linux/arch/mips/kernel/smtc.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or
   3 * modify it under the terms of the GNU General Public License
   4 * as published by the Free Software Foundation; either version 2
   5 * of the License, or (at your option) any later version.
   6 *
   7 * This program is distributed in the hope that it will be useful,
   8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  10 * GNU General Public License for more details.
  11 *
  12 * You should have received a copy of the GNU General Public License
  13 * along with this program; if not, write to the Free Software
  14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  15 *
  16 * Copyright (C) 2004 Mips Technologies, Inc
  17 * Copyright (C) 2008 Kevin D. Kissell
  18 */
  19
  20#include <linux/clockchips.h>
  21#include <linux/kernel.h>
  22#include <linux/sched.h>
  23#include <linux/smp.h>
  24#include <linux/cpumask.h>
  25#include <linux/interrupt.h>
  26#include <linux/kernel_stat.h>
  27#include <linux/module.h>
  28#include <linux/ftrace.h>
  29#include <linux/slab.h>
  30
  31#include <asm/cpu.h>
  32#include <asm/processor.h>
  33#include <linux/atomic.h>
  34#include <asm/hardirq.h>
  35#include <asm/hazards.h>
  36#include <asm/irq.h>
  37#include <asm/mmu_context.h>
  38#include <asm/mipsregs.h>
  39#include <asm/cacheflush.h>
  40#include <asm/time.h>
  41#include <asm/addrspace.h>
  42#include <asm/smtc.h>
  43#include <asm/smtc_proc.h>
  44
  45/*
  46 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
  47 * in do_IRQ. These are passed in setup_irq_smtc() and stored
  48 * in this table.
  49 */
  50unsigned long irq_hwmask[NR_IRQS];
  51
  52#define LOCK_MT_PRA() \
  53        local_irq_save(flags); \
  54        mtflags = dmt()
  55
  56#define UNLOCK_MT_PRA() \
  57        emt(mtflags); \
  58        local_irq_restore(flags)
  59
  60#define LOCK_CORE_PRA() \
  61        local_irq_save(flags); \
  62        mtflags = dvpe()
  63
  64#define UNLOCK_CORE_PRA() \
  65        evpe(mtflags); \
  66        local_irq_restore(flags)
  67
  68/*
  69 * Data structures purely associated with SMTC parallelism
  70 */
  71
  72
  73/*
  74 * Table for tracking ASIDs whose lifetime is prolonged.
  75 */
  76
  77asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
  78
  79/*
  80 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
  81 */
  82
  83#define IPIBUF_PER_CPU 4
  84
  85struct smtc_ipi_q IPIQ[NR_CPUS];
  86static struct smtc_ipi_q freeIPIq;
  87
  88
  89/*
  90 * Number of FPU contexts for each VPE
  91 */
  92
  93static int smtc_nconf1[MAX_SMTC_VPES];
  94
  95
  96/* Forward declarations */
  97
  98void ipi_decode(struct smtc_ipi *);
  99static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
 100static void setup_cross_vpe_interrupts(unsigned int nvpe);
 101void init_smtc_stats(void);
 102
 103/* Global SMTC Status */
 104
 105unsigned int smtc_status;
 106
 107/* Boot command line configuration overrides */
 108
 109static int vpe0limit;
 110static int ipibuffers;
 111static int nostlb;
 112static int asidmask;
 113unsigned long smtc_asid_mask = 0xff;
 114
 115static int __init vpe0tcs(char *str)
 116{
 117        get_option(&str, &vpe0limit);
 118
 119        return 1;
 120}
 121
 122static int __init ipibufs(char *str)
 123{
 124        get_option(&str, &ipibuffers);
 125        return 1;
 126}
 127
 128static int __init stlb_disable(char *s)
 129{
 130        nostlb = 1;
 131        return 1;
 132}
 133
 134static int __init asidmask_set(char *str)
 135{
 136        get_option(&str, &asidmask);
 137        switch (asidmask) {
 138        case 0x1:
 139        case 0x3:
 140        case 0x7:
 141        case 0xf:
 142        case 0x1f:
 143        case 0x3f:
 144        case 0x7f:
 145        case 0xff:
 146                smtc_asid_mask = (unsigned long)asidmask;
 147                break;
 148        default:
 149                printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
 150        }
 151        return 1;
 152}
 153
 154__setup("vpe0tcs=", vpe0tcs);
 155__setup("ipibufs=", ipibufs);
 156__setup("nostlb", stlb_disable);
 157__setup("asidmask=", asidmask_set);
 158
 159#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 160
 161static int hang_trig;
 162
 163static int __init hangtrig_enable(char *s)
 164{
 165        hang_trig = 1;
 166        return 1;
 167}
 168
 169
 170__setup("hangtrig", hangtrig_enable);
 171
 172#define DEFAULT_BLOCKED_IPI_LIMIT 32
 173
 174static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
 175
 176static int __init tintq(char *str)
 177{
 178        get_option(&str, &timerq_limit);
 179        return 1;
 180}
 181
 182__setup("tintq=", tintq);
 183
 184static int imstuckcount[MAX_SMTC_VPES][8];
 185/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
 186static int vpemask[MAX_SMTC_VPES][8] = {
 187        {0, 0, 1, 0, 0, 0, 0, 1},
 188        {0, 0, 0, 0, 0, 0, 0, 1}
 189};
 190int tcnoprog[NR_CPUS];
 191static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
 192static int clock_hang_reported[NR_CPUS];
 193
 194#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 195
 196/*
 197 * Configure shared TLB - VPC configuration bit must be set by caller
 198 */
 199
 200static void smtc_configure_tlb(void)
 201{
 202        int i, tlbsiz, vpes;
 203        unsigned long mvpconf0;
 204        unsigned long config1val;
 205
 206        /* Set up ASID preservation table */
 207        for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
 208            for(i = 0; i < MAX_SMTC_ASIDS; i++) {
 209                smtc_live_asid[vpes][i] = 0;
 210            }
 211        }
 212        mvpconf0 = read_c0_mvpconf0();
 213
 214        if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
 215                        >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
 216            /* If we have multiple VPEs, try to share the TLB */
 217            if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
 218                /*
 219                 * If TLB sizing is programmable, shared TLB
 220                 * size is the total available complement.
 221                 * Otherwise, we have to take the sum of all
 222                 * static VPE TLB entries.
