1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#include <linux/errno.h>
16#include <linux/sched.h>
17#include <linux/proc_fs.h>
18#include <linux/stat.h>
19#include <linux/ctype.h>
20#include <linux/time.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/seq_file.h>
24#include <linux/bitops.h>
25#include <linux/rtc.h>
26
27#include <asm/uaccess.h>
28#include <asm/processor.h>
29#include <asm/io.h>
30#include <asm/prom.h>
31#include <asm/rtas.h>
32#include <asm/machdep.h>
33#include <asm/time.h>
34
35
36#define KEY_SWITCH 0x0001
37#define ENCLOSURE_SWITCH 0x0002
38#define THERMAL_SENSOR 0x0003
39#define LID_STATUS 0x0004
40#define POWER_SOURCE 0x0005
41#define BATTERY_VOLTAGE 0x0006
42#define BATTERY_REMAINING 0x0007
43#define BATTERY_PERCENTAGE 0x0008
44#define EPOW_SENSOR 0x0009
45#define BATTERY_CYCLESTATE 0x000a
46#define BATTERY_CHARGING 0x000b
47
48
49#define IBM_SURVEILLANCE 0x2328
50#define IBM_FANRPM 0x2329
51#define IBM_VOLTAGE 0x232a
52#define IBM_DRCONNECTOR 0x232b
53#define IBM_POWERSUPPLY 0x232c
54
55
56#define SENSOR_CRITICAL_HIGH 13
57#define SENSOR_WARNING_HIGH 12
58#define SENSOR_NORMAL 11
59#define SENSOR_WARNING_LOW 10
60#define SENSOR_CRITICAL_LOW 9
61#define SENSOR_SUCCESS 0
62#define SENSOR_HW_ERROR -1
63#define SENSOR_BUSY -2
64#define SENSOR_NOT_EXIST -3
65#define SENSOR_DR_ENTITY -9000
66
67
68#define LOC_SCSI_DEV_ADDR 'A'
69#define LOC_SCSI_DEV_LOC 'B'
70#define LOC_CPU 'C'
71#define LOC_DISKETTE 'D'
72#define LOC_ETHERNET 'E'
73#define LOC_FAN 'F'
74#define LOC_GRAPHICS 'G'
75
76#define LOC_IO_ADAPTER 'I'
77
78#define LOC_KEYBOARD 'K'
79#define LOC_LCD 'L'
80#define LOC_MEMORY 'M'
81#define LOC_NV_MEMORY 'N'
82#define LOC_MOUSE 'O'
83#define LOC_PLANAR 'P'
84#define LOC_OTHER_IO 'Q'
85#define LOC_PARALLEL 'R'
86#define LOC_SERIAL 'S'
87#define LOC_DEAD_RING 'T'
88#define LOC_RACKMOUNTED 'U'
89#define LOC_VOLTAGE 'V'
90#define LOC_SWITCH_ADAPTER 'W'
91#define LOC_OTHER 'X'
92#define LOC_FIRMWARE 'Y'
93#define LOC_SCSI 'Z'
94
95
96#define TONE_FREQUENCY 0x0001
97#define TONE_VOLUME 0x0002
98#define SYSTEM_POWER_STATE 0x0003
99#define WARNING_LIGHT 0x0004
100#define DISK_ACTIVITY_LIGHT 0x0005
101#define HEX_DISPLAY_UNIT 0x0006
102#define BATTERY_WARNING_TIME 0x0007
103#define CONDITION_CYCLE_REQUEST 0x0008
104#define SURVEILLANCE_INDICATOR 0x2328
105#define DR_ACTION 0x2329
106#define DR_INDICATOR 0x232a
107
108
109
110
111#define MAX_SENSORS 17
112#define MAX_LINELENGTH 256
113#define SENSOR_PREFIX "ibm,sensor-"
114#define cel_to_fahr(x) ((x*9/5)+32)
115
116
117
118static struct rtas_sensors sensors;
119static struct device_node *rtas_node = NULL;
120static unsigned long power_on_time = 0;
121static char progress_led[MAX_LINELENGTH];
122
123static unsigned long rtas_tone_frequency = 1000;
124static unsigned long rtas_tone_volume = 0;
125
126
127struct individual_sensor {
128 unsigned int token;
129 unsigned int quant;
130};
131
132struct rtas_sensors {
133 struct individual_sensor sensor[MAX_SENSORS];
134 unsigned int quant;
135};
136
137
138
139static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
140static int ppc_rtas_clock_show(struct seq_file *m, void *v);
141static ssize_t ppc_rtas_clock_write(struct file *file,
142 const char __user *buf, size_t count, loff_t *ppos);
143static int ppc_rtas_progress_show(struct seq_file *m, void *v);
