linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  13 */
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
  16#include <linux/kexec.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/mm.h>
  21#include <linux/sched.h>
  22#include <linux/smp.h>
  23#include <linux/spinlock.h>
  24#include <linux/kallsyms.h>
  25#include <linux/bootmem.h>
  26#include <linux/interrupt.h>
  27#include <linux/ptrace.h>
  28#include <linux/kgdb.h>
  29#include <linux/kdebug.h>
  30#include <linux/kprobes.h>
  31#include <linux/notifier.h>
  32#include <linux/kdb.h>
  33#include <linux/irq.h>
  34#include <linux/perf_event.h>
  35
  36#include <asm/bootinfo.h>
  37#include <asm/branch.h>
  38#include <asm/break.h>
  39#include <asm/cop2.h>
  40#include <asm/cpu.h>
  41#include <asm/dsp.h>
  42#include <asm/fpu.h>
  43#include <asm/fpu_emulator.h>
  44#include <asm/mipsregs.h>
  45#include <asm/mipsmtregs.h>
  46#include <asm/module.h>
  47#include <asm/pgtable.h>
  48#include <asm/ptrace.h>
  49#include <asm/sections.h>
  50#include <asm/tlbdebug.h>
  51#include <asm/traps.h>
  52#include <asm/uaccess.h>
  53#include <asm/watch.h>
  54#include <asm/mmu_context.h>
  55#include <asm/types.h>
  56#include <asm/stacktrace.h>
  57#include <asm/uasm.h>
  58
  59extern void check_wait(void);
  60extern asmlinkage void r4k_wait(void);
  61extern asmlinkage void rollback_handle_int(void);
  62extern asmlinkage void handle_int(void);
  63extern asmlinkage void handle_tlbm(void);
  64extern asmlinkage void handle_tlbl(void);
  65extern asmlinkage void handle_tlbs(void);
  66extern asmlinkage void handle_adel(void);
  67extern asmlinkage void handle_ades(void);
  68extern asmlinkage void handle_ibe(void);
  69extern asmlinkage void handle_dbe(void);
  70extern asmlinkage void handle_sys(void);
  71extern asmlinkage void handle_bp(void);
  72extern asmlinkage void handle_ri(void);
  73extern asmlinkage void handle_ri_rdhwr_vivt(void);
  74extern asmlinkage void handle_ri_rdhwr(void);
  75extern asmlinkage void handle_cpu(void);
  76extern asmlinkage void handle_ov(void);
  77extern asmlinkage void handle_tr(void);
  78extern asmlinkage void handle_fpe(void);
  79extern asmlinkage void handle_mdmx(void);
  80extern asmlinkage void handle_watch(void);
  81extern asmlinkage void handle_mt(void);
  82extern asmlinkage void handle_dsp(void);
  83extern asmlinkage void handle_mcheck(void);
  84extern asmlinkage void handle_reserved(void);
  85
  86extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  87                                    struct mips_fpu_struct *ctx, int has_fpu,
  88                                    void *__user *fault_addr);
  89
  90void (*board_be_init)(void);
  91int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  92void (*board_nmi_handler_setup)(void);
  93void (*board_ejtag_handler_setup)(void);
  94void (*board_bind_eic_interrupt)(int irq, int regset);
  95void (*board_ebase_setup)(void);
  96void __cpuinitdata(*board_cache_error_setup)(void);
  97
  98static void show_raw_backtrace(unsigned long reg29)
  99{
 100        unsigned long *sp = (unsigned long *)(reg29 & ~3);
 101        unsigned long addr;
 102
 103        printk("Call Trace:");
 104#ifdef CONFIG_KALLSYMS
 105        printk("\n");
 106#endif
 107        while (!kstack_end(sp)) {
 108                unsigned long __user *p =
 109                        (unsigned long __user *)(unsigned long)sp++;
 110                if (__get_user(addr, p)) {
 111                        printk(" (Bad stack address)");
 112                        break;
 113                }
 114                if (__kernel_text_address(addr))
 115                        print_ip_sym(addr);
 116        }
 117        printk("\n");
 118}
 119
 120#ifdef CONFIG_KALLSYMS
 121int raw_show_trace;
 122static int __init set_raw_show_trace(char *str)
 123{
 124        raw_show_trace = 1;
 125        return 1;
 126}
 127__setup("raw_show_trace", set_raw_show_trace);
 128#endif
 129
 130static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 131{
 132        unsigned long sp = regs->regs[29];
 133        unsigned long ra = regs->regs[31];
 134        unsigned long pc = regs->cp0_epc;
 135
 136        if (!task)
 137                task = current;
 138
 139        if (raw_show_trace || !__kernel_text_address(pc)) {
 140                show_raw_backtrace(sp);
 141                return;
 142        }
 143        printk("Call Trace:\n");
 144        do {
 145                print_ip_sym(pc);
 146                pc = unwind_stack(task, &sp, pc, &ra);
 147        } while (pc);
 148        printk("\n");
 149}
 150
 151/*
 152 * This routine abuses get_user()/put_user() to reference pointers
 153 * with at least a bit of error checking ...
 154 */
 155static void show_stacktrace(struct task_struct *task,
 156        const struct pt_regs *regs)
 157{
 158        const int field = 2 * sizeof(unsigned long);
 159        long stackdata;
 160        int i;
 161        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 162
 163        printk("Stack :");
 164        i = 0;
 165        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 166                if (i && ((i % (64 / field)) == 0))
 167                        printk("\n       ");
 168                if (i > 39) {
 169                        printk(" ...");
 170                        break;
 171                }
 172
 173                if (__get_user(stackdata, sp++)) {
 174                        printk(" (Bad stack address)");
 175                        break;
 176                }
 177
 178                printk(" %0*lx", field, stackdata);
 179                i++;
 180        }
 181        printk("\n");
 182        show_backtrace(task, regs);
 183}
 184
 185void show_stack(struct task_struct *task, unsigned long *sp)
 186{
 187        struct pt_regs regs;
 188        if (sp) {
 189                regs.regs[29] = (unsigned long)sp;
 190                regs.regs[31] = 0;
 191                regs.cp0_epc = 0;
 192        } else {
 193                if (task && task != current) {
 194                        regs.regs[29] = task->thread.reg29;
 195                        regs.regs[31] = 0;
 196                        regs.cp0_epc = task->thread.reg31;
 197#ifdef CONFIG_KGDB_KDB
 198                } else if (atomic_read(&kgdb_active) != -1 &&
 199                           kdb_current_regs) {
 200                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 201#endif /* CONFIG_KGDB_KDB */
 202                } else {
 203                        prepare_frametrace(&regs);
 204                }
 205        }
 206        show_stacktrace(task, &regs);
 207}
 208
 209/*
 210 * The architecture-independent dump_stack generator
 211 */
 212void dump_stack(void)
 213{
 214        struct pt_regs regs;
 215
 216        prepare_frametrace(&regs);
 217        show_backtrace(current, &regs);
 218}
 219
 220EXPORT_SYMBOL(dump_stack);
 221
 222static void show_code(unsigned int __user *pc)
 223{
 224        long i;
 225        unsigned short __user *pc16 = NULL;
 226
 227        printk("\nCode:");
 228
 229        if ((unsigned long)pc & 1)
 230                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 231        for(i = -3 ; i < 6 ; i++) {
 232                unsigned int insn;
 233                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 234                        printk(" (Bad address in epc)\n");
 235                        break;
 236                }
 237                printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 238        }
 239}
 240
 241static void __show_regs(const struct pt_regs *regs)
 242{
 243        const int field = 2 * sizeof(unsigned long);
