (bit < first)                                        \
  83                        dist = 64 + bit - first;                        \
  84                else                                                    \
  85                        dist = bit - first;                             \
  86                ia64_rotr(unat, dist) & mask;                           \
  87        })
  88        unsigned long val;
  89
  90        /*
  91         * Registers that are stored consecutively in struct pt_regs
  92         * can be handled in parallel.  If the register order in
  93         * struct_pt_regs changes, this code MUST be updated.
  94         */
  95        val  = GET_BITS( 1,  1, scratch_unat);
  96        val |= GET_BITS( 2,  3, scratch_unat);
  97        val |= GET_BITS(12, 13, scratch_unat);
  98        val |= GET_BITS(14, 14, scratch_unat);
  99        val |= GET_BITS(15, 15, scratch_unat);
 100        val |= GET_BITS( 8, 11, scratch_unat);
 101        val |= GET_BITS(16, 31, scratch_unat);
 102        return val;
 103
 104#       undef GET_BITS
 105}
 106
 107/*
 108 * Set the NaT bits for the scratch registers according to NAT and
 109 * return the resulting unat (assuming the scratch registers are
 110 * stored in PT).
 111 */
 112unsigned long
 113ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
 114{
 115#       define PUT_BITS(first, last, nat)                               \
 116        ({                                                              \
 117                unsigned long bit = ia64_unat_pos(&pt->r##first);       \
 118                unsigned long nbits = (last - first + 1);               \
 119                unsigned long mask = MASK(nbits) << first;              \
 120                long dist;                                              \
 121                if (bit < first)                                        \
 122                        dist = 64 + bit - first;                        \
 123                else                                                    \
 124                        dist = bit - first;                             \
 125                ia64_rotl(nat & mask, dist);                            \
 126        })
 127        unsigned long scratch_unat;
 128
 129        /*
 130         * Registers that are stored consecutively in struct pt_regs
 131         * can be handled in parallel.  If the register order in
 132         * struct_pt_regs changes, this code MUST be updated.
 133         */
 134        scratch_unat  = PUT_BITS( 1,  1, nat);
 135        scratch_unat |= PUT_BITS( 2,  3, nat);
 136        scratch_unat |= PUT_BITS(12, 13, nat);
 137        scratch_unat |= PUT_BITS(14, 14, nat);
 138        scratch_unat |= PUT_BITS(15, 15, nat);
 139        scratch_unat |= PUT_BITS( 8, 11, nat);
 140        scratch_unat |= PUT_BITS(16, 31, nat);
 141
 142        return scratch_unat;
 143
 144#       undef PUT_BITS
 145}
 146
 147#define IA64_MLX_TEMPLATE       0x2
 148#define IA64_MOVL_OPCODE        6
 149
 150void
 151ia64_increment_ip (struct pt_regs *regs)
 152{
 153        unsigned long w0, ri = ia64_psr(regs)->ri + 1;
 154
 155        if (ri > 2) {
 156                ri = 0;
 157                regs->cr_iip += 16;
 158        } else if (ri == 2) {
 159                get_user(w0, (char __user *) regs->cr_iip + 0);
 160                if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 161                        /*
 162                         * rfi'ing to slot 2 of an MLX bundle causes
 163                         * an illegal operation fault.  We don't want
 164                         * that to happen...
 165                         */
 166                        ri = 0;
 167                        regs->cr_iip += 16;
 168                }
 169        }
 170        ia64_psr(regs)->ri = ri;
 171}
 172
 173void
 174ia64_decrement_ip (struct pt_regs *regs)
 175{
 176        unsigned long w0, ri = ia64_psr(regs)->ri - 1;
 177
 178        if (ia64_psr(regs)->ri == 0) {
 179                regs->cr_iip -= 16;
 180                ri = 2;
 181                get_user(w0, (char __user *) regs->cr_iip + 0);
 182                if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 183                        /*
 184                         * rfi'ing to slot 2 of an MLX bundle causes
 185                         * an illegal operation fault.  We don't want
 186                         * that to happen...
 187                         */
 188                        ri = 1;
 189                }
 190        }
 191        ia64_psr(regs)->ri = ri;
 192}
 193
 194/*
 195 * This routine is used to read an rnat bits that are stored on the
 196 * kernel backing store.  Since, in general, the alignment of the user
 197 * and kernel are different, this is not completely trivial.  In
 198 * essence, we need to construct the user RNAT based on up to two
 199 * kernel RNAT values and/or the RNAT value saved in the child's
 200 * pt_regs.
 201 *
 202 * user rbs
 203 *
 204 * +--------+ <-- lowest address
 205 * | slot62 |
 206 * +--------+
 207 * |  rnat  | 0x....1f8
 208 * +--------+
 209 * | slot00 | \
 210 * +--------+ |
 211 * | slot01 | > child_regs->ar_rnat
 212 * +--------+ |
 213 * | slot02 | /                         kernel rbs
 214 * +--------+                           +--------+
 215 *          <- child_regs->ar_bspstore  | slot61 | <-- krbs
 216 * +- - - - +                           +--------+
 217 *                                      | slot62 |
 218 * +- - - - +                           +--------+
 219 *                                      |  rnat  |
 220 * +- - - - +                           +--------+
 221 *   vrnat                              | slot00 |
 222 * +- - - - +                           +--------+
 223 *                                      =        =
 224 *                                      +--------+
 225 *                                      | slot00 | \
 226 *                                      +--------+ |
 227 *                                      | slot01 | > child_stack->ar_rnat
 228 *                                      +--------+ |
 229 *                                      | slot02 | /
 230 *                                      +--------+
 231 *                                                <--- child_stack->ar_bspstore
 232 *
 233 * The way to think of this code is as follows: bit 0 in the user rnat
 234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 235 * value.  The kernel rnat value holding this bit is stored in
 236 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 237 * form the upper bits of the user rnat value.
 238 *
 239 * Boundary cases:
 240 *
 241 * o when reading the rnat "below" the first rnat slot on the kernel
 242 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 243 *   merged in from pt->ar_rnat.
 244 *
 245 * o when reading the rnat "above" the last rnat slot on the kernel
 246 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 247 */
 248static unsigned long
 249get_rnat (struct task_struct *task, struct switch_stack *sw,
 250          unsigned long *krbs, unsigned long *urnat_addr,
 251          unsigned long *urbs_end)
 252{
 253        unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
 254        unsigned long umask = 0, mask, m;
 255        unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 256        long num_regs, nbits;
 257        struct pt_regs *pt;
 258
 259        pt = task_pt_regs(task);
 260        kbsp = (unsigned long *) sw->ar_bspstore;
 261        ubspstore = (unsigned long *) pt->ar_bspstore;
 262
 263        if (urbs_end < urnat_addr)
 264                nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
 265        else
 266                nbits = 63;
 267        mask = MASK(nbits);
 268        /*
 269         * First, figure out which bit number slot 0 in user-land maps
 270         * to in the kernel rnat.  Do this by figuring out how many
 271         * register slots we're beyond the user's backingstore and
 272         * then computing the equivalent address in kernel space.
 273         */
 274        num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 275        slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 276        shift = ia64_rse_slot_num(slot0_kaddr);
 277        rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 278        rnat0_kaddr = rnat1_kaddr - 64;
 279
 280        if (ubspstore + 63 > urnat_addr) {
 281                /* some bits need to be merged in from pt->ar_rnat */
 282                umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 283                urnat = (pt->ar_rnat & umask);
 284                mask &= ~umask;
 285                if (!mask)
 286                        return urnat;
 287        }
 288
 289        m = mask << shift;
 290        if (rnat0_kaddr >= kbsp)
 291                rnat0 = sw->ar_rnat;
 292        else if (rnat0_kaddr > krbs)
 293                rnat0 = *rnat0_kaddr;
 294        urnat |= (rnat0 & m) >> shift;
 295
 296        m = mask >> (63 - shift);
 297        if (rnat1_kaddr >= kbsp)
 298                rnat1 = sw->ar_rnat;
 299        else if (rnat1_kaddr > krbs)
 300                rnat1 = *rnat1_kaddr;
 301        urnat |= (rnat1 & m) << (63 - shift);
 302        return urnat;
 303}
 304
 305/*
 306 * The reverse of get_rnat.
