linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14
  15#include <asm/hpet.h>
  16#include <asm/timer.h>
  17#include <asm/vgtod.h>
  18#include <asm/time.h>
  19#include <asm/delay.h>
  20#include <asm/hypervisor.h>
  21#include <asm/nmi.h>
  22#include <asm/x86_init.h>
  23
  24unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  25EXPORT_SYMBOL(cpu_khz);
  26
  27unsigned int __read_mostly tsc_khz;
  28EXPORT_SYMBOL(tsc_khz);
  29
  30/*
  31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  32 */
  33static int __read_mostly tsc_unstable;
  34
  35/* native_sched_clock() is called before tsc_init(), so
  36   we must start with the TSC soft disabled to prevent
  37   erroneous rdtsc usage on !cpu_has_tsc processors */
  38static int __read_mostly tsc_disabled = -1;
  39
  40int tsc_clocksource_reliable;
  41/*
  42 * Scheduler clock - returns current time in nanosec units.
  43 */
  44u64 native_sched_clock(void)
  45{
  46        u64 this_offset;
  47
  48        /*
  49         * Fall back to jiffies if there's no TSC available:
  50         * ( But note that we still use it if the TSC is marked
  51         *   unstable. We do this because unlike Time Of Day,
  52         *   the scheduler clock tolerates small errors and it's
  53         *   very important for it to be as fast as the platform
  54         *   can achieve it. )
  55         */
  56        if (unlikely(tsc_disabled)) {
  57                /* No locking but a rare wrong value is not a big deal: */
  58                return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  59        }
  60
  61        /* read the Time Stamp Counter: */
  62        rdtscll(this_offset);
  63
  64        /* return the value in ns */
  65        return __cycles_2_ns(this_offset);
  66}
  67
  68/* We need to define a real function for sched_clock, to override the
  69   weak default version */
  70#ifdef CONFIG_PARAVIRT
  71unsigned long long sched_clock(void)
  72{
  73        return paravirt_sched_clock();
  74}
  75#else
  76unsigned long long
  77sched_clock(void) __attribute__((alias("native_sched_clock")));
  78#endif
  79
  80unsigned long long native_read_tsc(void)
  81{
  82        return __native_read_tsc();
  83}
  84EXPORT_SYMBOL(native_read_tsc);
  85
  86int check_tsc_unstable(void)
  87{
  88        return tsc_unstable;
  89}
  90EXPORT_SYMBOL_GPL(check_tsc_unstable);
  91
  92#ifdef CONFIG_X86_TSC
  93int __init notsc_setup(char *str)
  94{
  95        pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  96        tsc_disabled = 1;
  97        return 1;
  98}
  99#else
 100/*
 101 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 102 * in cpu/common.c
 103 */
 104int __init notsc_setup(char *str)
 105{
 106        setup_clear_cpu_cap(X86_FEATURE_TSC);
 107        return 1;
 108}
 109#endif
 110
 111__setup("notsc", notsc_setup);
 112
 113static int no_sched_irq_time;
 114
 115static int __init tsc_setup(char *str)
 116{
 117        if (!strcmp(str, "reliable"))
 118                tsc_clocksource_reliable = 1;
 119        if (!strncmp(str, "noirqtime", 9))
 120                no_sched_irq_time = 1;
 121        return 1;
 122}
 123
 124__setup("tsc=", tsc_setup);
 125
 126#define MAX_RETRIES     5
 127#define SMI_TRESHOLD    50000
 128
 129/*
 130 * Read TSC and the reference counters. Take care of SMI disturbance
 131 */
 132static u64 tsc_read_refs(u64 *p, int hpet)
 133{
 134        u64 t1, t2;
 135        int i;
 136
 137        for (i = 0; i < MAX_RETRIES; i++) {
 138                t1 = get_cycles();
 139                if (hpet)
 140                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 141                else
 142                        *p = acpi_pm_read_early();
 143                t2 = get_cycles();
 144                if ((t2 - t1) < SMI_TRESHOLD)
 145                        return t2;
 146        }
 147        return ULLONG_MAX;
 148}
 149
 150/*
 151 * Calculate the TSC frequency from HPET reference
 152 */
 153static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 154{
