linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30
  31#include <linux/clocksource.h>
  32#include <linux/interrupt.h>
  33#include <linux/kvm.h>
  34#include <linux/fs.h>
  35#include <linux/vmalloc.h>
  36#include <linux/module.h>
  37#include <linux/mman.h>
  38#include <linux/highmem.h>
  39#include <linux/iommu.h>
  40#include <linux/intel-iommu.h>
  41#include <linux/cpufreq.h>
  42#include <linux/user-return-notifier.h>
  43#include <linux/srcu.h>
  44#include <linux/slab.h>
  45#include <linux/perf_event.h>
  46#include <linux/uaccess.h>
  47#include <linux/hash.h>
  48#include <linux/pci.h>
  49#include <linux/timekeeper_internal.h>
  50#include <linux/pvclock_gtod.h>
  51#include <trace/events/kvm.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include "trace.h"
  55
  56#include <asm/debugreg.h>
  57#include <asm/msr.h>
  58#include <asm/desc.h>
  59#include <asm/mtrr.h>
  60#include <asm/mce.h>
  61#include <asm/i387.h>
  62#include <asm/fpu-internal.h> /* Ugh! */
  63#include <asm/xcr.h>
  64#include <asm/pvclock.h>
  65#include <asm/div64.h>
  66
  67#define MAX_IO_MSRS 256
  68#define KVM_MAX_MCE_BANKS 32
  69#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  70
  71#define emul_to_vcpu(ctxt) \
  72        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  73
  74/* EFER defaults:
  75 * - enable syscall per default because its emulated by KVM
  76 * - enable LME and LMA per default on 64 bit KVM
  77 */
  78#ifdef CONFIG_X86_64
  79static
  80u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  81#else
  82static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  83#endif
  84
  85#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  86#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  87
  88static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  89static void process_nmi(struct kvm_vcpu *vcpu);
  90
  91struct kvm_x86_ops *kvm_x86_ops;
  92EXPORT_SYMBOL_GPL(kvm_x86_ops);
  93
  94static bool ignore_msrs = 0;
  95module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  96
  97bool kvm_has_tsc_control;
  98EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  99u32  kvm_max_guest_tsc_khz;
 100EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 101
 102/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 103static u32 tsc_tolerance_ppm = 250;
 104module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 105
 106#define KVM_NR_SHARED_MSRS 16
 107
 108struct kvm_shared_msrs_global {
 109        int nr;
 110        u32 msrs[KVM_NR_SHARED_MSRS];
 111};
 112
 113struct kvm_shared_msrs {
 114        struct user_return_notifier urn;
 115        bool registered;
 116        struct kvm_shared_msr_values {
 117                u64 host;
 118                u64 curr;
 119        } values[KVM_NR_SHARED_MSRS];
 120};
 121
 122static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 123static struct kvm_shared_msrs __percpu *shared_msrs;
 124
 125struct kvm_stats_debugfs_item debugfs_entries[] = {
 126        { "pf_fixed", VCPU_STAT(pf_fixed) },
 127        { "pf_guest", VCPU_STAT(pf_guest) },
 128        { "tlb_flush", VCPU_STAT(tlb_flush) },
 129        { "invlpg", VCPU_STAT(invlpg) },
 130        { "exits", VCPU_STAT(exits) },
 131        { "io_exits", VCPU_STAT(io_exits) },
 132        { "mmio_exits", VCPU_STAT(mmio_exits) },
 133        { "signal_exits", VCPU_STAT(signal_exits) },
 134        { "irq_window", VCPU_STAT(irq_window_exits) },
 135        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 136        { "halt_exits", VCPU_STAT(halt_exits) },
 137        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 138        { "hypercalls", VCPU_STAT(hypercalls) },
 139        { "request_irq", VCPU_STAT(request_irq_exits) },
 140        { "irq_exits", VCPU_STAT(irq_exits) },
 141        { "host_state_reload", VCPU_STAT(host_state_reload) },
 142        { "efer_reload", VCPU_STAT(efer_reload) },
 143        { "fpu_reload", VCPU_STAT(fpu_reload) },
 144        { "insn_emulation", VCPU_STAT(insn_emulation) },
 145        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 146        { "irq_injections", VCPU_STAT(irq_injections) },
 147        { "nmi_injections", VCPU_STAT(nmi_injections) },
 148        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 149        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 150        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 151        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 152        { "mmu_flooded", VM_STAT(mmu_flooded) },
 153        { "mmu_recycled", VM_STAT(mmu_recycled) },
 154        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 155        { "mmu_unsync", VM_STAT(mmu_unsync) },
 156        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 157        { "largepages", VM_STAT(lpages) },
 158        { NULL }
 159};
 160
 161u64 __read_mostly host_xcr0;
 162
 163static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 164
 165static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
 166
 167static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 168{
 169        int i;
 170        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 171                vcpu->arch.apf.gfns[i] = ~0;
 172}
 173
 174static void kvm_on_user_return(struct user_return_notifier *urn)
 175{
 176        unsigned slot;
 177        struct kvm_shared_msrs *locals
 178                = container_of(urn, struct kvm_shared_msrs, urn);
 179        struct kvm_shared_msr_values *values;
 180
 181        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 182                values = &locals->values[slot];
 183                if (values->host != values->curr) {
 184                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 185                        values->curr = values->host;
 186                }
 187        }
 188        locals->registered = false;
 189        user_return_notifier_unregister(urn);
 190}
 191
 192static void shared_msr_update(unsigned slot, u32 msr)
 193{
 194        u64 value;
 195        unsigned int cpu = smp_processor_id();
 196        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 197
 198        /* only read, and nobody should modify it at this time,
 199         * so don't need lock */
 200        if (slot >= shared_msrs_global.nr) {
 201                printk(KERN_ERR "kvm: invalid MSR slot!");
 202                return;
 203        }
 204        rdmsrl_safe(msr, &value);
 205        smsr->values[slot].host = value;
 206        smsr->values[slot].curr = value;
 207}
 208
 209void kvm_define_shared_msr(unsigned slot, u32 msr)
 210{
 211        if (slot >= shared_msrs_global.nr)
 212                shared_msrs_global.nr = slot + 1;
 213        shared_msrs_global.msrs[slot] = msr;
 214        /* we need ensured the shared_msr_global have been updated */
 215        smp_wmb();
 216}
 217EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 218
 219static void kvm_shared_msr_cpu_online(void)
 220{
 221        unsigned i;
 222
 223        for (i = 0; i < shared_msrs_global.nr; ++i)
 224                shared_msr_update(i, shared_msrs_global.msrs[i]);
 225}
 226
 227void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 228{
 229        unsigned int cpu = smp_processor_id();
 230        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 231
 232        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 233                return;
 234        smsr->values[slot].curr = value;
 235        wrmsrl(shared_msrs_global.msrs[slot], value);
 236        if (!smsr->registered) {
 237                smsr->urn.on_user_return = kvm_on_user_return;
 238                user_return_notifier_register(&smsr->urn);
 239                smsr->registered = true;
 240        }
 241}
 242EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 243
 244static void drop_user_return_notifiers(void *ignore)
 245{
 246        unsigned int cpu = smp_processor_id();
 247        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 248
 249        if (smsr->registered)
 250                kvm_on_user_return(&smsr->urn);
 251}
 252
 253u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 254{
 255        return vcpu->arch.apic_base;
 256}
 257EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 258
 259void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 260{
 261        /* TODO: reserve bits check */
 262        kvm_lapic_set_base(vcpu, data);
 263}
 264EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 265
 266#define EXCPT_BENIGN            0
 267#define EXCPT_CONTRIBUTORY      1
 268#define EXCPT_PF                2
 269
 270static int exception_class(int vector)
 271{
 272        switch (vector) {
 273        case PF_VECTOR:
 274                return EXCPT_PF;
 275        case DE_VECTOR:
 276        case TS_VECTOR:
 277        case NP_VECTOR:
 278        case SS_VECTOR:
 279        case GP_VECTOR:
 280                return EXCPT_CONTRIBUTORY;
 281        default:
 282                break;
 283        }
 284        return EXCPT_BENIGN;
 285}
 286
 287static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 288                unsigned nr, bool has_error, u32 error_code,
 289                bool reinject)
 290{
 291        u32 prev_nr;
 292        int class1, class2;
 293
 294        kvm_make_request(KVM_REQ_EVENT, vcpu);
 295
 296        if (!vcpu->arch.exception.pending) {
 297        queue:
 298                vcpu->arch.exception.pending = true;
 299                vcpu->arch.exception.has_error_code = has_error;
 300                vcpu->arch.exception.nr = nr;
 301                vcpu->arch.exception.error_code = error_code;
 302                vcpu->arch.exception.reinject = reinject;
 303                return;
 304        }
 305
 306        /* to check exception */
 307        prev_nr = vcpu->arch.exception.nr;
 308        if (prev_nr == DF_VECTOR) {
 309                /* triple fault -> shutdown */
 310                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 311                return;
 312        }
 313        class1 = exception_class(prev_nr);
 314        class2 = exception_class(nr);
 315        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 316                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 317                /* generate double fault per SDM Table 5-5 */
 318                vcpu->arch.exception.pending = true;
 319                vcpu->arch.exception.has_error_code = true;
 320                vcpu->arch.exception.nr = DF_VECTOR;
 321                vcpu->arch.exception.error_code = 0;
 322        } else
 323                /* replace previous exception with a new one in a hope
 324                   that instruction re-execution will regenerate lost
 325                   exception */
 326                goto queue;
 327}
 328
 329void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 330{
 331        kvm_multiple_exception(vcpu, nr, false, 0, false);
 332}
 333EXPORT_SYMBOL_GPL(kvm_queue_exception);
 334
 335void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 336{
 337        kvm_multiple_exception(vcpu, nr, false, 0, true);
 338}
 339EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 340
 341void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 342{
 343        if (err)
 344                kvm_inject_gp(vcpu, 0);
 345        else
 346                kvm_x86_ops->skip_emulated_instruction(vcpu);
 347}
 348EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 349
 350void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 351{
 352        ++vcpu->stat.pf_guest;
 353        vcpu->arch.cr2 = fault->address;
 354        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 355}
 356EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 357
 358void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 359{
 360        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 361                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 362        else
 363                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 364}
 365
 366void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 367{
 368        atomic_inc(&vcpu->arch.nmi_queued);
 369        kvm_make_request(KVM_REQ_NMI, vcpu);
 370}
 371EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 372
 373void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 374{
 375        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 376}
 377EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 378
 379void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 380{
 381        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 382}
 383EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 384
 385/*
 386 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 387 * a #GP and return false.
 388 */
 389bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 390{
 391        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 392                return true;
 393        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 394        return false;
 395}
 396EXPORT_SYMBOL_GPL(kvm_require_cpl);
 397
 398/*
 399 * This function will be used to read from the physical memory of the currently
 400 * running guest. The difference to kvm_read_guest_page is that this function
 401 * can read from guest physical or from the guest's guest physical memory.
 402 */
 403int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 404                            gfn_t ngfn, void *data, int offset, int len,
 405                            u32 access)
 406{
 407        gfn_t real_gfn;
 408        gpa_t ngpa;
 409
 410        ngpa     = gfn_to_gpa(ngfn);
 411        real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
 412        if (real_gfn == UNMAPPED_GVA)
 413                return -EFAULT;
 414
 415        real_gfn = gpa_to_gfn(real_gfn);
 416
 417        return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
 418}
 419EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 420
 421int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 422                               void *data, int offset, int len, u32 access)
 423{
 424        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 425                                       data, offset, len, access);
 426}
 427
 428/*
 429 * Load the pae pdptrs.  Return true is they are all valid.
 430 */
 431int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 432{
 433        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 434        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 435        int i;
 436        int ret;
 437        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 438
 439        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 440                                      offset * sizeof(u64), sizeof(pdpte),
 441                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 442        if (ret < 0) {
 443                ret = 0;
 444                goto out;
 445        }
 446        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 447                if (is_present_gpte(pdpte[i]) &&
 448                    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 449                        ret = 0;
 450                        goto out;
 451                }
 452        }
 453        ret = 1;
 454
 455        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 456        __set_bit(VCPU_EXREG_PDPTR,
 457                  (unsigned long *)&vcpu->arch.regs_avail);
 458        __set_bit(VCPU_EXREG_PDPTR,
 459                  (unsigned long *)&vcpu->arch.regs_dirty);
 460out:
 461
 462        return ret;
 463}
 464EXPORT_SYMBOL_GPL(load_pdptrs);
 465
 466static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 467{
 468        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 469        bool changed = true;
 470        int offset;
 471        gfn_t gfn;
 472        int r;
 473
 474        if (is_long_mode(vcpu) || !is_pae(vcpu))
 475                return false;
 476
 477        if (!test_bit(VCPU_EXREG_PDPTR,
 478                      (unsigned long *)&vcpu->arch.regs_avail))
 479                return true;
 480
 481        gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 482        offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 483        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 484                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 485        if (r < 0)
 486                goto out;
 487        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 488out:
 489
 490        return changed;
 491}
 492
 493int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 494{
 495        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 496        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 497                                    X86_CR0_CD | X86_CR0_NW;
 498
 499        cr0 |= X86_CR0_ET;
 500
 501#ifdef CONFIG_X86_64
 502        if (cr0 & 0xffffffff00000000UL)
 503                return 1;
 504#endif
 505
 506        cr0 &= ~CR0_RESERVED_BITS;
 507
 508        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 509                return 1;
 510
 511        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 512                return 1;
 513
 514        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 515#ifdef CONFIG_X86_64
 516                if ((vcpu->arch.efer & EFER_LME)) {
 517                        int cs_db, cs_l;
 518
 519                        if (!is_pae(vcpu))
 520                                return 1;
 521                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 522                        if (cs_l)
 523                                return 1;
 524                } else
 525#endif
 526                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 527                                                 kvm_read_cr3(vcpu)))
 528                        return 1;
 529        }
 530
 531        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 532                return 1;
 533
 534        kvm_x86_ops->set_cr0(vcpu, cr0);
 535
 536        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 537                kvm_clear_async_pf_completion_queue(vcpu);
 538                kvm_async_pf_hash_reset(vcpu);
 539        }
 540
 541        if ((cr0 ^ old_cr0) & update_bits)
 542                kvm_mmu_reset_context(vcpu);
 543        return 0;
 544}
 545EXPORT_SYMBOL_GPL(kvm_set_cr0);
 546
 547void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 548{
 549        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 550}
 551EXPORT_SYMBOL_GPL(kvm_lmsw);
 552
 553int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 554{
 555        u64 xcr0;
 556
 557        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 558        if (index != XCR_XFEATURE_ENABLED_MASK)
 559                return 1;
 560        xcr0 = xcr;
 561        if (kvm_x86_ops->get_cpl(vcpu) != 0)
 562                return 1;
 563        if (!(xcr0 & XSTATE_FP))
 564                return 1;
 565        if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 566                return 1;
 567        if (xcr0 & ~host_xcr0)
 568                return 1;
 569        vcpu->arch.xcr0 = xcr0;
 570        vcpu->guest_xcr0_loaded = 0;
 571        return 0;
 572}
 573
 574int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 575{
 576        if (__kvm_set_xcr(vcpu, index, xcr)) {
 577                kvm_inject_gp(vcpu, 0);
 578                return 1;
 579        }
 580        return 0;
 581}
 582EXPORT_SYMBOL_GPL(kvm_set_xcr);
 583
 584int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 585{
 586        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 587        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
 588                                   X86_CR4_PAE | X86_CR4_SMEP;
 589        if (cr4 & CR4_RESERVED_BITS)
 590                return 1;
 591
 592        if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 593                return 1;
 594
 595        if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
 596                return 1;
 597
 598        if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
 599                return 1;
 600
 601        if (is_long_mode(vcpu)) {
 602                if (!(cr4 & X86_CR4_PAE))
 603                        return 1;
 604        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 605                   && ((cr4 ^ old_cr4) & pdptr_bits)
 606                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 607                                   kvm_read_cr3(vcpu)))
 608                return 1;
 609
 610        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 611                if (!guest_cpuid_has_pcid(vcpu))
 612                        return 1;
 613
 614                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 615                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 616                        return 1;
 617        }
 618
 619        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 620                return 1;
 621
 622        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 623            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 624                kvm_mmu_reset_context(vcpu);
 625
 626        if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 627                kvm_update_cpuid(vcpu);
 628
 629        return 0;
 630}
 631EXPORT_SYMBOL_GPL(kvm_set_cr4);
 632
 633int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 634{
 635        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 636                kvm_mmu_sync_roots(vcpu);
 637                kvm_mmu_flush_tlb(vcpu);
 638                return 0;
 639        }
 640
 641        if (is_long_mode(vcpu)) {
 642                if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
 643                        if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
 644                                return 1;
 645                } else
 646                        if (cr3 & CR3_L_MODE_RESERVED_BITS)
 647                                return 1;
 648        } else {
 649                if (is_pae(vcpu)) {
 650                        if (cr3 & CR3_PAE_RESERVED_BITS)
 651                                return 1;
 652                        if (is_paging(vcpu) &&
 653                            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 654                                return 1;
 655                }
 656                /*
 657                 * We don't check reserved bits in nonpae mode, because
 658                 * this isn't enforced, and VMware depends on this.
 659                 */
 660        }
 661
 662        /*
 663         * Does the new cr3 value map to physical memory? (Note, we
 664         * catch an invalid cr3 even in real-mode, because it would
 665         * cause trouble later on when we turn on paging anyway.)
 666         *
 667         * A real CPU would silently accept an invalid cr3 and would
 668         * attempt to use it - with largely undefined (and often hard
 669         * to debug) behavior on the guest side.
 670         */
 671        if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 672                return 1;
 673        vcpu->arch.cr3 = cr3;
 674        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 675        vcpu->arch.mmu.new_cr3(vcpu);
 676        return 0;
 677}
 678EXPORT_SYMBOL_GPL(kvm_set_cr3);
 679
 680int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 681{
 682        if (cr8 & CR8_RESERVED_BITS)
 683                return 1;
 684        if (irqchip_in_kernel(vcpu->kvm))
 685                kvm_lapic_set_tpr(vcpu, cr8);
 686        else
 687                vcpu->arch.cr8 = cr8;
 688        return 0;
 689}
 690EXPORT_SYMBOL_GPL(kvm_set_cr8);
 691
 692unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 693{
 694        if (irqchip_in_kernel(vcpu->kvm))
 695                return kvm_lapic_get_cr8(vcpu);
 696        else
 697                return vcpu->arch.cr8;
 698}
 699EXPORT_SYMBOL_GPL(kvm_get_cr8);
 700
 701static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 702{
 703        unsigned long dr7;
 704
 705        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 706                dr7 = vcpu->arch.guest_debug_dr7;
 707        else
 708                dr7 = vcpu->arch.dr7;
 709        kvm_x86_ops->set_dr7(vcpu, dr7);
 710        vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
 711}
 712
 713static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 714{
 715        switch (dr) {
 716        case 0 ... 3:
 717                vcpu->arch.db[dr] = val;
 718                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 719                        vcpu->arch.eff_db[dr] = val;
 720                break;
 721        case 4:
 722                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 723                        return 1; /* #UD */
 724                /* fall through */
 725        case 6:
 726                if (val & 0xffffffff00000000ULL)
 727                        return -1; /* #GP */
 728                vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
 729                break;
 730        case 5:
 731                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 732                        return 1; /* #UD */
 733                /* fall through */
 734        default: /* 7 */
 735                if (val & 0xffffffff00000000ULL)
 736                        return -1; /* #GP */
 737                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 738                kvm_update_dr7(vcpu);
 739                break;
 740        }
 741
 742        return 0;
 743}
 744
 745int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 746{
 747        int res;
 748
 749        res = __kvm_set_dr(vcpu, dr, val);
 750        if (res > 0)
 751                kvm_queue_exception(vcpu, UD_VECTOR);
 752        else if (res < 0)
 753                kvm_inject_gp(vcpu, 0);
 754
 755        return res;
 756}
 757EXPORT_SYMBOL_GPL(kvm_set_dr);
 758
 759static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 760{
 761        switch (dr) {
 762        case 0 ... 3:
 763                *val = vcpu->arch.db[dr];
 764                break;
 765        case 4:
 766                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 767                        return 1;
 768                /* fall through */
 769        case 6:
 770                *val = vcpu->arch.dr6;
 771                break;
 772        case 5:
 773                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 774                        return 1;
 775                /* fall through */
 776        default: /* 7 */
 777                *val = vcpu->arch.dr7;
 778                break;
 779        }
 780
 781        return 0;
 782}
 783
 784int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 785{
 786        if (_kvm_get_dr(vcpu, dr, val)) {
 787                kvm_queue_exception(vcpu, UD_VECTOR);
 788                return 1;
 789        }
 790        return 0;
 791}
 792EXPORT_SYMBOL_GPL(kvm_get_dr);
 793
 794bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 795{
 796        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 797        u64 data;
 798        int err;
 799
 800        err = kvm_pmu_read_pmc(vcpu, ecx, &data);
 801        if (err)
 802                return err;
 803        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 804        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 805        return err;
 806}
 807EXPORT_SYMBOL_GPL(kvm_rdpmc);
 808
 809/*
 810 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 811 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 812 *
 813 * This list is modified at module load time to reflect the
 814 * capabilities of the host cpu. This capabilities test skips MSRs that are
 815 * kvm-specific. Those are put in the beginning of the list.