 307 */
 308static void
 309put_rnat (struct task_struct *task, struct switch_stack *sw,
 310          unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
 311          unsigned long *urbs_end)
 312{
 313        unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
 314        unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 315        long num_regs, nbits;
 316        struct pt_regs *pt;
 317        unsigned long cfm, *urbs_kargs;
 318
 319        pt = task_pt_regs(task);
 320        kbsp = (unsigned long *) sw->ar_bspstore;
 321        ubspstore = (unsigned long *) pt->ar_bspstore;
 322
 323        urbs_kargs = urbs_end;
 324        if (in_syscall(pt)) {
 325                /*
 326                 * If entered via syscall, don't allow user to set rnat bits
 327                 * for syscall args.
 328                 */
 329                cfm = pt->cr_ifs;
 330                urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
 331        }
 332
 333        if (urbs_kargs >= urnat_addr)
 334                nbits = 63;
 335        else {
 336                if ((urnat_addr - 63) >= urbs_kargs)
 337                        return;
 338                nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
 339        }
 340        mask = MASK(nbits);
 341
 342        /*
 343         * First, figure out which bit number slot 0 in user-land maps
 344         * to in the kernel rnat.  Do this by figuring out how many
 345         * register slots we're beyond the user's backingstore and
 346         * then computing the equivalent address in kernel space.
 347         */
 348        num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 349        slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 350        shift = ia64_rse_slot_num(slot0_kaddr);
 351        rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 352        rnat0_kaddr = rnat1_kaddr - 64;
 353
 354        if (ubspstore + 63 > urnat_addr) {
 355                /* some bits need to be place in pt->ar_rnat: */
 356                umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 357                pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
 358                mask &= ~umask;
 359                if (!mask)
 360                        return;
 361        }
 362        /*
 363         * Note: Section 11.1 of the EAS guarantees that bit 63 of an
 364         * rnat slot is ignored. so we don't have to clear it here.
 365         */
 366        rnat0 = (urnat << shift);
 367        m = mask << shift;
 368        if (rnat0_kaddr >= kbsp)
 369                sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
 370        else if (rnat0_kaddr > krbs)
 371                *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
 372
 373        rnat1 = (urnat >> (63 - shift));
 374        m = mask >> (63 - shift);
 375        if (rnat1_kaddr >= kbsp)
 376                sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
 377        else if (rnat1_kaddr > krbs)
 378                *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
 379}
 380
 381static inline int
 382on_kernel_rbs (unsigned long addr, unsigned long bspstore,
 383               unsigned long urbs_end)
 384{
 385        unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
 386                                                      urbs_end);
 387        return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
 388}
 389
 390/*
 391 * Read a word from the user-level backing store of task CHILD.  ADDR
 392 * is the user-level address to read the word from, VAL a pointer to
 393 * the return value, and USER_BSP gives the end of the user-level
 394 * backing store (i.e., it's the address that would be in ar.bsp after
 395 * the user executed a "cover" instruction).
 396 *
 397 * This routine takes care of accessing the kernel register backing
 398 * store for those registers that got spilled there.  It also takes
 399 * care of calculating the appropriate RNaT collection words.
 400 */
 401long
 402ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
 403           unsigned long user_rbs_end, unsigned long addr, long *val)
 404{
 405        unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
 406        struct pt_regs *child_regs;
 407        size_t copied;
 408        long ret;
 409
 410        urbs_end = (long *) user_rbs_end;
 411        laddr = (unsigned long *) addr;
 412        child_regs = task_pt_regs(child);
 413        bspstore = (unsigned long *) child_regs->ar_bspstore;
 414        krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 415        if (on_kernel_rbs(addr, (unsigned long) bspstore,
 416                          (unsigned long) urbs_end))
 417        {
 418                /*
 419                 * Attempt to read the RBS in an area that's actually
 420                 * on the kernel RBS => read the corresponding bits in
 421                 * the kernel RBS.
 422                 */
 423                rnat_addr = ia64_rse_rnat_addr(laddr);
 424                ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
 425
 426                if (laddr == rnat_addr) {
 427                        /* return NaT collection word itself */
 428                        *val = ret;
 429                        return 0;
 430                }
 431
 432                if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
 433                        /*
 434                         * It is implementation dependent whether the
 435                         * data portion of a NaT value gets saved on a
 436                         * st8.spill or RSE spill (e.g., see EAS 2.6,
 437                         * 4.4.4.6 Register Spill and Fill).  To get
 438                         * consistent behavior across all possible
 439                         * IA-64 implementations, we return zero in
 440                         * this case.
 441                         */
 442                        *val = 0;
 443                        return 0;
 444                }
 445
 446                if (laddr < urbs_end) {
 447                        /*
 448                         * The desired word is on the kernel RBS and
 449                         * is not a NaT.
 450                         */
 451                        regnum = ia64_rse_num_regs(bspstore, laddr);
 452                        *val = *ia64_rse_skip_regs(krbs, regnum);
 453                        return 0;
 454                }
 455        }
 456        copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
 457        if (copied != sizeof(ret))
 458                return -EIO;
 459        *val = ret;
 460        return 0;
 461}
 462
 463long
 464ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
 465           unsigned long user_rbs_end, unsigned long addr, long val)
 466{
 467        unsigned long *bspstore, *krbs, regnum, *laddr;
 468        unsigned long *urbs_end = (long *) user_rbs_end;
 469        struct pt_regs *child_regs;
 470
 471        laddr = (unsigned long *) addr;
 472        child_regs = task_pt_regs(child);
 473        bspstore = (unsigned long *) child_regs->ar_bspstore;
 474        krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 475        if (on_kernel_rbs(addr, (unsigned long) bspstore,
 476                          (unsigned long) urbs_end))
 477        {
 478                /*
 479                 * Attempt to write the RBS in an area that's actually
 480                 * on the kernel RBS => write the corresponding bits
 481                 * in the kernel RBS.
 482                 */
 483                if (ia64_rse_is_rnat_slot(laddr))
 484                        put_rnat(child, child_stack, krbs, laddr, val,
 485                                 urbs_end);
 486                else {
 487                        if (laddr < urbs_end) {
 488                                regnum = ia64_rse_num_regs(bspstore, laddr);
 489                                *ia64_rse_skip_regs(krbs, regnum) = val;
 490                        }
 491                }
 492        } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
 493                   != sizeof(val))
 494                return -EIO;
 495        return 0;
 496}
 497
 498/*
 499 * Calculate the address of the end of the user-level register backing
 500 * store.  This is the address that would have been stored in ar.bsp
 501 * if the user had executed a "cover" instruction right before
 502 * entering the kernel.  If CFMP is not NULL, it is used to return the
 503 * "current frame mask" that was active at the time the kernel was
 504 * entered.
 505 */
 506unsigned long
 507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
 508                       unsigned long *cfmp)
 509{
 510        unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
 511        long ndirty;
 512
 513        krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 514        bspstore = (unsigned long *) pt->ar_bspstore;
 515        ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 516
 517        if (in_syscall(pt))
 518                ndirty += (cfm & 0x7f);
 519        else
 520                cfm &= ~(1UL << 63);    /* clear valid bit */
 521
 522        if (cfmp)
 523                *cfmp = cfm;
 524        return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
 525}
 526
 527/*
 528 * Synchronize (i.e, write) the RSE backing store living in kernel
 529 * space to the VM of the CHILD task.  SW and PT are the pointers to
 530 * the switch_stack and pt_regs structures, respectively.
 531 * USER_RBS_END is the user-level address at which the backing store
 532 * ends.