 223                 */
 224                if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
 225                                >> MVPCONF0_PTLBE_SHIFT)) == 0) {
 226                    /*
 227                     * If there's more than one VPE, there had better
 228                     * be more than one TC, because we need one to bind
 229                     * to each VPE in turn to be able to read
 230                     * its configuration state!
 231                     */
 232                    settc(1);
 233                    /* Stop the TC from doing anything foolish */
 234                    write_tc_c0_tchalt(TCHALT_H);
 235                    mips_ihb();
 236                    /* No need to un-Halt - that happens later anyway */
 237                    for (i=0; i < vpes; i++) {
 238                        write_tc_c0_tcbind(i);
 239                        /*
 240                         * To be 100% sure we're really getting the right
 241                         * information, we exit the configuration state
 242                         * and do an IHB after each rebinding.
 243                         */
 244                        write_c0_mvpcontrol(
 245                                read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 246                        mips_ihb();
 247                        /*
 248                         * Only count if the MMU Type indicated is TLB
 249                         */
 250                        if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
 251                                config1val = read_vpe_c0_config1();
 252                                tlbsiz += ((config1val >> 25) & 0x3f) + 1;
 253                        }
 254
 255                        /* Put core back in configuration state */
 256                        write_c0_mvpcontrol(
 257                                read_c0_mvpcontrol() | MVPCONTROL_VPC );
 258                        mips_ihb();
 259                    }
 260                }
 261                write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
 262                ehb();
 263
 264                /*
 265                 * Setup kernel data structures to use software total,
 266                 * rather than read the per-VPE Config1 value. The values
 267                 * for "CPU 0" gets copied to all the other CPUs as part
 268                 * of their initialization in smtc_cpu_setup().
 269                 */
 270
 271                /* MIPS32 limits TLB indices to 64 */
 272                if (tlbsiz > 64)
 273                        tlbsiz = 64;
 274                cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
 275                smtc_status |= SMTC_TLB_SHARED;
 276                local_flush_tlb_all();
 277
 278                printk("TLB of %d entry pairs shared by %d VPEs\n",
 279                        tlbsiz, vpes);
 280            } else {
 281                printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
 282            }
 283        }
 284}
 285
 286
 287/*
 288 * Incrementally build the CPU map out of constituent MIPS MT cores,
 289 * using the specified available VPEs and TCs.  Plaform code needs
 290 * to ensure that each MIPS MT core invokes this routine on reset,
 291 * one at a time(!).
 292 *
 293 * This version of the build_cpu_map and prepare_cpus routines assumes
 294 * that *all* TCs of a MIPS MT core will be used for Linux, and that
 295 * they will be spread across *all* available VPEs (to minimise the
 296 * loss of efficiency due to exception service serialization).
 297 * An improved version would pick up configuration information and
 298 * possibly leave some TCs/VPEs as "slave" processors.
 299 *
 300 * Use c0_MVPConf0 to find out how many TCs are available, setting up
 301 * cpu_possible_mask and the logical/physical mappings.
 302 */
 303
 304int __init smtc_build_cpu_map(int start_cpu_slot)
 305{
 306        int i, ntcs;
 307
 308        /*
 309         * The CPU map isn't actually used for anything at this point,
 310         * so it's not clear what else we should do apart from set
 311         * everything up so that "logical" = "physical".
 312         */
 313        ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 314        for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
 315                set_cpu_possible(i, true);
 316                __cpu_number_map[i] = i;
 317                __cpu_logical_map[i] = i;
 318        }
 319#ifdef CONFIG_MIPS_MT_FPAFF
 320        /* Initialize map of CPUs with FPUs */
 321        cpus_clear(mt_fpu_cpumask);
 322#endif
 323
 324        /* One of those TC's is the one booting, and not a secondary... */
 325        printk("%i available secondary CPU TC(s)\n", i - 1);
 326
 327        return i;
 328}
 329
 330/*
 331 * Common setup before any secondaries are started
 332 * Make sure all CPUs are in a sensible state before we boot any of the
 333 * secondaries.
 334 *
 335 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
 336 * as possible across the available VPEs.
 337 */
 338
 339static void smtc_tc_setup(int vpe, int tc, int cpu)
 340{
 341        static int cp1contexts[MAX_SMTC_VPES];
 342
 343        /*
 344         * Make a local copy of the available FPU contexts in order
 345         * to keep track of TCs that can have one.
 346         */
 347        if (tc == 1)
 348        {
 349                /*
 350                 * FIXME: Multi-core SMTC hasn't been tested and the
 351                 *        maximum number of VPEs may change.
 352                 */
 353                cp1contexts[0] = smtc_nconf1[0] - 1;
 354                cp1contexts[1] = smtc_nconf1[1];
 355        }
 356
 357        settc(tc);
 358        write_tc_c0_tchalt(TCHALT_H);
 359        mips_ihb();
 360        write_tc_c0_tcstatus((read_tc_c0_tcstatus()
 361                        & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
 362                        | TCSTATUS_A);
 363        /*
 364         * TCContext gets an offset from the base of the IPIQ array
 365         * to be used in low-level code to detect the presence of
 366         * an active IPI queue.
 367         */
 368        write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
 369
 370        /* Bind TC to VPE. */
 371        write_tc_c0_tcbind(vpe);
 372
 373        /* In general, all TCs should have the same cpu_data indications. */
 374        memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
 375
 376        /* Check to see if there is a FPU context available for this TC. */
 377        if (!cp1contexts[vpe])
 378                cpu_data[cpu].options &= ~MIPS_CPU_FPU;
 379        else
 380                cp1contexts[vpe]--;
 381
 382        /* Store the TC and VPE into the cpu_data structure. */
 383        cpu_data[cpu].vpe_id = vpe;
 384        cpu_data[cpu].tc_id = tc;
 385
 386        /* FIXME: Multi-core SMTC hasn't been tested, but be prepared. */
 387        cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
 388}
 389
 390/*
 391 * Tweak to get Count registers synced as closely as possible. The
 392 * value seems good for 34K-class cores.
 393 */
 394
 395#define CP0_SKEW 8
 396
 397void smtc_prepare_cpus(int cpus)
 398{
 399        int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
 400        unsigned long flags;
 401        unsigned long val;
 402        int nipi;
 403        struct smtc_ipi *pipi;
 404
 405        /* disable interrupts so we can disable MT */
 406        local_irq_save(flags);
 407        /* disable MT so we can configure */
 408        dvpe();
 409        dmt();
 410
 411        spin_lock_init(&freeIPIq.lock);
 412
 413        /*
 414         * We probably don't have as many VPEs as we do SMP "CPUs",
 415         * but it's possible - and in any case we'll never use more!