 816 */
 817
 818#define KVM_SAVE_MSRS_BEGIN     10
 819static u32 msrs_to_save[] = {
 820        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 821        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 822        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 823        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 824        MSR_KVM_PV_EOI_EN,
 825        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 826        MSR_STAR,
 827#ifdef CONFIG_X86_64
 828        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 829#endif
 830        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
 831};
 832
 833static unsigned num_msrs_to_save;
 834
 835static const u32 emulated_msrs[] = {
 836        MSR_IA32_TSC_ADJUST,
 837        MSR_IA32_TSCDEADLINE,
 838        MSR_IA32_MISC_ENABLE,
 839        MSR_IA32_MCG_STATUS,
 840        MSR_IA32_MCG_CTL,
 841};
 842
 843static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 844{
 845        u64 old_efer = vcpu->arch.efer;
 846
 847        if (efer & efer_reserved_bits)
 848                return 1;
 849
 850        if (is_paging(vcpu)
 851            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 852                return 1;
 853
 854        if (efer & EFER_FFXSR) {
 855                struct kvm_cpuid_entry2 *feat;
 856
 857                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 858                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 859                        return 1;
 860        }
 861
 862        if (efer & EFER_SVME) {
 863                struct kvm_cpuid_entry2 *feat;
 864
 865                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 866                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 867                        return 1;
 868        }
 869
 870        efer &= ~EFER_LMA;
 871        efer |= vcpu->arch.efer & EFER_LMA;
 872
 873        kvm_x86_ops->set_efer(vcpu, efer);
 874
 875        vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
 876
 877        /* Update reserved bits */
 878        if ((efer ^ old_efer) & EFER_NX)
 879                kvm_mmu_reset_context(vcpu);
 880
 881        return 0;
 882}
 883
 884void kvm_enable_efer_bits(u64 mask)
 885{
 886       efer_reserved_bits &= ~mask;
 887}
 888EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 889
 890
 891/*
 892 * Writes msr value into into the appropriate "register".
 893 * Returns 0 on success, non-0 otherwise.
 894 * Assumes vcpu_load() was already called.
 895 */
 896int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
 897{
 898        return kvm_x86_ops->set_msr(vcpu, msr);
 899}
 900
 901/*
 902 * Adapt set_msr() to msr_io()'s calling convention
 903 */
 904static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 905{
 906        struct msr_data msr;
 907
 908        msr.data = *data;
 909        msr.index = index;
 910        msr.host_initiated = true;
 911        return kvm_set_msr(vcpu, &msr);
 912}
 913
 914#ifdef CONFIG_X86_64
 915struct pvclock_gtod_data {
 916        seqcount_t      seq;
 917
 918        struct { /* extract of a clocksource struct */
 919                int vclock_mode;
 920                cycle_t cycle_last;
 921                cycle_t mask;
 922                u32     mult;
 923                u32     shift;
 924        } clock;
 925
 926        /* open coded 'struct timespec' */
 927        u64             monotonic_time_snsec;
 928        time_t          monotonic_time_sec;
 929};
 930
 931static struct pvclock_gtod_data pvclock_gtod_data;
 932
 933static void update_pvclock_gtod(struct timekeeper *tk)
 934{
 935        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
 936
 937        write_seqcount_begin(&vdata->seq);
 938
 939        /* copy pvclock gtod data */
 940        vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
 941        vdata->clock.cycle_last         = tk->clock->cycle_last;
 942        vdata->clock.mask               = tk->clock->mask;
 943        vdata->clock.mult               = tk->mult;
 944        vdata->clock.shift              = tk->shift;
 945
 946        vdata->monotonic_time_sec       = tk->xtime_sec
 947                                        + tk->wall_to_monotonic.tv_sec;
 948        vdata->monotonic_time_snsec     = tk->xtime_nsec
 949                                        + (tk->wall_to_monotonic.tv_nsec
 950                                                << tk->shift);
 951        while (vdata->monotonic_time_snsec >=
 952                                        (((u64)NSEC_PER_SEC) << tk->shift)) {
 953                vdata->monotonic_time_snsec -=
 954                                        ((u64)NSEC_PER_SEC) << tk->shift;
 955                vdata->monotonic_time_sec++;
 956        }
 957
 958        write_seqcount_end(&vdata->seq);
 959}
 960#endif
 961
 962
 963static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 964{
 965        int version;
 966        int r;
 967        struct pvclock_wall_clock wc;
 968        struct timespec boot;
 969
 970        if (!wall_clock)
 971                return;
 972
 973        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
 974        if (r)
 975                return;
 976
 977        if (version & 1)
 978                ++version;  /* first time write, random junk */
 979
 980        ++version;
 981
 982        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 983
 984        /*
 985         * The guest calculates current wall clock time by adding
 986         * system time (updated by kvm_guest_time_update below) to the
 987         * wall clock specified here.  guest system time equals host
 988         * system time for us, thus we must fill in host boot time here.
 989         */
 990        getboottime(&boot);
 991
 992        if (kvm->arch.kvmclock_offset) {
 993                struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
 994                boot = timespec_sub(boot, ts);
 995        }
 996        wc.sec = boot.tv_sec;
 997        wc.nsec = boot.tv_nsec;
 998        wc.version = version;
 999
1000        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1001
1002        version++;
1003        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1004}
1005
1006static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1007{
1008        uint32_t quotient, remainder;
1009
1010        /* Don't try to replace with do_div(), this one calculates
1011         * "(dividend << 32) / divisor" */
1012        __asm__ ( "divl %4"
1013                  : "=a" (quotient), "=d" (remainder)
1014                  : "0" (0), "1" (dividend), "r" (divisor) );
1015        return quotient;
1016}
1017
1018static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1019                               s8 *pshift, u32 *pmultiplier)
1020{
1021        uint64_t scaled64;
1022        int32_t  shift = 0;
1023        uint64_t tps64;
1024        uint32_t tps32;
1025
1026        tps64 = base_khz * 1000LL;
1027        scaled64 = scaled_khz * 1000LL;
1028        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1029                tps64 >>= 1;
1030                shift--;
1031        }
1032
1033        tps32 = (uint32_t)tps64;
1034        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1035                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1036                        scaled64 >>= 1;
1037                else
1038                        tps32 <<= 1;
1039                shift++;
1040        }
1041
1042        *pshift = shift;
1043        *pmultiplier = div_frac(scaled64, tps32);
1044
1045        pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1046                 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1047}
1048
1049static inline u64 get_kernel_ns(void)
1050{
1051        struct timespec ts;
1052
1053        WARN_ON(preemptible());
1054        ktime_get_ts(&ts);
1055        monotonic_to_bootbased(&ts);
1056        return timespec_to_ns(&ts);
1057}
1058
1059#ifdef CONFIG_X86_64
1060static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1061#endif
1062
1063static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1064unsigned long max_tsc_khz;
1065
1066static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1067{
1068        return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1069                                   vcpu->arch.virtual_tsc_shift);
1070}
1071
1072static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1073{
1074        u64 v = (u64)khz * (1000000 + ppm);
1075        do_div(v, 1000000);
1076        return v;
1077}
1078
1079static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1080{
1081        u32 thresh_lo, thresh_hi;
1082        int use_scaling = 0;
1083
1084        /* Compute a scale to convert nanoseconds in TSC cycles */
1085        kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1086                           &vcpu->arch.virtual_tsc_shift,
1087                           &vcpu->arch.virtual_tsc_mult);
1088        vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1089
1090        /*
1091         * Compute the variation in TSC rate which is acceptable
1092         * within the range of tolerance and decide if the
1093         * rate being applied is within that bounds of the hardware
1094         * rate.  If so, no scaling or compensation need be done.
1095         */
1096        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1097        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1098        if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1099                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1100                use_scaling = 1;
1101        }
1102        kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1103}
1104
1105static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1106{
1107        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1108                                      vcpu->arch.virtual_tsc_mult,
1109                                      vcpu->arch.virtual_tsc_shift);
1110        tsc += vcpu->arch.this_tsc_write;
1111        return tsc;
1112}
1113
1114void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1115{
1116#ifdef CONFIG_X86_64
1117        bool vcpus_matched;
1118        bool do_request = false;
1119        struct kvm_arch *ka = &vcpu->kvm->arch;
1120        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1121
1122        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1123                         atomic_read(&vcpu->kvm->online_vcpus));
1124
1125        if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1126                if (!ka->use_master_clock)
1127                        do_request = 1;
1128
1129        if (!vcpus_matched && ka->use_master_clock)
1130                        do_request = 1;
1131
1132        if (do_request)
1133                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1134
1135        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1136                            atomic_read(&vcpu->kvm->online_vcpus),
1137                            ka->use_master_clock, gtod->clock.vclock_mode);
1138#endif
1139}
1140
1141static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1142{
1143        u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1144        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1145}
1146
1147void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1148{
1149        struct kvm *kvm = vcpu->kvm;
1150        u64 offset, ns, elapsed;
1151        unsigned long flags;
1152        s64 usdiff;
1153        bool matched;
1154        u64 data = msr->data;
1155
1156        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1157        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1158        ns = get_kernel_ns();
1159        elapsed = ns - kvm->arch.last_tsc_nsec;
1160
1161        /* n.b - signed multiplication and division required */
1162        usdiff = data - kvm->arch.last_tsc_write;
1163#ifdef CONFIG_X86_64
1164        usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1165#else
1166        /* do_div() only does unsigned */
1167        asm("idivl %2; xor %%edx, %%edx"
1168            : "=A"(usdiff)
1169            : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1170#endif
1171        do_div(elapsed, 1000);
1172        usdiff -= elapsed;
1173        if (usdiff < 0)
1174                usdiff = -usdiff;
1175
1176        /*
1177         * Special case: TSC write with a small delta (1 second) of virtual
1178         * cycle time against real time is interpreted as an attempt to
1179         * synchronize the CPU.
1180         *
1181         * For a reliable TSC, we can match TSC offsets, and for an unstable
1182         * TSC, we add elapsed time in this computation.  We could let the
1183         * compensation code attempt to catch up if we fall behind, but
1184         * it's better to try to match offsets from the beginning.
1185         */
1186        if (usdiff < USEC_PER_SEC &&
1187            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1188                if (!check_tsc_unstable()) {
1189                        offset = kvm->arch.cur_tsc_offset;
1190                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1191                } else {
1192                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1193                        data += delta;
1194                        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1195                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1196                }
1197                matched = true;
1198        } else {
1199                /*
1200                 * We split periods of matched TSC writes into generations.
1201                 * For each generation, we track the original measured
1202                 * nanosecond time, offset, and write, so if TSCs are in
1203                 * sync, we can match exact offset, and if not, we can match
1204                 * exact software computation in compute_guest_tsc()
1205                 *
1206                 * These values are tracked in kvm->arch.cur_xxx variables.
1207                 */
1208                kvm->arch.cur_tsc_generation++;
1209                kvm->arch.cur_tsc_nsec = ns;
1210                kvm->arch.cur_tsc_write = data;
1211                kvm->arch.cur_tsc_offset = offset;
1212                matched = false;
1213                pr_debug("kvm: new tsc generation %u, clock %llu\n",
1214                         kvm->arch.cur_tsc_generation, data);
1215        }
1216
1217        /*
1218         * We also track th most recent recorded KHZ, write and time to
1219         * allow the matching interval to be extended at each write.
1220         */
1221        kvm->arch.last_tsc_nsec = ns;
1222        kvm->arch.last_tsc_write = data;
1223        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1224
1225        /* Reset of TSC must disable overshoot protection below */
1226        vcpu->arch.hv_clock.tsc_timestamp = 0;
1227        vcpu->arch.last_guest_tsc = data;
1228
1229        /* Keep track of which generation this VCPU has synchronized to */
1230        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1231        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1232        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1233
1234        if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1235                update_ia32_tsc_adjust_msr(vcpu, offset);
1236        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1237        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1238
1239        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1240        if (matched)
1241                kvm->arch.nr_vcpus_matched_tsc++;
1242        else
1243                kvm->arch.nr_vcpus_matched_tsc = 0;
1244
1245        kvm_track_tsc_matching(vcpu);
1246        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1247}
1248
1249EXPORT_SYMBOL_GPL(kvm_write_tsc);
1250
1251#ifdef CONFIG_X86_64
1252
1253static cycle_t read_tsc(void)
1254{
1255        cycle_t ret;
1256        u64 last;
1257
1258        /*
1259         * Empirically, a fence (of type that depends on the CPU)
1260         * before rdtsc is enough to ensure that rdtsc is ordered
1261         * with respect to loads.  The various CPU manuals are unclear
1262         * as to whether rdtsc can be reordered with later loads,
1263         * but no one has ever seen it happen.
1264         */
1265        rdtsc_barrier();
1266        ret = (cycle_t)vget_cycles();
1267
1268        last = pvclock_gtod_data.clock.cycle_last;
1269
1270        if (likely(ret >= last))
1271                return ret;
1272
1273        /*
1274         * GCC likes to generate cmov here, but this branch is extremely
1275         * predictable (it's just a funciton of time and the likely is
1276         * very likely) and there's a data dependence, so force GCC
1277         * to generate a branch instead.  I don't barrier() because
1278         * we don't actually need a barrier, and if this function
1279         * ever gets inlined it will generate worse code.
1280         */
1281        asm volatile ("");
1282        return last;
1283}
1284
1285static inline u64 vgettsc(cycle_t *cycle_now)
1286{
1287        long v;
1288        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1289
1290        *cycle_now = read_tsc();
1291
1292        v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1293        return v * gtod->clock.mult;
1294}
1295
1296static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1297{
1298        unsigned long seq;
1299        u64 ns;
1300        int mode;
1301        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1302
1303        ts->tv_nsec = 0;
1304        do {
1305                seq = read_seqcount_begin(&gtod->seq);
1306                mode = gtod->clock.vclock_mode;
1307                ts->tv_sec = gtod->monotonic_time_sec;
1308                ns = gtod->monotonic_time_snsec;
1309                ns += vgettsc(cycle_now);
1310                ns >>= gtod->clock.shift;
1311        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1312        timespec_add_ns(ts, ns);
1313
1314        return mode;
1315}
1316
1317/* returns true if host is using tsc clocksource */
1318static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1319{
1320        struct timespec ts;
1321
1322        /* checked again under seqlock below */
1323        if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1324                return false;
1325
1326        if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1327                return false;
1328
1329        monotonic_to_bootbased(&ts);
1330        *kernel_ns = timespec_to_ns(&ts);
1331
1332        return true;
1333}
1334#endif
1335
1336/*
1337 *
1338 * Assuming a stable TSC across physical CPUS, and a stable TSC
1339 * across virtual CPUs, the following condition is possible.
1340 * Each numbered line represents an event visible to both
1341 * CPUs at the next numbered event.
1342 *
1343 * "timespecX" represents host monotonic time. "tscX" represents
1344 * RDTSC value.
1345 *
1346 *              VCPU0 on CPU0           |       VCPU1 on CPU1
1347 *
1348 * 1.  read timespec0,tsc0
1349 * 2.                                   | timespec1 = timespec0 + N
1350 *                                      | tsc1 = tsc0 + M
1351 * 3. transition to guest               | transition to guest
1352 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1353 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1354 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1355 *
1356 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1357 *
1358 *      - ret0 < ret1
1359 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1360 *              ...
1361 *      - 0 < N - M => M < N
1362 *
1363 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1364 * always the case (the difference between two distinct xtime instances
1365 * might be smaller then the difference between corresponding TSC reads,
1366 * when updating guest vcpus pvclock areas).
1367 *
1368 * To avoid that problem, do not allow visibility of distinct
1369 * system_timestamp/tsc_timestamp values simultaneously: use a master
1370 * copy of host monotonic time values. Update that master copy
1371 * in lockstep.
1372 *
1373 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1374 *
1375 */
1376
1377static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1378{
1379#ifdef CONFIG_X86_64
1380        struct kvm_arch *ka = &kvm->arch;
1381        int vclock_mode;
1382        bool host_tsc_clocksource, vcpus_matched;
1383
1384        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385                        atomic_read(&kvm->online_vcpus));
1386
1387        /*
1388         * If the host uses TSC clock, then passthrough TSC as stable
1389         * to the guest.
1390         */
1391        host_tsc_clocksource = kvm_get_time_and_clockread(
1392                                        &ka->master_kernel_ns,
1393                                        &ka->master_cycle_now);
1394
1395        ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1396
1397        if (ka->use_master_clock)
1398                atomic_set(&kvm_guest_has_master_clock, 1);
1399
1400        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1401        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1402                                        vcpus_matched);
1403#endif
1404}
1405
1406static int kvm_guest_time_update(struct kvm_vcpu *v)
1407{
1408        unsigned long flags, this_tsc_khz;
1409        struct kvm_vcpu_arch *vcpu = &v->arch;
1410        struct kvm_arch *ka = &v->kvm->arch;
1411        void *shared_kaddr;
1412        s64 kernel_ns, max_kernel_ns;
1413        u64 tsc_timestamp, host_tsc;
1414        struct pvclock_vcpu_time_info *guest_hv_clock;
1415        u8 pvclock_flags;
1416        bool use_master_clock;
1417
1418        kernel_ns = 0;
1419        host_tsc = 0;
1420
1421        /* Keep irq disabled to prevent changes to the clock */
1422        local_irq_save(flags);
1423        this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1424        if (unlikely(this_tsc_khz == 0)) {
1425                local_irq_restore(flags);
1426                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1427                return 1;
1428        }
1429
1430        /*
1431         * If the host uses TSC clock, then passthrough TSC as stable
1432         * to the guest.
1433         */
1434        spin_lock(&ka->pvclock_gtod_sync_lock);
1435        use_master_clock = ka->use_master_clock;
1436        if (use_master_clock) {
1437                host_tsc = ka->master_cycle_now;
1438                kernel_ns = ka->master_kernel_ns;
1439        }
1440        spin_unlock(&ka->pvclock_gtod_sync_lock);
1441        if (!use_master_clock) {
1442                host_tsc = native_read_tsc();
1443                kernel_ns = get_kernel_ns();
1444        }
1445
1446        tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1447
1448        /*
1449         * We may have to catch up the TSC to match elapsed wall clock
1450         * time for two reasons, even if kvmclock is used.
1451         *   1) CPU could have been running below the maximum TSC rate
1452         *   2) Broken TSC compensation resets the base at each VCPU
1453         *      entry to avoid unknown leaps of TSC even when running
1454         *      again on the same CPU.  This may cause apparent elapsed
1455         *      time to disappear, and the guest to stand still or run
1456         *      very slowly.