 155        u64 tmp;
 156
 157        if (hpet2 < hpet1)
 158                hpet2 += 0x100000000ULL;
 159        hpet2 -= hpet1;
 160        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 161        do_div(tmp, 1000000);
 162        do_div(deltatsc, tmp);
 163
 164        return (unsigned long) deltatsc;
 165}
 166
 167/*
 168 * Calculate the TSC frequency from PMTimer reference
 169 */
 170static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 171{
 172        u64 tmp;
 173
 174        if (!pm1 && !pm2)
 175                return ULONG_MAX;
 176
 177        if (pm2 < pm1)
 178                pm2 += (u64)ACPI_PM_OVRRUN;
 179        pm2 -= pm1;
 180        tmp = pm2 * 1000000000LL;
 181        do_div(tmp, PMTMR_TICKS_PER_SEC);
 182        do_div(deltatsc, tmp);
 183
 184        return (unsigned long) deltatsc;
 185}
 186
 187#define CAL_MS          10
 188#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 189#define CAL_PIT_LOOPS   1000
 190
 191#define CAL2_MS         50
 192#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 193#define CAL2_PIT_LOOPS  5000
 194
 195
 196/*
 197 * Try to calibrate the TSC against the Programmable
 198 * Interrupt Timer and return the frequency of the TSC
 199 * in kHz.
 200 *
 201 * Return ULONG_MAX on failure to calibrate.
 202 */
 203static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 204{
 205        u64 tsc, t1, t2, delta;
 206        unsigned long tscmin, tscmax;
 207        int pitcnt;
 208
 209        /* Set the Gate high, disable speaker */
 210        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 211
 212        /*
 213         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 214         * count mode), binary count. Set the latch register to 50ms
 215         * (LSB then MSB) to begin countdown.
 216         */
 217        outb(0xb0, 0x43);
 218        outb(latch & 0xff, 0x42);
 219        outb(latch >> 8, 0x42);
 220
 221        tsc = t1 = t2 = get_cycles();
 222
 223        pitcnt = 0;
 224        tscmax = 0;
 225        tscmin = ULONG_MAX;
 226        while ((inb(0x61) & 0x20) == 0) {
 227                t2 = get_cycles();
 228                delta = t2 - tsc;
 229                tsc = t2;
 230                if ((unsigned long) delta < tscmin)
 231                        tscmin = (unsigned int) delta;
 232                if ((unsigned long) delta > tscmax)
 233                        tscmax = (unsigned int) delta;
 234                pitcnt++;
 235        }
 236
 237        /*
 238         * Sanity checks:
 239         *
 240         * If we were not able to read the PIT more than loopmin
 241         * times, then we have been hit by a massive SMI
 242         *
 243         * If the maximum is 10 times larger than the minimum,
 244         * then we got hit by an SMI as well.
 245         */
 246        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 247                return ULONG_MAX;
 248
 249        /* Calculate the PIT value */
 250        delta = t2 - t1;
 251        do_div(delta, ms);
 252        return delta;
 253}
 254
 255/*
 256 * This reads the current MSB of the PIT counter, and
 257 * checks if we are running on sufficiently fast and
 258 * non-virtualized hardware.
 259 *
 260 * Our expectations are:
 261 *
 262 *  - the PIT is running at roughly 1.19MHz
 263 *
 264 *  - each IO is going to take about 1us on real hardware,
 265 *    but we allow it to be much faster (by a factor of 10) or
 266 *    _slightly_ slower (ie we allow up to a 2us read+counter
 267 *    update - anything else implies a unacceptably slow CPU
 268 *    or PIT for the fast calibration to work.
 269 *
 270 *  - with 256 PIT ticks to read the value, we have 214us to
 271 *    see the same MSB (and overhead like doing a single TSC
 272 *    read per MSB value etc).
 273 *
 274 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 275 *    them each to take about a microsecond on real hardware.
 276 *    So we expect a count value of around 100. But we'll be
 277 *    generous, and accept anything over 50.