144static ssize_t ppc_rtas_progress_write(struct file *file,
145 const char __user *buf, size_t count, loff_t *ppos);
146static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
147static ssize_t ppc_rtas_poweron_write(struct file *file,
148 const char __user *buf, size_t count, loff_t *ppos);
149
150static ssize_t ppc_rtas_tone_freq_write(struct file *file,
151 const char __user *buf, size_t count, loff_t *ppos);
152static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
153static ssize_t ppc_rtas_tone_volume_write(struct file *file,
154 const char __user *buf, size_t count, loff_t *ppos);
155static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
156static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
157
158static int sensors_open(struct inode *inode, struct file *file)
159{
160 return single_open(file, ppc_rtas_sensors_show, NULL);
161}
162
163static const struct file_operations ppc_rtas_sensors_operations = {
164 .open = sensors_open,
165 .read = seq_read,
166 .llseek = seq_lseek,
167 .release = single_release,
168};
169
170static int poweron_open(struct inode *inode, struct file *file)
171{
172 return single_open(file, ppc_rtas_poweron_show, NULL);
173}
174
175static const struct file_operations ppc_rtas_poweron_operations = {
176 .open = poweron_open,
177 .read = seq_read,
178 .llseek = seq_lseek,
179 .write = ppc_rtas_poweron_write,
180 .release = single_release,
181};
182
183static int progress_open(struct inode *inode, struct file *file)
184{
185 return single_open(file, ppc_rtas_progress_show, NULL);
186}
187
188static const struct file_operations ppc_rtas_progress_operations = {
189 .open = progress_open,
190 .read = seq_read,
191 .llseek = seq_lseek,
192 .write = ppc_rtas_progress_write,
193 .release = single_release,
194};
195
196static int clock_open(struct inode *inode, struct file *file)
197{
198 return single_open(file, ppc_rtas_clock_show, NULL);
199}
200
201static const struct file_operations ppc_rtas_clock_operations = {
202 .open = clock_open,
203 .read = seq_read,
204 .llseek = seq_lseek,
205 .write = ppc_rtas_clock_write,
206 .release = single_release,
207};
208
209static int tone_freq_open(struct inode *inode, struct file *file)
210{
211 return single_open(file, ppc_rtas_tone_freq_show, NULL);
212}
213
214static const struct file_operations ppc_rtas_tone_freq_operations = {
215 .open = tone_freq_open,
216 .read = seq_read,
217 .llseek = seq_lseek,
218 .write = ppc_rtas_tone_freq_write,
219 .release = single_release,
220};
221
222static int tone_volume_open(struct inode *inode, struct file *file)
223{
224 return single_open(file, ppc_rtas_tone_volume_show, NULL);
225}
226
227static const struct file_operations ppc_rtas_tone_volume_operations = {
228 .open = tone_volume_open,
229 .read = seq_read,
230 .llseek = seq_lseek,
231 .write = ppc_rtas_tone_volume_write,
232 .release = single_release,
233};
234
235static int rmo_buf_open(struct inode *inode, struct file *file)
236{
237 return single_open(file, ppc_rtas_rmo_buf_show, NULL);
238}
239
240static const struct file_operations ppc_rtas_rmo_buf_ops = {
241 .open = rmo_buf_open,
242 .read = seq_read,
243 .llseek = seq_lseek,
244 .release = single_release,
245};
246
247static int ppc_rtas_find_all_sensors(void);
248static void ppc_rtas_process_sensor(struct seq_file *m,
249 struct individual_sensor *s, int state, int error, const char *loc);