1457         */
1458        if (vcpu->tsc_catchup) {
1459                u64 tsc = compute_guest_tsc(v, kernel_ns);
1460                if (tsc > tsc_timestamp) {
1461                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1462                        tsc_timestamp = tsc;
1463                }
1464        }
1465
1466        local_irq_restore(flags);
1467
1468        if (!vcpu->time_page)
1469                return 0;
1470
1471        /*
1472         * Time as measured by the TSC may go backwards when resetting the base
1473         * tsc_timestamp.  The reason for this is that the TSC resolution is
1474         * higher than the resolution of the other clock scales.  Thus, many
1475         * possible measurments of the TSC correspond to one measurement of any
1476         * other clock, and so a spread of values is possible.  This is not a
1477         * problem for the computation of the nanosecond clock; with TSC rates
1478         * around 1GHZ, there can only be a few cycles which correspond to one
1479         * nanosecond value, and any path through this code will inevitably
1480         * take longer than that.  However, with the kernel_ns value itself,
1481         * the precision may be much lower, down to HZ granularity.  If the
1482         * first sampling of TSC against kernel_ns ends in the low part of the
1483         * range, and the second in the high end of the range, we can get:
1484         *
1485         * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1486         *
1487         * As the sampling errors potentially range in the thousands of cycles,
1488         * it is possible such a time value has already been observed by the
1489         * guest.  To protect against this, we must compute the system time as
1490         * observed by the guest and ensure the new system time is greater.
1491         */
1492        max_kernel_ns = 0;
1493        if (vcpu->hv_clock.tsc_timestamp) {
1494                max_kernel_ns = vcpu->last_guest_tsc -
1495                                vcpu->hv_clock.tsc_timestamp;
1496                max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1497                                    vcpu->hv_clock.tsc_to_system_mul,
1498                                    vcpu->hv_clock.tsc_shift);
1499                max_kernel_ns += vcpu->last_kernel_ns;
1500        }
1501
1502        if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1503                kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1504                                   &vcpu->hv_clock.tsc_shift,
1505                                   &vcpu->hv_clock.tsc_to_system_mul);
1506                vcpu->hw_tsc_khz = this_tsc_khz;
1507        }
1508
1509        /* with a master <monotonic time, tsc value> tuple,
1510         * pvclock clock reads always increase at the (scaled) rate
1511         * of guest TSC - no need to deal with sampling errors.
1512         */
1513        if (!use_master_clock) {
1514                if (max_kernel_ns > kernel_ns)
1515                        kernel_ns = max_kernel_ns;
1516        }
1517        /* With all the info we got, fill in the values */
1518        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1519        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1520        vcpu->last_kernel_ns = kernel_ns;
1521        vcpu->last_guest_tsc = tsc_timestamp;
1522
1523        /*
1524         * The interface expects us to write an even number signaling that the
1525         * update is finished. Since the guest won't see the intermediate
1526         * state, we just increase by 2 at the end.
1527         */
1528        vcpu->hv_clock.version += 2;
1529
1530        shared_kaddr = kmap_atomic(vcpu->time_page);
1531
1532        guest_hv_clock = shared_kaddr + vcpu->time_offset;
1533
1534        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1535        pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1536
1537        if (vcpu->pvclock_set_guest_stopped_request) {
1538                pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1539                vcpu->pvclock_set_guest_stopped_request = false;
1540        }
1541
1542        /* If the host uses TSC clocksource, then it is stable */
1543        if (use_master_clock)
1544                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1545
1546        vcpu->hv_clock.flags = pvclock_flags;
1547
1548        memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1549               sizeof(vcpu->hv_clock));
1550
1551        kunmap_atomic(shared_kaddr);
1552
1553        mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1554        return 0;
1555}
1556
1557static bool msr_mtrr_valid(unsigned msr)
1558{
1559        switch (msr) {
1560        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1561        case MSR_MTRRfix64K_00000:
1562        case MSR_MTRRfix16K_80000:
1563        case MSR_MTRRfix16K_A0000:
1564        case MSR_MTRRfix4K_C0000:
1565        case MSR_MTRRfix4K_C8000:
1566        case MSR_MTRRfix4K_D0000:
1567        case MSR_MTRRfix4K_D8000:
1568        case MSR_MTRRfix4K_E0000:
1569        case MSR_MTRRfix4K_E8000:
1570        case MSR_MTRRfix4K_F0000:
1571        case MSR_MTRRfix4K_F8000:
1572        case MSR_MTRRdefType:
1573        case MSR_IA32_CR_PAT:
1574                return true;
1575        case 0x2f8:
1576                return true;
1577        }
1578        return false;
1579}
1580
1581static bool valid_pat_type(unsigned t)
1582{
1583        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1584}
1585
1586static bool valid_mtrr_type(unsigned t)
1587{
1588        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1589}
1590
1591static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1592{
1593        int i;
1594
1595        if (!msr_mtrr_valid(msr))
1596                return false;
1597
1598        if (msr == MSR_IA32_CR_PAT) {
1599                for (i = 0; i < 8; i++)
1600                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
1601                                return false;
1602                return true;
1603        } else if (msr == MSR_MTRRdefType) {
1604                if (data & ~0xcff)
1605                        return false;
1606                return valid_mtrr_type(data & 0xff);
1607        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1608                for (i = 0; i < 8 ; i++)
1609                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1610                                return false;
1611                return true;
1612        }
1613
1614        /* variable MTRRs */
1615        return valid_mtrr_type(data & 0xff);
1616}
1617
1618static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1619{
1620        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1621
1622        if (!mtrr_valid(vcpu, msr, data))
1623                return 1;
1624
1625        if (msr == MSR_MTRRdefType) {
1626                vcpu->arch.mtrr_state.def_type = data;
1627                vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1628        } else if (msr == MSR_MTRRfix64K_00000)
1629                p[0] = data;
1630        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1631                p[1 + msr - MSR_MTRRfix16K_80000] = data;
1632        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1633                p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1634        else if (msr == MSR_IA32_CR_PAT)
1635                vcpu->arch.pat = data;
1636        else {  /* Variable MTRRs */
1637                int idx, is_mtrr_mask;
1638                u64 *pt;
1639
1640                idx = (msr - 0x200) / 2;
1641                is_mtrr_mask = msr - 0x200 - 2 * idx;
1642                if (!is_mtrr_mask)
1643                        pt =
1644                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1645                else
1646                        pt =
1647                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1648                *pt = data;
1649        }
1650
1651        kvm_mmu_reset_context(vcpu);
1652        return 0;
1653}
1654
1655static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1656{
1657        u64 mcg_cap = vcpu->arch.mcg_cap;
1658        unsigned bank_num = mcg_cap & 0xff;
1659
1660        switch (msr) {
1661        case MSR_IA32_MCG_STATUS:
1662                vcpu->arch.mcg_status = data;
1663                break;
1664        case MSR_IA32_MCG_CTL:
1665                if (!(mcg_cap & MCG_CTL_P))
1666                        return 1;
1667                if (data != 0 && data != ~(u64)0)
1668                        return -1;
1669                vcpu->arch.mcg_ctl = data;
1670                break;
1671        default:
1672                if (msr >= MSR_IA32_MC0_CTL &&
1673                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1674                        u32 offset = msr - MSR_IA32_MC0_CTL;
1675                        /* only 0 or all 1s can be written to IA32_MCi_CTL
1676                         * some Linux kernels though clear bit 10 in bank 4 to
1677                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1678                         * this to avoid an uncatched #GP in the guest
1679                         */
1680                        if ((offset & 0x3) == 0 &&
1681                            data != 0 && (data | (1 << 10)) != ~(u64)0)
1682                                return -1;
1683                        vcpu->arch.mce_banks[offset] = data;
1684                        break;
1685                }
1686                return 1;
1687        }
1688        return 0;
1689}
1690
1691static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1692{
1693        struct kvm *kvm = vcpu->kvm;
1694        int lm = is_long_mode(vcpu);
1695        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1696                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1697        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1698                : kvm->arch.xen_hvm_config.blob_size_32;
1699        u32 page_num = data & ~PAGE_MASK;
1700        u64 page_addr = data & PAGE_MASK;
1701        u8 *page;
1702        int r;
1703
1704        r = -E2BIG;
1705        if (page_num >= blob_size)
1706                goto out;
1707        r = -ENOMEM;
1708        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1709        if (IS_ERR(page)) {
1710                r = PTR_ERR(page);
1711                goto out;
1712        }
1713        if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1714                goto out_free;
1715        r = 0;
1716out_free:
1717        kfree(page);
1718out:
1719        return r;
1720}
1721
1722static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1723{
1724        return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1725}
1726
1727static bool kvm_hv_msr_partition_wide(u32 msr)
1728{
1729        bool r = false;
1730        switch (msr) {
1731        case HV_X64_MSR_GUEST_OS_ID:
1732        case HV_X64_MSR_HYPERCALL:
1733                r = true;
1734                break;
1735        }
1736
1737        return r;
1738}
1739
1740static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1741{
1742        struct kvm *kvm = vcpu->kvm;
1743
1744        switch (msr) {
1745        case HV_X64_MSR_GUEST_OS_ID:
1746                kvm->arch.hv_guest_os_id = data;
1747                /* setting guest os id to zero disables hypercall page */
1748                if (!kvm->arch.hv_guest_os_id)
1749                        kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1750                break;
1751        case HV_X64_MSR_HYPERCALL: {
1752                u64 gfn;
1753                unsigned long addr;
1754                u8 instructions[4];
1755
1756                /* if guest os id is not set hypercall should remain disabled */
1757                if (!kvm->arch.hv_guest_os_id)
1758                        break;
1759                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1760                        kvm->arch.hv_hypercall = data;
1761                        break;
1762                }
1763                gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1764                addr = gfn_to_hva(kvm, gfn);
1765                if (kvm_is_error_hva(addr))
1766                        return 1;
1767                kvm_x86_ops->patch_hypercall(vcpu, instructions);
1768                ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1769                if (__copy_to_user((void __user *)addr, instructions, 4))
1770                        return 1;
1771                kvm->arch.hv_hypercall = data;
1772                break;
1773        }
1774        default:
1775                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1776                            "data 0x%llx\n", msr, data);
1777                return 1;
1778        }
1779        return 0;
1780}
1781
1782static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1783{
1784        switch (msr) {
1785        case HV_X64_MSR_APIC_ASSIST_PAGE: {
1786                unsigned long addr;
1787
1788                if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1789                        vcpu->arch.hv_vapic = data;
1790                        break;
1791                }
1792                addr = gfn_to_hva(vcpu->kvm, data >>
1793                                  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1794                if (kvm_is_error_hva(addr))
1795                        return 1;
1796                if (__clear_user((void __user *)addr, PAGE_SIZE))
1797                        return 1;
1798                vcpu->arch.hv_vapic = data;
1799                break;
1800        }
1801        case HV_X64_MSR_EOI:
1802                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1803        case HV_X64_MSR_ICR:
1804                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1805        case HV_X64_MSR_TPR:
1806                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1807        default:
1808                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809                            "data 0x%llx\n", msr, data);
1810                return 1;
1811        }
1812
1813        return 0;
1814}
1815
1816static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1817{
1818        gpa_t gpa = data & ~0x3f;
1819
1820        /* Bits 2:5 are reserved, Should be zero */
1821        if (data & 0x3c)
1822                return 1;
1823
1824        vcpu->arch.apf.msr_val = data;
1825
1826        if (!(data & KVM_ASYNC_PF_ENABLED)) {
1827                kvm_clear_async_pf_completion_queue(vcpu);
1828                kvm_async_pf_hash_reset(vcpu);
1829                return 0;
1830        }
1831
1832        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1833                return 1;
1834
1835        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1836        kvm_async_pf_wakeup_all(vcpu);
1837        return 0;
1838}
1839
1840static void kvmclock_reset(struct kvm_vcpu *vcpu)
1841{
1842        if (vcpu->arch.time_page) {
1843                kvm_release_page_dirty(vcpu->arch.time_page);
1844                vcpu->arch.time_page = NULL;
1845        }
1846}
1847
1848static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1849{
1850        u64 delta;
1851
1852        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1853                return;
1854
1855        delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1856        vcpu->arch.st.last_steal = current->sched_info.run_delay;
1857        vcpu->arch.st.accum_steal = delta;
1858}
1859
1860static void record_steal_time(struct kvm_vcpu *vcpu)
1861{
1862        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1863                return;
1864
1865        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1866                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1867                return;
1868
1869        vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1870        vcpu->arch.st.steal.version += 2;
1871        vcpu->arch.st.accum_steal = 0;
1872
1873        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1874                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1875}
1876
1877int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1878{
1879        bool pr = false;
1880        u32 msr = msr_info->index;
1881        u64 data = msr_info->data;
1882
1883        switch (msr) {
1884        case MSR_EFER:
1885                return set_efer(vcpu, data);
1886        case MSR_K7_HWCR:
1887                data &= ~(u64)0x40;     /* ignore flush filter disable */
1888                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1889                data &= ~(u64)0x8;      /* ignore TLB cache disable */
1890                if (data != 0) {
1891                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1892                                    data);
1893                        return 1;
1894                }
1895                break;
1896        case MSR_FAM10H_MMIO_CONF_BASE:
1897                if (data != 0) {
1898                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1899                                    "0x%llx\n", data);
1900                        return 1;
1901                }
1902                break;
1903        case MSR_AMD64_NB_CFG:
1904                break;
1905        case MSR_IA32_DEBUGCTLMSR:
1906                if (!data) {
1907                        /* We support the non-activated case already */
1908                        break;
1909                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1910                        /* Values other than LBR and BTF are vendor-specific,
1911                           thus reserved and should throw a #GP */
1912                        return 1;
1913                }
1914                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1915                            __func__, data);
1916                break;
1917        case MSR_IA32_UCODE_REV:
1918        case MSR_IA32_UCODE_WRITE:
1919        case MSR_VM_HSAVE_PA:
1920        case MSR_AMD64_PATCH_LOADER:
1921                break;
1922        case 0x200 ... 0x2ff:
1923                return set_msr_mtrr(vcpu, msr, data);
1924        case MSR_IA32_APICBASE:
1925                kvm_set_apic_base(vcpu, data);
1926                break;
1927        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1928                return kvm_x2apic_msr_write(vcpu, msr, data);
1929        case MSR_IA32_TSCDEADLINE:
1930                kvm_set_lapic_tscdeadline_msr(vcpu, data);
1931                break;
1932        case MSR_IA32_TSC_ADJUST:
1933                if (guest_cpuid_has_tsc_adjust(vcpu)) {
1934                        if (!msr_info->host_initiated) {
1935                                u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1936                                kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1937                        }
1938                        vcpu->arch.ia32_tsc_adjust_msr = data;
1939                }
1940                break;
1941        case MSR_IA32_MISC_ENABLE:
1942                vcpu->arch.ia32_misc_enable_msr = data;
1943                break;
1944        case MSR_KVM_WALL_CLOCK_NEW:
1945        case MSR_KVM_WALL_CLOCK:
1946                vcpu->kvm->arch.wall_clock = data;
1947                kvm_write_wall_clock(vcpu->kvm, data);
1948                break;
1949        case MSR_KVM_SYSTEM_TIME_NEW:
1950        case MSR_KVM_SYSTEM_TIME: {
1951                kvmclock_reset(vcpu);
1952
1953                vcpu->arch.time = data;
1954                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1955
1956                /* we verify if the enable bit is set... */
1957                if (!(data & 1))
1958                        break;
1959
1960                /* ...but clean it before doing the actual write */
1961                vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1962
1963                vcpu->arch.time_page =
1964                                gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1965
1966                if (is_error_page(vcpu->arch.time_page))
1967                        vcpu->arch.time_page = NULL;
1968
1969                break;
1970        }
1971        case MSR_KVM_ASYNC_PF_EN:
1972                if (kvm_pv_enable_async_pf(vcpu, data))
1973                        return 1;
1974                break;
1975        case MSR_KVM_STEAL_TIME:
1976
1977                if (unlikely(!sched_info_on()))
1978                        return 1;
1979
1980                if (data & KVM_STEAL_RESERVED_MASK)
1981                        return 1;
1982
1983                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1984                                                        data & KVM_STEAL_VALID_BITS))
1985                        return 1;
1986
1987                vcpu->arch.st.msr_val = data;
1988
1989                if (!(data & KVM_MSR_ENABLED))
1990                        break;
1991
1992                vcpu->arch.st.last_steal = current->sched_info.run_delay;
1993
1994                preempt_disable();
1995                accumulate_steal_time(vcpu);
1996                preempt_enable();
1997
1998                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1999
2000                break;
2001        case MSR_KVM_PV_EOI_EN:
2002                if (kvm_lapic_enable_pv_eoi(vcpu, data))
2003                        return 1;
2004                break;
2005
2006        case MSR_IA32_MCG_CTL:
2007        case MSR_IA32_MCG_STATUS:
2008        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2009                return set_msr_mce(vcpu, msr, data);
2010
2011        /* Performance counters are not protected by a CPUID bit,
2012         * so we should check all of them in the generic path for the sake of
2013         * cross vendor migration.
2014         * Writing a zero into the event select MSRs disables them,
2015         * which we perfectly emulate ;-). Any other value should be at least
2016         * reported, some guests depend on them.
2017         */
2018        case MSR_K7_EVNTSEL0:
2019        case MSR_K7_EVNTSEL1:
2020        case MSR_K7_EVNTSEL2:
2021        case MSR_K7_EVNTSEL3:
2022                if (data != 0)
2023                        vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2024                                    "0x%x data 0x%llx\n", msr, data);
2025                break;
2026        /* at least RHEL 4 unconditionally writes to the perfctr registers,
2027         * so we ignore writes to make it happy.
2028         */
2029        case MSR_K7_PERFCTR0:
2030        case MSR_K7_PERFCTR1:
2031        case MSR_K7_PERFCTR2:
2032        case MSR_K7_PERFCTR3:
2033                vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2034                            "0x%x data 0x%llx\n", msr, data);
2035                break;
2036        case MSR_P6_PERFCTR0:
2037        case MSR_P6_PERFCTR1:
2038                pr = true;
2039        case MSR_P6_EVNTSEL0:
2040        case MSR_P6_EVNTSEL1:
2041                if (kvm_pmu_msr(vcpu, msr))
2042                        return kvm_pmu_set_msr(vcpu, msr, data);
2043
2044                if (pr || data != 0)
2045                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2046                                    "0x%x data 0x%llx\n", msr, data);
2047                break;
2048        case MSR_K7_CLK_CTL:
2049                /*
2050                 * Ignore all writes to this no longer documented MSR.
2051                 * Writes are only relevant for old K7 processors,
2052                 * all pre-dating SVM, but a recommended workaround from
2053                 * AMD for these chips. It is possible to specify the
2054                 * affected processor models on the command line, hence
2055                 * the need to ignore the workaround.
2056                 */
2057                break;
2058        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2059                if (kvm_hv_msr_partition_wide(msr)) {
2060                        int r;
2061                        mutex_lock(&vcpu->kvm->lock);
2062                        r = set_msr_hyperv_pw(vcpu, msr, data);
2063                        mutex_unlock(&vcpu->kvm->lock);
2064                        return r;
2065                } else
2066                        return set_msr_hyperv(vcpu, msr, data);
2067                break;
2068        case MSR_IA32_BBL_CR_CTL3:
2069                /* Drop writes to this legacy MSR -- see rdmsr
2070                 * counterpart for further detail.
2071                 */
2072                vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2073                break;
2074        case MSR_AMD64_OSVW_ID_LENGTH:
2075                if (!guest_cpuid_has_osvw(vcpu))
2076                        return 1;
2077                vcpu->arch.osvw.length = data;
2078                break;
2079        case MSR_AMD64_OSVW_STATUS:
2080                if (!guest_cpuid_has_osvw(vcpu))
2081                        return 1;
2082                vcpu->arch.osvw.status = data;
2083                break;
2084        default:
2085                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2086                        return xen_hvm_config(vcpu, data);
2087                if (kvm_pmu_msr(vcpu, msr))
2088                        return kvm_pmu_set_msr(vcpu, msr, data);
2089                if (!ignore_msrs) {
2090                        vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2091                                    msr, data);
2092                        return 1;
2093                } else {
2094                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2095                                    msr, data);
2096                        break;
2097                }
2098        }
2099        return 0;
2100}
2101EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2102
2103
2104/*
2105 * Reads an msr value (of 'msr_index') into 'pdata'.