 278 *
 279 *  - if the PIT is stuck, and we see *many* more reads, we
 280 *    return early (and the next caller of pit_expect_msb()
 281 *    then consider it a failure when they don't see the
 282 *    next expected value).
 283 *
 284 * These expectations mean that we know that we have seen the
 285 * transition from one expected value to another with a fairly
 286 * high accuracy, and we didn't miss any events. We can thus
 287 * use the TSC value at the transitions to calculate a pretty
 288 * good value for the TSC frequencty.
 289 */
 290static inline int pit_verify_msb(unsigned char val)
 291{
 292        /* Ignore LSB */
 293        inb(0x42);
 294        return inb(0x42) == val;
 295}
 296
 297static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 298{
 299        int count;
 300        u64 tsc = 0, prev_tsc = 0;
 301
 302        for (count = 0; count < 50000; count++) {
 303                if (!pit_verify_msb(val))
 304                        break;
 305                prev_tsc = tsc;
 306                tsc = get_cycles();
 307        }
 308        *deltap = get_cycles() - prev_tsc;
 309        *tscp = tsc;
 310
 311        /*
 312         * We require _some_ success, but the quality control
 313         * will be based on the error terms on the TSC values.
 314         */
 315        return count > 5;
 316}
 317
 318/*
 319 * How many MSB values do we want to see? We aim for
 320 * a maximum error rate of 500ppm (in practice the
 321 * real error is much smaller), but refuse to spend
 322 * more than 50ms on it.
 323 */
 324#define MAX_QUICK_PIT_MS 50
 325#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 326
 327static unsigned long quick_pit_calibrate(void)
 328{
 329        int i;
 330        u64 tsc, delta;
 331        unsigned long d1, d2;
 332
 333        /* Set the Gate high, disable speaker */
 334        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 335
 336        /*
 337         * Counter 2, mode 0 (one-shot), binary count
 338         *
 339         * NOTE! Mode 2 decrements by two (and then the
 340         * output is flipped each time, giving the same
 341         * final output frequency as a decrement-by-one),
 342         * so mode 0 is much better when looking at the
 343         * individual counts.
 344         */
 345        outb(0xb0, 0x43);
 346
 347        /* Start at 0xffff */
 348        outb(0xff, 0x42);
 349        outb(0xff, 0x42);
 350
 351        /*
 352         * The PIT starts counting at the next edge, so we
 353         * need to delay for a microsecond. The easiest way
 354         * to do that is to just read back the 16-bit counter
 355         * once from the PIT.
 356         */
 357        pit_verify_msb(0);
 358
 359        if (pit_expect_msb(0xff, &tsc, &d1)) {
 360                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 361                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 362                                break;
 363
 364                        /*
 365                         * Iterate until the error is less than 500 ppm
 366                         */
 367                        delta -= tsc;
 368                        if (d1+d2 >= delta >> 11)
 369                                continue;
 370
 371                        /*
 372                         * Check the PIT one more time to verify that
 373                         * all TSC reads were stable wrt the PIT.
 374                         *
 375                         * This also guarantees serialization of the
 376                         * last cycle read ('d2') in pit_expect_msb.
 377                         */
 378                        if (!pit_verify_msb(0xfe - i))
 379                                break;
 380                        goto success;
 381                }
 382        }
 383        pr_err("Fast TSC calibration failed\n");
 384        return 0;
 385
 386success:
 387        /*
 388         * Ok, if we get here, then we've seen the
 389         * MSB of the PIT decrement 'i' times, and the
 390         * error has shrunk to less than 500 ppm.
 391         *
 392         * As a result, we can depend on there not being
 393         * any odd delays anywhere, and the TSC reads are
 394         * reliable (within the error).