 244        unsigned int cause = regs->cp0_cause;
 245        int i;
 246
 247        printk("Cpu %d\n", smp_processor_id());
 248
 249        /*
 250         * Saved main processor registers
 251         */
 252        for (i = 0; i < 32; ) {
 253                if ((i % 4) == 0)
 254                        printk("$%2d   :", i);
 255                if (i == 0)
 256                        printk(" %0*lx", field, 0UL);
 257                else if (i == 26 || i == 27)
 258                        printk(" %*s", field, "");
 259                else
 260                        printk(" %0*lx", field, regs->regs[i]);
 261
 262                i++;
 263                if ((i % 4) == 0)
 264                        printk("\n");
 265        }
 266
 267#ifdef CONFIG_CPU_HAS_SMARTMIPS
 268        printk("Acx    : %0*lx\n", field, regs->acx);
 269#endif
 270        printk("Hi    : %0*lx\n", field, regs->hi);
 271        printk("Lo    : %0*lx\n", field, regs->lo);
 272
 273        /*
 274         * Saved cp0 registers
 275         */
 276        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 277               (void *) regs->cp0_epc);
 278        printk("    %s\n", print_tainted());
 279        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 280               (void *) regs->regs[31]);
 281
 282        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 283
 284        if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 285                if (regs->cp0_status & ST0_KUO)
 286                        printk("KUo ");
 287                if (regs->cp0_status & ST0_IEO)
 288                        printk("IEo ");
 289                if (regs->cp0_status & ST0_KUP)
 290                        printk("KUp ");
 291                if (regs->cp0_status & ST0_IEP)
 292                        printk("IEp ");
 293                if (regs->cp0_status & ST0_KUC)
 294                        printk("KUc ");
 295                if (regs->cp0_status & ST0_IEC)
 296                        printk("IEc ");
 297        } else {
 298                if (regs->cp0_status & ST0_KX)
 299                        printk("KX ");
 300                if (regs->cp0_status & ST0_SX)
 301                        printk("SX ");
 302                if (regs->cp0_status & ST0_UX)
 303                        printk("UX ");
 304                switch (regs->cp0_status & ST0_KSU) {
 305                case KSU_USER:
 306                        printk("USER ");
 307                        break;
 308                case KSU_SUPERVISOR:
 309                        printk("SUPERVISOR ");
 310                        break;
 311                case KSU_KERNEL:
 312                        printk("KERNEL ");
 313                        break;
 314                default:
 315                        printk("BAD_MODE ");
 316                        break;
 317                }
 318                if (regs->cp0_status & ST0_ERL)
 319                        printk("ERL ");
 320                if (regs->cp0_status & ST0_EXL)
 321                        printk("EXL ");
 322                if (regs->cp0_status & ST0_IE)
 323                        printk("IE ");
 324        }
 325        printk("\n");
 326
 327        printk("Cause : %08x\n", cause);
 328
 329        cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 330        if (1 <= cause && cause <= 5)
 331                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 332
 333        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 334               cpu_name_string());
 335}
 336
 337/*
 338 * FIXME: really the generic show_regs should take a const pointer argument.
 339 */
 340void show_regs(struct pt_regs *regs)
 341{
 342        __show_regs((struct pt_regs *)regs);
 343}
 344
 345void show_registers(struct pt_regs *regs)
 346{
 347        const int field = 2 * sizeof(unsigned long);
 348
 349        __show_regs(regs);
 350        print_modules();
 351        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 352               current->comm, current->pid, current_thread_info(), current,
 353              field, current_thread_info()->tp_value);
 354        if (cpu_has_userlocal) {
 355                unsigned long tls;
 356
 357                tls = read_c0_userlocal();
 358                if (tls != current_thread_info()->tp_value)
 359                        printk("*HwTLS: %0*lx\n", field, tls);
 360        }
 361
 362        show_stacktrace(current, regs);
 363        show_code((unsigned int __user *) regs->cp0_epc);
 364        printk("\n");
 365}
 366
 367static int regs_to_trapnr(struct pt_regs *regs)
 368{
 369        return (regs->cp0_cause >> 2) & 0x1f;
 370}
 371
 372static DEFINE_RAW_SPINLOCK(die_lock);
 373
 374void __noreturn die(const char *str, struct pt_regs *regs)
 375{
 376        static int die_counter;
 377        int sig = SIGSEGV;
 378#ifdef CONFIG_MIPS_MT_SMTC
 379        unsigned long dvpret;
 380#endif /* CONFIG_MIPS_MT_SMTC */
 381
 382        oops_enter();
 383
 384        if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
 385                sig = 0;
 386
 387        console_verbose();
 388        raw_spin_lock_irq(&die_lock);
 389#ifdef CONFIG_MIPS_MT_SMTC
 390        dvpret = dvpe();
 391#endif /* CONFIG_MIPS_MT_SMTC */
 392        bust_spinlocks(1);
 393#ifdef CONFIG_MIPS_MT_SMTC
 394        mips_mt_regdump(dvpret);
 395#endif /* CONFIG_MIPS_MT_SMTC */
 396
 397        printk("%s[#%d]:\n", str, ++die_counter);
 398        show_registers(regs);
 399        add_taint(TAINT_DIE);
 400        raw_spin_unlock_irq(&die_lock);
 401
 402        oops_exit();
 403
 404        if (in_interrupt())
 405                panic("Fatal exception in interrupt");
 406
 407        if (panic_on_oops) {
 408                printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 409                ssleep(5);
 410                panic("Fatal exception");
 411        }
 412
 413        if (regs && kexec_should_crash(current))
 414                crash_kexec(regs);
 415
 416        do_exit(sig);
 417}
 418
 419extern struct exception_table_entry __start___dbe_table[];
 420extern struct exception_table_entry __stop___dbe_table[];
 421
 422__asm__(
 423"       .section        __dbe_table, \"a\"\n"
 424"       .previous                       \n");
 425
 426/* Given an address, look for it in the exception tables. */
 427static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 428{
 429        const struct exception_table_entry *e;
 430
 431        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 432        if (!e)
 433                e = search_module_dbetables(addr);
 434        return e;
 435}
 436
 437asmlinkage void do_be(struct pt_regs *regs)
 438{
 439        const int field = 2 * sizeof(unsigned long);
 440        const struct exception_table_entry *fixup = NULL;
 441        int data = regs->cp0_cause & 4;
 442        int action = MIPS_BE_FATAL;
 443
 444        /* XXX For now.  Fixme, this searches the wrong table ...  */
 445        if (data && !user_mode(regs))
 446                fixup = search_dbe_tables(exception_epc(regs));
 447
 448        if (fixup)
 449                action = MIPS_BE_FIXUP;
 450
 451        if (board_be_handler)
 452                action = board_be_handler(regs, fixup != NULL);
 453
 454        switch (action) {
 455        case MIPS_BE_DISCARD:
 456                return;
 457        case MIPS_BE_FIXUP:
 458                if (fixup) {
 459                        regs->cp0_epc = fixup->nextinsn;
 460                        return;
 461                }
 462                break;
 463        default:
 464                break;
 465        }
 466
 467        /*
 468         * Assume it would be too dangerous to continue ...