2106 * Returns 0 on success, non-0 otherwise.
2107 * Assumes vcpu_load() was already called.
2108 */
2109int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2110{
2111        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2112}
2113
2114static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2115{
2116        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2117
2118        if (!msr_mtrr_valid(msr))
2119                return 1;
2120
2121        if (msr == MSR_MTRRdefType)
2122                *pdata = vcpu->arch.mtrr_state.def_type +
2123                         (vcpu->arch.mtrr_state.enabled << 10);
2124        else if (msr == MSR_MTRRfix64K_00000)
2125                *pdata = p[0];
2126        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2127                *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2128        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2129                *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2130        else if (msr == MSR_IA32_CR_PAT)
2131                *pdata = vcpu->arch.pat;
2132        else {  /* Variable MTRRs */
2133                int idx, is_mtrr_mask;
2134                u64 *pt;
2135
2136                idx = (msr - 0x200) / 2;
2137                is_mtrr_mask = msr - 0x200 - 2 * idx;
2138                if (!is_mtrr_mask)
2139                        pt =
2140                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2141                else
2142                        pt =
2143                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2144                *pdata = *pt;
2145        }
2146
2147        return 0;
2148}
2149
2150static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2151{
2152        u64 data;
2153        u64 mcg_cap = vcpu->arch.mcg_cap;
2154        unsigned bank_num = mcg_cap & 0xff;
2155
2156        switch (msr) {
2157        case MSR_IA32_P5_MC_ADDR:
2158        case MSR_IA32_P5_MC_TYPE:
2159                data = 0;
2160                break;
2161        case MSR_IA32_MCG_CAP:
2162                data = vcpu->arch.mcg_cap;
2163                break;
2164        case MSR_IA32_MCG_CTL:
2165                if (!(mcg_cap & MCG_CTL_P))
2166                        return 1;
2167                data = vcpu->arch.mcg_ctl;
2168                break;
2169        case MSR_IA32_MCG_STATUS:
2170                data = vcpu->arch.mcg_status;
2171                break;
2172        default:
2173                if (msr >= MSR_IA32_MC0_CTL &&
2174                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2175                        u32 offset = msr - MSR_IA32_MC0_CTL;
2176                        data = vcpu->arch.mce_banks[offset];
2177                        break;
2178                }
2179                return 1;
2180        }
2181        *pdata = data;
2182        return 0;
2183}
2184
2185static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2186{
2187        u64 data = 0;
2188        struct kvm *kvm = vcpu->kvm;
2189
2190        switch (msr) {
2191        case HV_X64_MSR_GUEST_OS_ID:
2192                data = kvm->arch.hv_guest_os_id;
2193                break;
2194        case HV_X64_MSR_HYPERCALL:
2195                data = kvm->arch.hv_hypercall;
2196                break;
2197        default:
2198                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2199                return 1;
2200        }
2201
2202        *pdata = data;
2203        return 0;
2204}
2205
2206static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2207{
2208        u64 data = 0;
2209
2210        switch (msr) {
2211        case HV_X64_MSR_VP_INDEX: {
2212                int r;
2213                struct kvm_vcpu *v;
2214                kvm_for_each_vcpu(r, v, vcpu->kvm)
2215                        if (v == vcpu)
2216                                data = r;
2217                break;
2218        }
2219        case HV_X64_MSR_EOI:
2220                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2221        case HV_X64_MSR_ICR:
2222                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2223        case HV_X64_MSR_TPR:
2224                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2225        case HV_X64_MSR_APIC_ASSIST_PAGE:
2226                data = vcpu->arch.hv_vapic;
2227                break;
2228        default:
2229                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2230                return 1;
2231        }
2232        *pdata = data;
2233        return 0;
2234}
2235
2236int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2237{
2238        u64 data;
2239
2240        switch (msr) {
2241        case MSR_IA32_PLATFORM_ID:
2242        case MSR_IA32_EBL_CR_POWERON:
2243        case MSR_IA32_DEBUGCTLMSR:
2244        case MSR_IA32_LASTBRANCHFROMIP:
2245        case MSR_IA32_LASTBRANCHTOIP:
2246        case MSR_IA32_LASTINTFROMIP:
2247        case MSR_IA32_LASTINTTOIP:
2248        case MSR_K8_SYSCFG:
2249        case MSR_K7_HWCR:
2250        case MSR_VM_HSAVE_PA:
2251        case MSR_K7_EVNTSEL0:
2252        case MSR_K7_PERFCTR0:
2253        case MSR_K8_INT_PENDING_MSG:
2254        case MSR_AMD64_NB_CFG:
2255        case MSR_FAM10H_MMIO_CONF_BASE:
2256                data = 0;
2257                break;
2258        case MSR_P6_PERFCTR0:
2259        case MSR_P6_PERFCTR1:
2260        case MSR_P6_EVNTSEL0:
2261        case MSR_P6_EVNTSEL1:
2262                if (kvm_pmu_msr(vcpu, msr))
2263                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2264                data = 0;
2265                break;
2266        case MSR_IA32_UCODE_REV:
2267                data = 0x100000000ULL;
2268                break;
2269        case MSR_MTRRcap:
2270                data = 0x500 | KVM_NR_VAR_MTRR;
2271                break;
2272        case 0x200 ... 0x2ff:
2273                return get_msr_mtrr(vcpu, msr, pdata);
2274        case 0xcd: /* fsb frequency */
2275                data = 3;
2276                break;
2277                /*
2278                 * MSR_EBC_FREQUENCY_ID
2279                 * Conservative value valid for even the basic CPU models.
2280                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2281                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2282                 * and 266MHz for model 3, or 4. Set Core Clock
2283                 * Frequency to System Bus Frequency Ratio to 1 (bits
2284                 * 31:24) even though these are only valid for CPU
2285                 * models > 2, however guests may end up dividing or
2286                 * multiplying by zero otherwise.
2287                 */
2288        case MSR_EBC_FREQUENCY_ID:
2289                data = 1 << 24;
2290                break;
2291        case MSR_IA32_APICBASE:
2292                data = kvm_get_apic_base(vcpu);
2293                break;
2294        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2295                return kvm_x2apic_msr_read(vcpu, msr, pdata);
2296                break;
2297        case MSR_IA32_TSCDEADLINE:
2298                data = kvm_get_lapic_tscdeadline_msr(vcpu);
2299                break;
2300        case MSR_IA32_TSC_ADJUST:
2301                data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2302                break;
2303        case MSR_IA32_MISC_ENABLE:
2304                data = vcpu->arch.ia32_misc_enable_msr;
2305                break;
2306        case MSR_IA32_PERF_STATUS:
2307                /* TSC increment by tick */
2308                data = 1000ULL;
2309                /* CPU multiplier */
2310                data |= (((uint64_t)4ULL) << 40);
2311                break;
2312        case MSR_EFER:
2313                data = vcpu->arch.efer;
2314                break;
2315        case MSR_KVM_WALL_CLOCK:
2316        case MSR_KVM_WALL_CLOCK_NEW:
2317                data = vcpu->kvm->arch.wall_clock;
2318                break;
2319        case MSR_KVM_SYSTEM_TIME:
2320        case MSR_KVM_SYSTEM_TIME_NEW:
2321                data = vcpu->arch.time;
2322                break;
2323        case MSR_KVM_ASYNC_PF_EN:
2324                data = vcpu->arch.apf.msr_val;
2325                break;
2326        case MSR_KVM_STEAL_TIME:
2327                data = vcpu->arch.st.msr_val;
2328                break;
2329        case MSR_KVM_PV_EOI_EN:
2330                data = vcpu->arch.pv_eoi.msr_val;
2331                break;
2332        case MSR_IA32_P5_MC_ADDR:
2333        case MSR_IA32_P5_MC_TYPE:
2334        case MSR_IA32_MCG_CAP:
2335        case MSR_IA32_MCG_CTL:
2336        case MSR_IA32_MCG_STATUS:
2337        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2338                return get_msr_mce(vcpu, msr, pdata);
2339        case MSR_K7_CLK_CTL:
2340                /*
2341                 * Provide expected ramp-up count for K7. All other
2342                 * are set to zero, indicating minimum divisors for
2343                 * every field.
2344                 *
2345                 * This prevents guest kernels on AMD host with CPU
2346                 * type 6, model 8 and higher from exploding due to
2347                 * the rdmsr failing.
2348                 */
2349                data = 0x20000000;
2350                break;
2351        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2352                if (kvm_hv_msr_partition_wide(msr)) {
2353                        int r;
2354                        mutex_lock(&vcpu->kvm->lock);
2355                        r = get_msr_hyperv_pw(vcpu, msr, pdata);
2356                        mutex_unlock(&vcpu->kvm->lock);
2357                        return r;
2358                } else
2359                        return get_msr_hyperv(vcpu, msr, pdata);
2360                break;
2361        case MSR_IA32_BBL_CR_CTL3:
2362                /* This legacy MSR exists but isn't fully documented in current
2363                 * silicon.  It is however accessed by winxp in very narrow
2364                 * scenarios where it sets bit #19, itself documented as
2365                 * a "reserved" bit.  Best effort attempt to source coherent
2366                 * read data here should the balance of the register be
2367                 * interpreted by the guest:
2368                 *
2369                 * L2 cache control register 3: 64GB range, 256KB size,
2370                 * enabled, latency 0x1, configured
2371                 */
2372                data = 0xbe702111;
2373                break;
2374        case MSR_AMD64_OSVW_ID_LENGTH:
2375                if (!guest_cpuid_has_osvw(vcpu))
2376                        return 1;
2377                data = vcpu->arch.osvw.length;
2378                break;
2379        case MSR_AMD64_OSVW_STATUS:
2380                if (!guest_cpuid_has_osvw(vcpu))
2381                        return 1;
2382                data = vcpu->arch.osvw.status;
2383                break;
2384        default:
2385                if (kvm_pmu_msr(vcpu, msr))
2386                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2387                if (!ignore_msrs) {
2388                        vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2389                        return 1;
2390                } else {
2391                        vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2392                        data = 0;
2393                }
2394                break;
2395        }
2396        *pdata = data;
2397        return 0;
2398}
2399EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2400
2401/*
2402 * Read or write a bunch of msrs. All parameters are kernel addresses.
2403 *
2404 * @return number of msrs set successfully.
2405 */
2406static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2407                    struct kvm_msr_entry *entries,
2408                    int (*do_msr)(struct kvm_vcpu *vcpu,
2409                                  unsigned index, u64 *data))
2410{
2411        int i, idx;
2412
2413        idx = srcu_read_lock(&vcpu->kvm->srcu);
2414        for (i = 0; i < msrs->nmsrs; ++i)
2415                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2416                        break;
2417        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2418
2419        return i;
2420}
2421
2422/*
2423 * Read or write a bunch of msrs. Parameters are user addresses.
2424 *
2425 * @return number of msrs set successfully.
2426 */
2427static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2428                  int (*do_msr)(struct kvm_vcpu *vcpu,
2429                                unsigned index, u64 *data),
2430                  int writeback)
2431{
2432        struct kvm_msrs msrs;
2433        struct kvm_msr_entry *entries;
2434        int r, n;
2435        unsigned size;
2436
2437        r = -EFAULT;
2438        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2439                goto out;
2440
2441        r = -E2BIG;
2442        if (msrs.nmsrs >= MAX_IO_MSRS)
2443                goto out;
2444
2445        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2446        entries = memdup_user(user_msrs->entries, size);
2447        if (IS_ERR(entries)) {
2448                r = PTR_ERR(entries);
2449                goto out;
2450        }
2451
2452        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2453        if (r < 0)
2454                goto out_free;
2455
2456        r = -EFAULT;
2457        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2458                goto out_free;
2459
2460        r = n;
2461
2462out_free:
2463        kfree(entries);
2464out:
2465        return r;
2466}
2467
2468int kvm_dev_ioctl_check_extension(long ext)
2469{
2470        int r;
2471
2472        switch (ext) {
2473        case KVM_CAP_IRQCHIP:
2474        case KVM_CAP_HLT:
2475        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2476        case KVM_CAP_SET_TSS_ADDR:
2477        case KVM_CAP_EXT_CPUID:
2478        case KVM_CAP_CLOCKSOURCE:
2479        case KVM_CAP_PIT:
2480        case KVM_CAP_NOP_IO_DELAY:
2481        case KVM_CAP_MP_STATE:
2482        case KVM_CAP_SYNC_MMU:
2483        case KVM_CAP_USER_NMI:
2484        case KVM_CAP_REINJECT_CONTROL:
2485        case KVM_CAP_IRQ_INJECT_STATUS:
2486        case KVM_CAP_ASSIGN_DEV_IRQ:
2487        case KVM_CAP_IRQFD:
2488        case KVM_CAP_IOEVENTFD:
2489        case KVM_CAP_PIT2:
2490        case KVM_CAP_PIT_STATE2:
2491        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2492        case KVM_CAP_XEN_HVM:
2493        case KVM_CAP_ADJUST_CLOCK:
2494        case KVM_CAP_VCPU_EVENTS:
2495        case KVM_CAP_HYPERV:
2496        case KVM_CAP_HYPERV_VAPIC:
2497        case KVM_CAP_HYPERV_SPIN:
2498        case KVM_CAP_PCI_SEGMENT:
2499        case KVM_CAP_DEBUGREGS:
2500        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2501        case KVM_CAP_XSAVE:
2502        case KVM_CAP_ASYNC_PF:
2503        case KVM_CAP_GET_TSC_KHZ:
2504        case KVM_CAP_PCI_2_3:
2505        case KVM_CAP_KVMCLOCK_CTRL:
2506        case KVM_CAP_READONLY_MEM:
2507        case KVM_CAP_IRQFD_RESAMPLE:
2508                r = 1;
2509                break;
2510        case KVM_CAP_COALESCED_MMIO:
2511                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2512                break;
2513        case KVM_CAP_VAPIC:
2514                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2515                break;
2516        case KVM_CAP_NR_VCPUS:
2517                r = KVM_SOFT_MAX_VCPUS;
2518                break;
2519        case KVM_CAP_MAX_VCPUS:
2520                r = KVM_MAX_VCPUS;
2521                break;
2522        case KVM_CAP_NR_MEMSLOTS:
2523                r = KVM_MEMORY_SLOTS;
2524                break;
2525        case KVM_CAP_PV_MMU:    /* obsolete */
2526                r = 0;
2527                break;
2528        case KVM_CAP_IOMMU:
2529                r = iommu_present(&pci_bus_type);
2530                break;
2531        case KVM_CAP_MCE:
2532                r = KVM_MAX_MCE_BANKS;
2533                break;
2534        case KVM_CAP_XCRS:
2535                r = cpu_has_xsave;
2536                break;
2537        case KVM_CAP_TSC_CONTROL:
2538                r = kvm_has_tsc_control;
2539                break;
2540        case KVM_CAP_TSC_DEADLINE_TIMER:
2541                r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2542                break;
2543        default:
2544                r = 0;
2545                break;
2546        }
2547        return r;
2548
2549}
2550
2551long kvm_arch_dev_ioctl(struct file *filp,
2552                        unsigned int ioctl, unsigned long arg)
2553{
2554        void __user *argp = (void __user *)arg;
2555        long r;
2556
2557        switch (ioctl) {
2558        case KVM_GET_MSR_INDEX_LIST: {
2559                struct kvm_msr_list __user *user_msr_list = argp;
2560                struct kvm_msr_list msr_list;
2561                unsigned n;
2562
2563                r = -EFAULT;
2564                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2565                        goto out;
2566                n = msr_list.nmsrs;
2567                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2568                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2569                        goto out;
2570                r = -E2BIG;
2571                if (n < msr_list.nmsrs)
2572                        goto out;
2573                r = -EFAULT;
2574                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2575                                 num_msrs_to_save * sizeof(u32)))
2576                        goto out;
2577                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2578                                 &emulated_msrs,
2579                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2580                        goto out;
2581                r = 0;
2582                break;
2583        }
2584        case KVM_GET_SUPPORTED_CPUID: {
2585                struct kvm_cpuid2 __user *cpuid_arg = argp;
2586                struct kvm_cpuid2 cpuid;
2587
2588                r = -EFAULT;
2589                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2590                        goto out;
2591                r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2592                                                      cpuid_arg->entries);
2593                if (r)
2594                        goto out;
2595
2596                r = -EFAULT;
2597                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2598                        goto out;
2599                r = 0;
2600                break;
2601        }
2602        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2603                u64 mce_cap;
2604
2605                mce_cap = KVM_MCE_CAP_SUPPORTED;
2606                r = -EFAULT;
2607                if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2608                        goto out;
2609                r = 0;
2610                break;
2611        }
2612        default:
2613                r = -EINVAL;
2614        }
2615out:
2616        return r;
2617}
2618
2619static void wbinvd_ipi(void *garbage)
2620{
2621        wbinvd();
2622}
2623
2624static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2625{
2626        return vcpu->kvm->arch.iommu_domain &&
2627                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2628}
2629
2630void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2631{
2632        /* Address WBINVD may be executed by guest */
2633        if (need_emulate_wbinvd(vcpu)) {
2634                if (kvm_x86_ops->has_wbinvd_exit())
2635                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2636                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2637                        smp_call_function_single(vcpu->cpu,
2638                                        wbinvd_ipi, NULL, 1);
2639        }
2640
2641        kvm_x86_ops->vcpu_load(vcpu, cpu);
2642
2643        /* Apply any externally detected TSC adjustments (due to suspend) */
2644        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2645                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2646                vcpu->arch.tsc_offset_adjustment = 0;
2647                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2648        }
2649
2650        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2651                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2652                                native_read_tsc() - vcpu->arch.last_host_tsc;
2653                if (tsc_delta < 0)
2654                        mark_tsc_unstable("KVM discovered backwards TSC");
2655                if (check_tsc_unstable()) {
2656                        u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2657                                                vcpu->arch.last_guest_tsc);
2658                        kvm_x86_ops->write_tsc_offset(vcpu, offset);
2659                        vcpu->arch.tsc_catchup = 1;
2660                }
2661                /*
2662                 * On a host with synchronized TSC, there is no need to update
2663                 * kvmclock on vcpu->cpu migration
2664                 */
2665                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2666                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2667                if (vcpu->cpu != cpu)
2668                        kvm_migrate_timers(vcpu);
2669                vcpu->cpu = cpu;
2670        }
2671
2672        accumulate_steal_time(vcpu);
2673        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2674}
2675
2676void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2677{
2678        kvm_x86_ops->vcpu_put(vcpu);
2679        kvm_put_guest_fpu(vcpu);
2680        vcpu->arch.last_host_tsc = native_read_tsc();
2681}
2682
2683static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2684                                    struct kvm_lapic_state *s)
2685{
2686        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2687
2688        return 0;
2689}
2690
2691static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2692                                    struct kvm_lapic_state *s)
2693{
2694        kvm_apic_post_state_restore(vcpu, s);
2695        update_cr8_intercept(vcpu);
2696
2697        return 0;
2698}
2699
2700static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2701                                    struct kvm_interrupt *irq)
2702{
2703        if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2704                return -EINVAL;
2705        if (irqchip_in_kernel(vcpu->kvm))
2706                return -ENXIO;
2707
2708        kvm_queue_interrupt(vcpu, irq->irq, false);
2709        kvm_make_request(KVM_REQ_EVENT, vcpu);
2710
2711        return 0;
2712}
2713
2714static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2715{
2716        kvm_inject_nmi(vcpu);
2717
2718        return 0;
2719}
2720
2721static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2722                                           struct kvm_tpr_access_ctl *tac)
2723{
2724        if (tac->flags)
2725                return -EINVAL;
2726        vcpu->arch.tpr_access_reporting = !!tac->enabled;
2727        return 0;
2728}
2729
2730static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2731                                        u64 mcg_cap)
2732{
2733        int r;
2734        unsigned bank_num = mcg_cap & 0xff, bank;
2735
2736        r = -EINVAL;
2737        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2738                goto out;
2739        if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2740                goto out;
2741        r = 0;
2742        vcpu->arch.mcg_cap = mcg_cap;
2743        /* Init IA32_MCG_CTL to all 1s */
2744        if (mcg_cap & MCG_CTL_P)
2745                vcpu->arch.mcg_ctl = ~(u64)0;
2746        /* Init IA32_MCi_CTL to all 1s */
2747        for (bank = 0; bank < bank_num; bank++)
2748                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2749out:
2750        return r;
2751}
2752
2753static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2754                                      struct kvm_x86_mce *mce)
2755{
2756        u64 mcg_cap = vcpu->arch.mcg_cap;
2757        unsigned bank_num = mcg_cap & 0xff;
2758        u64 *banks = vcpu->arch.mce_banks;
2759
2760        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2761                return -EINVAL;
2762        /*
2763         * if IA32_MCG_CTL is not all 1s, the uncorrected error
2764         * reporting is disabled
2765         */
2766        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2767            vcpu->arch.mcg_ctl != ~(u64)0)
2768                return 0;
2769        banks += 4 * mce->bank;
2770        /*
2771         * if IA32_MCi_CTL is not all 1s, the uncorrected error