 395         *
 396         * kHz = ticks / time-in-seconds / 1000;
 397         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 398         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 399         */
 400        delta *= PIT_TICK_RATE;
 401        do_div(delta, i*256*1000);
 402        pr_info("Fast TSC calibration using PIT\n");
 403        return delta;
 404}
 405
 406/**
 407 * native_calibrate_tsc - calibrate the tsc on boot
 408 */
 409unsigned long native_calibrate_tsc(void)
 410{
 411        u64 tsc1, tsc2, delta, ref1, ref2;
 412        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 413        unsigned long flags, latch, ms, fast_calibrate;
 414        int hpet = is_hpet_enabled(), i, loopmin;
 415
 416        local_irq_save(flags);
 417        fast_calibrate = quick_pit_calibrate();
 418        local_irq_restore(flags);
 419        if (fast_calibrate)
 420                return fast_calibrate;
 421
 422        /*
 423         * Run 5 calibration loops to get the lowest frequency value
 424         * (the best estimate). We use two different calibration modes
 425         * here:
 426         *
 427         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 428         * load a timeout of 50ms. We read the time right after we
 429         * started the timer and wait until the PIT count down reaches
 430         * zero. In each wait loop iteration we read the TSC and check
 431         * the delta to the previous read. We keep track of the min
 432         * and max values of that delta. The delta is mostly defined
 433         * by the IO time of the PIT access, so we can detect when a
 434         * SMI/SMM disturbance happened between the two reads. If the
 435         * maximum time is significantly larger than the minimum time,
 436         * then we discard the result and have another try.
 437         *
 438         * 2) Reference counter. If available we use the HPET or the
 439         * PMTIMER as a reference to check the sanity of that value.
 440         * We use separate TSC readouts and check inside of the
 441         * reference read for a SMI/SMM disturbance. We dicard
 442         * disturbed values here as well. We do that around the PIT
 443         * calibration delay loop as we have to wait for a certain
 444         * amount of time anyway.
 445         */
 446
 447        /* Preset PIT loop values */
 448        latch = CAL_LATCH;
 449        ms = CAL_MS;
 450        loopmin = CAL_PIT_LOOPS;
 451
 452        for (i = 0; i < 3; i++) {
 453                unsigned long tsc_pit_khz;
 454
 455                /*
 456                 * Read the start value and the reference count of
 457                 * hpet/pmtimer when available. Then do the PIT
 458                 * calibration, which will take at least 50ms, and
 459                 * read the end value.
 460                 */
 461                local_irq_save(flags);
 462                tsc1 = tsc_read_refs(&ref1, hpet);
 463                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 464                tsc2 = tsc_read_refs(&ref2, hpet);
 465                local_irq_restore(flags);
 466
 467                /* Pick the lowest PIT TSC calibration so far */
 468                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 469
 470                /* hpet or pmtimer available ? */
 471                if (ref1 == ref2)
 472                        continue;
 473
 474                /* Check, whether the sampling was disturbed by an SMI */
 475                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 476                        continue;
 477
 478                tsc2 = (tsc2 - tsc1) * 1000000LL;
 479                if (hpet)
 480                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 481                else
 482                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 483
 484                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 485
 486                /* Check the reference deviation */
 487                delta = ((u64) tsc_pit_min) * 100;
 488                do_div(delta, tsc_ref_min);
 489
 490                /*
 491                 * If both calibration results are inside a 10% window
 492                 * then we can be sure, that the calibration
 493                 * succeeded. We break out of the loop right away. We
 494                 * use the reference value, as it is more precise.
 495                 */
 496                if (delta >= 90 && delta <= 110) {
 497                        pr_info("PIT calibration matches %s. %d loops\n",
 498                                hpet ? "HPET" : "PMTIMER", i + 1);
 499                        return tsc_ref_min;
 500                }
 501
 502                /*
 503                 * Check whether PIT failed more than once. This
 504                 * happens in virtualized environments. We need to
 505                 * give the virtual PC a slightly longer timeframe for
 506                 * the HPET/PMTIMER to make the result precise.
 507                 */
 508                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 509                        latch = CAL2_LATCH;
 510                        ms = CAL2_MS;
 511                        loopmin = CAL2_PIT_LOOPS;
 512                }
 513        }
 514
 515        /*
 516         * Now check the results.