250static char *ppc_rtas_process_error(int error);
251static void get_location_code(struct seq_file *m,
252 struct individual_sensor *s, const char *loc);
253static void check_location_string(struct seq_file *m, const char *c);
254static void check_location(struct seq_file *m, const char *c);
255
256static int __init proc_rtas_init(void)
257{
258 if (!machine_is(pseries))
259 return -ENODEV;
260
261 rtas_node = of_find_node_by_name(NULL, "rtas");
262 if (rtas_node == NULL)
263 return -ENODEV;
264
265 proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
266 &ppc_rtas_progress_operations);
267 proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
268 &ppc_rtas_clock_operations);
269 proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
270 &ppc_rtas_poweron_operations);
271 proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
272 &ppc_rtas_sensors_operations);
273 proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
274 &ppc_rtas_tone_freq_operations);
275 proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
276 &ppc_rtas_tone_volume_operations);
277 proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
278 &ppc_rtas_rmo_buf_ops);
279 return 0;
280}
281
282__initcall(proc_rtas_init);
283
284static int parse_number(const char __user *p, size_t count, unsigned long *val)
285{
286 char buf[40];
287 char *end;
288
289 if (count > 39)
290 return -EINVAL;
291
292 if (copy_from_user(buf, p, count))
293 return -EFAULT;
294
295 buf[count] = 0;
296
297 *val = simple_strtoul(buf, &end, 10);
298 if (*end && *end != '\n')
299 return -EINVAL;
300
301 return 0;
302}
303
304
305
306
307static ssize_t ppc_rtas_poweron_write(struct file *file,
308 const char __user *buf, size_t count, loff_t *ppos)
309{
310 struct rtc_time tm;
311 unsigned long nowtime;
312 int error = parse_number(buf, count, &nowtime);
313 if (error)
314 return error;
315
316 power_on_time = nowtime;
317
318 to_tm(nowtime, &tm);
319
320 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
321 tm.tm_year, tm.tm_mon, tm.tm_mday,
322 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 );
323 if (error)
324 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
325 ppc_rtas_process_error(error));
326 return count;
327}
328
329static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
330{
331 if (power_on_time == 0)
332 seq_printf(m, "Power on time not set\n");
333 else
334 seq_printf(m, "%lu\n",power_on_time);
335 return 0;
336}
337
338
339
340
341static ssize_t ppc_rtas_progress_write(struct file *file,
342 const char __user *buf, size_t count, loff_t *ppos)
343{
344 unsigned long hex;
345
346 if (count >= MAX_LINELENGTH)
347 count = MAX_LINELENGTH -1;
348 if (copy_from_user(progress_led, buf, count)) {
349 return -EFAULT;
350 }
351 progress_led[count] = 0;
352
353
354 hex = simple_strtoul(progress_led, NULL, 10);
355
356 rtas_progress ((char *)progress_led, hex);
357 return count;
358
359
360
361}
362
363static int ppc_rtas_progress_show(struct seq_file *m, void *v)
364{
365 if (progress_led[0])
366 seq_printf(m, "%s\n", progress_led);
367 return 0;
368}
369
370
371
372
373static ssize_t ppc_rtas_clock_write(struct file *file,
374 const char __user *buf, size_t count, loff_t *ppos)
375{
376 struct rtc_time tm;
377 unsigned long nowtime;
378 int error = parse_number(buf, count, &nowtime);
379 if (error)