2772         * reporting is disabled for the bank
2773         */
2774        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2775                return 0;
2776        if (mce->status & MCI_STATUS_UC) {
2777                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2778                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2779                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2780                        return 0;
2781                }
2782                if (banks[1] & MCI_STATUS_VAL)
2783                        mce->status |= MCI_STATUS_OVER;
2784                banks[2] = mce->addr;
2785                banks[3] = mce->misc;
2786                vcpu->arch.mcg_status = mce->mcg_status;
2787                banks[1] = mce->status;
2788                kvm_queue_exception(vcpu, MC_VECTOR);
2789        } else if (!(banks[1] & MCI_STATUS_VAL)
2790                   || !(banks[1] & MCI_STATUS_UC)) {
2791                if (banks[1] & MCI_STATUS_VAL)
2792                        mce->status |= MCI_STATUS_OVER;
2793                banks[2] = mce->addr;
2794                banks[3] = mce->misc;
2795                banks[1] = mce->status;
2796        } else
2797                banks[1] |= MCI_STATUS_OVER;
2798        return 0;
2799}
2800
2801static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2802                                               struct kvm_vcpu_events *events)
2803{
2804        process_nmi(vcpu);
2805        events->exception.injected =
2806                vcpu->arch.exception.pending &&
2807                !kvm_exception_is_soft(vcpu->arch.exception.nr);
2808        events->exception.nr = vcpu->arch.exception.nr;
2809        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2810        events->exception.pad = 0;
2811        events->exception.error_code = vcpu->arch.exception.error_code;
2812
2813        events->interrupt.injected =
2814                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2815        events->interrupt.nr = vcpu->arch.interrupt.nr;
2816        events->interrupt.soft = 0;
2817        events->interrupt.shadow =
2818                kvm_x86_ops->get_interrupt_shadow(vcpu,
2819                        KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2820
2821        events->nmi.injected = vcpu->arch.nmi_injected;
2822        events->nmi.pending = vcpu->arch.nmi_pending != 0;
2823        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2824        events->nmi.pad = 0;
2825
2826        events->sipi_vector = vcpu->arch.sipi_vector;
2827
2828        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2829                         | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2830                         | KVM_VCPUEVENT_VALID_SHADOW);
2831        memset(&events->reserved, 0, sizeof(events->reserved));
2832}
2833
2834static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2835                                              struct kvm_vcpu_events *events)
2836{
2837        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2838                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2839                              | KVM_VCPUEVENT_VALID_SHADOW))
2840                return -EINVAL;
2841
2842        process_nmi(vcpu);
2843        vcpu->arch.exception.pending = events->exception.injected;
2844        vcpu->arch.exception.nr = events->exception.nr;
2845        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2846        vcpu->arch.exception.error_code = events->exception.error_code;
2847
2848        vcpu->arch.interrupt.pending = events->interrupt.injected;
2849        vcpu->arch.interrupt.nr = events->interrupt.nr;
2850        vcpu->arch.interrupt.soft = events->interrupt.soft;
2851        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2852                kvm_x86_ops->set_interrupt_shadow(vcpu,
2853                                                  events->interrupt.shadow);
2854
2855        vcpu->arch.nmi_injected = events->nmi.injected;
2856        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2857                vcpu->arch.nmi_pending = events->nmi.pending;
2858        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2859
2860        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2861                vcpu->arch.sipi_vector = events->sipi_vector;
2862
2863        kvm_make_request(KVM_REQ_EVENT, vcpu);
2864
2865        return 0;
2866}
2867
2868static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2869                                             struct kvm_debugregs *dbgregs)
2870{
2871        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2872        dbgregs->dr6 = vcpu->arch.dr6;
2873        dbgregs->dr7 = vcpu->arch.dr7;
2874        dbgregs->flags = 0;
2875        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2876}
2877
2878static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2879                                            struct kvm_debugregs *dbgregs)
2880{
2881        if (dbgregs->flags)
2882                return -EINVAL;
2883
2884        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2885        vcpu->arch.dr6 = dbgregs->dr6;
2886        vcpu->arch.dr7 = dbgregs->dr7;
2887
2888        return 0;
2889}
2890
2891static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2892                                         struct kvm_xsave *guest_xsave)
2893{
2894        if (cpu_has_xsave)
2895                memcpy(guest_xsave->region,
2896                        &vcpu->arch.guest_fpu.state->xsave,
2897                        xstate_size);
2898        else {
2899                memcpy(guest_xsave->region,
2900                        &vcpu->arch.guest_fpu.state->fxsave,
2901                        sizeof(struct i387_fxsave_struct));
2902                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2903                        XSTATE_FPSSE;
2904        }
2905}
2906
2907static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2908                                        struct kvm_xsave *guest_xsave)
2909{
2910        u64 xstate_bv =
2911                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2912
2913        if (cpu_has_xsave)
2914                memcpy(&vcpu->arch.guest_fpu.state->xsave,
2915                        guest_xsave->region, xstate_size);
2916        else {
2917                if (xstate_bv & ~XSTATE_FPSSE)
2918                        return -EINVAL;
2919                memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2920                        guest_xsave->region, sizeof(struct i387_fxsave_struct));
2921        }
2922        return 0;
2923}
2924
2925static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2926                                        struct kvm_xcrs *guest_xcrs)
2927{
2928        if (!cpu_has_xsave) {
2929                guest_xcrs->nr_xcrs = 0;
2930                return;
2931        }
2932
2933        guest_xcrs->nr_xcrs = 1;
2934        guest_xcrs->flags = 0;
2935        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2936        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2937}
2938
2939static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2940                                       struct kvm_xcrs *guest_xcrs)
2941{
2942        int i, r = 0;
2943
2944        if (!cpu_has_xsave)
2945                return -EINVAL;
2946
2947        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2948                return -EINVAL;
2949
2950        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2951                /* Only support XCR0 currently */
2952                if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2953                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2954                                guest_xcrs->xcrs[0].value);
2955                        break;
2956                }
2957        if (r)
2958                r = -EINVAL;
2959        return r;
2960}
2961
2962/*
2963 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2964 * stopped by the hypervisor.  This function will be called from the host only.
2965 * EINVAL is returned when the host attempts to set the flag for a guest that
2966 * does not support pv clocks.
2967 */
2968static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2969{
2970        if (!vcpu->arch.time_page)
2971                return -EINVAL;
2972        vcpu->arch.pvclock_set_guest_stopped_request = true;
2973        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2974        return 0;
2975}
2976
2977long kvm_arch_vcpu_ioctl(struct file *filp,
2978                         unsigned int ioctl, unsigned long arg)
2979{
2980        struct kvm_vcpu *vcpu = filp->private_data;
2981        void __user *argp = (void __user *)arg;
2982        int r;
2983        union {
2984                struct kvm_lapic_state *lapic;
2985                struct kvm_xsave *xsave;
2986                struct kvm_xcrs *xcrs;
2987                void *buffer;
2988        } u;
2989
2990        u.buffer = NULL;
2991        switch (ioctl) {
2992        case KVM_GET_LAPIC: {
2993                r = -EINVAL;
2994                if (!vcpu->arch.apic)
2995                        goto out;
2996                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2997
2998                r = -ENOMEM;
2999                if (!u.lapic)
3000                        goto out;
3001                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3002                if (r)
3003                        goto out;
3004                r = -EFAULT;
3005                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3006                        goto out;
3007                r = 0;
3008                break;
3009        }
3010        case KVM_SET_LAPIC: {
3011                r = -EINVAL;
3012                if (!vcpu->arch.apic)
3013                        goto out;
3014                u.lapic = memdup_user(argp, sizeof(*u.lapic));
3015                if (IS_ERR(u.lapic))
3016                        return PTR_ERR(u.lapic);
3017
3018                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3019                break;
3020        }
3021        case KVM_INTERRUPT: {
3022                struct kvm_interrupt irq;
3023
3024                r = -EFAULT;
3025                if (copy_from_user(&irq, argp, sizeof irq))
3026                        goto out;
3027                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3028                break;
3029        }
3030        case KVM_NMI: {
3031                r = kvm_vcpu_ioctl_nmi(vcpu);
3032                break;
3033        }
3034        case KVM_SET_CPUID: {
3035                struct kvm_cpuid __user *cpuid_arg = argp;
3036                struct kvm_cpuid cpuid;
3037
3038                r = -EFAULT;
3039                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3040                        goto out;
3041                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3042                break;
3043        }
3044        case KVM_SET_CPUID2: {
3045                struct kvm_cpuid2 __user *cpuid_arg = argp;
3046                struct kvm_cpuid2 cpuid;
3047
3048                r = -EFAULT;
3049                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3050                        goto out;
3051                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3052                                              cpuid_arg->entries);
3053                break;
3054        }
3055        case KVM_GET_CPUID2: {
3056                struct kvm_cpuid2 __user *cpuid_arg = argp;
3057                struct kvm_cpuid2 cpuid;
3058
3059                r = -EFAULT;
3060                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3061                        goto out;
3062                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3063                                              cpuid_arg->entries);
3064                if (r)
3065                        goto out;
3066                r = -EFAULT;
3067                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3068                        goto out;
3069                r = 0;
3070                break;
3071        }
3072        case KVM_GET_MSRS:
3073                r = msr_io(vcpu, argp, kvm_get_msr, 1);
3074                break;
3075        case KVM_SET_MSRS:
3076                r = msr_io(vcpu, argp, do_set_msr, 0);
3077                break;
3078        case KVM_TPR_ACCESS_REPORTING: {
3079                struct kvm_tpr_access_ctl tac;
3080
3081                r = -EFAULT;
3082                if (copy_from_user(&tac, argp, sizeof tac))
3083                        goto out;
3084                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3085                if (r)
3086                        goto out;
3087                r = -EFAULT;
3088                if (copy_to_user(argp, &tac, sizeof tac))
3089                        goto out;
3090                r = 0;
3091                break;
3092        };
3093        case KVM_SET_VAPIC_ADDR: {
3094                struct kvm_vapic_addr va;
3095
3096                r = -EINVAL;
3097                if (!irqchip_in_kernel(vcpu->kvm))
3098                        goto out;
3099                r = -EFAULT;
3100                if (copy_from_user(&va, argp, sizeof va))
3101                        goto out;
3102                r = 0;
3103                kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3104                break;
3105        }
3106        case KVM_X86_SETUP_MCE: {
3107                u64 mcg_cap;
3108
3109                r = -EFAULT;
3110                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3111                        goto out;
3112                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3113                break;
3114        }
3115        case KVM_X86_SET_MCE: {
3116                struct kvm_x86_mce mce;
3117
3118                r = -EFAULT;
3119                if (copy_from_user(&mce, argp, sizeof mce))
3120                        goto out;
3121                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3122                break;
3123        }
3124        case KVM_GET_VCPU_EVENTS: {
3125                struct kvm_vcpu_events events;
3126
3127                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3128
3129                r = -EFAULT;
3130                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3131                        break;
3132                r = 0;
3133                break;
3134        }
3135        case KVM_SET_VCPU_EVENTS: {
3136                struct kvm_vcpu_events events;
3137
3138                r = -EFAULT;
3139                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3140                        break;
3141
3142                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3143                break;
3144        }
3145        case KVM_GET_DEBUGREGS: {
3146                struct kvm_debugregs dbgregs;
3147
3148                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3149
3150                r = -EFAULT;
3151                if (copy_to_user(argp, &dbgregs,
3152                                 sizeof(struct kvm_debugregs)))
3153                        break;
3154                r = 0;
3155                break;
3156        }
3157        case KVM_SET_DEBUGREGS: {
3158                struct kvm_debugregs dbgregs;
3159
3160                r = -EFAULT;
3161                if (copy_from_user(&dbgregs, argp,
3162                                   sizeof(struct kvm_debugregs)))
3163                        break;
3164
3165                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3166                break;
3167        }
3168        case KVM_GET_XSAVE: {
3169                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3170                r = -ENOMEM;
3171                if (!u.xsave)
3172                        break;
3173
3174                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3175
3176                r = -EFAULT;
3177                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3178                        break;
3179                r = 0;
3180                break;
3181        }
3182        case KVM_SET_XSAVE: {
3183                u.xsave = memdup_user(argp, sizeof(*u.xsave));
3184                if (IS_ERR(u.xsave))
3185                        return PTR_ERR(u.xsave);
3186
3187                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3188                break;
3189        }
3190        case KVM_GET_XCRS: {
3191                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3192                r = -ENOMEM;
3193                if (!u.xcrs)
3194                        break;
3195
3196                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3197
3198                r = -EFAULT;
3199                if (copy_to_user(argp, u.xcrs,
3200                                 sizeof(struct kvm_xcrs)))
3201                        break;
3202                r = 0;
3203                break;
3204        }
3205        case KVM_SET_XCRS: {
3206                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3207                if (IS_ERR(u.xcrs))
3208                        return PTR_ERR(u.xcrs);
3209
3210                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3211                break;
3212        }
3213        case KVM_SET_TSC_KHZ: {
3214                u32 user_tsc_khz;
3215
3216                r = -EINVAL;
3217                user_tsc_khz = (u32)arg;
3218
3219                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3220                        goto out;
3221
3222                if (user_tsc_khz == 0)
3223                        user_tsc_khz = tsc_khz;
3224
3225                kvm_set_tsc_khz(vcpu, user_tsc_khz);
3226
3227                r = 0;
3228                goto out;
3229        }
3230        case KVM_GET_TSC_KHZ: {
3231                r = vcpu->arch.virtual_tsc_khz;
3232                goto out;
3233        }
3234        case KVM_KVMCLOCK_CTRL: {
3235                r = kvm_set_guest_paused(vcpu);
3236                goto out;
3237        }
3238        default:
3239                r = -EINVAL;
3240        }
3241out:
3242        kfree(u.buffer);
3243        return r;
3244}
3245
3246int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3247{
3248        return VM_FAULT_SIGBUS;
3249}
3250
3251static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3252{
3253        int ret;
3254
3255        if (addr > (unsigned int)(-3 * PAGE_SIZE))
3256                return -EINVAL;
3257        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3258        return ret;
3259}
3260
3261static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3262                                              u64 ident_addr)
3263{
3264        kvm->arch.ept_identity_map_addr = ident_addr;
3265        return 0;
3266}
3267
3268static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3269                                          u32 kvm_nr_mmu_pages)
3270{
3271        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3272                return -EINVAL;
3273
3274        mutex_lock(&kvm->slots_lock);
3275        spin_lock(&kvm->mmu_lock);
3276
3277        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3278        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3279
3280        spin_unlock(&kvm->mmu_lock);
3281        mutex_unlock(&kvm->slots_lock);
3282        return 0;
3283}
3284
3285static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3286{
3287        return kvm->arch.n_max_mmu_pages;
3288}
3289
3290static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3291{
3292        int r;
3293
3294        r = 0;
3295        switch (chip->chip_id) {
3296        case KVM_IRQCHIP_PIC_MASTER:
3297                memcpy(&chip->chip.pic,
3298                        &pic_irqchip(kvm)->pics[0],
3299                        sizeof(struct kvm_pic_state));
3300                break;
3301        case KVM_IRQCHIP_PIC_SLAVE:
3302                memcpy(&chip->chip.pic,
3303                        &pic_irqchip(kvm)->pics[1],
3304                        sizeof(struct kvm_pic_state));
3305                break;
3306        case KVM_IRQCHIP_IOAPIC:
3307                r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3308                break;
3309        default:
3310                r = -EINVAL;
3311                break;
3312        }
3313        return r;
3314}
3315
3316static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3317{
3318        int r;
3319
3320        r = 0;
3321        switch (chip->chip_id) {
3322        case KVM_IRQCHIP_PIC_MASTER:
3323                spin_lock(&pic_irqchip(kvm)->lock);
3324                memcpy(&pic_irqchip(kvm)->pics[0],
3325                        &chip->chip.pic,
3326                        sizeof(struct kvm_pic_state));
3327                spin_unlock(&pic_irqchip(kvm)->lock);
3328                break;
3329        case KVM_IRQCHIP_PIC_SLAVE:
3330                spin_lock(&pic_irqchip(kvm)->lock);
3331                memcpy(&pic_irqchip(kvm)->pics[1],
3332                        &chip->chip.pic,
3333                        sizeof(struct kvm_pic_state));
3334                spin_unlock(&pic_irqchip(kvm)->lock);
3335                break;
3336        case KVM_IRQCHIP_IOAPIC:
3337                r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3338                break;
3339        default:
3340                r = -EINVAL;
3341                break;
3342        }
3343        kvm_pic_update_irq(pic_irqchip(kvm));
3344        return r;
3345}
3346
3347static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3348{
3349        int r = 0;
3350
3351        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3352        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3353        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3354        return r;
3355}
3356
3357static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3358{
3359        int r = 0;
3360
3361        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3362        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3363        kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3364        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3365        return r;
3366}
3367
3368static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3369{
3370        int r = 0;
3371
3372        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3373        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3374                sizeof(ps->channels));
3375        ps->flags = kvm->arch.vpit->pit_state.flags;
3376        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3377        memset(&ps->reserved, 0, sizeof(ps->reserved));
3378        return r;
3379}
3380
3381static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3382{
3383        int r = 0, start = 0;
3384        u32 prev_legacy, cur_legacy;
3385        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3386        prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3387        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3388        if (!prev_legacy && cur_legacy)
3389                start = 1;
3390        memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3391               sizeof(kvm->arch.vpit->pit_state.channels));
3392        kvm->arch.vpit->pit_state.flags = ps->flags;
3393        kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3394        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3395        return r;
3396}
3397
3398static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3399                                 struct kvm_reinject_control *control)
3400{
3401        if (!kvm->arch.vpit)
3402                return -ENXIO;
3403        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3404        kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3405        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3406        return 0;
3407}
3408
3409/**
3410 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3411 * @kvm: kvm instance
3412 * @log: slot id and address to which we copy the log
3413 *
3414 * We need to keep it in mind that VCPU threads can write to the bitmap
3415 * concurrently.  So, to avoid losing data, we keep the following order for
3416 * each bit:
3417 *
3418 *   1. Take a snapshot of the bit and clear it if needed.
3419 *   2. Write protect the corresponding page.
3420 *   3. Flush TLB's if needed.
3421 *   4. Copy the snapshot to the userspace.
3422 *
3423 * Between 2 and 3, the guest may write to the page using the remaining TLB
3424 * entry.  This is not a problem because the page will be reported dirty at
3425 * step 4 using the snapshot taken before and step 3 ensures that successive
3426 * writes will be logged for the next call.
