linux/arch/sparc/kernel/process_64.c
<<
>>
Prefs
   1/*  arch/sparc64/kernel/process.c
   2 *
   3 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
   4 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
   5 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling..
  10 */
  11
  12#include <stdarg.h>
  13
  14#include <linux/errno.h>
  15#include <linux/export.h>
  16#include <linux/sched.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/ptrace.h>
  23#include <linux/slab.h>
  24#include <linux/user.h>
  25#include <linux/delay.h>
  26#include <linux/compat.h>
  27#include <linux/tick.h>
  28#include <linux/init.h>
  29#include <linux/cpu.h>
  30#include <linux/perf_event.h>
  31#include <linux/elfcore.h>
  32#include <linux/sysrq.h>
  33#include <linux/nmi.h>
  34
  35#include <asm/uaccess.h>
  36#include <asm/page.h>
  37#include <asm/pgalloc.h>
  38#include <asm/pgtable.h>
  39#include <asm/processor.h>
  40#include <asm/pstate.h>
  41#include <asm/elf.h>
  42#include <asm/fpumacro.h>
  43#include <asm/head.h>
  44#include <asm/cpudata.h>
  45#include <asm/mmu_context.h>
  46#include <asm/unistd.h>
  47#include <asm/hypervisor.h>
  48#include <asm/syscalls.h>
  49#include <asm/irq_regs.h>
  50#include <asm/smp.h>
  51#include <asm/pcr.h>
  52
  53#include "kstack.h"
  54
  55static void sparc64_yield(int cpu)
  56{
  57        if (tlb_type != hypervisor) {
  58                touch_nmi_watchdog();
  59                return;
  60        }
  61
  62        clear_thread_flag(TIF_POLLING_NRFLAG);
  63        smp_mb__after_clear_bit();
  64
  65        while (!need_resched() && !cpu_is_offline(cpu)) {
  66                unsigned long pstate;
  67
  68                /* Disable interrupts. */
  69                __asm__ __volatile__(
  70                        "rdpr %%pstate, %0\n\t"
  71                        "andn %0, %1, %0\n\t"
  72                        "wrpr %0, %%g0, %%pstate"
  73                        : "=&r" (pstate)
  74                        : "i" (PSTATE_IE));
  75
  76                if (!need_resched() && !cpu_is_offline(cpu))
  77                        sun4v_cpu_yield();
  78
  79                /* Re-enable interrupts. */
  80                __asm__ __volatile__(
  81                        "rdpr %%pstate, %0\n\t"
  82                        "or %0, %1, %0\n\t"
  83                        "wrpr %0, %%g0, %%pstate"
  84                        : "=&r" (pstate)
  85                        : "i" (PSTATE_IE));
  86        }
  87
  88        set_thread_flag(TIF_POLLING_NRFLAG);
  89}
  90
  91/* The idle loop on sparc64. */
  92void cpu_idle(void)
  93{
  94        int cpu = smp_processor_id();
  95
  96        set_thread_flag(TIF_POLLING_NRFLAG);
  97
  98        while(1) {
  99                tick_nohz_idle_enter();
 100                rcu_idle_enter();
 101
 102                while (!need_resched() && !cpu_is_offline(cpu))
 103                        sparc64_yield(cpu);
 104
 105                rcu_idle_exit();
 106                tick_nohz_idle_exit();
 107
 108#ifdef CONFIG_HOTPLUG_CPU
 109                if (cpu_is_offline(cpu)) {
 110                        sched_preempt_enable_no_resched();
 111                        cpu_play_dead();
 112                }
 113#endif
 114                schedule_preempt_disabled();
 115        }
 116}
 117
 118#ifdef CONFIG_COMPAT
 119static void show_regwindow32(struct pt_regs *regs)
 120{
 121        struct reg_window32 __user *rw;
 122        struct reg_window32 r_w;
 123        mm_segment_t old_fs;
 124        
 125        __asm__ __volatile__ ("flushw");
 126        rw = compat_ptr((unsigned)regs->u_regs[14]);
 127        old_fs = get_fs();
 128        set_fs (USER_DS);
 129        if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 130                set_fs (old_fs);
 131                return;
 132        }
 133
 134        set_fs (old_fs);                        
 135        printk("l0: %08x l1: %08x l2: %08x l3: %08x "
 136               "l4: %08x l5: %08x l6: %08x l7: %08x\n",
 137               r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
 138               r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
 139        printk("i0: %08x i1: %08x i2: %08x i3: %08x "
 140               "i4: %08x i5: %08x i6: %08x i7: %08x\n",
 141               r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
 142               r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
 143}
 144#else
 145#define show_regwindow32(regs)  do { } while (0)
 146#endif