 533 */
 534long
 535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
 536                    unsigned long user_rbs_start, unsigned long user_rbs_end)
 537{
 538        unsigned long addr, val;
 539        long ret;
 540
 541        /* now copy word for word from kernel rbs to user rbs: */
 542        for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 543                ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
 544                if (ret < 0)
 545                        return ret;
 546                if (access_process_vm(child, addr, &val, sizeof(val), 1)
 547                    != sizeof(val))
 548                        return -EIO;
 549        }
 550        return 0;
 551}
 552
 553static long
 554ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
 555                unsigned long user_rbs_start, unsigned long user_rbs_end)
 556{
 557        unsigned long addr, val;
 558        long ret;
 559
 560        /* now copy word for word from user rbs to kernel rbs: */
 561        for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 562                if (access_process_vm(child, addr, &val, sizeof(val), 0)
 563                                != sizeof(val))
 564                        return -EIO;
 565
 566                ret = ia64_poke(child, sw, user_rbs_end, addr, val);
 567                if (ret < 0)
 568                        return ret;
 569        }
 570        return 0;
 571}
 572
 573typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
 574                            unsigned long, unsigned long);
 575
 576static void do_sync_rbs(struct unw_frame_info *info, void *arg)
 577{
 578        struct pt_regs *pt;
 579        unsigned long urbs_end;
 580        syncfunc_t fn = arg;
 581
 582        if (unw_unwind_to_user(info) < 0)
 583                return;
 584        pt = task_pt_regs(info->task);
 585        urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
 586
 587        fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
 588}
 589
 590/*
 591 * when a thread is stopped (ptraced), debugger might change thread's user
 592 * stack (change memory directly), and we must avoid the RSE stored in kernel
 593 * to override user stack (user space's RSE is newer than kernel's in the
 594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
 595 * task is stopped, so user RSE has updated data.  we then copy user RSE to
 596 * kernel after the task is resummed from traced stop and kernel will use the
 597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 598 * synchronize user RSE to kernel.
 599 */
 600void ia64_ptrace_stop(void)
 601{
 602        if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
 603                return;
 604        set_notify_resume(current);
 605        unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
 606}
 607
 608/*
 609 * This is called to read back the register backing store.
 610 */
 611void ia64_sync_krbs(void)
 612{
 613        clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
 614
 615        unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
 616}
 617
 618/*
 619 * After PTRACE_ATTACH, a thread's register backing store area in user
 620 * space is assumed to contain correct data whenever the thread is
 621 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
 622 * But if the child was already stopped for job control when we attach
 623 * to it, then it might not ever get into ptrace_stop by the time we
 624 * want to examine the user memory containing the RBS.
 625 */
 626void
 627ptrace_attach_sync_user_rbs (struct task_struct *child)
 628{
 629        int stopped = 0;
 630        struct unw_frame_info info;
 631
 632        /*
 633         * If the child is in TASK_STOPPED, we need to change that to
 634         * TASK_TRACED momentarily while we operate on it.  This ensures
 635         * that the child won't be woken up and return to user mode while
 636         * we are doing the sync.  (It can only be woken up for SIGKILL.)
 637         */
 638
 639        read_lock(&tasklist_lock);
 640        if (child->sighand) {
 641                spin_lock_irq(&child->sighand->siglock);
 642                if (child->state == TASK_STOPPED &&
 643                    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
 644                        set_notify_resume(child);
 645
 646                        child->state = TASK_TRACED;
 647                        stopped = 1;
 648                }
 649                spin_unlock_irq(&child->sighand->siglock);
 650        }
 651        read_unlock(&tasklist_lock);
 652
 653        if (!stopped)
 654                return;
 655
 656        unw_init_from_blocked_task(&info, child);
 657        do_sync_rbs(&info, ia64_sync_user_rbs);
 658
 659        /*
 660         * Now move the child back into TASK_STOPPED if it should be in a
 661         * job control stop, so that SIGCONT can be used to wake it up.
 662         */
 663        read_lock(&tasklist_lock);
 664        if (child->sighand) {
 665                spin_lock_irq(&child->sighand->siglock);
 666                if (child->state == TASK_TRACED &&
 667                    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
 668                        child->state = TASK_STOPPED;
 669                }
 670                spin_unlock_irq(&child->sighand->siglock);
 671        }
 672        read_unlock(&tasklist_lock);
 673}
 674
 675/*
 676 * Write f32-f127 back to task->thread.fph if it has been modified.
 677 */
 678inline void
 679ia64_flush_fph (struct task_struct *task)
 680{
 681        struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 682
 683        /*
 684         * Prevent migrating this task while
 685         * we're fiddling with the FPU state
 686         */
 687        preempt_disable();
 688        if (ia64_is_local_fpu_owner(task) && psr->mfh) {
 689                psr->mfh = 0;
 690                task->thread.flags |= IA64_THREAD_FPH_VALID;
 691                ia64_save_fpu(&task->thread.fph[0]);
 692        }
 693        preempt_enable();
 694}
 695
 696/*
 697 * Sync the fph state of the task so that it can be manipulated
 698 * through thread.fph.  If necessary, f32-f127 are written back to
 699 * thread.fph or, if the fph state hasn't been used before, thread.fph
 700 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 701 * ensure that the task picks up the state from thread.fph when it
 702 * executes again.
 703 */
 704void
 705ia64_sync_fph (struct task_struct *task)
 706{
 707        struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 708
 709        ia64_flush_fph(task);
 710        if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
 711                task->thread.flags |= IA64_THREAD_FPH_VALID;
 712                memset(&task->thread.fph, 0, sizeof(task->thread.fph));
 713        }
 714        ia64_drop_fpu(task);
 715        psr->dfh = 1;
 716}
 717
 718/*
 719 * Change the machine-state of CHILD such that it will return via the normal
 720 * kernel exit-path, rather than the syscall-exit path.
 721 */
 722static void
 723convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
 724                        unsigned long cfm)
 725{
 726        struct unw_frame_info info, prev_info;
 727        unsigned long ip, sp, pr;
 728
 729        unw_init_from_blocked_task(&info, child);
 730        while (1) {
 731                prev_info = info;
 732                if (unw_unwind(&info) < 0)
 733                        return;
 734
 735                unw_get_sp(&info, &sp);
 736                if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
 737                    < IA64_PT_REGS_SIZE) {
 738                        dprintk("ptrace.%s: ran off the top of the kernel "
 739                                "stack\n", __func__);
 740                        return;
 741                }
 742                if (unw_get_pr (&prev_info, &pr) < 0) {
 743                        unw_get_rp(&prev_info, &ip);
 744                        dprintk("ptrace.%s: failed to read "
 745                                "predicate register (ip=0x%lx)\n",
 746                                __func__, ip);
 747                        return;
 748                }
 749                if (unw_is_intr_frame(&info)
 750                    && (pr & (1UL << PRED_USER_STACK)))
 751                        break;
 752        }
 753
 754        /*
 755         * Note: at the time of this call, the target task is blocked
 756         * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
 757         * (aka, "pLvSys") we redirect execution from
 758         * .work_pending_syscall_end to .work_processed_kernel.
 759         */
 760        unw_get_pr(&prev_info, &pr);
 761        pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
 762        pr |=  (1UL << PRED_NON_SYSCALL);
 763        unw_set_pr(&prev_info, pr);
 764
 765        pt->cr_ifs = (1UL << 63) | cfm;
 766        /*
 767         * Clear the memory that is NOT written on syscall-entry to
 768         * ensure we do not leak kernel-state to user when execution
 769         * resumes.