3427 */
3428int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3429{
3430        int r;
3431        struct kvm_memory_slot *memslot;
3432        unsigned long n, i;
3433        unsigned long *dirty_bitmap;
3434        unsigned long *dirty_bitmap_buffer;
3435        bool is_dirty = false;
3436
3437        mutex_lock(&kvm->slots_lock);
3438
3439        r = -EINVAL;
3440        if (log->slot >= KVM_MEMORY_SLOTS)
3441                goto out;
3442
3443        memslot = id_to_memslot(kvm->memslots, log->slot);
3444
3445        dirty_bitmap = memslot->dirty_bitmap;
3446        r = -ENOENT;
3447        if (!dirty_bitmap)
3448                goto out;
3449
3450        n = kvm_dirty_bitmap_bytes(memslot);
3451
3452        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3453        memset(dirty_bitmap_buffer, 0, n);
3454
3455        spin_lock(&kvm->mmu_lock);
3456
3457        for (i = 0; i < n / sizeof(long); i++) {
3458                unsigned long mask;
3459                gfn_t offset;
3460
3461                if (!dirty_bitmap[i])
3462                        continue;
3463
3464                is_dirty = true;
3465
3466                mask = xchg(&dirty_bitmap[i], 0);
3467                dirty_bitmap_buffer[i] = mask;
3468
3469                offset = i * BITS_PER_LONG;
3470                kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3471        }
3472        if (is_dirty)
3473                kvm_flush_remote_tlbs(kvm);
3474
3475        spin_unlock(&kvm->mmu_lock);
3476
3477        r = -EFAULT;
3478        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3479                goto out;
3480
3481        r = 0;
3482out:
3483        mutex_unlock(&kvm->slots_lock);
3484        return r;
3485}
3486
3487int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3488{
3489        if (!irqchip_in_kernel(kvm))
3490                return -ENXIO;
3491
3492        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3493                                        irq_event->irq, irq_event->level);
3494        return 0;
3495}
3496
3497long kvm_arch_vm_ioctl(struct file *filp,
3498                       unsigned int ioctl, unsigned long arg)
3499{
3500        struct kvm *kvm = filp->private_data;
3501        void __user *argp = (void __user *)arg;
3502        int r = -ENOTTY;
3503        /*
3504         * This union makes it completely explicit to gcc-3.x
3505         * that these two variables' stack usage should be
3506         * combined, not added together.
3507         */
3508        union {
3509                struct kvm_pit_state ps;
3510                struct kvm_pit_state2 ps2;
3511                struct kvm_pit_config pit_config;
3512        } u;
3513
3514        switch (ioctl) {
3515        case KVM_SET_TSS_ADDR:
3516                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3517                break;
3518        case KVM_SET_IDENTITY_MAP_ADDR: {
3519                u64 ident_addr;
3520
3521                r = -EFAULT;
3522                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3523                        goto out;
3524                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3525                break;
3526        }
3527        case KVM_SET_NR_MMU_PAGES:
3528                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3529                break;
3530        case KVM_GET_NR_MMU_PAGES:
3531                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3532                break;
3533        case KVM_CREATE_IRQCHIP: {
3534                struct kvm_pic *vpic;
3535
3536                mutex_lock(&kvm->lock);
3537                r = -EEXIST;
3538                if (kvm->arch.vpic)
3539                        goto create_irqchip_unlock;
3540                r = -EINVAL;
3541                if (atomic_read(&kvm->online_vcpus))
3542                        goto create_irqchip_unlock;
3543                r = -ENOMEM;
3544                vpic = kvm_create_pic(kvm);
3545                if (vpic) {
3546                        r = kvm_ioapic_init(kvm);
3547                        if (r) {
3548                                mutex_lock(&kvm->slots_lock);
3549                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550                                                          &vpic->dev_master);
3551                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3552                                                          &vpic->dev_slave);
3553                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3554                                                          &vpic->dev_eclr);
3555                                mutex_unlock(&kvm->slots_lock);
3556                                kfree(vpic);
3557                                goto create_irqchip_unlock;
3558                        }
3559                } else
3560                        goto create_irqchip_unlock;
3561                smp_wmb();
3562                kvm->arch.vpic = vpic;
3563                smp_wmb();
3564                r = kvm_setup_default_irq_routing(kvm);
3565                if (r) {
3566                        mutex_lock(&kvm->slots_lock);
3567                        mutex_lock(&kvm->irq_lock);
3568                        kvm_ioapic_destroy(kvm);
3569                        kvm_destroy_pic(kvm);
3570                        mutex_unlock(&kvm->irq_lock);
3571                        mutex_unlock(&kvm->slots_lock);
3572                }
3573        create_irqchip_unlock:
3574                mutex_unlock(&kvm->lock);
3575                break;
3576        }
3577        case KVM_CREATE_PIT:
3578                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3579                goto create_pit;
3580        case KVM_CREATE_PIT2:
3581                r = -EFAULT;
3582                if (copy_from_user(&u.pit_config, argp,
3583                                   sizeof(struct kvm_pit_config)))
3584                        goto out;
3585        create_pit:
3586                mutex_lock(&kvm->slots_lock);
3587                r = -EEXIST;
3588                if (kvm->arch.vpit)
3589                        goto create_pit_unlock;
3590                r = -ENOMEM;
3591                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3592                if (kvm->arch.vpit)
3593                        r = 0;
3594        create_pit_unlock:
3595                mutex_unlock(&kvm->slots_lock);
3596                break;
3597        case KVM_GET_IRQCHIP: {
3598                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3599                struct kvm_irqchip *chip;
3600
3601                chip = memdup_user(argp, sizeof(*chip));
3602                if (IS_ERR(chip)) {
3603                        r = PTR_ERR(chip);
3604                        goto out;
3605                }
3606
3607                r = -ENXIO;
3608                if (!irqchip_in_kernel(kvm))
3609                        goto get_irqchip_out;
3610                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3611                if (r)
3612                        goto get_irqchip_out;
3613                r = -EFAULT;
3614                if (copy_to_user(argp, chip, sizeof *chip))
3615                        goto get_irqchip_out;
3616                r = 0;
3617        get_irqchip_out:
3618                kfree(chip);
3619                break;
3620        }
3621        case KVM_SET_IRQCHIP: {
3622                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3623                struct kvm_irqchip *chip;
3624
3625                chip = memdup_user(argp, sizeof(*chip));
3626                if (IS_ERR(chip)) {
3627                        r = PTR_ERR(chip);
3628                        goto out;
3629                }
3630
3631                r = -ENXIO;
3632                if (!irqchip_in_kernel(kvm))
3633                        goto set_irqchip_out;
3634                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3635                if (r)
3636                        goto set_irqchip_out;
3637                r = 0;
3638        set_irqchip_out:
3639                kfree(chip);
3640                break;
3641        }
3642        case KVM_GET_PIT: {
3643                r = -EFAULT;
3644                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3645                        goto out;
3646                r = -ENXIO;
3647                if (!kvm->arch.vpit)
3648                        goto out;
3649                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3650                if (r)
3651                        goto out;
3652                r = -EFAULT;
3653                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3654                        goto out;
3655                r = 0;
3656                break;
3657        }
3658        case KVM_SET_PIT: {
3659                r = -EFAULT;
3660                if (copy_from_user(&u.ps, argp, sizeof u.ps))
3661                        goto out;
3662                r = -ENXIO;
3663                if (!kvm->arch.vpit)
3664                        goto out;
3665                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3666                break;
3667        }
3668        case KVM_GET_PIT2: {
3669                r = -ENXIO;
3670                if (!kvm->arch.vpit)
3671                        goto out;
3672                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3673                if (r)
3674                        goto out;
3675                r = -EFAULT;
3676                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3677                        goto out;
3678                r = 0;
3679                break;
3680        }
3681        case KVM_SET_PIT2: {
3682                r = -EFAULT;
3683                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3684                        goto out;
3685                r = -ENXIO;
3686                if (!kvm->arch.vpit)
3687                        goto out;
3688                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3689                break;
3690        }
3691        case KVM_REINJECT_CONTROL: {
3692                struct kvm_reinject_control control;
3693                r =  -EFAULT;
3694                if (copy_from_user(&control, argp, sizeof(control)))
3695                        goto out;
3696                r = kvm_vm_ioctl_reinject(kvm, &control);
3697                break;
3698        }
3699        case KVM_XEN_HVM_CONFIG: {
3700                r = -EFAULT;
3701                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3702                                   sizeof(struct kvm_xen_hvm_config)))
3703                        goto out;
3704                r = -EINVAL;
3705                if (kvm->arch.xen_hvm_config.flags)
3706                        goto out;
3707                r = 0;
3708                break;
3709        }
3710        case KVM_SET_CLOCK: {
3711                struct kvm_clock_data user_ns;
3712                u64 now_ns;
3713                s64 delta;
3714
3715                r = -EFAULT;
3716                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3717                        goto out;
3718
3719                r = -EINVAL;
3720                if (user_ns.flags)
3721                        goto out;
3722
3723                r = 0;
3724                local_irq_disable();
3725                now_ns = get_kernel_ns();
3726                delta = user_ns.clock - now_ns;
3727                local_irq_enable();
3728                kvm->arch.kvmclock_offset = delta;
3729                break;
3730        }
3731        case KVM_GET_CLOCK: {
3732                struct kvm_clock_data user_ns;
3733                u64 now_ns;
3734
3735                local_irq_disable();
3736                now_ns = get_kernel_ns();
3737                user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3738                local_irq_enable();
3739                user_ns.flags = 0;
3740                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3741
3742                r = -EFAULT;
3743                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3744                        goto out;
3745                r = 0;
3746                break;
3747        }
3748
3749        default:
3750                ;
3751        }
3752out:
3753        return r;
3754}
3755
3756static void kvm_init_msr_list(void)
3757{
3758        u32 dummy[2];
3759        unsigned i, j;
3760
3761        /* skip the first msrs in the list. KVM-specific */
3762        for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3763                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3764                        continue;
3765                if (j < i)
3766                        msrs_to_save[j] = msrs_to_save[i];
3767                j++;
3768        }
3769        num_msrs_to_save = j;
3770}
3771
3772static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3773                           const void *v)
3774{
3775        int handled = 0;
3776        int n;
3777
3778        do {
3779                n = min(len, 8);
3780                if (!(vcpu->arch.apic &&
3781                      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3782                    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3783                        break;
3784                handled += n;
3785                addr += n;
3786                len -= n;
3787                v += n;
3788        } while (len);
3789
3790        return handled;
3791}
3792
3793static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3794{
3795        int handled = 0;
3796        int n;
3797
3798        do {
3799                n = min(len, 8);
3800                if (!(vcpu->arch.apic &&
3801                      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3802                    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3803                        break;
3804                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3805                handled += n;
3806                addr += n;
3807                len -= n;
3808                v += n;
3809        } while (len);
3810
3811        return handled;
3812}
3813
3814static void kvm_set_segment(struct kvm_vcpu *vcpu,
3815                        struct kvm_segment *var, int seg)
3816{
3817        kvm_x86_ops->set_segment(vcpu, var, seg);
3818}
3819
3820void kvm_get_segment(struct kvm_vcpu *vcpu,
3821                     struct kvm_segment *var, int seg)
3822{
3823        kvm_x86_ops->get_segment(vcpu, var, seg);
3824}
3825
3826gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3827{
3828        gpa_t t_gpa;
3829        struct x86_exception exception;
3830
3831        BUG_ON(!mmu_is_nested(vcpu));
3832
3833        /* NPT walks are always user-walks */
3834        access |= PFERR_USER_MASK;
3835        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3836
3837        return t_gpa;
3838}
3839
3840gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3841                              struct x86_exception *exception)
3842{
3843        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3844        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3845}
3846
3847 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3848                                struct x86_exception *exception)
3849{
3850        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3851        access |= PFERR_FETCH_MASK;
3852        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3853}
3854
3855gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3856                               struct x86_exception *exception)
3857{
3858        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3859        access |= PFERR_WRITE_MASK;
3860        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3861}
3862
3863/* uses this to access any guest's mapped memory without checking CPL */
3864gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3865                                struct x86_exception *exception)
3866{
3867        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3868}
3869
3870static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3871                                      struct kvm_vcpu *vcpu, u32 access,
3872                                      struct x86_exception *exception)
3873{
3874        void *data = val;
3875        int r = X86EMUL_CONTINUE;
3876
3877        while (bytes) {
3878                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3879                                                            exception);
3880                unsigned offset = addr & (PAGE_SIZE-1);
3881                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3882                int ret;
3883
3884                if (gpa == UNMAPPED_GVA)
3885                        return X86EMUL_PROPAGATE_FAULT;
3886                ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3887                if (ret < 0) {
3888                        r = X86EMUL_IO_NEEDED;
3889                        goto out;
3890                }
3891
3892                bytes -= toread;
3893                data += toread;
3894                addr += toread;
3895        }
3896out:
3897        return r;
3898}
3899
3900/* used for instruction fetching */
3901static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3902                                gva_t addr, void *val, unsigned int bytes,
3903                                struct x86_exception *exception)
3904{
3905        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3906        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3907
3908        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3909                                          access | PFERR_FETCH_MASK,
3910                                          exception);
3911}
3912
3913int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3914                               gva_t addr, void *val, unsigned int bytes,
3915                               struct x86_exception *exception)
3916{
3917        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3918        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3919
3920        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3921                                          exception);
3922}
3923EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3924
3925static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3926                                      gva_t addr, void *val, unsigned int bytes,
3927                                      struct x86_exception *exception)
3928{
3929        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3930        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3931}
3932
3933int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3934                                       gva_t addr, void *val,
3935                                       unsigned int bytes,
3936                                       struct x86_exception *exception)
3937{
3938        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3939        void *data = val;
3940        int r = X86EMUL_CONTINUE;
3941
3942        while (bytes) {
3943                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3944                                                             PFERR_WRITE_MASK,
3945                                                             exception);
3946                unsigned offset = addr & (PAGE_SIZE-1);
3947                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3948                int ret;
3949
3950                if (gpa == UNMAPPED_GVA)
3951                        return X86EMUL_PROPAGATE_FAULT;
3952                ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3953                if (ret < 0) {
3954                        r = X86EMUL_IO_NEEDED;
3955                        goto out;
3956                }
3957
3958                bytes -= towrite;
3959                data += towrite;
3960                addr += towrite;
3961        }
3962out:
3963        return r;
3964}
3965EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3966
3967static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3968                                gpa_t *gpa, struct x86_exception *exception,
3969                                bool write)
3970{
3971        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3972                | (write ? PFERR_WRITE_MASK : 0);
3973
3974        if (vcpu_match_mmio_gva(vcpu, gva)
3975            && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3976                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3977                                        (gva & (PAGE_SIZE - 1));
3978                trace_vcpu_match_mmio(gva, *gpa, write, false);
3979                return 1;
3980        }
3981
3982        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3983
3984        if (*gpa == UNMAPPED_GVA)
3985                return -1;
3986
3987        /* For APIC access vmexit */
3988        if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3989                return 1;
3990
3991        if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3992                trace_vcpu_match_mmio(gva, *gpa, write, true);
3993                return 1;
3994        }
3995
3996        return 0;
3997}
3998
3999int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4000                        const void *val, int bytes)
4001{
4002        int ret;
4003
4004        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4005        if (ret < 0)
4006                return 0;
4007        kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4008        return 1;
4009}
4010
4011struct read_write_emulator_ops {
4012        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4013                                  int bytes);
4014        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015                                  void *val, int bytes);
4016        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017                               int bytes, void *val);
4018        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4019                                    void *val, int bytes);
4020        bool write;
4021};
4022
4023static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4024{
4025        if (vcpu->mmio_read_completed) {
4026                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4027                               vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4028                vcpu->mmio_read_completed = 0;
4029                return 1;
4030        }
4031
4032        return 0;
4033}
4034
4035static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4036                        void *val, int bytes)
4037{
4038        return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4039}
4040
4041static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4042                         void *val, int bytes)
4043{
4044        return emulator_write_phys(vcpu, gpa, val, bytes);
4045}
4046
4047static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4048{
4049        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4050        return vcpu_mmio_write(vcpu, gpa, bytes, val);
4051}
4052
4053static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4054                          void *val, int bytes)
4055{
4056        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4057        return X86EMUL_IO_NEEDED;
4058}
4059
4060static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4061                           void *val, int bytes)
4062{
4063        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4064
4065        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4066        return X86EMUL_CONTINUE;
4067}
4068
4069static const struct read_write_emulator_ops read_emultor = {
4070        .read_write_prepare = read_prepare,
4071        .read_write_emulate = read_emulate,
4072        .read_write_mmio = vcpu_mmio_read,
4073        .read_write_exit_mmio = read_exit_mmio,
4074};
4075
4076static const struct read_write_emulator_ops write_emultor = {
4077        .read_write_emulate = write_emulate,
4078        .read_write_mmio = write_mmio,
4079        .read_write_exit_mmio = write_exit_mmio,
4080        .write = true,
4081};
4082
4083static int emulator_read_write_onepage(unsigned long addr, void *val,
4084                                       unsigned int bytes,
4085                                       struct x86_exception *exception,
4086                                       struct kvm_vcpu *vcpu,
4087                                       const struct read_write_emulator_ops *ops)
4088{
4089        gpa_t gpa;
4090        int handled, ret;
4091        bool write = ops->write;
4092        struct kvm_mmio_fragment *frag;
4093
4094        ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4095
4096        if (ret < 0)
4097                return X86EMUL_PROPAGATE_FAULT;
4098
4099        /* For APIC access vmexit */
4100        if (ret)
4101                goto mmio;
4102
4103        if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4104                return X86EMUL_CONTINUE;
4105
4106mmio:
4107        /*
4108         * Is this MMIO handled locally?