 416         */
 417        for (i=0; i<NR_CPUS; i++) {
 418                IPIQ[i].head = IPIQ[i].tail = NULL;
 419                spin_lock_init(&IPIQ[i].lock);
 420                IPIQ[i].depth = 0;
 421                IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
 422        }
 423
 424        /* cpu_data index starts at zero */
 425        cpu = 0;
 426        cpu_data[cpu].vpe_id = 0;
 427        cpu_data[cpu].tc_id = 0;
 428        cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
 429        cpu++;
 430
 431        /* Report on boot-time options */
 432        mips_mt_set_cpuoptions();
 433        if (vpelimit > 0)
 434                printk("Limit of %d VPEs set\n", vpelimit);
 435        if (tclimit > 0)
 436                printk("Limit of %d TCs set\n", tclimit);
 437        if (nostlb) {
 438                printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
 439        }
 440        if (asidmask)
 441                printk("ASID mask value override to 0x%x\n", asidmask);
 442
 443        /* Temporary */
 444#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 445        if (hang_trig)
 446                printk("Logic Analyser Trigger on suspected TC hang\n");
 447#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 448
 449        /* Put MVPE's into 'configuration state' */
 450        write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
 451
 452        val = read_c0_mvpconf0();
 453        nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
 454        if (vpelimit > 0 && nvpe > vpelimit)
 455                nvpe = vpelimit;
 456        ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 457        if (ntc > NR_CPUS)
 458                ntc = NR_CPUS;
 459        if (tclimit > 0 && ntc > tclimit)
 460                ntc = tclimit;
 461        slop = ntc % nvpe;
 462        for (i = 0; i < nvpe; i++) {
 463                tcpervpe[i] = ntc / nvpe;
 464                if (slop) {
 465                        if((slop - i) > 0) tcpervpe[i]++;
 466                }
 467        }
 468        /* Handle command line override for VPE0 */
 469        if (vpe0limit > ntc) vpe0limit = ntc;
 470        if (vpe0limit > 0) {
 471                int slopslop;
 472                if (vpe0limit < tcpervpe[0]) {
 473                    /* Reducing TC count - distribute to others */
 474                    slop = tcpervpe[0] - vpe0limit;
 475                    slopslop = slop % (nvpe - 1);
 476                    tcpervpe[0] = vpe0limit;
 477                    for (i = 1; i < nvpe; i++) {
 478                        tcpervpe[i] += slop / (nvpe - 1);
 479                        if(slopslop && ((slopslop - (i - 1) > 0)))
 480                                tcpervpe[i]++;
 481                    }
 482                } else if (vpe0limit > tcpervpe[0]) {
 483                    /* Increasing TC count - steal from others */
 484                    slop = vpe0limit - tcpervpe[0];
 485                    slopslop = slop % (nvpe - 1);
 486                    tcpervpe[0] = vpe0limit;
 487                    for (i = 1; i < nvpe; i++) {
 488                        tcpervpe[i] -= slop / (nvpe - 1);
 489                        if(slopslop && ((slopslop - (i - 1) > 0)))
 490                                tcpervpe[i]--;
 491                    }
 492                }
 493        }
 494
 495        /* Set up shared TLB */
 496        smtc_configure_tlb();
 497
 498        for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
 499                /* Get number of CP1 contexts for each VPE. */
 500                if (tc == 0)
 501                {
 502                        /*
 503                         * Do not call settc() for TC0 or the FPU context
 504                         * value will be incorrect. Besides, we know that
 505                         * we are TC0 anyway.
 506                         */
 507                        smtc_nconf1[0] = ((read_vpe_c0_vpeconf1() &
 508                                VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
 509                        if (nvpe == 2)
 510                        {
 511                                settc(1);
 512                                smtc_nconf1[1] = ((read_vpe_c0_vpeconf1() &
 513                                        VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
 514                                settc(0);
 515                        }
 516                }
 517                if (tcpervpe[vpe] == 0)
 518                        continue;
 519                if (vpe != 0)
 520                        printk(", ");
 521                printk("VPE %d: TC", vpe);
 522                for (i = 0; i < tcpervpe[vpe]; i++) {
 523                        /*
 524                         * TC 0 is bound to VPE 0 at reset,
 525                         * and is presumably executing this
 526                         * code.  Leave it alone!
 527                         */
 528                        if (tc != 0) {
 529                                smtc_tc_setup(vpe, tc, cpu);
 530                                if (vpe != 0) {
 531                                        /*
 532                                         * Set MVP bit (possibly again).  Do it
 533                                         * here to catch CPUs that have no TCs
 534                                         * bound to the VPE at reset.  In that
 535                                         * case, a TC must be bound to the VPE
 536                                         * before we can set VPEControl[MVP]
 537                                         */
 538                                        write_vpe_c0_vpeconf0(
 539                                                read_vpe_c0_vpeconf0() |
 540                                                VPECONF0_MVP);
 541                                }
 542                                cpu++;
 543                        }
 544                        printk(" %d", tc);
 545                        tc++;
 546                }
 547                if (vpe != 0) {
 548                        /*
 549                         * Allow this VPE to control others.
 550                         */
 551                        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
 552                                              VPECONF0_MVP);
 553
 554                        /*
 555                         * Clear any stale software interrupts from VPE's Cause
 556                         */
 557                        write_vpe_c0_cause(0);
 558
 559                        /*
 560                         * Clear ERL/EXL of VPEs other than 0
 561                         * and set restricted interrupt enable/mask.
 562                         */
 563                        write_vpe_c0_status((read_vpe_c0_status()
 564                                & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
 565                                | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
 566                                | ST0_IE));
 567                        /*
 568                         * set config to be the same as vpe0,
 569                         *  particularly kseg0 coherency alg
 570                         */
 571                        write_vpe_c0_config(read_c0_config());
 572                        /* Clear any pending timer interrupt */
 573                        write_vpe_c0_compare(0);
 574                        /* Propagate Config7 */
 575                        write_vpe_c0_config7(read_c0_config7());
 576                        write_vpe_c0_count(read_c0_count() + CP0_SKEW);
 577                        ehb();
 578                }
 579                /* enable multi-threading within VPE */
 580                write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
 581                /* enable the VPE */
 582                write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
 583        }
 584
 585        /*
 586         * Pull any physically present but unused TCs out of circulation.