380 return error;
381
382 to_tm(nowtime, &tm);
383 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
384 tm.tm_year, tm.tm_mon, tm.tm_mday,
385 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
386 if (error)
387 printk(KERN_WARNING "error: setting the clock returned: %s\n",
388 ppc_rtas_process_error(error));
389 return count;
390}
391
392static int ppc_rtas_clock_show(struct seq_file *m, void *v)
393{
394 int ret[8];
395 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
396
397 if (error) {
398 printk(KERN_WARNING "error: reading the clock returned: %s\n",
399 ppc_rtas_process_error(error));
400 seq_printf(m, "0");
401 } else {
402 unsigned int year, mon, day, hour, min, sec;
403 year = ret[0]; mon = ret[1]; day = ret[2];
404 hour = ret[3]; min = ret[4]; sec = ret[5];
405 seq_printf(m, "%lu\n",
406 mktime(year, mon, day, hour, min, sec));
407 }
408 return 0;
409}
410
411
412
413
414static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
415{
416 int i,j;
417 int state, error;
418 int get_sensor_state = rtas_token("get-sensor-state");
419
420 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
421 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
422 seq_printf(m, "********************************************************\n");
423
424 if (ppc_rtas_find_all_sensors() != 0) {
425 seq_printf(m, "\nNo sensors are available\n");
426 return 0;
427 }
428
429 for (i=0; i<sensors.quant; i++) {
430 struct individual_sensor *p = &sensors.sensor[i];
431 char rstr[64];
432 const char *loc;
433 int llen, offs;
434
435 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
436 loc = of_get_property(rtas_node, rstr, &llen);
437
438
439 for (j = 0, offs = 0; j <= p->quant; j++) {
440 error = rtas_call(get_sensor_state, 2, 2, &state,
441 p->token, j);
442
443 ppc_rtas_process_sensor(m, p, state, error, loc);
444 seq_putc(m, '\n');
445 if (loc) {
446 offs += strlen(loc) + 1;
447 loc += strlen(loc) + 1;
448 if (offs >= llen)
449 loc = NULL;
450 }
451 }
452 }
453 return 0;
454}
455
456
457
458static int ppc_rtas_find_all_sensors(void)
459{
460 const unsigned int *utmp;
461 int len, i;
462
463 utmp = of_get_property(rtas_node, "rtas-sensors", &len);
464 if (utmp == NULL) {
465 printk (KERN_ERR "error: could not get rtas-sensors\n");
466 return 1;
467 }
468
469 sensors.quant = len / 8;
470
471 for (i=0; i<sensors.quant; i++) {
472 sensors.sensor[i].token = *utmp++;
473 sensors.sensor[i].quant = *utmp++;
474 }
475 return 0;
476}
477
478
479
480
481
482static char *ppc_rtas_process_error(int error)
483{
484 switch (error) {
485 case SENSOR_CRITICAL_HIGH:
486 return "(critical high)";
487 case SENSOR_WARNING_HIGH:
488 return "(warning high)";
489 case SENSOR_NORMAL:
490 return "(normal)";
491 case SENSOR_WARNING_LOW:
492 return "(warning low)";
493 case SENSOR_CRITICAL_LOW:
494 return "(critical low)";
495 case SENSOR_SUCCESS:
496 return "(read ok)";
497 case SENSOR_HW_ERROR:
498 return "(hardware error)";
499 case SENSOR_BUSY:
500 return "(busy)";
501 case SENSOR_NOT_EXIST:
502 return "(non existent)";
503 case SENSOR_DR_ENTITY:
504 return "(dr entity removed)";
505 default:
506 return "(UNKNOWN)";
507 }
508}
509
510
511
512
513
514
515static void ppc_rtas_process_sensor(struct seq_file *m,
516 struct individual_sensor *s, int state, int error, const char *loc)
517{
518
519 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