 147
 148static void show_regwindow(struct pt_regs *regs)
 149{
 150        struct reg_window __user *rw;
 151        struct reg_window *rwk;
 152        struct reg_window r_w;
 153        mm_segment_t old_fs;
 154
 155        if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
 156                __asm__ __volatile__ ("flushw");
 157                rw = (struct reg_window __user *)
 158                        (regs->u_regs[14] + STACK_BIAS);
 159                rwk = (struct reg_window *)
 160                        (regs->u_regs[14] + STACK_BIAS);
 161                if (!(regs->tstate & TSTATE_PRIV)) {
 162                        old_fs = get_fs();
 163                        set_fs (USER_DS);
 164                        if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 165                                set_fs (old_fs);
 166                                return;
 167                        }
 168                        rwk = &r_w;
 169                        set_fs (old_fs);                        
 170                }
 171        } else {
 172                show_regwindow32(regs);
 173                return;
 174        }
 175        printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
 176               rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
 177        printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
 178               rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
 179        printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
 180               rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
 181        printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
 182               rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
 183        if (regs->tstate & TSTATE_PRIV)
 184                printk("I7: <%pS>\n", (void *) rwk->ins[7]);
 185}
 186
 187void show_regs(struct pt_regs *regs)
 188{
 189        printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
 190               regs->tpc, regs->tnpc, regs->y, print_tainted());
 191        printk("TPC: <%pS>\n", (void *) regs->tpc);
 192        printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
 193               regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
 194               regs->u_regs[3]);
 195        printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
 196               regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
 197               regs->u_regs[7]);
 198        printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
 199               regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
 200               regs->u_regs[11]);
 201        printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
 202               regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
 203               regs->u_regs[15]);
 204        printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
 205        show_regwindow(regs);
 206        show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
 207}
 208
 209union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
 210static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
 211
 212static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
 213                              int this_cpu)
 214{
 215        struct global_reg_snapshot *rp;
 216
 217        flushw_all();
 218
 219        rp = &global_cpu_snapshot[this_cpu].reg;
 220
 221        rp->tstate = regs->tstate;
 222        rp->tpc = regs->tpc;
 223        rp->tnpc = regs->tnpc;
 224        rp->o7 = regs->u_regs[UREG_I7];
 225
 226        if (regs->tstate & TSTATE_PRIV) {
 227                struct reg_window *rw;
 228
 229                rw = (struct reg_window *)
 230                        (regs->u_regs[UREG_FP] + STACK_BIAS);
 231                if (kstack_valid(tp, (unsigned long) rw)) {
 232                        rp->i7 = rw->ins[7];
 233                        rw = (struct reg_window *)
 234                                (rw->ins[6] + STACK_BIAS);
 235                        if (kstack_valid(tp, (unsigned long) rw))
 236                                rp->rpc = rw->ins[7];
 237                }
 238        } else {
 239                rp->i7 = 0;
 240                rp->rpc = 0;
 241        }
 242        rp->thread = tp;
 243}
 244
 245/* In order to avoid hangs we do not try to synchronize with the
 246 * global register dump client cpus.  The last store they make is to
 247 * the thread pointer, so do a short poll waiting for that to become
 248 * non-NULL.