 770         */
 771        pt->r2 = 0;
 772        pt->r3 = 0;
 773        pt->r14 = 0;
 774        memset(&pt->r16, 0, 16*8);      /* clear r16-r31 */
 775        memset(&pt->f6, 0, 6*16);       /* clear f6-f11 */
 776        pt->b7 = 0;
 777        pt->ar_ccv = 0;
 778        pt->ar_csd = 0;
 779        pt->ar_ssd = 0;
 780}
 781
 782static int
 783access_nat_bits (struct task_struct *child, struct pt_regs *pt,
 784                 struct unw_frame_info *info,
 785                 unsigned long *data, int write_access)
 786{
 787        unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
 788        char nat = 0;
 789
 790        if (write_access) {
 791                nat_bits = *data;
 792                scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
 793                if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
 794                        dprintk("ptrace: failed to set ar.unat\n");
 795                        return -1;
 796                }
 797                for (regnum = 4; regnum <= 7; ++regnum) {
 798                        unw_get_gr(info, regnum, &dummy, &nat);
 799                        unw_set_gr(info, regnum, dummy,
 800                                   (nat_bits >> regnum) & 1);
 801                }
 802        } else {
 803                if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
 804                        dprintk("ptrace: failed to read ar.unat\n");
 805                        return -1;
 806                }
 807                nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
 808                for (regnum = 4; regnum <= 7; ++regnum) {
 809                        unw_get_gr(info, regnum, &dummy, &nat);
 810                        nat_bits |= (nat != 0) << regnum;
 811                }
 812                *data = nat_bits;
 813        }
 814        return 0;
 815}
 816
 817static int
 818access_uarea (struct task_struct *child, unsigned long addr,
 819              unsigned long *data, int write_access);
 820
 821static long
 822ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 823{
 824        unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
 825        struct unw_frame_info info;
 826        struct ia64_fpreg fpval;
 827        struct switch_stack *sw;
 828        struct pt_regs *pt;
 829        long ret, retval = 0;
 830        char nat = 0;
 831        int i;
 832
 833        if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
 834                return -EIO;
 835
 836        pt = task_pt_regs(child);
 837        sw = (struct switch_stack *) (child->thread.ksp + 16);
 838        unw_init_from_blocked_task(&info, child);
 839        if (unw_unwind_to_user(&info) < 0) {
 840                return -EIO;
 841        }
 842
 843        if (((unsigned long) ppr & 0x7) != 0) {
 844                dprintk("ptrace:unaligned register address %p\n", ppr);
 845                return -EIO;
 846        }
 847
 848        if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
 849            || access_uarea(child, PT_AR_EC, &ec, 0) < 0
 850            || access_uarea(child, PT_AR_LC, &lc, 0) < 0
 851            || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
 852            || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
 853            || access_uarea(child, PT_CFM, &cfm, 0)
 854            || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
 855                return -EIO;
 856
 857        /* control regs */
 858
 859        retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
 860        retval |= __put_user(psr, &ppr->cr_ipsr);
 861
 862        /* app regs */
 863
 864        retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 865        retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
 866        retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 867        retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 868        retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 869        retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 870
 871        retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
 872        retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
 873        retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 874        retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
 875        retval |= __put_user(cfm, &ppr->cfm);
 876
 877        /* gr1-gr3 */
 878
 879        retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
 880        retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
 881
 882        /* gr4-gr7 */
 883
 884        for (i = 4; i < 8; i++) {
 885                if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
 886                        return -EIO;
 887                retval |= __put_user(val, &ppr->gr[i]);
 888        }
 889
 890        /* gr8-gr11 */
 891
 892        retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
 893
 894        /* gr12-gr15 */
 895
 896        retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
 897        retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
 898        retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
 899
 900        /* gr16-gr31 */
 901
 902        retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
 903
 904        /* b0 */
 905
 906        retval |= __put_user(pt->b0, &ppr->br[0]);
 907
 908        /* b1-b5 */
 909
 910        for (i = 1; i < 6; i++) {
 911                if (unw_access_br(&info, i, &val, 0) < 0)
 912                        return -EIO;
 913                __put_user(val, &ppr->br[i]);
 914        }
 915
 916        /* b6-b7 */
 917
 918        retval |= __put_user(pt->b6, &ppr->br[6]);
 919        retval |= __put_user(pt->b7, &ppr->br[7]);
 920
 921        /* fr2-fr5 */
 922
 923        for (i = 2; i < 6; i++) {
 924                if (unw_get_fr(&info, i, &fpval) < 0)
 925                        return -EIO;
 926                retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 927        }
 928
 929        /* fr6-fr11 */
 930
 931        retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
 932                                 sizeof(struct ia64_fpreg) * 6);
 933
 934        /* fp scratch regs(12-15) */
 935
 936        retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
 937                                 sizeof(struct ia64_fpreg) * 4);
 938
 939        /* fr16-fr31 */
 940
 941        for (i = 16; i < 32; i++) {
 942                if (unw_get_fr(&info, i, &fpval) < 0)
 943                        return -EIO;
 944                retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 945        }
 946
 947        /* fph */
 948
 949        ia64_flush_fph(child);
 950        retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
 951                                 sizeof(ppr->fr[32]) * 96);
 952
 953        /*  preds */
 954
 955        retval |= __put_user(pt->pr, &ppr->pr);
 956
 957        /* nat bits */
 958
 959        retval |= __put_user(nat_bits, &ppr->nat);
 960
 961        ret = retval ? -EIO : 0;
 962        return ret;
 963}
 964
 965static long
 966ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 967{
 968        unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
 969        struct unw_frame_info info;
 970        struct switch_stack *sw;
 971        struct ia64_fpreg fpval;
 972        struct pt_regs *pt;
 973        long ret, retval = 0;
 974        int i;
 975
 976        memset(&fpval, 0, sizeof(fpval));
 977
 978        if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
 979                return -EIO;
 980
 981        pt = task_pt_regs(child);
 982        sw = (struct switch_stack *) (child->thread.ksp + 16);
 983        unw_init_from_blocked_task(&info, child);
 984        if (unw_unwind_to_user(&info) < 0) {
 985                return -EIO;
 986        }
 987
 988        if (((unsigned long) ppr & 0x7) != 0) {
 989                dprintk("ptrace:unaligned register address %p\n", ppr);
 990                return -EIO;
 991        }
 992
 993        /* control regs */
 994
 995        retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
 996        retval |= __get_user(psr, &ppr->cr_ipsr);
 997
 998        /* app regs */
 999
1000        retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1001        retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1002        retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1003        retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1004        retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1005        retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1006
1007        retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1008        retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1009        retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1010        retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1011        retval |= __get_user(cfm, &ppr->cfm);
1012
1013        /* gr1-gr3 */
1014
1015        retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1016        retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1017
1018        /* gr4-gr7 */
1019
1020        for (i = 4; i < 8; i++) {
1021                retval |= __get_user(val, &ppr->gr[i]);
1022                /* NaT bit will be set via PT_NAT_BITS: */
1023                if (unw_set_gr(&info, i, val, 0) < 0)
1024                        return -EIO;
1025        }
1026
1027        /* gr8-gr11 */
1028
1029        retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1030
1031        /* gr12-gr15 */
1032
1033        retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1034        retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1035        retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1036
1037        /* gr16-gr31 */
1038
1039        retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1040
1041        /* b0 */
1042
1043        retval |= __get_user(pt->b0, &ppr->br[0]);
1044
1045        /* b1-b5 */
1046
1047        for (i = 1; i < 6; i++) {
1048                retval |= __get_user(val, &ppr->br[i]);
1049                unw_set_br(&info, i, val);
1050        }
1051
1052        /* b6-b7 */
1053
1054        retval |= __get_user(pt->b6, &ppr->br[6]);
1055        retval |= __get_user(pt->b7, &ppr->br[7]);
1056
1057        /* fr2-fr5 */
1058
1059        for (i = 2; i < 6; i++) {
1060                retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1061                if (unw_set_fr(&info, i, fpval) < 0)
1062                        return -EIO;
1063        }
1064
1065        /* fr6-fr11 */
1066
1067        retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1068                                   sizeof(ppr->fr[6]) * 6);
1069
1070        /* fp scratch regs(12-15) */
1071
1072        retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1073                                   sizeof(ppr->fr[12]) * 4);
1074
1075        /* fr16-fr31 */
1076
1077        for (i = 16; i < 32; i++) {
1078                retval |= __copy_from_user(&fpval, &ppr->fr[i],
1079                                           sizeof(fpval));
1080                if (unw_set_fr(&info, i, fpval) < 0)
1081                        return -EIO;
1082        }
1083
1084        /* fph */
1085
1086        ia64_sync_fph(child);
1087        retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1088                                   sizeof(ppr->fr[32]) * 96);
1089
1090        /* preds */
1091
1092        retval |= __get_user(pt->pr, &ppr->pr);
1093
1094        /* nat bits */
1095
1096        retval |= __get_user(nat_bits, &ppr->nat);
1097
1098        retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1099        retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1100        retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1101        retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1102        retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1103        retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1104        retval |= access_uarea(child, PT_CFM, &cfm, 1);
1105        retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1106
1107        ret = retval ? -EIO : 0;
1108        return ret;
1109}
1110
1111void
1112user_enable_single_step (struct task_struct *child)
1113{
1114        struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1115
1116        set_tsk_thread_flag(child, TIF_SINGLESTEP);
1117        child_psr->ss = 1;
1118}
1119
1120void
1121user_enable_block_step (struct task_struct *child)
1122{
1123        struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1124
1125        set_tsk_thread_flag(child, TIF_SINGLESTEP);
1126        child_psr->tb = 1;
1127}
1128
1129void
1130user_disable_single_step (struct task_struct *child)
1131{
1132        struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1133
1134        /* make sure the single step/taken-branch trap bits are not set: */
1135        clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1136        child_psr->ss = 0;
1137        child_psr->tb = 0;
1138}
1139
1140/*
1141 * Called by kernel/ptrace.c when detaching..