 587         */
 588        while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
 589                set_cpu_possible(tc, false);
 590                set_cpu_present(tc, false);
 591                tc++;
 592        }
 593
 594        /* release config state */
 595        write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 596
 597        printk("\n");
 598
 599        /* Set up coprocessor affinity CPU mask(s) */
 600
 601#ifdef CONFIG_MIPS_MT_FPAFF
 602        for (tc = 0; tc < ntc; tc++) {
 603                if (cpu_data[tc].options & MIPS_CPU_FPU)
 604                        cpu_set(tc, mt_fpu_cpumask);
 605        }
 606#endif
 607
 608        /* set up ipi interrupts... */
 609
 610        /* If we have multiple VPEs running, set up the cross-VPE interrupt */
 611
 612        setup_cross_vpe_interrupts(nvpe);
 613
 614        /* Set up queue of free IPI "messages". */
 615        nipi = NR_CPUS * IPIBUF_PER_CPU;
 616        if (ipibuffers > 0)
 617                nipi = ipibuffers;
 618
 619        pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
 620        if (pipi == NULL)
 621                panic("kmalloc of IPI message buffers failed");
 622        else
 623                printk("IPI buffer pool of %d buffers\n", nipi);
 624        for (i = 0; i < nipi; i++) {
 625                smtc_ipi_nq(&freeIPIq, pipi);
 626                pipi++;
 627        }
 628
 629        /* Arm multithreading and enable other VPEs - but all TCs are Halted */
 630        emt(EMT_ENABLE);
 631        evpe(EVPE_ENABLE);
 632        local_irq_restore(flags);
 633        /* Initialize SMTC /proc statistics/diagnostics */
 634        init_smtc_stats();
 635}
 636
 637
 638/*
 639 * Setup the PC, SP, and GP of a secondary processor and start it
 640 * running!
 641 * smp_bootstrap is the place to resume from
 642 * __KSTK_TOS(idle) is apparently the stack pointer
 643 * (unsigned long)idle->thread_info the gp
 644 *
 645 */
 646void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
 647{
 648        extern u32 kernelsp[NR_CPUS];
 649        unsigned long flags;
 650        int mtflags;
 651
 652        LOCK_MT_PRA();
 653        if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 654                dvpe();
 655        }
 656        settc(cpu_data[cpu].tc_id);
 657
 658        /* pc */
 659        write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
 660
 661        /* stack pointer */
 662        kernelsp[cpu] = __KSTK_TOS(idle);
 663        write_tc_gpr_sp(__KSTK_TOS(idle));
 664
 665        /* global pointer */
 666        write_tc_gpr_gp((unsigned long)task_thread_info(idle));
 667
 668        smtc_status |= SMTC_MTC_ACTIVE;
 669        write_tc_c0_tchalt(0);
 670        if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 671                evpe(EVPE_ENABLE);
 672        }
 673        UNLOCK_MT_PRA();
 674}
 675
 676void smtc_init_secondary(void)
 677{
 678}
 679
 680void smtc_smp_finish(void)
 681{
 682        int cpu = smp_processor_id();
 683
 684        /*
 685         * Lowest-numbered CPU per VPE starts a clock tick.
 686         * Like per_cpu_trap_init() hack, this assumes that
 687         * SMTC init code assigns TCs consdecutively and
 688         * in ascending order across available VPEs.
 689         */
 690        if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
 691                write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
 692
 693        local_irq_enable();
 694
 695        printk("TC %d going on-line as CPU %d\n",
 696                cpu_data[smp_processor_id()].tc_id, smp_processor_id());
 697}
 698
 699void smtc_cpus_done(void)
 700{
 701}
 702
 703/*
 704 * Support for SMTC-optimized driver IRQ registration
 705 */
 706
 707/*
 708 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 709 * in do_IRQ. These are passed in setup_irq_smtc() and stored
 710 * in this table.
 711 */
 712
 713int setup_irq_smtc(unsigned int irq, struct irqaction * new,
 714                        unsigned long hwmask)
 715{
 716#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 717        unsigned int vpe = current_cpu_data.vpe_id;
 718
 719        vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
 720#endif
 721        irq_hwmask[irq] = hwmask;
 722
 723        return setup_irq(irq, new);
 724}
 725
 726#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
 727/*
 728 * Support for IRQ affinity to TCs
 729 */
 730
 731void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
 732{
 733        /*
 734         * If a "fast path" cache of quickly decodable affinity state
 735         * is maintained, this is where it gets done, on a call up
 736         * from the platform affinity code.
 737         */
 738}
 739
 740void smtc_forward_irq(struct irq_data *d)
 741{
 742        unsigned int irq = d->irq;
 743        int target;
 744
 745        /*
 746         * OK wise guy, now figure out how to get the IRQ
 747         * to be serviced on an authorized "CPU".
 748         *
 749         * Ideally, to handle the situation where an IRQ has multiple
 750         * eligible CPUS, we would maintain state per IRQ that would
 751         * allow a fair distribution of service requests.  Since the
 752         * expected use model is any-or-only-one, for simplicity
 753         * and efficiency, we just pick the easiest one to find.
 754         */
 755
 756        target = cpumask_first(d->affinity);
 757
 758        /*
 759         * We depend on the platform code to have correctly processed
 760         * IRQ affinity change requests to ensure that the IRQ affinity
 761         * mask has been purged of bits corresponding to nonexistent and
 762         * offline "CPUs", and to TCs bound to VPEs other than the VPE
 763         * connected to the physical interrupt input for the interrupt
 764         * in question.  Otherwise we have a nasty problem with interrupt
 765         * mask management.  This is best handled in non-performance-critical
 766         * platform IRQ affinity setting code,  to minimize interrupt-time
 767         * checks.
 768         */
 769
 770        /* If no one is eligible, service locally */
 771        if (target >= NR_CPUS)
 772                do_IRQ_no_affinity(irq);
 773        else
 774                smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
 775}
 776
 777#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
 778
 779/*
 780 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
 781 * Within a VPE one TC can interrupt another by different approaches.
 782 * The easiest to get right would probably be to make all TCs except
 783 * the target IXMT and set a software interrupt, but an IXMT-based
 784 * scheme requires that a handler must run before a new IPI could
 785 * be sent, which would break the "broadcast" loops in MIPS MT.