 469         */
 470        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 471               data ? "Data" : "Instruction",
 472               field, regs->cp0_epc, field, regs->regs[31]);
 473        if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
 474            == NOTIFY_STOP)
 475                return;
 476
 477        die_if_kernel("Oops", regs);
 478        force_sig(SIGBUS, current);
 479}
 480
 481/*
 482 * ll/sc, rdhwr, sync emulation
 483 */
 484
 485#define OPCODE 0xfc000000
 486#define BASE   0x03e00000
 487#define RT     0x001f0000
 488#define OFFSET 0x0000ffff
 489#define LL     0xc0000000
 490#define SC     0xe0000000
 491#define SPEC0  0x00000000
 492#define SPEC3  0x7c000000
 493#define RD     0x0000f800
 494#define FUNC   0x0000003f
 495#define SYNC   0x0000000f
 496#define RDHWR  0x0000003b
 497
 498/*
 499 * The ll_bit is cleared by r*_switch.S
 500 */
 501
 502unsigned int ll_bit;
 503struct task_struct *ll_task;
 504
 505static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 506{
 507        unsigned long value, __user *vaddr;
 508        long offset;
 509
 510        /*
 511         * analyse the ll instruction that just caused a ri exception
 512         * and put the referenced address to addr.
 513         */
 514
 515        /* sign extend offset */
 516        offset = opcode & OFFSET;
 517        offset <<= 16;
 518        offset >>= 16;
 519
 520        vaddr = (unsigned long __user *)
 521                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 522
 523        if ((unsigned long)vaddr & 3)
 524                return SIGBUS;
 525        if (get_user(value, vaddr))
 526                return SIGSEGV;
 527
 528        preempt_disable();
 529
 530        if (ll_task == NULL || ll_task == current) {
 531                ll_bit = 1;
 532        } else {
 533                ll_bit = 0;
 534        }
 535        ll_task = current;
 536
 537        preempt_enable();
 538
 539        regs->regs[(opcode & RT) >> 16] = value;
 540
 541        return 0;
 542}
 543
 544static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 545{
 546        unsigned long __user *vaddr;
 547        unsigned long reg;
 548        long offset;
 549
 550        /*
 551         * analyse the sc instruction that just caused a ri exception
 552         * and put the referenced address to addr.
 553         */
 554
 555        /* sign extend offset */
 556        offset = opcode & OFFSET;
 557        offset <<= 16;
 558        offset >>= 16;
 559
 560        vaddr = (unsigned long __user *)
 561                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 562        reg = (opcode & RT) >> 16;
 563
 564        if ((unsigned long)vaddr & 3)
 565                return SIGBUS;
 566
 567        preempt_disable();
 568
 569        if (ll_bit == 0 || ll_task != current) {
 570                regs->regs[reg] = 0;
 571                preempt_enable();
 572                return 0;
 573        }
 574
 575        preempt_enable();
 576
 577        if (put_user(regs->regs[reg], vaddr))
 578                return SIGSEGV;
 579
 580        regs->regs[reg] = 1;
 581
 582        return 0;
 583}
 584
 585/*
 586 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 587 * opcodes are supposed to result in coprocessor unusable exceptions if
 588 * executed on ll/sc-less processors.  That's the theory.  In practice a
 589 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 590 * instead, so we're doing the emulation thing in both exception handlers.
 591 */
 592static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 593{
 594        if ((opcode & OPCODE) == LL) {
 595                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 596                                1, regs, 0);
 597                return simulate_ll(regs, opcode);
 598        }
 599        if ((opcode & OPCODE) == SC) {
 600                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 601                                1, regs, 0);
 602                return simulate_sc(regs, opcode);
 603        }
 604
 605        return -1;                      /* Must be something else ... */
 606}
 607
 608/*
 609 * Simulate trapping 'rdhwr' instructions to provide user accessible
 610 * registers not implemented in hardware.
 611 */
 612static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 613{
 614        struct thread_info *ti = task_thread_info(current);
 615
 616        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 617                int rd = (opcode & RD) >> 11;
 618                int rt = (opcode & RT) >> 16;
 619                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 620                                1, regs, 0);
 621                switch (rd) {
 622                case 0:         /* CPU number */
 623                        regs->regs[rt] = smp_processor_id();
 624                        return 0;
 625                case 1:         /* SYNCI length */
 626                        regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 627                                             current_cpu_data.icache.linesz);
 628                        return 0;
 629                case 2:         /* Read count register */
 630                        regs->regs[rt] = read_c0_count();
 631                        return 0;
 632                case 3:         /* Count register resolution */
 633                        switch (current_cpu_data.cputype) {
 634                        case CPU_20KC:
 635                        case CPU_25KF:
 636                                regs->regs[rt] = 1;
 637                                break;
 638                        default:
 639                                regs->regs[rt] = 2;
 640                        }
 641                        return 0;
 642                case 29:
 643                        regs->regs[rt] = ti->tp_value;
 644                        return 0;
 645                default:
 646                        return -1;
 647                }
 648        }
 649
 650        /* Not ours.  */
 651        return -1;
 652}
 653
 654static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 655{
 656        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 657                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 658                                1, regs, 0);
 659                return 0;
 660        }
 661
 662        return -1;                      /* Must be something else ... */
 663}
 664
 665asmlinkage void do_ov(struct pt_regs *regs)
 666{
 667        siginfo_t info;
 668
 669        die_if_kernel("Integer overflow", regs);
 670
 671        info.si_code = FPE_INTOVF;
 672        info.si_signo = SIGFPE;
 673        info.si_errno = 0;
 674        info.si_addr = (void __user *) regs->cp0_epc;
 675        force_sig_info(SIGFPE, &info, current);
 676}
 677
 678static int process_fpemu_return(int sig, void __user *fault_addr)
 679{
 680        if (sig == SIGSEGV || sig == SIGBUS) {
 681                struct siginfo si = {0};
 682                si.si_addr = fault_addr;
 683                si.si_signo = sig;
 684                if (sig == SIGSEGV) {
 685                        if (find_vma(current->mm, (unsigned long)fault_addr))
 686                                si.si_code = SEGV_ACCERR;
 687                        else
 688                                si.si_code = SEGV_MAPERR;
 689                } else {
 690                        si.si_code = BUS_ADRERR;
 691                }
 692                force_sig_info(sig, &si, current);
 693                return 1;
 694        } else if (sig) {
 695                force_sig(sig, current);
 696                return 1;
 697        } else {
 698                return 0;
 699        }
 700}
 701
 702/*
 703 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 704 */
 705asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 706{
 707        siginfo_t info = {0};
 708
 709        if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
 710            == NOTIFY_STOP)
 711                return;
 712        die_if_kernel("FP exception in kernel code", regs);
 713
 714        if (fcr31 & FPU_CSR_UNI_X) {
 715                int sig;
 716                void __user *fault_addr = NULL;
 717
 718                /*
 719                 * Unimplemented operation exception.  If we've got the full
 720                 * software emulator on-board, let's use it...