1142 *
1143 * Make sure the single step bit is not set.
1144 */
1145void
1146ptrace_disable (struct task_struct *child)
1147{
1148        user_disable_single_step(child);
1149}
1150
1151long
1152arch_ptrace (struct task_struct *child, long request,
1153             unsigned long addr, unsigned long data)
1154{
1155        switch (request) {
1156        case PTRACE_PEEKTEXT:
1157        case PTRACE_PEEKDATA:
1158                /* read word at location addr */
1159                if (access_process_vm(child, addr, &data, sizeof(data), 0)
1160                    != sizeof(data))
1161                        return -EIO;
1162                /* ensure return value is not mistaken for error code */
1163                force_successful_syscall_return();
1164                return data;
1165
1166        /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1167         * by the generic ptrace_request().
1168         */
1169
1170        case PTRACE_PEEKUSR:
1171                /* read the word at addr in the USER area */
1172                if (access_uarea(child, addr, &data, 0) < 0)
1173                        return -EIO;
1174                /* ensure return value is not mistaken for error code */
1175                force_successful_syscall_return();
1176                return data;
1177
1178        case PTRACE_POKEUSR:
1179                /* write the word at addr in the USER area */
1180                if (access_uarea(child, addr, &data, 1) < 0)
1181                        return -EIO;
1182                return 0;
1183
1184        case PTRACE_OLD_GETSIGINFO:
1185                /* for backwards-compatibility */
1186                return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1187
1188        case PTRACE_OLD_SETSIGINFO:
1189                /* for backwards-compatibility */
1190                return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1191
1192        case PTRACE_GETREGS:
1193                return ptrace_getregs(child,
1194                                      (struct pt_all_user_regs __user *) data);
1195
1196        case PTRACE_SETREGS:
1197                return ptrace_setregs(child,
1198                                      (struct pt_all_user_regs __user *) data);
1199
1200        default:
1201                return ptrace_request(child, request, addr, data);
1202        }
1203}
1204
1205
1206/* "asmlinkage" so the input arguments are preserved... */
1207
1208asmlinkage long
1209syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1210                     long arg4, long arg5, long arg6, long arg7,
1211                     struct pt_regs regs)
1212{
1213        if (test_thread_flag(TIF_SYSCALL_TRACE))
1214                if (tracehook_report_syscall_entry(&regs))
1215                        return -ENOSYS;
1216
1217        /* copy user rbs to kernel rbs */
1218        if (test_thread_flag(TIF_RESTORE_RSE))
1219                ia64_sync_krbs();
1220
1221
1222        audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3);
1223
1224        return 0;
1225}
1226
1227/* "asmlinkage" so the input arguments are preserved... */
1228
1229asmlinkage void
1230syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1231                     long arg4, long arg5, long arg6, long arg7,
1232                     struct pt_regs regs)
1233{
1234        int step;
1235
1236        audit_syscall_exit(&regs);
1237
1238        step = test_thread_flag(TIF_SINGLESTEP);
1239        if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1240                tracehook_report_syscall_exit(&regs, step);
1241
1242        /* copy user rbs to kernel rbs */
1243        if (test_thread_flag(TIF_RESTORE_RSE))
1244                ia64_sync_krbs();
1245}
1246
1247/* Utrace implementation starts here */
1248struct regset_get {
1249        void *kbuf;
1250        void __user *ubuf;
1251};
1252
1253struct regset_set {
1254        const void *kbuf;
1255        const void __user *ubuf;
1256};
1257
1258struct regset_getset {
1259        struct task_struct *target;
1260        const struct user_regset *regset;
1261        union {
1262                struct regset_get get;
1263                struct regset_set set;
1264        } u;
1265        unsigned int pos;
1266        unsigned int count;
1267        int ret;
1268};
1269
1270static int
1271access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1272                unsigned long addr, unsigned long *data, int write_access)
1273{
1274        struct pt_regs *pt;
1275        unsigned long *ptr = NULL;
1276        int ret;
1277        char nat = 0;
1278
1279        pt = task_pt_regs(target);
1280        switch (addr) {
1281        case ELF_GR_OFFSET(1):
1282                ptr = &pt->r1;
1283                break;
1284        case ELF_GR_OFFSET(2):
1285        case ELF_GR_OFFSET(3):
1286                ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1287                break;
1288        case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1289                if (write_access) {
1290                        /* read NaT bit first: */
1291                        unsigned long dummy;
1292
1293                        ret = unw_get_gr(info, addr/8, &dummy, &nat);
1294                        if (ret < 0)
1295                                return ret;
1296                }
1297                return unw_access_gr(info, addr/8, data, &nat, write_access);
1298        case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1299                ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1300                break;
1301        case ELF_GR_OFFSET(12):
1302        case ELF_GR_OFFSET(13):
1303                ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1304                break;
1305        case ELF_GR_OFFSET(14):
1306                ptr = &pt->r14;
1307                break;
1308        case ELF_GR_OFFSET(15):
1309                ptr = &pt->r15;
1310        }
1311        if (write_access)
1312                *ptr = *data;
1313        else
1314                *data = *ptr;
1315        return 0;
1316}
1317
1318static int
1319access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1320                unsigned long addr, unsigned long *data, int write_access)
1321{
1322        struct pt_regs *pt;
1323        unsigned long *ptr = NULL;
1324
1325        pt = task_pt_regs(target);
1326        switch (addr) {
1327        case ELF_BR_OFFSET(0):
1328                ptr = &pt->b0;
1329                break;
1330        case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1331                return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1332                                     data, write_access);
1333        case ELF_BR_OFFSET(6):
1334                ptr = &pt->b6;
1335                break;
1336        case ELF_BR_OFFSET(7):
1337                ptr = &pt->b7;
1338        }
1339        if (write_access)
1340                *ptr = *data;
1341        else
1342                *data = *ptr;
1343        return 0;
1344}
1345
1346static int
1347access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1348                unsigned long addr, unsigned long *data, int write_access)
1349{
1350        struct pt_regs *pt;
1351        unsigned long cfm, urbs_end;
1352        unsigned long *ptr = NULL;
1353
1354        pt = task_pt_regs(target);
1355        if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1356                switch (addr) {
1357                case ELF_AR_RSC_OFFSET:
1358                        /* force PL3 */
1359                        if (write_access)
1360                                pt->ar_rsc = *data | (3 << 2);
1361                        else
1362                                *data = pt->ar_rsc;
1363                        return 0;
1364                case ELF_AR_BSP_OFFSET:
1365                        /*
1366                         * By convention, we use PT_AR_BSP to refer to
1367                         * the end of the user-level backing store.
1368                         * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1369                         * to get the real value of ar.bsp at the time
1370                         * the kernel was entered.
1371                         *
1372                         * Furthermore, when changing the contents of
1373                         * PT_AR_BSP (or PT_CFM) while the task is
1374                         * blocked in a system call, convert the state
1375                         * so that the non-system-call exit
1376                         * path is used.  This ensures that the proper
1377                         * state will be picked up when resuming
1378                         * execution.  However, it *also* means that
1379                         * once we write PT_AR_BSP/PT_CFM, it won't be
1380                         * possible to modify the syscall arguments of
1381                         * the pending system call any longer.  This
1382                         * shouldn't be an issue because modifying
1383                         * PT_AR_BSP/PT_CFM generally implies that
1384                         * we're either abandoning the pending system
1385                         * call or that we defer it's re-execution
1386                         * (e.g., due to GDB doing an inferior
1387                         * function call).