 249 */
 250static void __global_reg_poll(struct global_reg_snapshot *gp)
 251{
 252        int limit = 0;
 253
 254        while (!gp->thread && ++limit < 100) {
 255                barrier();
 256                udelay(1);
 257        }
 258}
 259
 260void arch_trigger_all_cpu_backtrace(void)
 261{
 262        struct thread_info *tp = current_thread_info();
 263        struct pt_regs *regs = get_irq_regs();
 264        unsigned long flags;
 265        int this_cpu, cpu;
 266
 267        if (!regs)
 268                regs = tp->kregs;
 269
 270        spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 271
 272        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 273
 274        this_cpu = raw_smp_processor_id();
 275
 276        __global_reg_self(tp, regs, this_cpu);
 277
 278        smp_fetch_global_regs();
 279
 280        for_each_online_cpu(cpu) {
 281                struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
 282
 283                __global_reg_poll(gp);
 284
 285                tp = gp->thread;
 286                printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
 287                       (cpu == this_cpu ? '*' : ' '), cpu,
 288                       gp->tstate, gp->tpc, gp->tnpc,
 289                       ((tp && tp->task) ? tp->task->comm : "NULL"),
 290                       ((tp && tp->task) ? tp->task->pid : -1));
 291
 292                if (gp->tstate & TSTATE_PRIV) {
 293                        printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
 294                               (void *) gp->tpc,
 295                               (void *) gp->o7,
 296                               (void *) gp->i7,
 297                               (void *) gp->rpc);
 298                } else {
 299                        printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
 300                               gp->tpc, gp->o7, gp->i7, gp->rpc);
 301                }
 302        }
 303
 304        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 305
 306        spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
 307}
 308
 309#ifdef CONFIG_MAGIC_SYSRQ
 310
 311static void sysrq_handle_globreg(int key)
 312{
 313        arch_trigger_all_cpu_backtrace();
 314}
 315
 316static struct sysrq_key_op sparc_globalreg_op = {
 317        .handler        = sysrq_handle_globreg,
 318        .help_msg       = "global-regs(Y)",
 319        .action_msg     = "Show Global CPU Regs",
 320};
 321
 322static void __global_pmu_self(int this_cpu)
 323{
 324        struct global_pmu_snapshot *pp;
 325        int i, num;
 326
 327        pp = &global_cpu_snapshot[this_cpu].pmu;
 328
 329        num = 1;
 330        if (tlb_type == hypervisor &&
 331            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
 332                num = 4;
 333
 334        for (i = 0; i < num; i++) {
 335                pp->pcr[i] = pcr_ops->read_pcr(i);
 336                pp->pic[i] = pcr_ops->read_pic(i);
 337        }
 338}
 339
 340static void __global_pmu_poll(struct global_pmu_snapshot *pp)
 341{
 342        int limit = 0;
 343
 344        while (!pp->pcr[0] && ++limit < 100) {
 345                barrier();
 346                udelay(1);
 347        }
 348}
 349
 350static void pmu_snapshot_all_cpus(void)
 351{
 352        unsigned long flags;
 353        int this_cpu, cpu;
 354
 355        spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 356
 357        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 358
 359        this_cpu = raw_smp_processor_id();
 360
 361        __global_pmu_self(this_cpu);
 362
 363        smp_fetch_global_pmu();
 364
 365        for_each_online_cpu(cpu) {
 366                struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
 367
 368                __global_pmu_poll(pp);
 369
 370                printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
 371                       (cpu == this_cpu ? '*' : ' '), cpu,
 372                       pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
 373                       pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
 374        }
 375
 376        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 377
 378        spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
 379}
 380
 381static void sysrq_handle_globpmu(int key)
 382{
 383        pmu_snapshot_all_cpus();
 384}
 385
 386static struct sysrq_key_op sparc_globalpmu_op = {
 387        .handler        = sysrq_handle_globpmu,
 388        .help_msg       = "global-pmu(X)",
 389        .action_msg     = "Show Global PMU Regs",
 390};
 391
 392static int __init sparc_sysrq_init(void)
 393{
 394        int ret = register_sysrq_key('y', &sparc_globalreg_op);
 395
 396        if (!ret)
 397                ret = register_sysrq_key('x', &sparc_globalpmu_op);
 398        return ret;
 399}
 400
 401core_initcall(sparc_sysrq_init);
 402
 403#endif
 404
 405unsigned long thread_saved_pc(struct task_struct *tsk)
 406{
 407        struct thread_info *ti = task_thread_info(tsk);
 408        unsigned long ret = 0xdeadbeefUL;
 409        
 410        if (ti && ti->ksp) {
 411                unsigned long *sp;
 412                sp = (unsigned long *)(ti->ksp + STACK_BIAS);
 413                if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