 721                 *
 722                 * Force FPU to dump state into task/thread context.  We're
 723                 * moving a lot of data here for what is probably a single
 724                 * instruction, but the alternative is to pre-decode the FP
 725                 * register operands before invoking the emulator, which seems
 726                 * a bit extreme for what should be an infrequent event.
 727                 */
 728                /* Ensure 'resume' not overwrite saved fp context again. */
 729                lose_fpu(1);
 730
 731                /* Run the emulator */
 732                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 733                                               &fault_addr);
 734
 735                /*
 736                 * We can't allow the emulated instruction to leave any of
 737                 * the cause bit set in $fcr31.
 738                 */
 739                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 740
 741                /* Restore the hardware register state */
 742                own_fpu(1);     /* Using the FPU again.  */
 743
 744                /* If something went wrong, signal */
 745                process_fpemu_return(sig, fault_addr);
 746
 747                return;
 748        } else if (fcr31 & FPU_CSR_INV_X)
 749                info.si_code = FPE_FLTINV;
 750        else if (fcr31 & FPU_CSR_DIV_X)
 751                info.si_code = FPE_FLTDIV;
 752        else if (fcr31 & FPU_CSR_OVF_X)
 753                info.si_code = FPE_FLTOVF;
 754        else if (fcr31 & FPU_CSR_UDF_X)
 755                info.si_code = FPE_FLTUND;
 756        else if (fcr31 & FPU_CSR_INE_X)
 757                info.si_code = FPE_FLTRES;
 758        else
 759                info.si_code = __SI_FAULT;
 760        info.si_signo = SIGFPE;
 761        info.si_errno = 0;
 762        info.si_addr = (void __user *) regs->cp0_epc;
 763        force_sig_info(SIGFPE, &info, current);
 764}
 765
 766static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 767        const char *str)
 768{
 769        siginfo_t info;
 770        char b[40];
 771
 772#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 773        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 774                return;
 775#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 776
 777        if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 778                return;
 779
 780        /*
 781         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 782         * insns, even for trap and break codes that indicate arithmetic
 783         * failures.  Weird ...
 784         * But should we continue the brokenness???  --macro
 785         */
 786        switch (code) {
 787        case BRK_OVERFLOW:
 788        case BRK_DIVZERO:
 789                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 790                die_if_kernel(b, regs);
 791                if (code == BRK_DIVZERO)
 792                        info.si_code = FPE_INTDIV;
 793                else
 794                        info.si_code = FPE_INTOVF;
 795                info.si_signo = SIGFPE;
 796                info.si_errno = 0;
 797                info.si_addr = (void __user *) regs->cp0_epc;
 798                force_sig_info(SIGFPE, &info, current);
 799                break;
 800        case BRK_BUG:
 801                die_if_kernel("Kernel bug detected", regs);
 802                force_sig(SIGTRAP, current);
 803                break;
 804        case BRK_MEMU:
 805                /*
 806                 * Address errors may be deliberately induced by the FPU
 807                 * emulator to retake control of the CPU after executing the
 808                 * instruction in the delay slot of an emulated branch.
 809                 *
 810                 * Terminate if exception was recognized as a delay slot return
 811                 * otherwise handle as normal.
 812                 */
 813                if (do_dsemulret(regs))
 814                        return;
 815
 816                die_if_kernel("Math emu break/trap", regs);
 817                force_sig(SIGTRAP, current);
 818                break;
 819        default:
 820                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 821                die_if_kernel(b, regs);
 822                force_sig(SIGTRAP, current);
 823        }
 824}
 825
 826asmlinkage void do_bp(struct pt_regs *regs)
 827{
 828        unsigned int opcode, bcode;
 829
 830        if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 831                goto out_sigsegv;
 832
 833        /*
 834         * There is the ancient bug in the MIPS assemblers that the break
 835         * code starts left to bit 16 instead to bit 6 in the opcode.
 836         * Gas is bug-compatible, but not always, grrr...
 837         * We handle both cases with a simple heuristics.  --macro
 838         */
 839        bcode = ((opcode >> 6) & ((1 << 20) - 1));
 840        if (bcode >= (1 << 10))
 841                bcode >>= 10;
 842
 843        /*
 844         * notify the kprobe handlers, if instruction is likely to
 845         * pertain to them.
 846         */
 847        switch (bcode) {
 848        case BRK_KPROBE_BP:
 849                if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 850                        return;
 851                else
 852                        break;
 853        case BRK_KPROBE_SSTEPBP:
 854                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 855                        return;
 856                else
 857                        break;
 858        default:
 859                break;
 860        }
 861
 862        do_trap_or_bp(regs, bcode, "Break");
 863        return;
 864
 865out_sigsegv:
 866        force_sig(SIGSEGV, current);
 867}
 868
 869asmlinkage void do_tr(struct pt_regs *regs)
 870{
 871        unsigned int opcode, tcode = 0;
 872
 873        if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 874                goto out_sigsegv;
 875
 876        /* Immediate versions don't provide a code.  */
 877        if (!(opcode & OPCODE))
 878                tcode = ((opcode >> 6) & ((1 << 10) - 1));
 879
 880        do_trap_or_bp(regs, tcode, "Trap");
 881        return;
 882
 883out_sigsegv:
 884        force_sig(SIGSEGV, current);
 885}
 886
 887asmlinkage void do_ri(struct pt_regs *regs)
 888{
 889        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 890        unsigned long old_epc = regs->cp0_epc;
 891        unsigned int opcode = 0;
 892        int status = -1;
 893
 894        if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
 895            == NOTIFY_STOP)
 896                return;
 897
 898        die_if_kernel("Reserved instruction in kernel code", regs);
 899
 900        if (unlikely(compute_return_epc(regs) < 0))
 901                return;
 902
 903        if (unlikely(get_user(opcode, epc) < 0))
 904                status = SIGSEGV;
 905
 906        if (!cpu_has_llsc && status < 0)
 907                status = simulate_llsc(regs, opcode);
 908
 909        if (status < 0)
 910                status = simulate_rdhwr(regs, opcode);
 911
 912        if (status < 0)
 913                status = simulate_sync(regs, opcode);
 914
 915        if (status < 0)
 916                status = SIGILL;
 917
 918        if (unlikely(status > 0)) {
 919                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
 920                force_sig(status, current);
 921        }
 922}
 923
 924/*
 925 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 926 * emulated more than some threshold number of instructions, force migration to
 927 * a "CPU" that has FP support.
 928 */
 929static void mt_ase_fp_affinity(void)
 930{
 931#ifdef CONFIG_MIPS_MT_FPAFF
 932        if (mt_fpemul_threshold > 0 &&
 933             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 934                /*
 935                 * If there's no FPU present, or if the application has already
 936                 * restricted the allowed set to exclude any CPUs with FPUs,
 937                 * we'll skip the procedure.
 938                 */
 939                if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 940                        cpumask_t tmask;
 941
 942                        current->thread.user_cpus_allowed
 943                                = current->cpus_allowed;
 944                        cpus_and(tmask, current->cpus_allowed,
 945                                mt_fpu_cpumask);
 946                        set_cpus_allowed_ptr(current, &tmask);
 947                        set_thread_flag(TIF_FPUBOUND);
 948                }
 949        }
 950#endif /* CONFIG_MIPS_MT_FPAFF */
 951}
 952
 953/*
 954 * No lock; only written during early bootup by CPU 0.