 517         */
 518        if (tsc_pit_min == ULONG_MAX) {
 519                /* PIT gave no useful value */
 520                pr_warn("Unable to calibrate against PIT\n");
 521
 522                /* We don't have an alternative source, disable TSC */
 523                if (!hpet && !ref1 && !ref2) {
 524                        pr_notice("No reference (HPET/PMTIMER) available\n");
 525                        return 0;
 526                }
 527
 528                /* The alternative source failed as well, disable TSC */
 529                if (tsc_ref_min == ULONG_MAX) {
 530                        pr_warn("HPET/PMTIMER calibration failed\n");
 531                        return 0;
 532                }
 533
 534                /* Use the alternative source */
 535                pr_info("using %s reference calibration\n",
 536                        hpet ? "HPET" : "PMTIMER");
 537
 538                return tsc_ref_min;
 539        }
 540
 541        /* We don't have an alternative source, use the PIT calibration value */
 542        if (!hpet && !ref1 && !ref2) {
 543                pr_info("Using PIT calibration value\n");
 544                return tsc_pit_min;
 545        }
 546
 547        /* The alternative source failed, use the PIT calibration value */
 548        if (tsc_ref_min == ULONG_MAX) {
 549                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 550                return tsc_pit_min;
 551        }
 552
 553        /*
 554         * The calibration values differ too much. In doubt, we use
 555         * the PIT value as we know that there are PMTIMERs around
 556         * running at double speed. At least we let the user know:
 557         */
 558        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 559                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 560        pr_info("Using PIT calibration value\n");
 561        return tsc_pit_min;
 562}
 563
 564int recalibrate_cpu_khz(void)
 565{
 566#ifndef CONFIG_SMP
 567        unsigned long cpu_khz_old = cpu_khz;
 568
 569        if (cpu_has_tsc) {
 570                tsc_khz = x86_platform.calibrate_tsc();
 571                cpu_khz = tsc_khz;
 572                cpu_data(0).loops_per_jiffy =
 573                        cpufreq_scale(cpu_data(0).loops_per_jiffy,
 574                                        cpu_khz_old, cpu_khz);
 575                return 0;
 576        } else
 577                return -ENODEV;
 578#else
 579        return -ENODEV;
 580#endif
 581}
 582
 583EXPORT_SYMBOL(recalibrate_cpu_khz);
 584
 585
 586/* Accelerators for sched_clock()
 587 * convert from cycles(64bits) => nanoseconds (64bits)
 588 *  basic equation:
 589 *              ns = cycles / (freq / ns_per_sec)
 590 *              ns = cycles * (ns_per_sec / freq)
 591 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 592 *              ns = cycles * (10^6 / cpu_khz)
 593 *
 594 *      Then we use scaling math (suggested by george@mvista.com) to get:
 595 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 596 *              ns = cycles * cyc2ns_scale / SC
 597 *
 598 *      And since SC is a constant power of two, we can convert the div
 599 *  into a shift.
 600 *
 601 *  We can use khz divisor instead of mhz to keep a better precision, since
 602 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 603 *  (mathieu.desnoyers@polymtl.ca)
 604 *
 605 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 606 */
 607
 608DEFINE_PER_CPU(unsigned long, cyc2ns);
 609DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
 610
 611static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 612{
 613        unsigned long long tsc_now, ns_now, *offset;
 614        unsigned long flags, *scale;
 615
 616        local_irq_save(flags);
 617        sched_clock_idle_sleep_event();
 618
 619        scale = &per_cpu(cyc2ns, cpu);
 620        offset = &per_cpu(cyc2ns_offset, cpu);
 621
 622        rdtscll(tsc_now);
 623        ns_now = __cycles_2_ns(tsc_now);
 624
 625        if (cpu_khz) {
 626                *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
 627                *offset = ns_now - mult_frac(tsc_now, *scale,
 628                                             (1UL << CYC2NS_SCALE_FACTOR));
 629        }
 630
 631        sched_clock_idle_wakeup_event(0);
 632        local_irq_restore(flags);
 633}
 634
 635static unsigned long long cyc2ns_suspend;
 636
 637void tsc_save_sched_clock_state(void)
 638{
 639        if (!sched_clock_stable)
 640                return;
 641
 642        cyc2ns_suspend = sched_clock();
 643}
 644
 645/*
 646 * Even on processors with invariant TSC, TSC gets reset in some the
 647 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 648 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 649 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 650 * that sched_clock() continues from the point where it was left off during
 651 * suspend.