 414                    sp[14]) {
 415                        unsigned long *fp;
 416                        fp = (unsigned long *)(sp[14] + STACK_BIAS);
 417                        if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
 418                                ret = fp[15];
 419                }
 420        }
 421        return ret;
 422}
 423
 424/* Free current thread data structures etc.. */
 425void exit_thread(void)
 426{
 427        struct thread_info *t = current_thread_info();
 428
 429        if (t->utraps) {
 430                if (t->utraps[0] < 2)
 431                        kfree (t->utraps);
 432                else
 433                        t->utraps[0]--;
 434        }
 435}
 436
 437void flush_thread(void)
 438{
 439        struct thread_info *t = current_thread_info();
 440        struct mm_struct *mm;
 441
 442        mm = t->task->mm;
 443        if (mm)
 444                tsb_context_switch(mm);
 445
 446        set_thread_wsaved(0);
 447
 448        /* Clear FPU register state. */
 449        t->fpsaved[0] = 0;
 450}
 451
 452/* It's a bit more tricky when 64-bit tasks are involved... */
 453static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
 454{
 455        bool stack_64bit = test_thread_64bit_stack(psp);
 456        unsigned long fp, distance, rval;
 457
 458        if (stack_64bit) {
 459                csp += STACK_BIAS;
 460                psp += STACK_BIAS;
 461                __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
 462                fp += STACK_BIAS;
 463                if (test_thread_flag(TIF_32BIT))
 464                        fp &= 0xffffffff;
 465        } else
 466                __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
 467
 468        /* Now align the stack as this is mandatory in the Sparc ABI
 469         * due to how register windows work.  This hides the
 470         * restriction from thread libraries etc.
 471         */
 472        csp &= ~15UL;
 473
 474        distance = fp - psp;
 475        rval = (csp - distance);
 476        if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
 477                rval = 0;
 478        else if (!stack_64bit) {
 479                if (put_user(((u32)csp),
 480                             &(((struct reg_window32 __user *)rval)->ins[6])))
 481                        rval = 0;
 482        } else {
 483                if (put_user(((u64)csp - STACK_BIAS),
 484                             &(((struct reg_window __user *)rval)->ins[6])))
 485                        rval = 0;
 486                else
 487                        rval = rval - STACK_BIAS;
 488        }
 489
 490        return rval;
 491}
 492
 493/* Standard stuff. */
 494static inline void shift_window_buffer(int first_win, int last_win,
 495                                       struct thread_info *t)
 496{
 497        int i;
 498
 499        for (i = first_win; i < last_win; i++) {
 500                t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
 501                memcpy(&t->reg_window[i], &t->reg_window[i+1],
 502                       sizeof(struct reg_window));
 503        }
 504}
 505
 506void synchronize_user_stack(void)
 507{
 508        struct thread_info *t = current_thread_info();
 509        unsigned long window;
 510
 511        flush_user_windows();
 512        if ((window = get_thread_wsaved()) != 0) {
 513                window -= 1;
 514                do {
 515                        struct reg_window *rwin = &t->reg_window[window];
 516                        int winsize = sizeof(struct reg_window);
 517                        unsigned long sp;
 518
 519                        sp = t->rwbuf_stkptrs[window];
 520
 521                        if (test_thread_64bit_stack(sp))
 522                                sp += STACK_BIAS;
 523                        else
 524                                winsize = sizeof(struct reg_window32);
 525
 526                        if (!copy_to_user((char __user *)sp, rwin, winsize)) {
 527                                shift_window_buffer(window, get_thread_wsaved() - 1, t);
 528                                set_thread_wsaved(get_thread_wsaved() - 1);
 529                        }
 530                } while (window--);
 531        }
 532}
 533
 534static void stack_unaligned(unsigned long sp)
 535{
 536        siginfo_t info;
 537
 538        info.si_signo = SIGBUS;
 539        info.si_errno = 0;
 540        info.si_code = BUS_ADRALN;
 541        info.si_addr = (void __user *) sp;
 542        info.si_trapno = 0;
 543        force_sig_info(SIGBUS, &info, current);
 544}
 545
 546void fault_in_user_windows(void)
 547{
 548        struct thread_info *t = current_thread_info();
 549        unsigned long window;
 550
 551        flush_user_windows();
 552        window = get_thread_wsaved();
 553
 554        if (likely(window != 0)) {
 555                window -= 1;
 556                do {
 557                        struct reg_window *rwin = &t->reg_window[window];
 558                        int winsize = sizeof(struct reg_window);
 559                        unsigned long sp;
 560
 561                        sp = t->rwbuf_stkptrs[window];
 562
 563                        if (test_thread_64bit_stack(sp))
 564                                sp += STACK_BIAS;
 565                        else