 786 * A more gonzo approach within a VPE is to halt the TC, extract
 787 * its Restart, Status, and a couple of GPRs, and program the Restart
 788 * address to emulate an interrupt.
 789 *
 790 * Within a VPE, one can be confident that the target TC isn't in
 791 * a critical EXL state when halted, since the write to the Halt
 792 * register could not have issued on the writing thread if the
 793 * halting thread had EXL set. So k0 and k1 of the target TC
 794 * can be used by the injection code.  Across VPEs, one can't
 795 * be certain that the target TC isn't in a critical exception
 796 * state. So we try a two-step process of sending a software
 797 * interrupt to the target VPE, which either handles the event
 798 * itself (if it was the target) or injects the event within
 799 * the VPE.
 800 */
 801
 802static void smtc_ipi_qdump(void)
 803{
 804        int i;
 805        struct smtc_ipi *temp;
 806
 807        for (i = 0; i < NR_CPUS ;i++) {
 808                pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
 809                        i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
 810                        IPIQ[i].depth);
 811                temp = IPIQ[i].head;
 812
 813                while (temp != IPIQ[i].tail) {
 814                        pr_debug("%d %d %d: ", temp->type, temp->dest,
 815                               (int)temp->arg);
 816#ifdef  SMTC_IPI_DEBUG
 817                    pr_debug("%u %lu\n", temp->sender, temp->stamp);
 818#else
 819                    pr_debug("\n");
 820#endif
 821                    temp = temp->flink;
 822                }
 823        }
 824}
 825
 826/*
 827 * The standard atomic.h primitives don't quite do what we want
 828 * here: We need an atomic add-and-return-previous-value (which
 829 * could be done with atomic_add_return and a decrement) and an
 830 * atomic set/zero-and-return-previous-value (which can't really
 831 * be done with the atomic.h primitives). And since this is
 832 * MIPS MT, we can assume that we have LL/SC.
 833 */
 834static inline int atomic_postincrement(atomic_t *v)
 835{
 836        unsigned long result;
 837
 838        unsigned long temp;
 839
 840        __asm__ __volatile__(
 841        "1:     ll      %0, %2                                  \n"
 842        "       addu    %1, %0, 1                               \n"
 843        "       sc      %1, %2                                  \n"
 844        "       beqz    %1, 1b                                  \n"
 845        __WEAK_LLSC_MB
 846        : "=&r" (result), "=&r" (temp), "=m" (v->counter)
 847        : "m" (v->counter)
 848        : "memory");
 849
 850        return result;
 851}
 852
 853void smtc_send_ipi(int cpu, int type, unsigned int action)
 854{
 855        int tcstatus;
 856        struct smtc_ipi *pipi;
 857        unsigned long flags;
 858        int mtflags;
 859        unsigned long tcrestart;
 860        extern void r4k_wait_irqoff(void), __pastwait(void);
 861        int set_resched_flag = (type == LINUX_SMP_IPI &&
 862                                action == SMP_RESCHEDULE_YOURSELF);
 863
 864        if (cpu == smp_processor_id()) {
 865                printk("Cannot Send IPI to self!\n");
 866                return;
 867        }
 868        if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
 869                return; /* There is a reschedule queued already */
 870
 871        /* Set up a descriptor, to be delivered either promptly or queued */
 872        pipi = smtc_ipi_dq(&freeIPIq);
 873        if (pipi == NULL) {
 874                bust_spinlocks(1);
 875                mips_mt_regdump(dvpe());
 876                panic("IPI Msg. Buffers Depleted");
 877        }
 878        pipi->type = type;
 879        pipi->arg = (void *)action;
 880        pipi->dest = cpu;
 881        if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 882                /* If not on same VPE, enqueue and send cross-VPE interrupt */
 883                IPIQ[cpu].resched_flag |= set_resched_flag;
 884                smtc_ipi_nq(&IPIQ[cpu], pipi);
 885                LOCK_CORE_PRA();
 886                settc(cpu_data[cpu].tc_id);
 887                write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
 888                UNLOCK_CORE_PRA();
 889        } else {
 890                /*
 891                 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
 892                 * since ASID shootdown on the other VPE may
 893                 * collide with this operation.
 894                 */
 895                LOCK_CORE_PRA();
 896                settc(cpu_data[cpu].tc_id);
 897                /* Halt the targeted TC */
 898                write_tc_c0_tchalt(TCHALT_H);
 899                mips_ihb();
 900
 901                /*
 902                 * Inspect TCStatus - if IXMT is set, we have to queue
 903                 * a message. Otherwise, we set up the "interrupt"
 904                 * of the other TC
 905                 */
 906                tcstatus = read_tc_c0_tcstatus();
 907
 908                if ((tcstatus & TCSTATUS_IXMT) != 0) {
 909                        /*
 910                         * If we're in the the irq-off version of the wait
 911                         * loop, we need to force exit from the wait and
 912                         * do a direct post of the IPI.
 913                         */
 914                        if (cpu_wait == r4k_wait_irqoff) {
 915                                tcrestart = read_tc_c0_tcrestart();
 916                                if (tcrestart >= (unsigned long)r4k_wait_irqoff
 917                                    && tcrestart < (unsigned long)__pastwait) {
 918                                        write_tc_c0_tcrestart(__pastwait);
 919                                        tcstatus &= ~TCSTATUS_IXMT;
 920                                        write_tc_c0_tcstatus(tcstatus);
 921                                        goto postdirect;
 922                                }
 923                        }
 924                        /*
 925                         * Otherwise we queue the message for the target TC
 926                         * to pick up when he does a local_irq_restore()
 927                         */
 928                        write_tc_c0_tchalt(0);
 929                        UNLOCK_CORE_PRA();
 930                        IPIQ[cpu].resched_flag |= set_resched_flag;
 931                        smtc_ipi_nq(&IPIQ[cpu], pipi);
 932                } else {
 933postdirect:
 934                        post_direct_ipi(cpu, pipi);
 935                        write_tc_c0_tchalt(0);
 936                        UNLOCK_CORE_PRA();
 937                }
 938        }
 939}
 940
 941/*
 942 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
 943 */
 944static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
 945{
 946        struct pt_regs *kstack;
 947        unsigned long tcstatus;
 948        unsigned long tcrestart;
 949        extern u32 kernelsp[NR_CPUS];
 950        extern void __smtc_ipi_vector(void);
 951//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
 952
 953        /* Extract Status, EPC from halted TC */
 954        tcstatus = read_tc_c0_tcstatus();
 955        tcrestart = read_tc_c0_tcrestart();
 956        /* If TCRestart indicates a WAIT instruction, advance the PC */
 957        if ((tcrestart & 0x80000000)
 958            && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
 959                tcrestart += 4;
 960        }
 961        /*
 962         * Save on TC's future kernel stack
 963         *
 964         * CU bit of Status is indicator that TC was
 965         * already running on a kernel stack...