 652 */
 653void tsc_restore_sched_clock_state(void)
 654{
 655        unsigned long long offset;
 656        unsigned long flags;
 657        int cpu;
 658
 659        if (!sched_clock_stable)
 660                return;
 661
 662        local_irq_save(flags);
 663
 664        __this_cpu_write(cyc2ns_offset, 0);
 665        offset = cyc2ns_suspend - sched_clock();
 666
 667        for_each_possible_cpu(cpu)
 668                per_cpu(cyc2ns_offset, cpu) = offset;
 669
 670        local_irq_restore(flags);
 671}
 672
 673#ifdef CONFIG_CPU_FREQ
 674
 675/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 676 * changes.
 677 *
 678 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 679 * not that important because current Opteron setups do not support
 680 * scaling on SMP anyroads.
 681 *
 682 * Should fix up last_tsc too. Currently gettimeofday in the
 683 * first tick after the change will be slightly wrong.
 684 */
 685
 686static unsigned int  ref_freq;
 687static unsigned long loops_per_jiffy_ref;
 688static unsigned long tsc_khz_ref;
 689
 690static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 691                                void *data)
 692{
 693        struct cpufreq_freqs *freq = data;
 694        unsigned long *lpj;
 695
 696        if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 697                return 0;
 698
 699        lpj = &boot_cpu_data.loops_per_jiffy;
 700#ifdef CONFIG_SMP
 701        if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 702                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 703#endif
 704
 705        if (!ref_freq) {
 706                ref_freq = freq->old;
 707                loops_per_jiffy_ref = *lpj;
 708                tsc_khz_ref = tsc_khz;
 709        }
 710        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 711                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
 712                        (val == CPUFREQ_RESUMECHANGE)) {
 713                *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 714
 715                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 716                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 717                        mark_tsc_unstable("cpufreq changes");
 718        }
 719
 720        set_cyc2ns_scale(tsc_khz, freq->cpu);
 721
 722        return 0;
 723}
 724
 725static struct notifier_block time_cpufreq_notifier_block = {
 726        .notifier_call  = time_cpufreq_notifier
 727};
 728
 729static int __init cpufreq_tsc(void)
 730{
 731        if (!cpu_has_tsc)
 732                return 0;
 733        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 734                return 0;
 735        cpufreq_register_notifier(&time_cpufreq_notifier_block,
 736                                CPUFREQ_TRANSITION_NOTIFIER);
 737        return 0;
 738}
 739
 740core_initcall(cpufreq_tsc);
 741
 742#endif /* CONFIG_CPU_FREQ */
 743
 744/* clocksource code */
 745
 746static struct clocksource clocksource_tsc;
 747
 748/*
 749 * We compare the TSC to the cycle_last value in the clocksource
 750 * structure to avoid a nasty time-warp. This can be observed in a
 751 * very small window right after one CPU updated cycle_last under
 752 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 753 * is smaller than the cycle_last reference value due to a TSC which
 754 * is slighty behind. This delta is nowhere else observable, but in
 755 * that case it results in a forward time jump in the range of hours
 756 * due to the unsigned delta calculation of the time keeping core
 757 * code, which is necessary to support wrapping clocksources like pm
 758 * timer.
 759 */
 760static cycle_t read_tsc(struct clocksource *cs)
 761{
 762        cycle_t ret = (cycle_t)get_cycles();
 763
 764        return ret >= clocksource_tsc.cycle_last ?