1388                         */
1389                        urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1390                        if (write_access) {
1391                                if (*data != urbs_end) {
1392                                        if (in_syscall(pt))
1393                                                convert_to_non_syscall(target,
1394                                                                       pt,
1395                                                                       cfm);
1396                                        /*
1397                                         * Simulate user-level write
1398                                         * of ar.bsp:
1399                                         */
1400                                        pt->loadrs = 0;
1401                                        pt->ar_bspstore = *data;
1402                                }
1403                        } else
1404                                *data = urbs_end;
1405                        return 0;
1406                case ELF_AR_BSPSTORE_OFFSET:
1407                        ptr = &pt->ar_bspstore;
1408                        break;
1409                case ELF_AR_RNAT_OFFSET:
1410                        ptr = &pt->ar_rnat;
1411                        break;
1412                case ELF_AR_CCV_OFFSET:
1413                        ptr = &pt->ar_ccv;
1414                        break;
1415                case ELF_AR_UNAT_OFFSET:
1416                        ptr = &pt->ar_unat;
1417                        break;
1418                case ELF_AR_FPSR_OFFSET:
1419                        ptr = &pt->ar_fpsr;
1420                        break;
1421                case ELF_AR_PFS_OFFSET:
1422                        ptr = &pt->ar_pfs;
1423                        break;
1424                case ELF_AR_LC_OFFSET:
1425                        return unw_access_ar(info, UNW_AR_LC, data,
1426                                             write_access);
1427                case ELF_AR_EC_OFFSET:
1428                        return unw_access_ar(info, UNW_AR_EC, data,
1429                                             write_access);
1430                case ELF_AR_CSD_OFFSET:
1431                        ptr = &pt->ar_csd;
1432                        break;
1433                case ELF_AR_SSD_OFFSET:
1434                        ptr = &pt->ar_ssd;
1435                }
1436        } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1437                switch (addr) {
1438                case ELF_CR_IIP_OFFSET:
1439                        ptr = &pt->cr_iip;
1440                        break;
1441                case ELF_CFM_OFFSET:
1442                        urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1443                        if (write_access) {
1444                                if (((cfm ^ *data) & PFM_MASK) != 0) {
1445                                        if (in_syscall(pt))
1446                                                convert_to_non_syscall(target,
1447                                                                       pt,
1448                                                                       cfm);
1449                                        pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1450                                                      | (*data & PFM_MASK));
1451                                }
1452                        } else
1453                                *data = cfm;
1454                        return 0;
1455                case ELF_CR_IPSR_OFFSET:
1456                        if (write_access) {
1457                                unsigned long tmp = *data;
1458                                /* psr.ri==3 is a reserved value: SDM 2:25 */
1459                                if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1460                                        tmp &= ~IA64_PSR_RI;
1461                                pt->cr_ipsr = ((tmp & IPSR_MASK)
1462                                               | (pt->cr_ipsr & ~IPSR_MASK));
1463                        } else
1464                                *data = (pt->cr_ipsr & IPSR_MASK);
1465                        return 0;
1466                }
1467        } else if (addr == ELF_NAT_OFFSET)
1468                return access_nat_bits(target, pt, info,
1469                                       data, write_access);
1470        else if (addr == ELF_PR_OFFSET)
1471                ptr = &pt->pr;
1472        else
1473                return -1;
1474
1475        if (write_access)
1476                *ptr = *data;
1477        else
1478                *data = *ptr;
1479
1480        return 0;
1481}
1482
1483static int
1484access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1485                unsigned long addr, unsigned long *data, int write_access)
1486{
1487        if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1488                return access_elf_gpreg(target, info, addr, data, write_access);
1489        else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1490                return access_elf_breg(target, info, addr, data, write_access);
1491        else
1492                return access_elf_areg(target, info, addr, data, write_access);
1493}
1494
1495void do_gpregs_get(struct unw_frame_info *info, void *arg)
1496{
1497        struct pt_regs *pt;
1498        struct regset_getset *dst = arg;
1499        elf_greg_t tmp[16];
1500        unsigned int i, index, min_copy;
1501
1502        if (unw_unwind_to_user(info) < 0)
1503                return;
1504
1505        /*
1506         * coredump format:
1507         *      r0-r31
1508         *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1509         *      predicate registers (p0-p63)
1510         *      b0-b7
1511         *      ip cfm user-mask
1512         *      ar.rsc ar.bsp ar.bspstore ar.rnat
1513         *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1514         */
1515
1516
1517        /* Skip r0 */
1518        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1519                dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1520                                                      &dst->u.get.kbuf,
1521                                                      &dst->u.get.ubuf,
1522                                                      0, ELF_GR_OFFSET(1));
1523                if (dst->ret || dst->count == 0)
1524                        return;
1525        }
1526
1527        /* gr1 - gr15 */
1528        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1529                index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1530                min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1531                         (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1532                for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1533                                index++)
1534                        if (access_elf_reg(dst->target, info, i,
1535                                                &tmp[index], 0) < 0) {
1536                                dst->ret = -EIO;
1537                                return;
1538                        }
1539                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1540                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1541                                ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1542                if (dst->ret || dst->count == 0)
1543                        return;
1544        }
1545
1546        /* r16-r31 */
1547        if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1548                pt = task_pt_regs(dst->target);
1549                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1550                                &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1551                                ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1552                if (dst->ret || dst->count == 0)
1553                        return;
1554        }
1555
1556        /* nat, pr, b0 - b7 */
1557        if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1558                index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1559                min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1560                         (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1561                for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1562                                index++)
1563                        if (access_elf_reg(dst->target, info, i,
1564                                                &tmp[index], 0) < 0) {
1565                                dst->ret = -EIO;
1566                                return;
1567                        }
1568                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1569                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1570                                ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1571                if (dst->ret || dst->count == 0)
1572                        return;
1573        }
1574
1575        /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1576         * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1577         */
1578        if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1579                index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1580                min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1581                         (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1582                for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1583                                index++)
1584                        if (access_elf_reg(dst->target, info, i,
1585                                                &tmp[index], 0) < 0) {
1586                                dst->ret = -EIO;
1587                                return;
1588                        }
1589                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1590                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1591                                ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1592        }
1593}
1594
1595void do_gpregs_set(struct unw_frame_info *info, void *arg)
1596{
1597        struct pt_regs *pt;
1598        struct regset_getset *dst = arg;
1599        elf_greg_t tmp[16];
1600        unsigned int i, index;
1601
1602        if (unw_unwind_to_user(info) < 0)
1603                return;
1604
1605        /* Skip r0 */
1606        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1607                dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1608                                                       &dst->u.set.kbuf,
1609                                                       &dst->u.set.ubuf,
1610                                                       0, ELF_GR_OFFSET(1));
1611                if (dst->ret || dst->count == 0)
1612                        return;
1613        }
1614
1615        /* gr1-gr15 */
1616        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1617                i = dst->pos;