520 "Maintenance" };
521 const char * enclosure_switch[] = { "Closed", "Open" };
522 const char * lid_status[] = { " ", "Open", "Closed" };
523 const char * power_source[] = { "AC\t", "Battery",
524 "AC & Battery" };
525 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
526 const char * epow_sensor[] = {
527 "EPOW Reset", "Cooling warning", "Power warning",
528 "System shutdown", "System halt", "EPOW main enclosure",
529 "EPOW power off" };
530 const char * battery_cyclestate[] = { "None", "In progress",
531 "Requested" };
532 const char * battery_charging[] = { "Charging", "Discharching",
533 "No current flow" };
534 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
535 "Exchange" };
536
537 int have_strings = 0;
538 int num_states = 0;
539 int temperature = 0;
540 int unknown = 0;
541
542
543
544 switch (s->token) {
545 case KEY_SWITCH:
546 seq_printf(m, "Key switch:\t");
547 num_states = sizeof(key_switch) / sizeof(char *);
548 if (state < num_states) {
549 seq_printf(m, "%s\t", key_switch[state]);
550 have_strings = 1;
551 }
552 break;
553 case ENCLOSURE_SWITCH:
554 seq_printf(m, "Enclosure switch:\t");
555 num_states = sizeof(enclosure_switch) / sizeof(char *);
556 if (state < num_states) {
557 seq_printf(m, "%s\t",
558 enclosure_switch[state]);
559 have_strings = 1;
560 }
561 break;
562 case THERMAL_SENSOR:
563 seq_printf(m, "Temp. (C/F):\t");
564 temperature = 1;
565 break;
566 case LID_STATUS:
567 seq_printf(m, "Lid status:\t");
568 num_states = sizeof(lid_status) / sizeof(char *);
569 if (state < num_states) {
570 seq_printf(m, "%s\t", lid_status[state]);
571 have_strings = 1;
572 }
573 break;
574 case POWER_SOURCE:
575 seq_printf(m, "Power source:\t");
576 num_states = sizeof(power_source) / sizeof(char *);
577 if (state < num_states) {
578 seq_printf(m, "%s\t",
579 power_source[state]);
580 have_strings = 1;
581 }
582 break;
583 case BATTERY_VOLTAGE:
584 seq_printf(m, "Battery voltage:\t");
585 break;
586 case BATTERY_REMAINING:
587 seq_printf(m, "Battery remaining:\t");
588 num_states = sizeof(battery_remaining) / sizeof(char *);
589 if (state < num_states)
590 {
591 seq_printf(m, "%s\t",
592 battery_remaining[state]);
593 have_strings = 1;
594 }
595 break;
596 case BATTERY_PERCENTAGE:
597 seq_printf(m, "Battery percentage:\t");
598 break;
599 case EPOW_SENSOR:
600 seq_printf(m, "EPOW Sensor:\t");
601 num_states = sizeof(epow_sensor) / sizeof(char *);
602 if (state < num_states) {
603 seq_printf(m, "%s\t", epow_sensor[state]);
604 have_strings = 1;
605 }
606 break;
607 case BATTERY_CYCLESTATE:
608 seq_printf(m, "Battery cyclestate:\t");
609 num_states = sizeof(battery_cyclestate) /
610 sizeof(char *);
611 if (state < num_states) {
612 seq_printf(m, "%s\t",
613 battery_cyclestate[state]);
614 have_strings = 1;
615 }
616 break;
617 case BATTERY_CHARGING:
618 seq_printf(m, "Battery Charging:\t");
619 num_states = sizeof(battery_charging) / sizeof(char *);
620 if (state < num_states) {
621 seq_printf(m, "%s\t",
622 battery_charging[state]);
623 have_strings = 1;
624 }
625 break;
626 case IBM_SURVEILLANCE:
627 seq_printf(m, "Surveillance:\t");
628 break;
629 case IBM_FANRPM:
630 seq_printf(m, "Fan (rpm):\t");
631 break;
632 case IBM_VOLTAGE:
633 seq_printf(m, "Voltage (mv):\t");
634 break;
635 case IBM_DRCONNECTOR:
636 seq_printf(m, "DR connector:\t");