 765                ret : clocksource_tsc.cycle_last;
 766}
 767
 768static void resume_tsc(struct clocksource *cs)
 769{
 770        clocksource_tsc.cycle_last = 0;
 771}
 772
 773static struct clocksource clocksource_tsc = {
 774        .name                   = "tsc",
 775        .rating                 = 300,
 776        .read                   = read_tsc,
 777        .resume                 = resume_tsc,
 778        .mask                   = CLOCKSOURCE_MASK(64),
 779        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
 780                                  CLOCK_SOURCE_MUST_VERIFY,
 781#ifdef CONFIG_X86_64
 782        .archdata               = { .vclock_mode = VCLOCK_TSC },
 783#endif
 784};
 785
 786void mark_tsc_unstable(char *reason)
 787{
 788        if (!tsc_unstable) {
 789                tsc_unstable = 1;
 790                sched_clock_stable = 0;
 791                disable_sched_clock_irqtime();
 792                pr_info("Marking TSC unstable due to %s\n", reason);
 793                /* Change only the rating, when not registered */
 794                if (clocksource_tsc.mult)
 795                        clocksource_mark_unstable(&clocksource_tsc);
 796                else {
 797                        clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
 798                        clocksource_tsc.rating = 0;
 799                }
 800        }
 801}
 802
 803EXPORT_SYMBOL_GPL(mark_tsc_unstable);
 804
 805static void __init check_system_tsc_reliable(void)
 806{
 807#ifdef CONFIG_MGEODE_LX
 808        /* RTSC counts during suspend */
 809#define RTSC_SUSP 0x100
 810        unsigned long res_low, res_high;
 811
 812        rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
 813        /* Geode_LX - the OLPC CPU has a very reliable TSC */
 814        if (res_low & RTSC_SUSP)
 815                tsc_clocksource_reliable = 1;
 816#endif
 817        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
 818                tsc_clocksource_reliable = 1;
 819}
 820
 821/*
 822 * Make an educated guess if the TSC is trustworthy and synchronized
 823 * over all CPUs.
 824 */
 825__cpuinit int unsynchronized_tsc(void)
 826{
 827        if (!cpu_has_tsc || tsc_unstable)
 828                return 1;
 829
 830#ifdef CONFIG_SMP
 831        if (apic_is_clustered_box())
 832                return 1;
 833#endif
 834
 835        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 836                return 0;
 837
 838        if (tsc_clocksource_reliable)
 839                return 0;
 840        /*
 841         * Intel systems are normally all synchronized.
 842         * Exceptions must mark TSC as unstable:
 843         */
 844        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
 845                /* assume multi socket systems are not synchronized: */
 846                if (num_possible_cpus() > 1)
 847                        return 1;
 848        }
 849
 850        return 0;
 851}
 852
 853
 854static void tsc_refine_calibration_work(struct work_struct *work);
 855static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
 856/**
 857 * tsc_refine_calibration_work - Further refine tsc freq calibration
 858 * @work - ignored.
 859 *
 860 * This functions uses delayed work over a period of a
 861 * second to further refine the TSC freq value. Since this is
 862 * timer based, instead of loop based, we don't block the boot
 863 * process while this longer calibration is done.
 864 *
 865 * If there are any calibration anomalies (too many SMIs, etc),
 866 * or the refined calibration is off by 1% of the fast early
 867 * calibration, we throw out the new calibration and use the
 868 * early calibration.
 869 */
 870static void tsc_refine_calibration_work(struct work_struct *work)
 871{
 872        static u64 tsc_start = -1, ref_start;
 873        static int hpet;
 874        u64 tsc_stop, ref_stop, delta;
 875        unsigned long freq;
 876
 877        /* Don't bother refining TSC on unstable systems */
 878        if (check_tsc_unstable())
 879                goto out;
 880
 881        /*
 882         * Since the work is started early in boot, we may be
 883         * delayed the first time we expire. So set the workqueue
 884         * again once we know timers are working.
 885         */
 886        if (tsc_start == -1) {
 887                /*
 888                 * Only set hpet once, to avoid mixing hardware
 889                 * if the hpet becomes enabled later.