 566                                winsize = sizeof(struct reg_window32);
 567
 568                        if (unlikely(sp & 0x7UL))
 569                                stack_unaligned(sp);
 570
 571                        if (unlikely(copy_to_user((char __user *)sp,
 572                                                  rwin, winsize)))
 573                                goto barf;
 574                } while (window--);
 575        }
 576        set_thread_wsaved(0);
 577        return;
 578
 579barf:
 580        set_thread_wsaved(window + 1);
 581        do_exit(SIGILL);
 582}
 583
 584asmlinkage long sparc_do_fork(unsigned long clone_flags,
 585                              unsigned long stack_start,
 586                              struct pt_regs *regs,
 587                              unsigned long stack_size)
 588{
 589        int __user *parent_tid_ptr, *child_tid_ptr;
 590        unsigned long orig_i1 = regs->u_regs[UREG_I1];
 591        long ret;
 592
 593#ifdef CONFIG_COMPAT
 594        if (test_thread_flag(TIF_32BIT)) {
 595                parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
 596                child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
 597        } else
 598#endif
 599        {
 600                parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
 601                child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
 602        }
 603
 604        ret = do_fork(clone_flags, stack_start, stack_size,
 605                      parent_tid_ptr, child_tid_ptr);
 606
 607        /* If we get an error and potentially restart the system
 608         * call, we're screwed because copy_thread() clobbered
 609         * the parent's %o1.  So detect that case and restore it
 610         * here.
 611         */
 612        if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
 613                regs->u_regs[UREG_I1] = orig_i1;
 614
 615        return ret;
 616}
 617
 618/* Copy a Sparc thread.  The fork() return value conventions
 619 * under SunOS are nothing short of bletcherous:
 620 * Parent -->  %o0 == childs  pid, %o1 == 0
 621 * Child  -->  %o0 == parents pid, %o1 == 1
 622 */
 623int copy_thread(unsigned long clone_flags, unsigned long sp,
 624                unsigned long arg, struct task_struct *p)
 625{
 626        struct thread_info *t = task_thread_info(p);
 627        struct pt_regs *regs = current_pt_regs();
 628        struct sparc_stackf *parent_sf;
 629        unsigned long child_stack_sz;
 630        char *child_trap_frame;
 631
 632        /* Calculate offset to stack_frame & pt_regs */
 633        child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
 634        child_trap_frame = (task_stack_page(p) +
 635                            (THREAD_SIZE - child_stack_sz));
 636
 637        t->new_child = 1;
 638        t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
 639        t->kregs = (struct pt_regs *) (child_trap_frame +
 640                                       sizeof(struct sparc_stackf));
 641        t->fpsaved[0] = 0;
 642
 643        if (unlikely(p->flags & PF_KTHREAD)) {
 644                memset(child_trap_frame, 0, child_stack_sz);
 645                __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
 646                        (current_pt_regs()->tstate + 1) & TSTATE_CWP;
 647                t->current_ds = ASI_P;
 648                t->kregs->u_regs[UREG_G1] = sp; /* function */
 649                t->kregs->u_regs[UREG_G2] = arg;
 650                return 0;
 651        }
 652
 653        parent_sf = ((struct sparc_stackf *) regs) - 1;
 654        memcpy(child_trap_frame, parent_sf, child_stack_sz);
 655        if (t->flags & _TIF_32BIT) {
 656                sp &= 0x00000000ffffffffUL;
 657                regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
 658        }
 659        t->kregs->u_regs[UREG_FP] = sp;
 660        __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
 661                (regs->tstate + 1) & TSTATE_CWP;
 662        t->current_ds = ASI_AIUS;
 663        if (sp != regs->u_regs[UREG_FP]) {
 664                unsigned long csp;
 665
 666                csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
 667                if (!csp)
 668                        return -EFAULT;
 669                t->kregs->u_regs[UREG_FP] = csp;
 670        }
 671        if (t->utraps)
 672                t->utraps[0]++;
 673
 674        /* Set the return value for the child. */
 675        t->kregs->u_regs[UREG_I0] = current->pid;
 676        t->kregs->u_regs[UREG_I1] = 1;
 677
 678        /* Set the second return value for the parent. */
 679        regs->u_regs[UREG_I1] = 0;
 680
 681        if (clone_flags & CLONE_SETTLS)
 682                t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
 683
 684        return 0;
 685}
 686
 687typedef struct {
 688        union {
 689                unsigned int    pr_regs[32];
 690                unsigned long   pr_dregs[16];
 691        } pr_fr;
 692        unsigned int __unused;
 693        unsigned int    pr_fsr;
 694        unsigned char   pr_qcnt;
 695        unsigned char   pr_q_entrysize;
 696        unsigned char   pr_en;
 697        unsigned int    pr_q[64];
 698} elf_fpregset_t32;
 699
 700/*
 701 * fill in the fpu structure for a core dump.