 955 */
 956static RAW_NOTIFIER_HEAD(cu2_chain);
 957
 958int __ref register_cu2_notifier(struct notifier_block *nb)
 959{
 960        return raw_notifier_chain_register(&cu2_chain, nb);
 961}
 962
 963int cu2_notifier_call_chain(unsigned long val, void *v)
 964{
 965        return raw_notifier_call_chain(&cu2_chain, val, v);
 966}
 967
 968static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
 969        void *data)
 970{
 971        struct pt_regs *regs = data;
 972
 973        switch (action) {
 974        default:
 975                die_if_kernel("Unhandled kernel unaligned access or invalid "
 976                              "instruction", regs);
 977                /* Fall through  */
 978
 979        case CU2_EXCEPTION:
 980                force_sig(SIGILL, current);
 981        }
 982
 983        return NOTIFY_OK;
 984}
 985
 986asmlinkage void do_cpu(struct pt_regs *regs)
 987{
 988        unsigned int __user *epc;
 989        unsigned long old_epc;
 990        unsigned int opcode;
 991        unsigned int cpid;
 992        int status;
 993        unsigned long __maybe_unused flags;
 994
 995        die_if_kernel("do_cpu invoked from kernel context!", regs);
 996
 997        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 998
 999        switch (cpid) {
1000        case 0:
1001                epc = (unsigned int __user *)exception_epc(regs);
1002                old_epc = regs->cp0_epc;
1003                opcode = 0;
1004                status = -1;
1005
1006                if (unlikely(compute_return_epc(regs) < 0))
1007                        return;
1008
1009                if (unlikely(get_user(opcode, epc) < 0))
1010                        status = SIGSEGV;
1011
1012                if (!cpu_has_llsc && status < 0)
1013                        status = simulate_llsc(regs, opcode);
1014
1015                if (status < 0)
1016                        status = simulate_rdhwr(regs, opcode);
1017
1018                if (status < 0)
1019                        status = SIGILL;
1020
1021                if (unlikely(status > 0)) {
1022                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1023                        force_sig(status, current);
1024                }
1025
1026                return;
1027
1028        case 3:
1029                /*
1030                 * Old (MIPS I and MIPS II) processors will set this code
1031                 * for COP1X opcode instructions that replaced the original
1032                 * COP3 space.  We don't limit COP1 space instructions in
1033                 * the emulator according to the CPU ISA, so we want to
1034                 * treat COP1X instructions consistently regardless of which
1035                 * code the CPU chose.  Therefore we redirect this trap to
1036                 * the FP emulator too.
1037                 *
1038                 * Then some newer FPU-less processors use this code
1039                 * erroneously too, so they are covered by this choice
1040                 * as well.
1041                 */
1042                if (raw_cpu_has_fpu)
1043                        break;
1044                /* Fall through.  */
1045
1046        case 1:
1047                if (used_math())        /* Using the FPU again.  */
1048                        own_fpu(1);
1049                else {                  /* First time FPU user.  */
1050                        init_fpu();
1051                        set_used_math();
1052                }
1053
1054                if (!raw_cpu_has_fpu) {
1055                        int sig;
1056                        void __user *fault_addr = NULL;
1057                        sig = fpu_emulator_cop1Handler(regs,
1058                                                       &current->thread.fpu,
1059                                                       0, &fault_addr);
1060                        if (!process_fpemu_return(sig, fault_addr))
1061                                mt_ase_fp_affinity();
1062                }
1063
1064                return;
1065
1066        case 2:
1067                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1068                return;
1069        }
1070
1071        force_sig(SIGILL, current);
1072}
1073
1074asmlinkage void do_mdmx(struct pt_regs *regs)
1075{
1076        force_sig(SIGILL, current);
1077}
1078
1079/*
1080 * Called with interrupts disabled.
1081 */
1082asmlinkage void do_watch(struct pt_regs *regs)
1083{
1084        u32 cause;
1085
1086        /*
1087         * Clear WP (bit 22) bit of cause register so we don't loop
1088         * forever.
1089         */
1090        cause = read_c0_cause();
1091        cause &= ~(1 << 22);
1092        write_c0_cause(cause);
1093
1094        /*
1095         * If the current thread has the watch registers loaded, save
1096         * their values and send SIGTRAP.  Otherwise another thread
1097         * left the registers set, clear them and continue.
1098         */
1099        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1100                mips_read_watch_registers();
1101                local_irq_enable();
1102                force_sig(SIGTRAP, current);
1103        } else {
1104                mips_clear_watch_registers();
1105                local_irq_enable();
1106        }
1107}
1108
1109asmlinkage void do_mcheck(struct pt_regs *regs)
1110{
1111        const int field = 2 * sizeof(unsigned long);
1112        int multi_match = regs->cp0_status & ST0_TS;
1113
1114        show_regs(regs);
1115
1116        if (multi_match) {
1117                printk("Index   : %0x\n", read_c0_index());
1118                printk("Pagemask: %0x\n", read_c0_pagemask());
1119                printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1120                printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1121                printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1122                printk("\n");
1123                dump_tlb_all();
1124        }
1125
1126        show_code((unsigned int __user *) regs->cp0_epc);
1127
1128        /*
1129         * Some chips may have other causes of machine check (e.g. SB1
1130         * graduation timer)
1131         */
1132        panic("Caught Machine Check exception - %scaused by multiple "
1133              "matching entries in the TLB.",
1134              (multi_match) ? "" : "not ");
1135}
1136
1137asmlinkage void do_mt(struct pt_regs *regs)
1138{
1139        int subcode;
1140
1141        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1142                        >> VPECONTROL_EXCPT_SHIFT;
1143        switch (subcode) {
1144        case 0:
1145                printk(KERN_DEBUG "Thread Underflow\n");
1146                break;
1147        case 1:
1148                printk(KERN_DEBUG "Thread Overflow\n");
1149                break;
1150        case 2:
1151                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1152                break;
1153        case 3:
1154                printk(KERN_DEBUG "Gating Storage Exception\n");
1155                break;
1156        case 4:
1157                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1158                break;
1159        case 5:
1160                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1161                break;
1162        default:
1163                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1164                        subcode);
1165                break;
1166        }
1167        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1168
1169        force_sig(SIGILL, current);
1170}
1171
1172
1173asmlinkage void do_dsp(struct pt_regs *regs)
1174{
1175        if (cpu_has_dsp)
1176                panic("Unexpected DSP exception");
1177
1178        force_sig(SIGILL, current);
1179}
1180
1181asmlinkage void do_reserved(struct pt_regs *regs)
1182{
1183        /*
1184         * Game over - no way to handle this if it ever occurs.  Most probably
1185         * caused by a new unknown cpu type or after another deadly
1186         * hard/software error.
1187         */
1188        show_regs(regs);
1189        panic("Caught reserved exception %ld - should not happen.",
1190              (regs->cp0_cause & 0x7f) >> 2);
1191}
1192
1193static int __initdata l1parity = 1;
1194static int __init nol1parity(char *s)
1195{
1196        l1parity = 0;
1197        return 1;
1198}
1199__setup("nol1par", nol1parity);
1200static int __initdata l2parity = 1;
1201static int __init nol2parity(char *s)
1202{
1203        l2parity = 0;
1204        return 1;
1205}
1206__setup("nol2par", nol2parity);
1207
1208/*
1209 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1210 * it different ways.