 966         */
 967        if (tcstatus & ST0_CU0)  {
 968                /* Note that this "- 1" is pointer arithmetic */
 969                kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
 970        } else {
 971                kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
 972        }
 973
 974        kstack->cp0_epc = (long)tcrestart;
 975        /* Save TCStatus */
 976        kstack->cp0_tcstatus = tcstatus;
 977        /* Pass token of operation to be performed kernel stack pad area */
 978        kstack->pad0[4] = (unsigned long)pipi;
 979        /* Pass address of function to be called likewise */
 980        kstack->pad0[5] = (unsigned long)&ipi_decode;
 981        /* Set interrupt exempt and kernel mode */
 982        tcstatus |= TCSTATUS_IXMT;
 983        tcstatus &= ~TCSTATUS_TKSU;
 984        write_tc_c0_tcstatus(tcstatus);
 985        ehb();
 986        /* Set TC Restart address to be SMTC IPI vector */
 987        write_tc_c0_tcrestart(__smtc_ipi_vector);
 988}
 989
 990static void ipi_resched_interrupt(void)
 991{
 992        scheduler_ipi();
 993}
 994
 995static void ipi_call_interrupt(void)
 996{
 997        /* Invoke generic function invocation code in smp.c */
 998        smp_call_function_interrupt();
 999}
1000
1001DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
1002
1003static void __irq_entry smtc_clock_tick_interrupt(void)
1004{
1005        unsigned int cpu = smp_processor_id();
1006        struct clock_event_device *cd;
1007        int irq = MIPS_CPU_IRQ_BASE + 1;
1008
1009        irq_enter();
1010        kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
1011        cd = &per_cpu(mips_clockevent_device, cpu);
1012        cd->event_handler(cd);
1013        irq_exit();
1014}
1015
1016void ipi_decode(struct smtc_ipi *pipi)
1017{
1018        void *arg_copy = pipi->arg;
1019        int type_copy = pipi->type;
1020
1021        smtc_ipi_nq(&freeIPIq, pipi);
1022
1023        switch (type_copy) {
1024        case SMTC_CLOCK_TICK:
1025                smtc_clock_tick_interrupt();
1026                break;
1027
1028        case LINUX_SMP_IPI:
1029                switch ((int)arg_copy) {
1030                case SMP_RESCHEDULE_YOURSELF:
1031                        ipi_resched_interrupt();
1032                        break;
1033                case SMP_CALL_FUNCTION:
1034                        ipi_call_interrupt();
1035                        break;
1036                default:
1037                        printk("Impossible SMTC IPI Argument %p\n", arg_copy);
1038                        break;
1039                }
1040                break;
1041#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
1042        case IRQ_AFFINITY_IPI:
1043                /*
1044                 * Accept a "forwarded" interrupt that was initially
1045                 * taken by a TC who doesn't have affinity for the IRQ.
1046                 */
1047                do_IRQ_no_affinity((int)arg_copy);
1048                break;
1049#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
1050        default:
1051                printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
1052                break;
1053        }
1054}
1055
1056/*
1057 * Similar to smtc_ipi_replay(), but invoked from context restore,
1058 * so it reuses the current exception frame rather than set up a
1059 * new one with self_ipi.
1060 */
1061
1062void deferred_smtc_ipi(void)
1063{
1064        int cpu = smp_processor_id();
1065
1066        /*
1067         * Test is not atomic, but much faster than a dequeue,
1068         * and the vast majority of invocations will have a null queue.
1069         * If irq_disabled when this was called, then any IPIs queued
1070         * after we test last will be taken on the next irq_enable/restore.
1071         * If interrupts were enabled, then any IPIs added after the
1072         * last test will be taken directly.
1073         */
1074
1075        while (IPIQ[cpu].head != NULL) {
1076                struct smtc_ipi_q *q = &IPIQ[cpu];
1077                struct smtc_ipi *pipi;
1078                unsigned long flags;
1079
1080                /*
1081                 * It may be possible we'll come in with interrupts
1082                 * already enabled.
1083                 */
1084                local_irq_save(flags);
1085                spin_lock(&q->lock);
1086                pipi = __smtc_ipi_dq(q);
1087                spin_unlock(&q->lock);
1088                if (pipi != NULL) {
1089                        if (pipi->type == LINUX_SMP_IPI &&
1090                            (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1091                                IPIQ[cpu].resched_flag = 0;
1092                        ipi_decode(pipi);
1093                }
1094                /*
1095                 * The use of the __raw_local restore isn't
1096                 * as obviously necessary here as in smtc_ipi_replay(),
1097                 * but it's more efficient, given that we're already
1098                 * running down the IPI queue.
1099                 */
1100                __arch_local_irq_restore(flags);
1101        }
1102}
1103
1104/*
1105 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1106 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1107 * in some regards preferable to have external logic for "doorbell" hardware
1108 * interrupts.
1109 */
1110
1111static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1112
1113static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1114{
1115        int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1116        int my_tc = cpu_data[smp_processor_id()].tc_id;
1117        int cpu;
1118        struct smtc_ipi *pipi;
1119        unsigned long tcstatus;
1120        int sent;
1121        unsigned long flags;
1122        unsigned int mtflags;
1123        unsigned int vpflags;
1124
1125        /*
1126         * So long as cross-VPE interrupts are done via
1127         * MFTR/MTTR read-modify-writes of Cause, we need
1128         * to stop other VPEs whenever the local VPE does
1129         * anything similar.
1130         */
1131        local_irq_save(flags);
1132        vpflags = dvpe();
1133        clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1134        set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1135        irq_enable_hazard();
1136        evpe(vpflags);
1137        local_irq_restore(flags);
1138
1139        /*
1140         * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1141         * queued for TCs on this VPE other than the current one.
1142         * Return-from-interrupt should cause us to drain the queue
1143         * for the current TC, so we ought not to have to do it explicitly here.