637 num_states = sizeof(ibm_drconnector) / sizeof(char *);
638 if (state < num_states) {
639 seq_printf(m, "%s\t",
640 ibm_drconnector[state]);
641 have_strings = 1;
642 }
643 break;
644 case IBM_POWERSUPPLY:
645 seq_printf(m, "Powersupply:\t");
646 break;
647 default:
648 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
649 s->token);
650 unknown = 1;
651 have_strings = 1;
652 break;
653 }
654 if (have_strings == 0) {
655 if (temperature) {
656 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
657 } else
658 seq_printf(m, "%10d\t", state);
659 }
660 if (unknown == 0) {
661 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
662 get_location_code(m, s, loc);
663 }
664}
665
666
667
668static void check_location(struct seq_file *m, const char *c)
669{
670 switch (c[0]) {
671 case LOC_PLANAR:
672 seq_printf(m, "Planar #%c", c[1]);
673 break;
674 case LOC_CPU:
675 seq_printf(m, "CPU #%c", c[1]);
676 break;
677 case LOC_FAN:
678 seq_printf(m, "Fan #%c", c[1]);
679 break;
680 case LOC_RACKMOUNTED:
681 seq_printf(m, "Rack #%c", c[1]);
682 break;
683 case LOC_VOLTAGE:
684 seq_printf(m, "Voltage #%c", c[1]);
685 break;
686 case LOC_LCD:
687 seq_printf(m, "LCD #%c", c[1]);
688 break;
689 case '.':
690 seq_printf(m, "- %c", c[1]);
691 break;
692 default:
693 seq_printf(m, "Unknown location");
694 break;
695 }
696}
697
698
699
700
701
702
703
704
705static void check_location_string(struct seq_file *m, const char *c)
706{
707 while (*c) {
708 if (isalpha(*c) || *c == '.')
709 check_location(m, c);
710 else if (*c == '/' || *c == '-')
711 seq_printf(m, " at ");
712 c++;
713 }
714}
715
716
717
718
719static void get_location_code(struct seq_file *m, struct individual_sensor *s,
720 const char *loc)
721{
722 if (!loc || !*loc) {
723 seq_printf(m, "---");
724 } else {
725 check_location_string(m, loc);
726 }
727 seq_putc(m, ' ');
728}
729
730
731
732static ssize_t ppc_rtas_tone_freq_write(struct file *file,
733 const char __user *buf, size_t count, loff_t *ppos)
734{
735 unsigned long freq;
736 int error = parse_number(buf, count, &freq);
737 if (error)
738 return error;
739
740 rtas_tone_frequency = freq;
741 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
742 TONE_FREQUENCY, 0, freq);
743 if (error)
744 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
745 ppc_rtas_process_error(error));
746 return count;
747}
748
749static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
750{
751 seq_printf(m, "%lu\n", rtas_tone_frequency);
752 return 0;
753}
754
755
756
757static ssize_t ppc_rtas_tone_volume_write(struct file *file,
758 const char __user *buf, size_t count, loff_t *ppos)
759{
760 unsigned long volume;
761 int error = parse_number(buf, count, &volume);
762 if (error)
763 return error;
764
765 if (volume > 100)
766 volume = 100;
767
768 rtas_tone_volume = volume;
769 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
770 TONE_VOLUME, 0, volume);
771 if (error)
772 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
773 ppc_rtas_process_error(error));
774 return count;
775}
776
777static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
778{
779 seq_printf(m, "%lu\n", rtas_tone_volume);
780 return 0;
781}
782
783#define RMO_READ_BUF_MAX 30
784
785
786static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
787{
788 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
789 return 0;
790}
791