 702 */
 703int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
 704{
 705        unsigned long *kfpregs = current_thread_info()->fpregs;
 706        unsigned long fprs = current_thread_info()->fpsaved[0];
 707
 708        if (test_thread_flag(TIF_32BIT)) {
 709                elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
 710
 711                if (fprs & FPRS_DL)
 712                        memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
 713                               sizeof(unsigned int) * 32);
 714                else
 715                        memset(&fpregs32->pr_fr.pr_regs[0], 0,
 716                               sizeof(unsigned int) * 32);
 717                fpregs32->pr_qcnt = 0;
 718                fpregs32->pr_q_entrysize = 8;
 719                memset(&fpregs32->pr_q[0], 0,
 720                       (sizeof(unsigned int) * 64));
 721                if (fprs & FPRS_FEF) {
 722                        fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
 723                        fpregs32->pr_en = 1;
 724                } else {
 725                        fpregs32->pr_fsr = 0;
 726                        fpregs32->pr_en = 0;
 727                }
 728        } else {
 729                if(fprs & FPRS_DL)
 730                        memcpy(&fpregs->pr_regs[0], kfpregs,
 731                               sizeof(unsigned int) * 32);
 732                else
 733                        memset(&fpregs->pr_regs[0], 0,
 734                               sizeof(unsigned int) * 32);
 735                if(fprs & FPRS_DU)
 736                        memcpy(&fpregs->pr_regs[16], kfpregs+16,
 737                               sizeof(unsigned int) * 32);
 738                else
 739                        memset(&fpregs->pr_regs[16], 0,
 740                               sizeof(unsigned int) * 32);
 741                if(fprs & FPRS_FEF) {
 742                        fpregs->pr_fsr = current_thread_info()->xfsr[0];
 743                        fpregs->pr_gsr = current_thread_info()->gsr[0];
 744                } else {
 745                        fpregs->pr_fsr = fpregs->pr_gsr = 0;
 746                }
 747                fpregs->pr_fprs = fprs;
 748        }
 749        return 1;
 750}
 751EXPORT_SYMBOL(dump_fpu);
 752
 753unsigned long get_wchan(struct task_struct *task)
 754{
 755        unsigned long pc, fp, bias = 0;
 756        struct thread_info *tp;
 757        struct reg_window *rw;
 758        unsigned long ret = 0;
 759        int count = 0; 
 760
 761        if (!task || task == current ||
 762            task->state == TASK_RUNNING)
 763                goto out;
 764
 765        tp = task_thread_info(task);
 766        bias = STACK_BIAS;
 767        fp = task_thread_info(task)->ksp + bias;
 768
 769        do {
 770                if (!kstack_valid(tp, fp))
 771                        break;
 772                rw = (struct reg_window *) fp;
 773                pc = rw->ins[7];
 774                if (!in_sched_functions(pc)) {
 775                        ret = pc;
 776                        goto out;
 777                }
 778                fp = rw->ins[6] + bias;
 779        } while (++count < 16);
 780
 781out:
 782        return ret;
 783}
 784