1618                index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1619                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1620                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1621                                ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1622                if (dst->ret)
1623                        return;
1624                for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1625                        if (access_elf_reg(dst->target, info, i,
1626                                                &tmp[index], 1) < 0) {
1627                                dst->ret = -EIO;
1628                                return;
1629                        }
1630                if (dst->count == 0)
1631                        return;
1632        }
1633
1634        /* gr16-gr31 */
1635        if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1636                pt = task_pt_regs(dst->target);
1637                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1638                                &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1639                                ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1640                if (dst->ret || dst->count == 0)
1641                        return;
1642        }
1643
1644        /* nat, pr, b0 - b7 */
1645        if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1646                i = dst->pos;
1647                index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1648                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1649                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1650                                ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1651                if (dst->ret)
1652                        return;
1653                for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1654                        if (access_elf_reg(dst->target, info, i,
1655                                                &tmp[index], 1) < 0) {
1656                                dst->ret = -EIO;
1657                                return;
1658                        }
1659                if (dst->count == 0)
1660                        return;
1661        }
1662
1663        /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1664         * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1665         */
1666        if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1667                i = dst->pos;
1668                index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1669                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1670                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1671                                ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1672                if (dst->ret)
1673                        return;
1674                for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1675                        if (access_elf_reg(dst->target, info, i,
1676                                                &tmp[index], 1) < 0) {
1677                                dst->ret = -EIO;
1678                                return;
1679                        }
1680        }
1681}
1682
1683#define ELF_FP_OFFSET(i)        (i * sizeof(elf_fpreg_t))
1684
1685void do_fpregs_get(struct unw_frame_info *info, void *arg)
1686{
1687        struct regset_getset *dst = arg;
1688        struct task_struct *task = dst->target;
1689        elf_fpreg_t tmp[30];
1690        int index, min_copy, i;
1691
1692        if (unw_unwind_to_user(info) < 0)
1693                return;
1694
1695        /* Skip pos 0 and 1 */
1696        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1697                dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1698                                                      &dst->u.get.kbuf,
1699                                                      &dst->u.get.ubuf,
1700                                                      0, ELF_FP_OFFSET(2));
1701                if (dst->count == 0 || dst->ret)
1702                        return;
1703        }
1704
1705        /* fr2-fr31 */
1706        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1707                index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1708
1709                min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1710                                dst->pos + dst->count);
1711                for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1712                                index++)
1713                        if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1714                                         &tmp[index])) {
1715                                dst->ret = -EIO;
1716                                return;
1717                        }
1718                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1719                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1720                                ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1721                if (dst->count == 0 || dst->ret)
1722                        return;
1723        }
1724
1725        /* fph */
1726        if (dst->count > 0) {
1727                ia64_flush_fph(dst->target);
1728                if (task->thread.flags & IA64_THREAD_FPH_VALID)
1729                        dst->ret = user_regset_copyout(
1730                                &dst->pos, &dst->count,
1731                                &dst->u.get.kbuf, &dst->u.get.ubuf,
1732                                &dst->target->thread.fph,
1733                                ELF_FP_OFFSET(32), -1);
1734                else
1735                        /* Zero fill instead.  */
1736                        dst->ret = user_regset_copyout_zero(
1737                                &dst->pos, &dst->count,
1738                                &dst->u.get.kbuf, &dst->u.get.ubuf,
1739                                ELF_FP_OFFSET(32), -1);
1740        }
1741}
1742
1743void do_fpregs_set(struct unw_frame_info *info, void *arg)
1744{
1745        struct regset_getset *dst = arg;
1746        elf_fpreg_t fpreg, tmp[30];
1747        int index, start, end;
1748
1749        if (unw_unwind_to_user(info) < 0)
1750                return;
1751
1752        /* Skip pos 0 and 1 */
1753        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1754                dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1755                                                       &dst->u.set.kbuf,
1756                                                       &dst->u.set.ubuf,
1757                                                       0, ELF_FP_OFFSET(2));
1758                if (dst->count == 0 || dst->ret)
1759                        return;
1760        }
1761
1762        /* fr2-fr31 */
1763        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1764                start = dst->pos;
1765                end = min(((unsigned int)ELF_FP_OFFSET(32)),
1766                         dst->pos + dst->count);
1767                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1768                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1769                                ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1770                if (dst->ret)
1771                        return;
1772
1773                if (start & 0xF) { /* only write high part */
1774                        if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1775                                         &fpreg)) {
1776                                dst->ret = -EIO;
1777                                return;
1778                        }
1779                        tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1780                                = fpreg.u.bits[0];
1781                        start &= ~0xFUL;
1782                }
1783                if (end & 0xF) { /* only write low part */
1784                        if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1785                                        &fpreg)) {
1786                                dst->ret = -EIO;
1787                                return;
1788                        }
1789                        tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1790                                = fpreg.u.bits[1];
1791                        end = (end + 0xF) & ~0xFUL;
1792                }
1793
1794                for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1795                        index = start / sizeof(elf_fpreg_t);
1796                        if (unw_set_fr(info, index, tmp[index - 2])) {
1797                                dst->ret = -EIO;
1798                                return;
1799                        }
1800                }
1801                if (dst->ret || dst->count == 0)
1802                        return;
1803        }
1804
1805        /* fph */
1806        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1807                ia64_sync_fph(dst->target);
1808                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1809                                                &dst->u.set.kbuf,
1810                                                &dst->u.set.ubuf,
1811                                                &dst->target->thread.fph,
1812                                                ELF_FP_OFFSET(32), -1);
1813        }
1814}
1815
1816static int
1817do_regset_call(void (*call)(struct unw_frame_info *, void *),
1818               struct task_struct *target,
1819               const struct user_regset *regset,
1820               unsigned int pos, unsigned int count,
1821               const void *kbuf, const void __user *ubuf)
1822{
1823        struct regset_getset info = { .target = target, .regset = regset,
1824                                 .pos = pos, .count = count,
1825                                 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1826                                 .ret = 0 };
1827
1828        if (target == current)
1829                unw_init_running(call, &info);
1830        else {
1831                struct unw_frame_info ufi;
1832                memset(&ufi, 0, sizeof(ufi));
1833                unw_init_from_blocked_task(&ufi, target);
1834                (*call)(&ufi, &info);
1835        }
1836
1837        return info.ret;
1838}
1839
1840static int
1841gpregs_get(struct task_struct *target,
1842           const struct user_regset *regset,
1843           unsigned int pos, unsigned int count,
1844           void *kbuf, void __user *ubuf)
1845{
1846        return do_regset_call(do_gpregs_get, target, regset, pos, count,
1847                kbuf, ubuf);
1848}
1849
1850static int gpregs_set(struct task_struct *target,
1851                const struct user_regset *regset,
1852                unsigned int pos, unsigned int count,
1853                const void *kbuf, const void __user *ubuf)
1854{
1855        return do_regset_call(do_gpregs_set, target, regset, pos, count,
1856                kbuf, ubuf);
1857}
1858
1859static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1860{
1861        do_sync_rbs(info, ia64_sync_user_rbs);
1862}
1863
1864/*
1865 * This is called to write back the register backing store.
1866 * ptrace does this before it stops, so that a tracer reading the user
1867 * memory after the thread stops will get the current register data.