4109         */
4110        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4111        if (handled == bytes)
4112                return X86EMUL_CONTINUE;
4113
4114        gpa += handled;
4115        bytes -= handled;
4116        val += handled;
4117
4118        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4119        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4120        frag->gpa = gpa;
4121        frag->data = val;
4122        frag->len = bytes;
4123        return X86EMUL_CONTINUE;
4124}
4125
4126int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4127                        void *val, unsigned int bytes,
4128                        struct x86_exception *exception,
4129                        const struct read_write_emulator_ops *ops)
4130{
4131        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4132        gpa_t gpa;
4133        int rc;
4134
4135        if (ops->read_write_prepare &&
4136                  ops->read_write_prepare(vcpu, val, bytes))
4137                return X86EMUL_CONTINUE;
4138
4139        vcpu->mmio_nr_fragments = 0;
4140
4141        /* Crossing a page boundary? */
4142        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4143                int now;
4144
4145                now = -addr & ~PAGE_MASK;
4146                rc = emulator_read_write_onepage(addr, val, now, exception,
4147                                                 vcpu, ops);
4148
4149                if (rc != X86EMUL_CONTINUE)
4150                        return rc;
4151                addr += now;
4152                val += now;
4153                bytes -= now;
4154        }
4155
4156        rc = emulator_read_write_onepage(addr, val, bytes, exception,
4157                                         vcpu, ops);
4158        if (rc != X86EMUL_CONTINUE)
4159                return rc;
4160
4161        if (!vcpu->mmio_nr_fragments)
4162                return rc;
4163
4164        gpa = vcpu->mmio_fragments[0].gpa;
4165
4166        vcpu->mmio_needed = 1;
4167        vcpu->mmio_cur_fragment = 0;
4168
4169        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4170        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4171        vcpu->run->exit_reason = KVM_EXIT_MMIO;
4172        vcpu->run->mmio.phys_addr = gpa;
4173
4174        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4175}
4176
4177static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4178                                  unsigned long addr,
4179                                  void *val,
4180                                  unsigned int bytes,
4181                                  struct x86_exception *exception)
4182{
4183        return emulator_read_write(ctxt, addr, val, bytes,
4184                                   exception, &read_emultor);
4185}
4186
4187int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4188                            unsigned long addr,
4189                            const void *val,
4190                            unsigned int bytes,
4191                            struct x86_exception *exception)
4192{
4193        return emulator_read_write(ctxt, addr, (void *)val, bytes,
4194                                   exception, &write_emultor);
4195}
4196
4197#define CMPXCHG_TYPE(t, ptr, old, new) \
4198        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4199
4200#ifdef CONFIG_X86_64
4201#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4202#else
4203#  define CMPXCHG64(ptr, old, new) \
4204        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4205#endif
4206
4207static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4208                                     unsigned long addr,
4209                                     const void *old,
4210                                     const void *new,
4211                                     unsigned int bytes,
4212                                     struct x86_exception *exception)
4213{
4214        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4215        gpa_t gpa;
4216        struct page *page;
4217        char *kaddr;
4218        bool exchanged;
4219
4220        /* guests cmpxchg8b have to be emulated atomically */
4221        if (bytes > 8 || (bytes & (bytes - 1)))
4222                goto emul_write;
4223
4224        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4225
4226        if (gpa == UNMAPPED_GVA ||
4227            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4228                goto emul_write;
4229
4230        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4231                goto emul_write;
4232
4233        page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4234        if (is_error_page(page))
4235                goto emul_write;
4236
4237        kaddr = kmap_atomic(page);
4238        kaddr += offset_in_page(gpa);
4239        switch (bytes) {
4240        case 1:
4241                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4242                break;
4243        case 2:
4244                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4245                break;
4246        case 4:
4247                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4248                break;
4249        case 8:
4250                exchanged = CMPXCHG64(kaddr, old, new);
4251                break;
4252        default:
4253                BUG();
4254        }
4255        kunmap_atomic(kaddr);
4256        kvm_release_page_dirty(page);
4257
4258        if (!exchanged)
4259                return X86EMUL_CMPXCHG_FAILED;
4260
4261        kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4262
4263        return X86EMUL_CONTINUE;
4264
4265emul_write:
4266        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4267
4268        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4269}
4270
4271static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4272{
4273        /* TODO: String I/O for in kernel device */
4274        int r;
4275
4276        if (vcpu->arch.pio.in)
4277                r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4278                                    vcpu->arch.pio.size, pd);
4279        else
4280                r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4281                                     vcpu->arch.pio.port, vcpu->arch.pio.size,
4282                                     pd);
4283        return r;
4284}
4285
4286static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4287                               unsigned short port, void *val,
4288                               unsigned int count, bool in)
4289{
4290        trace_kvm_pio(!in, port, size, count);
4291
4292        vcpu->arch.pio.port = port;
4293        vcpu->arch.pio.in = in;
4294        vcpu->arch.pio.count  = count;
4295        vcpu->arch.pio.size = size;
4296
4297        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4298                vcpu->arch.pio.count = 0;
4299                return 1;
4300        }
4301
4302        vcpu->run->exit_reason = KVM_EXIT_IO;
4303        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4304        vcpu->run->io.size = size;
4305        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4306        vcpu->run->io.count = count;
4307        vcpu->run->io.port = port;
4308
4309        return 0;
4310}
4311
4312static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4313                                    int size, unsigned short port, void *val,
4314                                    unsigned int count)
4315{
4316        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317        int ret;
4318
4319        if (vcpu->arch.pio.count)
4320                goto data_avail;
4321
4322        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4323        if (ret) {
4324data_avail:
4325                memcpy(val, vcpu->arch.pio_data, size * count);
4326                vcpu->arch.pio.count = 0;
4327                return 1;
4328        }
4329
4330        return 0;
4331}
4332
4333static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4334                                     int size, unsigned short port,
4335                                     const void *val, unsigned int count)
4336{
4337        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4338
4339        memcpy(vcpu->arch.pio_data, val, size * count);
4340        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4341}
4342
4343static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4344{
4345        return kvm_x86_ops->get_segment_base(vcpu, seg);
4346}
4347
4348static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4349{
4350        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4351}
4352
4353int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4354{
4355        if (!need_emulate_wbinvd(vcpu))
4356                return X86EMUL_CONTINUE;
4357
4358        if (kvm_x86_ops->has_wbinvd_exit()) {
4359                int cpu = get_cpu();
4360
4361                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4362                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4363                                wbinvd_ipi, NULL, 1);
4364                put_cpu();
4365                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4366        } else
4367                wbinvd();
4368        return X86EMUL_CONTINUE;
4369}
4370EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4371
4372static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4373{
4374        kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4375}
4376
4377int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4378{
4379        return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4380}
4381
4382int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4383{
4384
4385        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4386}
4387
4388static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4389{
4390        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4391}
4392
4393static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4394{
4395        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4396        unsigned long value;
4397
4398        switch (cr) {
4399        case 0:
4400                value = kvm_read_cr0(vcpu);
4401                break;
4402        case 2:
4403                value = vcpu->arch.cr2;
4404                break;
4405        case 3:
4406                value = kvm_read_cr3(vcpu);
4407                break;
4408        case 4:
4409                value = kvm_read_cr4(vcpu);
4410                break;
4411        case 8:
4412                value = kvm_get_cr8(vcpu);
4413                break;
4414        default:
4415                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4416                return 0;
4417        }
4418
4419        return value;
4420}
4421
4422static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4423{
4424        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4425        int res = 0;
4426
4427        switch (cr) {
4428        case 0:
4429                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4430                break;
4431        case 2:
4432                vcpu->arch.cr2 = val;
4433                break;
4434        case 3:
4435                res = kvm_set_cr3(vcpu, val);
4436                break;
4437        case 4:
4438                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4439                break;
4440        case 8:
4441                res = kvm_set_cr8(vcpu, val);
4442                break;
4443        default:
4444                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4445                res = -1;
4446        }
4447
4448        return res;
4449}
4450
4451static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4452{
4453        kvm_set_rflags(emul_to_vcpu(ctxt), val);
4454}
4455
4456static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4457{
4458        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4459}
4460
4461static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4462{
4463        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4464}
4465
4466static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4467{
4468        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4469}
4470
4471static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4472{
4473        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4474}
4475
4476static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4477{
4478        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4479}
4480
4481static unsigned long emulator_get_cached_segment_base(
4482        struct x86_emulate_ctxt *ctxt, int seg)
4483{
4484        return get_segment_base(emul_to_vcpu(ctxt), seg);
4485}
4486
4487static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4488                                 struct desc_struct *desc, u32 *base3,
4489                                 int seg)
4490{
4491        struct kvm_segment var;
4492
4493        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4494        *selector = var.selector;
4495
4496        if (var.unusable)
4497                return false;
4498
4499        if (var.g)
4500                var.limit >>= 12;
4501        set_desc_limit(desc, var.limit);
4502        set_desc_base(desc, (unsigned long)var.base);
4503#ifdef CONFIG_X86_64
4504        if (base3)
4505                *base3 = var.base >> 32;
4506#endif
4507        desc->type = var.type;
4508        desc->s = var.s;
4509        desc->dpl = var.dpl;
4510        desc->p = var.present;
4511        desc->avl = var.avl;
4512        desc->l = var.l;
4513        desc->d = var.db;
4514        desc->g = var.g;
4515
4516        return true;
4517}
4518
4519static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4520                                 struct desc_struct *desc, u32 base3,
4521                                 int seg)
4522{
4523        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524        struct kvm_segment var;
4525
4526        var.selector = selector;
4527        var.base = get_desc_base(desc);
4528#ifdef CONFIG_X86_64
4529        var.base |= ((u64)base3) << 32;
4530#endif
4531        var.limit = get_desc_limit(desc);
4532        if (desc->g)
4533                var.limit = (var.limit << 12) | 0xfff;
4534        var.type = desc->type;
4535        var.present = desc->p;
4536        var.dpl = desc->dpl;
4537        var.db = desc->d;
4538        var.s = desc->s;
4539        var.l = desc->l;
4540        var.g = desc->g;
4541        var.avl = desc->avl;
4542        var.present = desc->p;
4543        var.unusable = !var.present;
4544        var.padding = 0;
4545
4546        kvm_set_segment(vcpu, &var, seg);
4547        return;
4548}
4549
4550static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4551                            u32 msr_index, u64 *pdata)
4552{
4553        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4554}
4555
4556static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4557                            u32 msr_index, u64 data)
4558{
4559        struct msr_data msr;
4560
4561        msr.data = data;
4562        msr.index = msr_index;
4563        msr.host_initiated = false;
4564        return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4565}
4566
4567static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4568                             u32 pmc, u64 *pdata)
4569{
4570        return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4571}
4572
4573static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4574{
4575        emul_to_vcpu(ctxt)->arch.halt_request = 1;
4576}
4577
4578static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4579{
4580        preempt_disable();
4581        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4582        /*
4583         * CR0.TS may reference the host fpu state, not the guest fpu state,
4584         * so it may be clear at this point.
4585         */
4586        clts();
4587}
4588
4589static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4590{
4591        preempt_enable();
4592}
4593
4594static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4595                              struct x86_instruction_info *info,
4596                              enum x86_intercept_stage stage)
4597{
4598        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4599}
4600
4601static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4602                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4603{
4604        kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4605}
4606
4607static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4608{
4609        return kvm_register_read(emul_to_vcpu(ctxt), reg);
4610}
4611
4612static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4613{
4614        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4615}
4616
4617static const struct x86_emulate_ops emulate_ops = {
4618        .read_gpr            = emulator_read_gpr,
4619        .write_gpr           = emulator_write_gpr,
4620        .read_std            = kvm_read_guest_virt_system,
4621        .write_std           = kvm_write_guest_virt_system,
4622        .fetch               = kvm_fetch_guest_virt,
4623        .read_emulated       = emulator_read_emulated,
4624        .write_emulated      = emulator_write_emulated,
4625        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4626        .invlpg              = emulator_invlpg,
4627        .pio_in_emulated     = emulator_pio_in_emulated,
4628        .pio_out_emulated    = emulator_pio_out_emulated,
4629        .get_segment         = emulator_get_segment,
4630        .set_segment         = emulator_set_segment,
4631        .get_cached_segment_base = emulator_get_cached_segment_base,
4632        .get_gdt             = emulator_get_gdt,
4633        .get_idt             = emulator_get_idt,
4634        .set_gdt             = emulator_set_gdt,
4635        .set_idt             = emulator_set_idt,
4636        .get_cr              = emulator_get_cr,
4637        .set_cr              = emulator_set_cr,
4638        .set_rflags          = emulator_set_rflags,
4639        .cpl                 = emulator_get_cpl,
4640        .get_dr              = emulator_get_dr,
4641        .set_dr              = emulator_set_dr,
4642        .set_msr             = emulator_set_msr,
4643        .get_msr             = emulator_get_msr,
4644        .read_pmc            = emulator_read_pmc,
4645        .halt                = emulator_halt,
4646        .wbinvd              = emulator_wbinvd,
4647        .fix_hypercall       = emulator_fix_hypercall,
4648        .get_fpu             = emulator_get_fpu,
4649        .put_fpu             = emulator_put_fpu,
4650        .intercept           = emulator_intercept,
4651        .get_cpuid           = emulator_get_cpuid,
4652};
4653
4654static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4655{
4656        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4657        /*
4658         * an sti; sti; sequence only disable interrupts for the first
4659         * instruction. So, if the last instruction, be it emulated or
4660         * not, left the system with the INT_STI flag enabled, it
4661         * means that the last instruction is an sti. We should not
4662         * leave the flag on in this case. The same goes for mov ss
4663         */
4664        if (!(int_shadow & mask))
4665                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4666}
4667
4668static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4669{
4670        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4671        if (ctxt->exception.vector == PF_VECTOR)
4672                kvm_propagate_fault(vcpu, &ctxt->exception);
4673        else if (ctxt->exception.error_code_valid)
4674                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4675                                      ctxt->exception.error_code);
4676        else
4677                kvm_queue_exception(vcpu, ctxt->exception.vector);
4678}
4679
4680static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4681{
4682        memset(&ctxt->twobyte, 0,
4683               (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4684
4685        ctxt->fetch.start = 0;
4686        ctxt->fetch.end = 0;
4687        ctxt->io_read.pos = 0;
4688        ctxt->io_read.end = 0;
4689        ctxt->mem_read.pos = 0;
4690        ctxt->mem_read.end = 0;
4691}
4692
4693static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4694{
4695        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4696        int cs_db, cs_l;
4697
4698        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4699
4700        ctxt->eflags = kvm_get_rflags(vcpu);
4701        ctxt->eip = kvm_rip_read(vcpu);
4702        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4703                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4704                     cs_l                               ? X86EMUL_MODE_PROT64 :
4705                     cs_db                              ? X86EMUL_MODE_PROT32 :
4706                                                          X86EMUL_MODE_PROT16;
4707        ctxt->guest_mode = is_guest_mode(vcpu);
4708
4709        init_decode_cache(ctxt);
4710        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4711}
4712
4713int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4714{
4715        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716        int ret;
4717
4718        init_emulate_ctxt(vcpu);
4719
4720        ctxt->op_bytes = 2;
4721        ctxt->ad_bytes = 2;
4722        ctxt->_eip = ctxt->eip + inc_eip;
4723        ret = emulate_int_real(ctxt, irq);
4724
4725        if (ret != X86EMUL_CONTINUE)
4726                return EMULATE_FAIL;
4727
4728        ctxt->eip = ctxt->_eip;
4729        kvm_rip_write(vcpu, ctxt->eip);
4730        kvm_set_rflags(vcpu, ctxt->eflags);
4731
4732        if (irq == NMI_VECTOR)
4733                vcpu->arch.nmi_pending = 0;
4734        else
4735                vcpu->arch.interrupt.pending = false;
4736
4737        return EMULATE_DONE;
4738}
4739EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4740
4741static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4742{
4743        int r = EMULATE_DONE;
4744
4745        ++vcpu->stat.insn_emulation_fail;
4746        trace_kvm_emulate_insn_failed(vcpu);
4747        if (!is_guest_mode(vcpu)) {
4748                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4749                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4750                vcpu->run->internal.ndata = 0;
4751                r = EMULATE_FAIL;
4752        }
4753        kvm_queue_exception(vcpu, UD_VECTOR);
4754
4755        return r;
4756}
4757
4758static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4759{
4760        gpa_t gpa;
4761        pfn_t pfn;
4762
4763        if (tdp_enabled)
4764                return false;
4765
4766        /*
4767         * if emulation was due to access to shadowed page table
4768         * and it failed try to unshadow page and re-enter the
4769         * guest to let CPU execute the instruction.
4770         */
4771        if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4772                return true;
4773
4774        gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4775
4776        if (gpa == UNMAPPED_GVA)
4777                return true; /* let cpu generate fault */
4778
4779        /*
4780         * Do not retry the unhandleable instruction if it faults on the
4781         * readonly host memory, otherwise it will goto a infinite loop:
4782         * retry instruction -> write #PF -> emulation fail -> retry
4783         * instruction -> ...
4784         */
4785        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4786        if (!is_error_noslot_pfn(pfn)) {
4787                kvm_release_pfn_clean(pfn);
4788                return true;
4789        }
4790
4791        return false;
4792}
4793
4794static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4795                              unsigned long cr2,  int emulation_type)
4796{
4797        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4799
4800        last_retry_eip = vcpu->arch.last_retry_eip;
4801        last_retry_addr = vcpu->arch.last_retry_addr;
4802
4803        /*
4804         * If the emulation is caused by #PF and it is non-page_table
4805         * writing instruction, it means the VM-EXIT is caused by shadow
4806         * page protected, we can zap the shadow page and retry this
4807         * instruction directly.
4808         *
4809         * Note: if the guest uses a non-page-table modifying instruction
4810         * on the PDE that points to the instruction, then we will unmap
4811         * the instruction and go to an infinite loop. So, we cache the
4812         * last retried eip and the last fault address, if we meet the eip
4813         * and the address again, we can break out of the potential infinite
4814         * loop.
4815         */
4816        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4817
4818        if (!(emulation_type & EMULTYPE_RETRY))
4819                return false;
4820
4821        if (x86_page_table_writing_insn(ctxt))
4822                return false;
4823
4824        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4825                return false;
4826
4827        vcpu->arch.last_retry_eip = ctxt->eip;
4828        vcpu->arch.last_retry_addr = cr2;
4829
4830        if (!vcpu->arch.mmu.direct_map)
4831                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4832
4833        kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4834
4835        return true;
4836}
4837
4838static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4839static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4840
4841int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4842                            unsigned long cr2,
4843                            int emulation_type,
4844                            void *insn,
4845                            int insn_len)
4846{
4847        int r;
4848        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4849        bool writeback = true;
4850
4851        kvm_clear_exception_queue(vcpu);
4852
4853        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4854                init_emulate_ctxt(vcpu);
4855                ctxt->interruptibility = 0;
4856                ctxt->have_exception = false;
4857                ctxt->perm_ok = false;
4858
4859                ctxt->only_vendor_specific_insn
4860                        = emulation_type & EMULTYPE_TRAP_UD;
4861
4862                r = x86_decode_insn(ctxt, insn, insn_len);
4863
4864                trace_kvm_emulate_insn_start(vcpu);
4865                ++vcpu->stat.insn_emulation;
4866                if (r != EMULATION_OK)  {
4867                        if (emulation_type & EMULTYPE_TRAP_UD)
4868                                return EMULATE_FAIL;
4869                        if (reexecute_instruction(vcpu, cr2))
4870                                return EMULATE_DONE;
4871                        if (emulation_type & EMULTYPE_SKIP)
4872                                return EMULATE_FAIL;
4873                        return handle_emulation_failure(vcpu);
4874                }
4875        }
4876
4877        if (emulation_type & EMULTYPE_SKIP) {
4878                kvm_rip_write(vcpu, ctxt->_eip);
4879                return EMULATE_DONE;
4880        }
4881
4882        if (retry_instruction(ctxt, cr2, emulation_type))
4883                return EMULATE_DONE;
4884
4885        /* this is needed for vmware backdoor interface to work since it
4886           changes registers values  during IO operation */
4887        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4888                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4889                emulator_invalidate_register_cache(ctxt);
4890        }
4891
4892restart:
4893        r = x86_emulate_insn(ctxt);
4894
4895        if (r == EMULATION_INTERCEPTED)
4896                return EMULATE_DONE;
4897
4898        if (r == EMULATION_FAILED) {
4899                if (reexecute_instruction(vcpu, cr2))
4900                        return EMULATE_DONE;
4901
4902                return handle_emulation_failure(vcpu);
4903        }
4904
4905        if (ctxt->have_exception) {
4906                inject_emulated_exception(vcpu);
4907                r = EMULATE_DONE;
4908        } else if (vcpu->arch.pio.count) {
4909                if (!vcpu->arch.pio.in)
4910                        vcpu->arch.pio.count = 0;
4911                else {
4912                        writeback = false;
4913                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
4914                }
4915                r = EMULATE_DO_MMIO;
4916        } else if (vcpu->mmio_needed) {
4917                if (!vcpu->mmio_is_write)
4918                        writeback = false;
4919                r = EMULATE_DO_MMIO;
4920                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4921        } else if (r == EMULATION_RESTART)
4922                goto restart;
4923        else
4924                r = EMULATE_DONE;
4925
4926        if (writeback) {
4927                toggle_interruptibility(vcpu, ctxt->interruptibility);
4928                kvm_set_rflags(vcpu, ctxt->eflags);
4929                kvm_make_request(KVM_REQ_EVENT, vcpu);
4930                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4931                kvm_rip_write(vcpu, ctxt->eip);
4932        } else
4933                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4934
4935        return r;
4936}
4937EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4938
4939int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4940{
4941        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4942        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4943                                            size, port, &val, 1);
4944        /* do not return to emulator after return from userspace */
4945        vcpu->arch.pio.count = 0;
4946        return ret;
4947}
4948EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4949
4950static void tsc_bad(void *info)
4951{
4952        __this_cpu_write(cpu_tsc_khz, 0);
4953}
4954
4955static void tsc_khz_changed(void *data)
4956{
4957        struct cpufreq_freqs *freq = data;
4958        unsigned long khz = 0;
4959
4960        if (data)
4961                khz = freq->new;
4962        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4963                khz = cpufreq_quick_get(raw_smp_processor_id());
4964        if (!khz)
4965                khz = tsc_khz;
4966        __this_cpu_write(cpu_tsc_khz, khz);
4967}
4968
4969static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4970                                     void *data)
4971{
4972        struct cpufreq_freqs *freq = data;
4973        struct kvm *kvm;
4974        struct kvm_vcpu *vcpu;
4975        int i, send_ipi = 0;
4976
4977        /*
4978         * We allow guests to temporarily run on slowing clocks,
4979         * provided we notify them after, or to run on accelerating
4980         * clocks, provided we notify them before.  Thus time never
4981         * goes backwards.