1211 */
1212static inline void parity_protection_init(void)
1213{
1214        switch (current_cpu_type()) {
1215        case CPU_24K:
1216        case CPU_34K:
1217        case CPU_74K:
1218        case CPU_1004K:
1219                {
1220#define ERRCTL_PE       0x80000000
1221#define ERRCTL_L2P      0x00800000
1222                        unsigned long errctl;
1223                        unsigned int l1parity_present, l2parity_present;
1224
1225                        errctl = read_c0_ecc();
1226                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1227
1228                        /* probe L1 parity support */
1229                        write_c0_ecc(errctl | ERRCTL_PE);
1230                        back_to_back_c0_hazard();
1231                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1232
1233                        /* probe L2 parity support */
1234                        write_c0_ecc(errctl|ERRCTL_L2P);
1235                        back_to_back_c0_hazard();
1236                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1237
1238                        if (l1parity_present && l2parity_present) {
1239                                if (l1parity)
1240                                        errctl |= ERRCTL_PE;
1241                                if (l1parity ^ l2parity)
1242                                        errctl |= ERRCTL_L2P;
1243                        } else if (l1parity_present) {
1244                                if (l1parity)
1245                                        errctl |= ERRCTL_PE;
1246                        } else if (l2parity_present) {
1247                                if (l2parity)
1248                                        errctl |= ERRCTL_L2P;
1249                        } else {
1250                                /* No parity available */
1251                        }
1252
1253                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1254
1255                        write_c0_ecc(errctl);
1256                        back_to_back_c0_hazard();
1257                        errctl = read_c0_ecc();
1258                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1259
1260                        if (l1parity_present)
1261                                printk(KERN_INFO "Cache parity protection %sabled\n",
1262                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1263
1264                        if (l2parity_present) {
1265                                if (l1parity_present && l1parity)
1266                                        errctl ^= ERRCTL_L2P;
1267                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1268                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1269                        }
1270                }
1271                break;
1272
1273        case CPU_5KC:
1274        case CPU_5KE:
1275        case CPU_LOONGSON1:
1276                write_c0_ecc(0x80000000);
1277                back_to_back_c0_hazard();
1278                /* Set the PE bit (bit 31) in the c0_errctl register. */
1279                printk(KERN_INFO "Cache parity protection %sabled\n",
1280                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1281                break;
1282        case CPU_20KC:
1283        case CPU_25KF:
1284                /* Clear the DE bit (bit 16) in the c0_status register. */
1285                printk(KERN_INFO "Enable cache parity protection for "
1286                       "MIPS 20KC/25KF CPUs.\n");
1287                clear_c0_status(ST0_DE);
1288                break;
1289        default:
1290                break;
1291        }
1292}
1293
1294asmlinkage void cache_parity_error(void)
1295{
1296        const int field = 2 * sizeof(unsigned long);
1297        unsigned int reg_val;
1298
1299        /* For the moment, report the problem and hang. */
1300        printk("Cache error exception:\n");
1301        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1302        reg_val = read_c0_cacheerr();
1303        printk("c0_cacheerr == %08x\n", reg_val);
1304
1305        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1306               reg_val & (1<<30) ? "secondary" : "primary",
1307               reg_val & (1<<31) ? "data" : "insn");
1308        printk("Error bits: %s%s%s%s%s%s%s\n",
1309               reg_val & (1<<29) ? "ED " : "",
1310               reg_val & (1<<28) ? "ET " : "",
1311               reg_val & (1<<26) ? "EE " : "",
1312               reg_val & (1<<25) ? "EB " : "",
1313               reg_val & (1<<24) ? "EI " : "",
1314               reg_val & (1<<23) ? "E1 " : "",
1315               reg_val & (1<<22) ? "E0 " : "");
1316        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1317
1318#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1319        if (reg_val & (1<<22))
1320                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1321
1322        if (reg_val & (1<<23))
1323                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1324#endif
1325
1326        panic("Can't handle the cache error!");
1327}
1328
1329/*
1330 * SDBBP EJTAG debug exception handler.
1331 * We skip the instruction and return to the next instruction.
1332 */
1333void ejtag_exception_handler(struct pt_regs *regs)
1334{
1335        const int field = 2 * sizeof(unsigned long);
1336        unsigned long depc, old_epc;
1337        unsigned int debug;
1338
1339        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1340        depc = read_c0_depc();
1341        debug = read_c0_debug();
1342        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1343        if (debug & 0x80000000) {
1344                /*
1345                 * In branch delay slot.
1346                 * We cheat a little bit here and use EPC to calculate the
1347                 * debug return address (DEPC). EPC is restored after the
1348                 * calculation.
1349                 */
1350                old_epc = regs->cp0_epc;
1351                regs->cp0_epc = depc;
1352                __compute_return_epc(regs);
1353                depc = regs->cp0_epc;
1354                regs->cp0_epc = old_epc;
1355        } else
1356                depc += 4;
1357        write_c0_depc(depc);
1358
1359#if 0
1360        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1361        write_c0_debug(debug | 0x100);
1362#endif
1363}
1364
1365/*
1366 * NMI exception handler.
1367 * No lock; only written during early bootup by CPU 0.
1368 */
1369static RAW_NOTIFIER_HEAD(nmi_chain);
1370
1371int register_nmi_notifier(struct notifier_block *nb)
1372{
1373        return raw_notifier_chain_register(&nmi_chain, nb);
1374}
1375
1376void __noreturn nmi_exception_handler(struct pt_regs *regs)
1377{
1378        raw_notifier_call_chain(&nmi_chain, 0, regs);
1379        bust_spinlocks(1);
1380        printk("NMI taken!!!!\n");
1381        die("NMI", regs);
1382}
1383
1384#define VECTORSPACING 0x100     /* for EI/VI mode */
1385
1386unsigned long ebase;
1387unsigned long exception_handlers[32];
1388unsigned long vi_handlers[64];
1389
1390void __init *set_except_vector(int n, void *addr)
1391{
1392        unsigned long handler = (unsigned long) addr;
1393        unsigned long old_handler = exception_handlers[n];
1394
1395        exception_handlers[n] = handler;
1396        if (n == 0 && cpu_has_divec) {
1397                unsigned long jump_mask = ~((1 << 28) - 1);
1398                u32 *buf = (u32 *)(ebase + 0x200);
1399                unsigned int k0 = 26;
1400                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1401                        uasm_i_j(&buf, handler & ~jump_mask);
1402                        uasm_i_nop(&buf);
1403                } else {
1404                        UASM_i_LA(&buf, k0, handler);
1405                        uasm_i_jr(&buf, k0);
1406                        uasm_i_nop(&buf);
1407                }
1408                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1409        }
1410        return (void *)old_handler;
1411}
1412
1413static asmlinkage void do_default_vi(void)
1414{
1415        show_regs(get_irq_regs());
1416        panic("Caught unexpected vectored interrupt.");
1417}
1418
1419static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1420{
1421        unsigned long handler;
1422        unsigned long old_handler = vi_handlers[n];
1423        int srssets = current_cpu_data.srsets;
1424        u32 *w;
1425        unsigned char *b;
1426
1427        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1428
1429        if (addr == NULL) {
1430                handler = (unsigned long) do_default_vi;
1431                srs = 0;
1432        } else
1433                handler = (unsigned long) addr;
1434        vi_handlers[n] = (unsigned long) addr;
1435
1436        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1437
1438        if (srs >= srssets)
1439                panic("Shadow register set %d not supported", srs);
1440
1441        if (cpu_has_veic) {
1442                if (board_bind_eic_interrupt)
1443                        board_bind_eic_interrupt(n, srs);
1444        } else if (cpu_has_vint) {
1445                /* SRSMap is only defined if shadow sets are implemented */
1446                if (srssets > 1)
1447                        change_c0_srsmap(0xf << n*4, srs << n*4);
1448        }
1449
1450        if (srs == 0) {
1451                /*
1452                 * If no shadow set is selected then use the default handler
1453                 * that does normal register saving and a standard interrupt exit
1454                 */
1455
1456                extern char except_vec_vi, except_vec_vi_lui;
1457                extern char except_vec_vi_ori, except_vec_vi_end;
1458                extern char rollback_except_vec_vi;
1459                char *vec_start = (cpu_wait == r4k_wait) ?