1868 */
1869static int
1870gpregs_writeback(struct task_struct *target,
1871                 const struct user_regset *regset,
1872                 int now)
1873{
1874        if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1875                return 0;
1876        set_notify_resume(target);
1877        return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1878                NULL, NULL);
1879}
1880
1881static int
1882fpregs_active(struct task_struct *target, const struct user_regset *regset)
1883{
1884        return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1885}
1886
1887static int fpregs_get(struct task_struct *target,
1888                const struct user_regset *regset,
1889                unsigned int pos, unsigned int count,
1890                void *kbuf, void __user *ubuf)
1891{
1892        return do_regset_call(do_fpregs_get, target, regset, pos, count,
1893                kbuf, ubuf);
1894}
1895
1896static int fpregs_set(struct task_struct *target,
1897                const struct user_regset *regset,
1898                unsigned int pos, unsigned int count,
1899                const void *kbuf, const void __user *ubuf)
1900{
1901        return do_regset_call(do_fpregs_set, target, regset, pos, count,
1902                kbuf, ubuf);
1903}
1904
1905static int
1906access_uarea(struct task_struct *child, unsigned long addr,
1907              unsigned long *data, int write_access)
1908{
1909        unsigned int pos = -1; /* an invalid value */
1910        int ret;
1911        unsigned long *ptr, regnum;
1912
1913        if ((addr & 0x7) != 0) {
1914                dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1915                return -1;
1916        }
1917        if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1918                (addr >= PT_R7 + 8 && addr < PT_B1) ||
1919                (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1920                (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1921                dprintk("ptrace: rejecting access to register "
1922                                        "address 0x%lx\n", addr);
1923                return -1;
1924        }
1925
1926        switch (addr) {
1927        case PT_F32 ... (PT_F127 + 15):
1928                pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1929                break;
1930        case PT_F2 ... (PT_F5 + 15):
1931                pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1932                break;
1933        case PT_F10 ... (PT_F31 + 15):
1934                pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1935                break;
1936        case PT_F6 ... (PT_F9 + 15):
1937                pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1938                break;
1939        }
1940
1941        if (pos != -1) {
1942                if (write_access)
1943                        ret = fpregs_set(child, NULL, pos,
1944                                sizeof(unsigned long), data, NULL);
1945                else
1946                        ret = fpregs_get(child, NULL, pos,
1947                                sizeof(unsigned long), data, NULL);
1948                if (ret != 0)
1949                        return -1;
1950                return 0;
1951        }
1952
1953        switch (addr) {
1954        case PT_NAT_BITS:
1955                pos = ELF_NAT_OFFSET;
1956                break;
1957        case PT_R4 ... PT_R7:
1958                pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1959                break;
1960        case PT_B1 ... PT_B5:
1961                pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1962                break;
1963        case PT_AR_EC:
1964                pos = ELF_AR_EC_OFFSET;
1965                break;
1966        case PT_AR_LC:
1967                pos = ELF_AR_LC_OFFSET;
1968                break;
1969        case PT_CR_IPSR:
1970                pos = ELF_CR_IPSR_OFFSET;
1971                break;
1972        case PT_CR_IIP:
1973                pos = ELF_CR_IIP_OFFSET;
1974                break;
1975        case PT_CFM:
1976                pos = ELF_CFM_OFFSET;
1977                break;
1978        case PT_AR_UNAT:
1979                pos = ELF_AR_UNAT_OFFSET;
1980                break;
1981        case PT_AR_PFS:
1982                pos = ELF_AR_PFS_OFFSET;
1983                break;
1984        case PT_AR_RSC:
1985                pos = ELF_AR_RSC_OFFSET;
1986                break;
1987        case PT_AR_RNAT:
1988                pos = ELF_AR_RNAT_OFFSET;
1989                break;
1990        case PT_AR_BSPSTORE:
1991                pos = ELF_AR_BSPSTORE_OFFSET;
1992                break;
1993        case PT_PR:
1994                pos = ELF_PR_OFFSET;
1995                break;
1996        case PT_B6:
1997                pos = ELF_BR_OFFSET(6);
1998                break;
1999        case PT_AR_BSP:
2000                pos = ELF_AR_BSP_OFFSET;
2001                break;
2002        case PT_R1 ... PT_R3:
2003                pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2004                break;
2005        case PT_R12 ... PT_R15:
2006                pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2007                break;
2008        case PT_R8 ... PT_R11:
2009                pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2010                break;
2011        case PT_R16 ... PT_R31:
2012                pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2013                break;
2014        case PT_AR_CCV:
2015                pos = ELF_AR_CCV_OFFSET;
2016                break;
2017        case PT_AR_FPSR:
2018                pos = ELF_AR_FPSR_OFFSET;
2019                break;
2020        case PT_B0:
2021                pos = ELF_BR_OFFSET(0);
2022                break;
2023        case PT_B7:
2024                pos = ELF_BR_OFFSET(7);
2025                break;
2026        case PT_AR_CSD:
2027                pos = ELF_AR_CSD_OFFSET;
2028                break;
2029        case PT_AR_SSD:
2030                pos = ELF_AR_SSD_OFFSET;
2031                break;
2032        }
2033
2034        if (pos != -1) {
2035                if (write_access)
2036                        ret = gpregs_set(child, NULL, pos,
2037                                sizeof(unsigned long), data, NULL);
2038                else
2039                        ret = gpregs_get(child, NULL, pos,
2040                                sizeof(unsigned long), data, NULL);
2041                if (ret != 0)
2042                        return -1;
2043                return 0;
2044        }
2045
2046        /* access debug registers */
2047        if (addr >= PT_IBR) {
2048                regnum = (addr - PT_IBR) >> 3;
2049                ptr = &child->thread.ibr[0];
2050        } else {
2051                regnum = (addr - PT_DBR) >> 3;
2052                ptr = &child->thread.dbr[0];
2053        }
2054
2055        if (regnum >= 8) {
2056                dprintk("ptrace: rejecting access to register "
2057                                "address 0x%lx\n", addr);
2058                return -1;
2059        }
2060#ifdef CONFIG_PERFMON
2061        /*
2062         * Check if debug registers are used by perfmon. This
2063         * test must be done once we know that we can do the
2064         * operation, i.e. the arguments are all valid, but
2065         * before we start modifying the state.
2066         *
2067         * Perfmon needs to keep a count of how many processes
2068         * are trying to modify the debug registers for system
2069         * wide monitoring sessions.
2070         *
2071         * We also include read access here, because they may
2072         * cause the PMU-installed debug register state
2073         * (dbr[], ibr[]) to be reset. The two arrays are also
2074         * used by perfmon, but we do not use
2075         * IA64_THREAD_DBG_VALID. The registers are restored
2076         * by the PMU context switch code.
2077         */
2078        if (pfm_use_debug_registers(child))
2079                return -1;
2080#endif
2081
2082        if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2083                child->thread.flags |= IA64_THREAD_DBG_VALID;
2084                memset(child->thread.dbr, 0,
2085                                sizeof(child->thread.dbr));
2086                memset(child->thread.ibr, 0,
2087                                sizeof(child->thread.ibr));
2088        }
2089
2090        ptr += regnum;
2091
2092        if ((regnum & 1) && write_access) {
2093                /* don't let the user set kernel-level breakpoints: */
2094                *ptr = *data & ~(7UL << 56);
2095                return 0;
2096        }
2097        if (write_access)
2098                *ptr = *data;
2099        else
2100                *data = *ptr;
2101        return 0;
2102}
2103
2104static const struct user_regset native_regsets[] = {
2105        {
2106                .core_note_type = NT_PRSTATUS,
2107                .n = ELF_NGREG,
2108                .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2109                .get = gpregs_get, .set = gpregs_set,
2110                .writeback = gpregs_writeback
2111        },
2112        {
2113                .core_note_type = NT_PRFPREG,
2114                .n = ELF_NFPREG,
2115                .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2116                .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2117        },
2118};
2119
2120static const struct user_regset_view user_ia64_view = {
2121        .name = "ia64",
2122        .e_machine = EM_IA_64,
2123        .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2124};
2125
2126const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2127{
2128        return &user_ia64_view;
2129}
2130
2131struct syscall_get_set_args {
2132        unsigned int i;
2133        unsigned int n;
2134        unsigned long *args;
2135        struct pt_regs *regs;
2136        int rw;
2137};
2138
2139static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2140{
2141        struct syscall_get_set_args *args = data;
2142        struct pt_regs *pt = args->regs;
2143        unsigned long *krbs, cfm, ndirty;
2144        int i, count;
2145
2146        if (unw_unwind_to_user(info) < 0)
2147                return;
2148
2149        cfm = pt->cr_ifs;
2150        krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2151        ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2152
2153        count = 0;
2154        if (in_syscall(pt))
2155                count = min_t(int, args->n, cfm & 0x7f);
2156
2157        for (i = 0; i < count; i++) {
2158                if (args->rw)
2159                        *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2160                                args->args[i];
2161                else
2162                        args->args[i] = *ia64_rse_skip_regs(krbs,
2163                                ndirty + i + args->i);
2164        }
2165
2166        if (!args->rw) {
2167                while (i < args->n) {
2168                        args->args[i] = 0;
2169                        i++;
2170                }
2171        }
2172}
2173
2174void ia64_syscall_get_set_arguments(struct task_struct *task,
2175        struct pt_regs *regs, unsigned int i, unsigned int n,
2176        unsigned long *args, int rw)
2177{
2178        struct syscall_get_set_args data = {
2179                .i = i,
2180                .n = n,
2181                .args = args,
2182                .regs = regs,
2183                .rw = rw,
2184        };
2185
2186        if (task == current)
2187                unw_init_running(syscall_get_set_args_cb, &data);
2188        else {
2189                struct unw_frame_info ufi;
2190                memset(&ufi, 0, sizeof(ufi));
2191                unw_init_from_blocked_task(&ufi, task);
2192                syscall_get_set_args_cb(&ufi, &data);
2193        }
2194}
2195