1144         */
1145
1146        for_each_online_cpu(cpu) {
1147                if (cpu_data[cpu].vpe_id != my_vpe)
1148                        continue;
1149
1150                pipi = smtc_ipi_dq(&IPIQ[cpu]);
1151                if (pipi != NULL) {
1152                        if (cpu_data[cpu].tc_id != my_tc) {
1153                                sent = 0;
1154                                LOCK_MT_PRA();
1155                                settc(cpu_data[cpu].tc_id);
1156                                write_tc_c0_tchalt(TCHALT_H);
1157                                mips_ihb();
1158                                tcstatus = read_tc_c0_tcstatus();
1159                                if ((tcstatus & TCSTATUS_IXMT) == 0) {
1160                                        post_direct_ipi(cpu, pipi);
1161                                        sent = 1;
1162                                }
1163                                write_tc_c0_tchalt(0);
1164                                UNLOCK_MT_PRA();
1165                                if (!sent) {
1166                                        smtc_ipi_req(&IPIQ[cpu], pipi);
1167                                }
1168                        } else {
1169                                /*
1170                                 * ipi_decode() should be called
1171                                 * with interrupts off
1172                                 */
1173                                local_irq_save(flags);
1174                                if (pipi->type == LINUX_SMP_IPI &&
1175                                    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1176                                        IPIQ[cpu].resched_flag = 0;
1177                                ipi_decode(pipi);
1178                                local_irq_restore(flags);
1179                        }
1180                }
1181        }
1182
1183        return IRQ_HANDLED;
1184}
1185
1186static void ipi_irq_dispatch(void)
1187{
1188        do_IRQ(cpu_ipi_irq);
1189}
1190
1191static struct irqaction irq_ipi = {
1192        .handler        = ipi_interrupt,
1193        .flags          = IRQF_PERCPU,
1194        .name           = "SMTC_IPI"
1195};
1196
1197static void setup_cross_vpe_interrupts(unsigned int nvpe)
1198{
1199        if (nvpe < 1)
1200                return;
1201
1202        if (!cpu_has_vint)
1203                panic("SMTC Kernel requires Vectored Interrupt support");
1204
1205        set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1206
1207        setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1208
1209        irq_set_handler(cpu_ipi_irq, handle_percpu_irq);
1210}
1211
1212/*
1213 * SMTC-specific hacks invoked from elsewhere in the kernel.
1214 */
1215
1216 /*
1217  * smtc_ipi_replay is called from raw_local_irq_restore
1218  */
1219
1220void smtc_ipi_replay(void)
1221{
1222        unsigned int cpu = smp_processor_id();
1223
1224        /*
1225         * To the extent that we've ever turned interrupts off,
1226         * we may have accumulated deferred IPIs.  This is subtle.
1227         * we should be OK:  If we pick up something and dispatch
1228         * it here, that's great. If we see nothing, but concurrent
1229         * with this operation, another TC sends us an IPI, IXMT
1230         * is clear, and we'll handle it as a real pseudo-interrupt
1231         * and not a pseudo-pseudo interrupt.  The important thing
1232         * is to do the last check for queued message *after* the
1233         * re-enabling of interrupts.
1234         */
1235        while (IPIQ[cpu].head != NULL) {
1236                struct smtc_ipi_q *q = &IPIQ[cpu];
1237                struct smtc_ipi *pipi;
1238                unsigned long flags;
1239
1240                /*
1241                 * It's just possible we'll come in with interrupts
1242                 * already enabled.
1243                 */
1244                local_irq_save(flags);
1245
1246                spin_lock(&q->lock);
1247                pipi = __smtc_ipi_dq(q);
1248                spin_unlock(&q->lock);
1249                /*
1250                 ** But use a raw restore here to avoid recursion.
1251                 */
1252                __arch_local_irq_restore(flags);
1253
1254                if (pipi) {
1255                        self_ipi(pipi);
1256                        smtc_cpu_stats[cpu].selfipis++;
1257                }
1258        }
1259}
1260
1261EXPORT_SYMBOL(smtc_ipi_replay);
1262
1263void smtc_idle_loop_hook(void)
1264{
1265#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1266        int im;
1267        int flags;
1268        int mtflags;
1269        int bit;
1270        int vpe;
1271        int tc;
1272        int hook_ntcs;
1273        /*
1274         * printk within DMT-protected regions can deadlock,
1275         * so buffer diagnostic messages for later output.
1276         */
1277        char *pdb_msg;
1278        char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1279
1280        if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1281                if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1282                        int mvpconf0;
1283                        /* Tedious stuff to just do once */
1284                        mvpconf0 = read_c0_mvpconf0();
1285                        hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1286                        if (hook_ntcs > NR_CPUS)
1287                                hook_ntcs = NR_CPUS;
1288                        for (tc = 0; tc < hook_ntcs; tc++) {
1289                                tcnoprog[tc] = 0;
1290                                clock_hang_reported[tc] = 0;
1291                        }
1292                        for (vpe = 0; vpe < 2; vpe++)
1293                                for (im = 0; im < 8; im++)
1294                                        imstuckcount[vpe][im] = 0;
1295                        printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1296                        atomic_set(&idle_hook_initialized, 1000);
1297                } else {
1298                        /* Someone else is initializing in parallel - let 'em finish */
1299                        while (atomic_read(&idle_hook_initialized) < 1000)
1300                                ;
1301                }
1302        }
1303
1304        /* Have we stupidly left IXMT set somewhere? */
1305        if (read_c0_tcstatus() & 0x400) {
1306                write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1307                ehb();
1308                printk("Dangling IXMT in cpu_idle()\n");
1309        }
1310
1311        /* Have we stupidly left an IM bit turned off? */
1312#define IM_LIMIT 2000
1313        local_irq_save(flags);
1314        mtflags = dmt();
1315        pdb_msg = &id_ho_db_msg[0];
1316        im = read_c0_status();
1317        vpe = current_cpu_data.vpe_id;
1318        for (bit = 0; bit < 8; bit++) {
1319                /*
1320                 * In current prototype, I/O interrupts
1321                 * are masked for VPE > 0
1322                 */
1323                if (vpemask[vpe][bit]) {
1324                        if (!(im & (0x100 << bit)))
1325                                imstuckcount[vpe][bit]++;
1326                        else
1327                                imstuckcount[vpe][bit] = 0;
1328                        if (imstuckcount[vpe][bit] > IM_LIMIT) {
1329                                set_c0_status(0x100 << bit);
1330                                ehb();
1331                                imstuckcount[vpe][bit] = 0;
1332                                pdb_msg += sprintf(pdb_msg,
1333                                        "Dangling IM %d fixed for VPE %d\n", bit,
1334                                        vpe);
1335                        }
1336                }
1337        }
1338
1339        emt(mtflags);
1340        local_irq_restore(flags);
1341        if (pdb_msg != &id_ho_db_msg[0])
1342                printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1343#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1344
1345        smtc_ipi_replay();
1346}
1347
1348void smtc_soft_dump(void)
1349{
1350        int i;
1351
1352        printk("Counter Interrupts taken per CPU (TC)\n");
1353        for (i=0; i < NR_CPUS; i++) {
1354                printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1355        }
1356        printk("Self-IPI invocations:\n");
1357        for (i=0; i < NR_CPUS; i++) {
1358                printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1359        }
1360        smtc_ipi_qdump();
1361        printk("%d Recoveries of \"stolen\" FPU\n",
1362               atomic_read(&smtc_fpu_recoveries));
1363}
1364
1365
1366/*
1367 * TLB management routines special to SMTC
1368 */
1369
1370void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1371{
1372        unsigned long flags, mtflags, tcstat, prevhalt, asid;
1373        int tlb, i;
1374
1375        /*
1376         * It would be nice to be able to use a spinlock here,
1377         * but this is invoked from within TLB flush routines
1378         * that protect themselves with DVPE, so if a lock is
1379         * held by another TC, it'll never be freed.