1460                        &rollback_except_vec_vi : &except_vec_vi;
1461#ifdef CONFIG_MIPS_MT_SMTC
1462                /*
1463                 * We need to provide the SMTC vectored interrupt handler
1464                 * not only with the address of the handler, but with the
1465                 * Status.IM bit to be masked before going there.
1466                 */
1467                extern char except_vec_vi_mori;
1468                const int mori_offset = &except_vec_vi_mori - vec_start;
1469#endif /* CONFIG_MIPS_MT_SMTC */
1470                const int handler_len = &except_vec_vi_end - vec_start;
1471                const int lui_offset = &except_vec_vi_lui - vec_start;
1472                const int ori_offset = &except_vec_vi_ori - vec_start;
1473
1474                if (handler_len > VECTORSPACING) {
1475                        /*
1476                         * Sigh... panicing won't help as the console
1477                         * is probably not configured :(
1478                         */
1479                        panic("VECTORSPACING too small");
1480                }
1481
1482                memcpy(b, vec_start, handler_len);
1483#ifdef CONFIG_MIPS_MT_SMTC
1484                BUG_ON(n > 7);  /* Vector index %d exceeds SMTC maximum. */
1485
1486                w = (u32 *)(b + mori_offset);
1487                *w = (*w & 0xffff0000) | (0x100 << n);
1488#endif /* CONFIG_MIPS_MT_SMTC */
1489                w = (u32 *)(b + lui_offset);
1490                *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1491                w = (u32 *)(b + ori_offset);
1492                *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1493                local_flush_icache_range((unsigned long)b,
1494                                         (unsigned long)(b+handler_len));
1495        }
1496        else {
1497                /*
1498                 * In other cases jump directly to the interrupt handler
1499                 *
1500                 * It is the handlers responsibility to save registers if required
1501                 * (eg hi/lo) and return from the exception using "eret"
1502                 */
1503                w = (u32 *)b;
1504                *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1505                *w = 0;
1506                local_flush_icache_range((unsigned long)b,
1507                                         (unsigned long)(b+8));
1508        }
1509
1510        return (void *)old_handler;
1511}
1512
1513void *set_vi_handler(int n, vi_handler_t addr)
1514{
1515        return set_vi_srs_handler(n, addr, 0);
1516}
1517
1518extern void tlb_init(void);
1519extern void flush_tlb_handlers(void);
1520
1521/*
1522 * Timer interrupt
1523 */
1524int cp0_compare_irq;
1525EXPORT_SYMBOL_GPL(cp0_compare_irq);
1526int cp0_compare_irq_shift;
1527
1528/*
1529 * Performance counter IRQ or -1 if shared with timer
1530 */
1531int cp0_perfcount_irq;
1532EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1533
1534static int __cpuinitdata noulri;
1535
1536static int __init ulri_disable(char *s)
1537{
1538        pr_info("Disabling ulri\n");
1539        noulri = 1;
1540
1541        return 1;
1542}
1543__setup("noulri", ulri_disable);
1544
1545void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1546{
1547        unsigned int cpu = smp_processor_id();
1548        unsigned int status_set = ST0_CU0;
1549        unsigned int hwrena = cpu_hwrena_impl_bits;
1550#ifdef CONFIG_MIPS_MT_SMTC
1551        int secondaryTC = 0;
1552        int bootTC = (cpu == 0);
1553
1554        /*
1555         * Only do per_cpu_trap_init() for first TC of Each VPE.
1556         * Note that this hack assumes that the SMTC init code
1557         * assigns TCs consecutively and in ascending order.
1558         */
1559
1560        if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1561            ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1562                secondaryTC = 1;
1563#endif /* CONFIG_MIPS_MT_SMTC */
1564
1565        /*
1566         * Disable coprocessors and select 32-bit or 64-bit addressing
1567         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1568         * flag that some firmware may have left set and the TS bit (for
1569         * IP27).  Set XX for ISA IV code to work.
1570         */
1571#ifdef CONFIG_64BIT
1572        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1573#endif
1574        if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1575                status_set |= ST0_XX;
1576        if (cpu_has_dsp)
1577                status_set |= ST0_MX;
1578
1579        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1580                         status_set);
1581
1582        if (cpu_has_mips_r2)
1583                hwrena |= 0x0000000f;
1584
1585        if (!noulri && cpu_has_userlocal)
1586                hwrena |= (1 << 29);
1587
1588        if (hwrena)
1589                write_c0_hwrena(hwrena);
1590
1591#ifdef CONFIG_MIPS_MT_SMTC
1592        if (!secondaryTC) {
1593#endif /* CONFIG_MIPS_MT_SMTC */
1594
1595        if (cpu_has_veic || cpu_has_vint) {
1596                unsigned long sr = set_c0_status(ST0_BEV);
1597                write_c0_ebase(ebase);
1598                write_c0_status(sr);
1599                /* Setting vector spacing enables EI/VI mode  */
1600                change_c0_intctl(0x3e0, VECTORSPACING);
1601        }
1602        if (cpu_has_divec) {
1603                if (cpu_has_mipsmt) {
1604                        unsigned int vpflags = dvpe();
1605                        set_c0_cause(CAUSEF_IV);
1606                        evpe(vpflags);
1607                } else
1608                        set_c0_cause(CAUSEF_IV);
1609        }
1610
1611        /*
1612         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1613         *
1614         *  o read IntCtl.IPTI to determine the timer interrupt
1615         *  o read IntCtl.IPPCI to determine the performance counter interrupt
1616         */
1617        if (cpu_has_mips_r2) {
1618                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1619                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1620                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1621                if (cp0_perfcount_irq == cp0_compare_irq)
1622                        cp0_perfcount_irq = -1;
1623        } else {
1624                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1625                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1626                cp0_perfcount_irq = -1;
1627        }
1628
1629#ifdef CONFIG_MIPS_MT_SMTC
1630        }
1631#endif /* CONFIG_MIPS_MT_SMTC */
1632
1633        if (!cpu_data[cpu].asid_cache)
1634                cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1635
1636        atomic_inc(&init_mm.mm_count);
1637        current->active_mm = &init_mm;
1638        BUG_ON(current->mm);
1639        enter_lazy_tlb(&init_mm, current);
1640
1641#ifdef CONFIG_MIPS_MT_SMTC
1642        if (bootTC) {
1643#endif /* CONFIG_MIPS_MT_SMTC */
1644                /* Boot CPU's cache setup in setup_arch(). */
1645                if (!is_boot_cpu)
1646                        cpu_cache_init();
1647                tlb_init();
1648#ifdef CONFIG_MIPS_MT_SMTC
1649        } else if (!secondaryTC) {
1650                /*
1651                 * First TC in non-boot VPE must do subset of tlb_init()
1652                 * for MMU countrol registers.