 890                 */
 891                hpet = is_hpet_enabled();
 892                schedule_delayed_work(&tsc_irqwork, HZ);
 893                tsc_start = tsc_read_refs(&ref_start, hpet);
 894                return;
 895        }
 896
 897        tsc_stop = tsc_read_refs(&ref_stop, hpet);
 898
 899        /* hpet or pmtimer available ? */
 900        if (ref_start == ref_stop)
 901                goto out;
 902
 903        /* Check, whether the sampling was disturbed by an SMI */
 904        if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
 905                goto out;
 906
 907        delta = tsc_stop - tsc_start;
 908        delta *= 1000000LL;
 909        if (hpet)
 910                freq = calc_hpet_ref(delta, ref_start, ref_stop);
 911        else
 912                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
 913
 914        /* Make sure we're within 1% */
 915        if (abs(tsc_khz - freq) > tsc_khz/100)
 916                goto out;
 917
 918        tsc_khz = freq;
 919        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
 920                (unsigned long)tsc_khz / 1000,
 921                (unsigned long)tsc_khz % 1000);
 922
 923out:
 924        clocksource_register_khz(&clocksource_tsc, tsc_khz);
 925}
 926
 927
 928static int __init init_tsc_clocksource(void)
 929{
 930        if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
 931                return 0;
 932
 933        if (tsc_clocksource_reliable)
 934                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
 935        /* lower the rating if we already know its unstable: */
 936        if (check_tsc_unstable()) {
 937                clocksource_tsc.rating = 0;
 938                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
 939        }
 940
 941        /*
 942         * Trust the results of the earlier calibration on systems
 943         * exporting a reliable TSC.
 944         */
 945        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
 946                clocksource_register_khz(&clocksource_tsc, tsc_khz);
 947                return 0;
 948        }
 949
 950        schedule_delayed_work(&tsc_irqwork, 0);
 951        return 0;
 952}
 953/*
 954 * We use device_initcall here, to ensure we run after the hpet
 955 * is fully initialized, which may occur at fs_initcall time.
 956 */
 957device_initcall(init_tsc_clocksource);
 958
 959void __init tsc_init(void)
 960{
 961        u64 lpj;
 962        int cpu;
 963
 964        x86_init.timers.tsc_pre_init();
 965
 966        if (!cpu_has_tsc)
 967                return;
 968
 969        tsc_khz = x86_platform.calibrate_tsc();
 970        cpu_khz = tsc_khz;
 971
 972        if (!tsc_khz) {
 973                mark_tsc_unstable("could not calculate TSC khz");
 974                return;
 975        }
 976
 977        pr_info("Detected %lu.%03lu MHz processor\n",
 978                (unsigned long)cpu_khz / 1000,
 979                (unsigned long)cpu_khz % 1000);
 980
 981        /*
 982         * Secondary CPUs do not run through tsc_init(), so set up
 983         * all the scale factors for all CPUs, assuming the same
 984         * speed as the bootup CPU. (cpufreq notifiers will fix this
 985         * up if their speed diverges)
 986         */
 987        for_each_possible_cpu(cpu)
 988                set_cyc2ns_scale(cpu_khz, cpu);
 989
 990        if (tsc_disabled > 0)
 991                return;
 992
 993        /* now allow native_sched_clock() to use rdtsc */
 994        tsc_disabled = 0;
 995
 996        if (!no_sched_irq_time)
 997                enable_sched_clock_irqtime();
 998
 999        lpj = ((u64)tsc_khz * 1000);
1000        do_div(lpj, HZ);
1001        lpj_fine = lpj;
1002
1003        use_tsc_delay();
1004
1005        if (unsynchronized_tsc())
1006                mark_tsc_unstable("TSCs unsynchronized");
1007
1008        check_system_tsc_reliable();
1009}
1010
1011#ifdef CONFIG_SMP
1012/*
1013 * If we have a constant TSC and are using the TSC for the delay loop,
1014 * we can skip clock calibration if another cpu in the same socket has already
1015 * been calibrated. This assumes that CONSTANT_TSC applies to all
1016 * cpus in the socket - this should be a safe assumption.
1017 */
1018unsigned long __cpuinit calibrate_delay_is_known(void)
1019{
1020        int i, cpu = smp_processor_id();
1021
1022        if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1023                return 0;
1024
1025        for_each_online_cpu(i)
1026                if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1027                        return cpu_data(i).loops_per_jiffy;
1028        return 0;
1029}
1030#endif
1031