1380         *
1381         * DVPE/DMT must not be done with interrupts enabled,
1382         * so even so most callers will already have disabled
1383         * them, let's be really careful...
1384         */
1385
1386        local_irq_save(flags);
1387        if (smtc_status & SMTC_TLB_SHARED) {
1388                mtflags = dvpe();
1389                tlb = 0;
1390        } else {
1391                mtflags = dmt();
1392                tlb = cpu_data[cpu].vpe_id;
1393        }
1394        asid = asid_cache(cpu);
1395
1396        do {
1397                if (!((asid += ASID_INC) & ASID_MASK) ) {
1398                        if (cpu_has_vtag_icache)
1399                                flush_icache_all();
1400                        /* Traverse all online CPUs (hack requires contiguous range) */
1401                        for_each_online_cpu(i) {
1402                                /*
1403                                 * We don't need to worry about our own CPU, nor those of
1404                                 * CPUs who don't share our TLB.
1405                                 */
1406                                if ((i != smp_processor_id()) &&
1407                                    ((smtc_status & SMTC_TLB_SHARED) ||
1408                                     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1409                                        settc(cpu_data[i].tc_id);
1410                                        prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1411                                        if (!prevhalt) {
1412                                                write_tc_c0_tchalt(TCHALT_H);
1413                                                mips_ihb();
1414                                        }
1415                                        tcstat = read_tc_c0_tcstatus();
1416                                        smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1417                                        if (!prevhalt)
1418                                                write_tc_c0_tchalt(0);
1419                                }
1420                        }
1421                        if (!asid)              /* fix version if needed */
1422                                asid = ASID_FIRST_VERSION;
1423                        local_flush_tlb_all();  /* start new asid cycle */
1424                }
1425        } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1426
1427        /*
1428         * SMTC shares the TLB within VPEs and possibly across all VPEs.
1429         */
1430        for_each_online_cpu(i) {
1431                if ((smtc_status & SMTC_TLB_SHARED) ||
1432                    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1433                        cpu_context(i, mm) = asid_cache(i) = asid;
1434        }
1435
1436        if (smtc_status & SMTC_TLB_SHARED)
1437                evpe(mtflags);
1438        else
1439                emt(mtflags);
1440        local_irq_restore(flags);
1441}
1442
1443/*
1444 * Invoked from macros defined in mmu_context.h
1445 * which must already have disabled interrupts
1446 * and done a DVPE or DMT as appropriate.
1447 */
1448
1449void smtc_flush_tlb_asid(unsigned long asid)
1450{
1451        int entry;
1452        unsigned long ehi;
1453
1454        entry = read_c0_wired();
1455
1456        /* Traverse all non-wired entries */
1457        while (entry < current_cpu_data.tlbsize) {
1458                write_c0_index(entry);
1459                ehb();
1460                tlb_read();
1461                ehb();
1462                ehi = read_c0_entryhi();
1463                if ((ehi & ASID_MASK) == asid) {
1464                    /*
1465                     * Invalidate only entries with specified ASID,
1466                     * makiing sure all entries differ.
1467                     */
1468                    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1469                    write_c0_entrylo0(0);
1470                    write_c0_entrylo1(0);
1471                    mtc0_tlbw_hazard();
1472                    tlb_write_indexed();
1473                }
1474                entry++;
1475        }
1476        write_c0_index(PARKED_INDEX);
1477        tlbw_use_hazard();
1478}
1479
1480/*
1481 * Support for single-threading cache flush operations.
1482 */
1483
1484static int halt_state_save[NR_CPUS];
1485
1486/*
1487 * To really, really be sure that nothing is being done
1488 * by other TCs, halt them all.  This code assumes that
1489 * a DVPE has already been done, so while their Halted
1490 * state is theoretically architecturally unstable, in
1491 * practice, it's not going to change while we're looking
1492 * at it.
1493 */
1494
1495void smtc_cflush_lockdown(void)
1496{
1497        int cpu;
1498
1499        for_each_online_cpu(cpu) {
1500                if (cpu != smp_processor_id()) {
1501                        settc(cpu_data[cpu].tc_id);
1502                        halt_state_save[cpu] = read_tc_c0_tchalt();
1503                        write_tc_c0_tchalt(TCHALT_H);
1504                }
1505        }
1506        mips_ihb();
1507}
1508
1509/* It would be cheating to change the cpu_online states during a flush! */
1510
1511void smtc_cflush_release(void)
1512{
1513        int cpu;
1514
1515        /*
1516         * Start with a hazard barrier to ensure
1517         * that all CACHE ops have played through.
1518         */
1519        mips_ihb();
1520
1521        for_each_online_cpu(cpu) {
1522                if (cpu != smp_processor_id()) {
1523                        settc(cpu_data[cpu].tc_id);
1524                        write_tc_c0_tchalt(halt_state_save[cpu]);
1525                }
1526        }
1527        mips_ihb();
1528}
1529