1653                 */
1654                write_c0_pagemask(PM_DEFAULT_MASK);
1655                write_c0_wired(0);
1656        }
1657#endif /* CONFIG_MIPS_MT_SMTC */
1658        TLBMISS_HANDLER_SETUP();
1659}
1660
1661/* Install CPU exception handler */
1662void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1663{
1664        memcpy((void *)(ebase + offset), addr, size);
1665        local_flush_icache_range(ebase + offset, ebase + offset + size);
1666}
1667
1668static char panic_null_cerr[] __cpuinitdata =
1669        "Trying to set NULL cache error exception handler";
1670
1671/*
1672 * Install uncached CPU exception handler.
1673 * This is suitable only for the cache error exception which is the only
1674 * exception handler that is being run uncached.
1675 */
1676void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1677        unsigned long size)
1678{
1679        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1680
1681        if (!addr)
1682                panic(panic_null_cerr);
1683
1684        memcpy((void *)(uncached_ebase + offset), addr, size);
1685}
1686
1687static int __initdata rdhwr_noopt;
1688static int __init set_rdhwr_noopt(char *str)
1689{
1690        rdhwr_noopt = 1;
1691        return 1;
1692}
1693
1694__setup("rdhwr_noopt", set_rdhwr_noopt);
1695
1696void __init trap_init(void)
1697{
1698        extern char except_vec3_generic, except_vec3_r4000;
1699        extern char except_vec4;
1700        unsigned long i;
1701        int rollback;
1702
1703        check_wait();
1704        rollback = (cpu_wait == r4k_wait);
1705
1706#if defined(CONFIG_KGDB)
1707        if (kgdb_early_setup)
1708                return; /* Already done */
1709#endif
1710
1711        if (cpu_has_veic || cpu_has_vint) {
1712                unsigned long size = 0x200 + VECTORSPACING*64;
1713                ebase = (unsigned long)
1714                        __alloc_bootmem(size, 1 << fls(size), 0);
1715        } else {
1716                ebase = CKSEG0;
1717                if (cpu_has_mips_r2)
1718                        ebase += (read_c0_ebase() & 0x3ffff000);
1719        }
1720
1721        if (board_ebase_setup)
1722                board_ebase_setup();
1723        per_cpu_trap_init(true);
1724
1725        /*
1726         * Copy the generic exception handlers to their final destination.
1727         * This will be overriden later as suitable for a particular
1728         * configuration.
1729         */
1730        set_handler(0x180, &except_vec3_generic, 0x80);
1731
1732        /*
1733         * Setup default vectors
1734         */
1735        for (i = 0; i <= 31; i++)
1736                set_except_vector(i, handle_reserved);
1737
1738        /*
1739         * Copy the EJTAG debug exception vector handler code to it's final
1740         * destination.
1741         */
1742        if (cpu_has_ejtag && board_ejtag_handler_setup)
1743                board_ejtag_handler_setup();
1744
1745        /*
1746         * Only some CPUs have the watch exceptions.
1747         */
1748        if (cpu_has_watch)
1749                set_except_vector(23, handle_watch);
1750
1751        /*
1752         * Initialise interrupt handlers
1753         */
1754        if (cpu_has_veic || cpu_has_vint) {
1755                int nvec = cpu_has_veic ? 64 : 8;
1756                for (i = 0; i < nvec; i++)
1757                        set_vi_handler(i, NULL);
1758        }
1759        else if (cpu_has_divec)
1760                set_handler(0x200, &except_vec4, 0x8);
1761
1762        /*
1763         * Some CPUs can enable/disable for cache parity detection, but does
1764         * it different ways.
1765         */
1766        parity_protection_init();
1767
1768        /*
1769         * The Data Bus Errors / Instruction Bus Errors are signaled
1770         * by external hardware.  Therefore these two exceptions
1771         * may have board specific handlers.
1772         */
1773        if (board_be_init)
1774                board_be_init();
1775
1776        set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1777        set_except_vector(1, handle_tlbm);
1778        set_except_vector(2, handle_tlbl);
1779        set_except_vector(3, handle_tlbs);
1780
1781        set_except_vector(4, handle_adel);
1782        set_except_vector(5, handle_ades);
1783
1784        set_except_vector(6, handle_ibe);
1785        set_except_vector(7, handle_dbe);
1786
1787        set_except_vector(8, handle_sys);
1788        set_except_vector(9, handle_bp);
1789        set_except_vector(10, rdhwr_noopt ? handle_ri :
1790                          (cpu_has_vtag_icache ?
1791                           handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1792        set_except_vector(11, handle_cpu);
1793        set_except_vector(12, handle_ov);
1794        set_except_vector(13, handle_tr);
1795
1796        if (current_cpu_type() == CPU_R6000 ||
1797            current_cpu_type() == CPU_R6000A) {
1798                /*
1799                 * The R6000 is the only R-series CPU that features a machine
1800                 * check exception (similar to the R4000 cache error) and
1801                 * unaligned ldc1/sdc1 exception.  The handlers have not been
1802                 * written yet.  Well, anyway there is no R6000 machine on the
1803                 * current list of targets for Linux/MIPS.
1804                 * (Duh, crap, there is someone with a triple R6k machine)
1805                 */
1806                //set_except_vector(14, handle_mc);
1807                //set_except_vector(15, handle_ndc);
1808        }
1809
1810
1811        if (board_nmi_handler_setup)
1812                board_nmi_handler_setup();
1813
1814        if (cpu_has_fpu && !cpu_has_nofpuex)
1815                set_except_vector(15, handle_fpe);
1816
1817        set_except_vector(22, handle_mdmx);
1818
1819        if (cpu_has_mcheck)
1820                set_except_vector(24, handle_mcheck);
1821
1822        if (cpu_has_mipsmt)
1823                set_except_vector(25, handle_mt);
1824
1825        set_except_vector(26, handle_dsp);
1826
1827        if (board_cache_error_setup)
1828                board_cache_error_setup();
1829
1830        if (cpu_has_vce)
1831                /* Special exception: R4[04]00 uses also the divec space. */
1832                memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1833        else if (cpu_has_4kex)
1834                memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1835        else
1836                memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1837
1838        local_flush_icache_range(ebase, ebase + 0x400);
1839        flush_tlb_handlers();
1840
1841        sort_extable(__start___dbe_table, __stop___dbe_table);
1842
1843        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
1844}
1845