4982         *
4983         * However, we have a problem.  We can't atomically update
4984         * the frequency of a given CPU from this function; it is
4985         * merely a notifier, which can be called from any CPU.
4986         * Changing the TSC frequency at arbitrary points in time
4987         * requires a recomputation of local variables related to
4988         * the TSC for each VCPU.  We must flag these local variables
4989         * to be updated and be sure the update takes place with the
4990         * new frequency before any guests proceed.
4991         *
4992         * Unfortunately, the combination of hotplug CPU and frequency
4993         * change creates an intractable locking scenario; the order
4994         * of when these callouts happen is undefined with respect to
4995         * CPU hotplug, and they can race with each other.  As such,
4996         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4997         * undefined; you can actually have a CPU frequency change take
4998         * place in between the computation of X and the setting of the
4999         * variable.  To protect against this problem, all updates of
5000         * the per_cpu tsc_khz variable are done in an interrupt
5001         * protected IPI, and all callers wishing to update the value
5002         * must wait for a synchronous IPI to complete (which is trivial
5003         * if the caller is on the CPU already).  This establishes the
5004         * necessary total order on variable updates.
5005         *
5006         * Note that because a guest time update may take place
5007         * anytime after the setting of the VCPU's request bit, the
5008         * correct TSC value must be set before the request.  However,
5009         * to ensure the update actually makes it to any guest which
5010         * starts running in hardware virtualization between the set
5011         * and the acquisition of the spinlock, we must also ping the
5012         * CPU after setting the request bit.
5013         *
5014         */
5015
5016        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5017                return 0;
5018        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5019                return 0;
5020
5021        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5022
5023        raw_spin_lock(&kvm_lock);
5024        list_for_each_entry(kvm, &vm_list, vm_list) {
5025                kvm_for_each_vcpu(i, vcpu, kvm) {
5026                        if (vcpu->cpu != freq->cpu)
5027                                continue;
5028                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5029                        if (vcpu->cpu != smp_processor_id())
5030                                send_ipi = 1;
5031                }
5032        }
5033        raw_spin_unlock(&kvm_lock);
5034
5035        if (freq->old < freq->new && send_ipi) {
5036                /*
5037                 * We upscale the frequency.  Must make the guest
5038                 * doesn't see old kvmclock values while running with
5039                 * the new frequency, otherwise we risk the guest sees
5040                 * time go backwards.
5041                 *
5042                 * In case we update the frequency for another cpu
5043                 * (which might be in guest context) send an interrupt
5044                 * to kick the cpu out of guest context.  Next time
5045                 * guest context is entered kvmclock will be updated,
5046                 * so the guest will not see stale values.
5047                 */
5048                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5049        }
5050        return 0;
5051}
5052
5053static struct notifier_block kvmclock_cpufreq_notifier_block = {
5054        .notifier_call  = kvmclock_cpufreq_notifier
5055};
5056
5057static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5058                                        unsigned long action, void *hcpu)
5059{
5060        unsigned int cpu = (unsigned long)hcpu;
5061
5062        switch (action) {
5063                case CPU_ONLINE:
5064                case CPU_DOWN_FAILED:
5065                        smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5066                        break;
5067                case CPU_DOWN_PREPARE:
5068                        smp_call_function_single(cpu, tsc_bad, NULL, 1);
5069                        break;
5070        }
5071        return NOTIFY_OK;
5072}
5073
5074static struct notifier_block kvmclock_cpu_notifier_block = {
5075        .notifier_call  = kvmclock_cpu_notifier,
5076        .priority = -INT_MAX
5077};
5078
5079static void kvm_timer_init(void)
5080{
5081        int cpu;
5082
5083        max_tsc_khz = tsc_khz;
5084        register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5085        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5086#ifdef CONFIG_CPU_FREQ
5087                struct cpufreq_policy policy;
5088                memset(&policy, 0, sizeof(policy));
5089                cpu = get_cpu();
5090                cpufreq_get_policy(&policy, cpu);
5091                if (policy.cpuinfo.max_freq)
5092                        max_tsc_khz = policy.cpuinfo.max_freq;
5093                put_cpu();
5094#endif
5095                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5096                                          CPUFREQ_TRANSITION_NOTIFIER);
5097        }
5098        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5099        for_each_online_cpu(cpu)
5100                smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5101}
5102
5103static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5104
5105int kvm_is_in_guest(void)
5106{
5107        return __this_cpu_read(current_vcpu) != NULL;
5108}
5109
5110static int kvm_is_user_mode(void)
5111{
5112        int user_mode = 3;
5113
5114        if (__this_cpu_read(current_vcpu))
5115                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5116
5117        return user_mode != 0;
5118}
5119
5120static unsigned long kvm_get_guest_ip(void)
5121{
5122        unsigned long ip = 0;
5123
5124        if (__this_cpu_read(current_vcpu))
5125                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5126
5127        return ip;
5128}
5129
5130static struct perf_guest_info_callbacks kvm_guest_cbs = {
5131        .is_in_guest            = kvm_is_in_guest,
5132        .is_user_mode           = kvm_is_user_mode,
5133        .get_guest_ip           = kvm_get_guest_ip,
5134};
5135
5136void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5137{
5138        __this_cpu_write(current_vcpu, vcpu);
5139}
5140EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5141
5142void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5143{
5144        __this_cpu_write(current_vcpu, NULL);
5145}
5146EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5147
5148static void kvm_set_mmio_spte_mask(void)
5149{
5150        u64 mask;
5151        int maxphyaddr = boot_cpu_data.x86_phys_bits;
5152
5153        /*
5154         * Set the reserved bits and the present bit of an paging-structure
5155         * entry to generate page fault with PFER.RSV = 1.
5156         */
5157        mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5158        mask |= 1ull;
5159
5160#ifdef CONFIG_X86_64
5161        /*
5162         * If reserved bit is not supported, clear the present bit to disable
5163         * mmio page fault.
5164         */
5165        if (maxphyaddr == 52)
5166                mask &= ~1ull;
5167#endif
5168
5169        kvm_mmu_set_mmio_spte_mask(mask);
5170}
5171
5172#ifdef CONFIG_X86_64
5173static void pvclock_gtod_update_fn(struct work_struct *work)
5174{
5175        struct kvm *kvm;
5176
5177        struct kvm_vcpu *vcpu;
5178        int i;
5179
5180        raw_spin_lock(&kvm_lock);
5181        list_for_each_entry(kvm, &vm_list, vm_list)
5182                kvm_for_each_vcpu(i, vcpu, kvm)
5183                        set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5184        atomic_set(&kvm_guest_has_master_clock, 0);
5185        raw_spin_unlock(&kvm_lock);
5186}
5187
5188static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5189
5190/*
5191 * Notification about pvclock gtod data update.
5192 */
5193static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5194                               void *priv)
5195{
5196        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5197        struct timekeeper *tk = priv;
5198
5199        update_pvclock_gtod(tk);
5200
5201        /* disable master clock if host does not trust, or does not
5202         * use, TSC clocksource
5203         */
5204        if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5205            atomic_read(&kvm_guest_has_master_clock) != 0)
5206                queue_work(system_long_wq, &pvclock_gtod_work);
5207
5208        return 0;
5209}
5210
5211static struct notifier_block pvclock_gtod_notifier = {
5212        .notifier_call = pvclock_gtod_notify,
5213};
5214#endif
5215
5216int kvm_arch_init(void *opaque)
5217{
5218        int r;
5219        struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5220
5221        if (kvm_x86_ops) {
5222                printk(KERN_ERR "kvm: already loaded the other module\n");
5223                r = -EEXIST;
5224                goto out;
5225        }
5226
5227        if (!ops->cpu_has_kvm_support()) {
5228                printk(KERN_ERR "kvm: no hardware support\n");
5229                r = -EOPNOTSUPP;
5230                goto out;
5231        }
5232        if (ops->disabled_by_bios()) {
5233                printk(KERN_ERR "kvm: disabled by bios\n");
5234                r = -EOPNOTSUPP;
5235                goto out;
5236        }
5237
5238        r = -ENOMEM;
5239        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5240        if (!shared_msrs) {
5241                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5242                goto out;
5243        }
5244
5245        r = kvm_mmu_module_init();
5246        if (r)
5247                goto out_free_percpu;
5248
5249        kvm_set_mmio_spte_mask();
5250        kvm_init_msr_list();
5251
5252        kvm_x86_ops = ops;
5253        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5254                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
5255
5256        kvm_timer_init();
5257
5258        perf_register_guest_info_callbacks(&kvm_guest_cbs);
5259
5260        if (cpu_has_xsave)
5261                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5262
5263        kvm_lapic_init();
5264#ifdef CONFIG_X86_64
5265        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5266#endif
5267
5268        return 0;
5269
5270out_free_percpu:
5271        free_percpu(shared_msrs);
5272out:
5273        return r;
5274}
5275
5276void kvm_arch_exit(void)
5277{
5278        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5279
5280        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5281                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5282                                            CPUFREQ_TRANSITION_NOTIFIER);
5283        unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5284#ifdef CONFIG_X86_64
5285        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5286#endif
5287        kvm_x86_ops = NULL;
5288        kvm_mmu_module_exit();
5289        free_percpu(shared_msrs);
5290}
5291
5292int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5293{
5294        ++vcpu->stat.halt_exits;
5295        if (irqchip_in_kernel(vcpu->kvm)) {
5296                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5297                return 1;
5298        } else {
5299                vcpu->run->exit_reason = KVM_EXIT_HLT;
5300                return 0;
5301        }
5302}
5303EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5304
5305int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5306{
5307        u64 param, ingpa, outgpa, ret;
5308        uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5309        bool fast, longmode;
5310        int cs_db, cs_l;
5311
5312        /*
5313         * hypercall generates UD from non zero cpl and real mode
5314         * per HYPER-V spec
5315         */
5316        if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5317                kvm_queue_exception(vcpu, UD_VECTOR);
5318                return 0;
5319        }
5320
5321        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5322        longmode = is_long_mode(vcpu) && cs_l == 1;
5323
5324        if (!longmode) {
5325                param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5326                        (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5327                ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5328                        (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5329                outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5330                        (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5331        }
5332#ifdef CONFIG_X86_64
5333        else {
5334                param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5335                ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5336                outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5337        }
5338#endif
5339
5340        code = param & 0xffff;
5341        fast = (param >> 16) & 0x1;
5342        rep_cnt = (param >> 32) & 0xfff;
5343        rep_idx = (param >> 48) & 0xfff;
5344
5345        trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5346
5347        switch (code) {
5348        case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5349                kvm_vcpu_on_spin(vcpu);
5350                break;
5351        default:
5352                res = HV_STATUS_INVALID_HYPERCALL_CODE;
5353                break;
5354        }
5355
5356        ret = res | (((u64)rep_done & 0xfff) << 32);
5357        if (longmode) {
5358                kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5359        } else {
5360                kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5361                kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5362        }
5363
5364        return 1;
5365}
5366
5367int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5368{
5369        unsigned long nr, a0, a1, a2, a3, ret;
5370        int r = 1;
5371
5372        if (kvm_hv_hypercall_enabled(vcpu->kvm))
5373                return kvm_hv_hypercall(vcpu);
5374
5375        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5376        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5377        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5378        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5379        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5380
5381        trace_kvm_hypercall(nr, a0, a1, a2, a3);
5382
5383        if (!is_long_mode(vcpu)) {
5384                nr &= 0xFFFFFFFF;
5385                a0 &= 0xFFFFFFFF;
5386                a1 &= 0xFFFFFFFF;
5387                a2 &= 0xFFFFFFFF;
5388                a3 &= 0xFFFFFFFF;
5389        }
5390
5391        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5392                ret = -KVM_EPERM;
5393                goto out;
5394        }
5395
5396        switch (nr) {
5397        case KVM_HC_VAPIC_POLL_IRQ:
5398                ret = 0;
5399                break;
5400        default:
5401                ret = -KVM_ENOSYS;
5402                break;
5403        }
5404out:
5405        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5406        ++vcpu->stat.hypercalls;
5407        return r;
5408}
5409EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5410
5411static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5412{
5413        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5414        char instruction[3];
5415        unsigned long rip = kvm_rip_read(vcpu);
5416
5417        /*
5418         * Blow out the MMU to ensure that no other VCPU has an active mapping
5419         * to ensure that the updated hypercall appears atomically across all
5420         * VCPUs.
5421         */
5422        kvm_mmu_zap_all(vcpu->kvm);
5423
5424        kvm_x86_ops->patch_hypercall(vcpu, instruction);
5425
5426        return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5427}
5428
5429/*
5430 * Check if userspace requested an interrupt window, and that the
5431 * interrupt window is open.
5432 *
5433 * No need to exit to userspace if we already have an interrupt queued.
5434 */
5435static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5436{
5437        return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5438                vcpu->run->request_interrupt_window &&
5439                kvm_arch_interrupt_allowed(vcpu));
5440}
5441
5442static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5443{
5444        struct kvm_run *kvm_run = vcpu->run;
5445
5446        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5447        kvm_run->cr8 = kvm_get_cr8(vcpu);
5448        kvm_run->apic_base = kvm_get_apic_base(vcpu);
5449        if (irqchip_in_kernel(vcpu->kvm))
5450                kvm_run->ready_for_interrupt_injection = 1;
5451        else
5452                kvm_run->ready_for_interrupt_injection =
5453                        kvm_arch_interrupt_allowed(vcpu) &&
5454                        !kvm_cpu_has_interrupt(vcpu) &&
5455                        !kvm_event_needs_reinjection(vcpu);
5456}
5457
5458static int vapic_enter(struct kvm_vcpu *vcpu)
5459{
5460        struct kvm_lapic *apic = vcpu->arch.apic;
5461        struct page *page;
5462
5463        if (!apic || !apic->vapic_addr)
5464                return 0;
5465
5466        page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5467        if (is_error_page(page))
5468                return -EFAULT;
5469
5470        vcpu->arch.apic->vapic_page = page;
5471        return 0;
5472}
5473
5474static void vapic_exit(struct kvm_vcpu *vcpu)
5475{
5476        struct kvm_lapic *apic = vcpu->arch.apic;
5477        int idx;
5478
5479        if (!apic || !apic->vapic_addr)
5480                return;
5481
5482        idx = srcu_read_lock(&vcpu->kvm->srcu);
5483        kvm_release_page_dirty(apic->vapic_page);
5484        mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5485        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5486}
5487
5488static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5489{
5490        int max_irr, tpr;
5491
5492        if (!kvm_x86_ops->update_cr8_intercept)
5493                return;
5494
5495        if (!vcpu->arch.apic)
5496                return;
5497
5498        if (!vcpu->arch.apic->vapic_addr)
5499                max_irr = kvm_lapic_find_highest_irr(vcpu);
5500        else
5501                max_irr = -1;
5502
5503        if (max_irr != -1)
5504                max_irr >>= 4;
5505
5506        tpr = kvm_lapic_get_cr8(vcpu);
5507
5508        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5509}
5510
5511static void inject_pending_event(struct kvm_vcpu *vcpu)
5512{
5513        /* try to reinject previous events if any */
5514        if (vcpu->arch.exception.pending) {
5515                trace_kvm_inj_exception(vcpu->arch.exception.nr,
5516                                        vcpu->arch.exception.has_error_code,
5517                                        vcpu->arch.exception.error_code);
5518                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5519                                          vcpu->arch.exception.has_error_code,
5520                                          vcpu->arch.exception.error_code,
5521                                          vcpu->arch.exception.reinject);
5522                return;
5523        }
5524
5525        if (vcpu->arch.nmi_injected) {
5526                kvm_x86_ops->set_nmi(vcpu);
5527                return;
5528        }
5529
5530        if (vcpu->arch.interrupt.pending) {
5531                kvm_x86_ops->set_irq(vcpu);
5532                return;
5533        }
5534
5535        /* try to inject new event if pending */
5536        if (vcpu->arch.nmi_pending) {
5537                if (kvm_x86_ops->nmi_allowed(vcpu)) {
5538                        --vcpu->arch.nmi_pending;
5539                        vcpu->arch.nmi_injected = true;
5540                        kvm_x86_ops->set_nmi(vcpu);
5541                }
5542        } else if (kvm_cpu_has_interrupt(vcpu)) {
5543                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5544                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5545                                            false);
5546                        kvm_x86_ops->set_irq(vcpu);
5547                }
5548        }
5549}
5550
5551static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5552{
5553        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5554                        !vcpu->guest_xcr0_loaded) {
5555                /* kvm_set_xcr() also depends on this */
5556                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5557                vcpu->guest_xcr0_loaded = 1;
5558        }
5559}
5560
5561static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5562{
5563        if (vcpu->guest_xcr0_loaded) {
5564                if (vcpu->arch.xcr0 != host_xcr0)
5565                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5566                vcpu->guest_xcr0_loaded = 0;
5567        }
5568}
5569
5570static void process_nmi(struct kvm_vcpu *vcpu)
5571{
5572        unsigned limit = 2;
5573
5574        /*
5575         * x86 is limited to one NMI running, and one NMI pending after it.
5576         * If an NMI is already in progress, limit further NMIs to just one.
5577         * Otherwise, allow two (and we'll inject the first one immediately).
5578         */
5579        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5580                limit = 1;
5581
5582        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5583        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5584        kvm_make_request(KVM_REQ_EVENT, vcpu);
5585}
5586
5587static void kvm_gen_update_masterclock(struct kvm *kvm)
5588{
5589#ifdef CONFIG_X86_64
5590        int i;
5591        struct kvm_vcpu *vcpu;
5592        struct kvm_arch *ka = &kvm->arch;
5593
5594        spin_lock(&ka->pvclock_gtod_sync_lock);
5595        kvm_make_mclock_inprogress_request(kvm);
5596        /* no guest entries from this point */
5597        pvclock_update_vm_gtod_copy(kvm);
5598
5599        kvm_for_each_vcpu(i, vcpu, kvm)
5600                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5601
5602        /* guest entries allowed */
5603        kvm_for_each_vcpu(i, vcpu, kvm)
5604                clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5605
5606        spin_unlock(&ka->pvclock_gtod_sync_lock);
5607#endif
5608}
5609
5610static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5611{
5612        int r;
5613        bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5614                vcpu->run->request_interrupt_window;
5615        bool req_immediate_exit = 0;
5616
5617        if (vcpu->requests) {
5618                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5619                        kvm_mmu_unload(vcpu);
5620                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5621                        __kvm_migrate_timers(vcpu);
5622                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5623                        kvm_gen_update_masterclock(vcpu->kvm);
5624                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5625                        r = kvm_guest_time_update(vcpu);
5626                        if (unlikely(r))
5627                                goto out;
5628                }
5629                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5630                        kvm_mmu_sync_roots(vcpu);
5631                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5632                        kvm_x86_ops->tlb_flush(vcpu);
5633                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5634                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5635                        r = 0;
5636                        goto out;
5637                }
5638                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5639                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5640                        r = 0;
5641                        goto out;
5642                }
5643                if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5644                        vcpu->fpu_active = 0;
5645                        kvm_x86_ops->fpu_deactivate(vcpu);
5646                }
5647                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5648                        /* Page is swapped out. Do synthetic halt */
5649                        vcpu->arch.apf.halted = true;
5650                        r = 1;
5651                        goto out;
5652                }
5653                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5654                        record_steal_time(vcpu);
5655                if (kvm_check_request(KVM_REQ_NMI, vcpu))
5656                        process_nmi(vcpu);
5657                req_immediate_exit =
5658                        kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5659                if (kvm_check_request(KVM_REQ_PMU, vcpu))
5660                        kvm_handle_pmu_event(vcpu);
5661                if (kvm_check_request(KVM_REQ_PMI, vcpu))
5662                        kvm_deliver_pmi(vcpu);
5663        }
5664
5665        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5666                inject_pending_event(vcpu);
5667
5668                /* enable NMI/IRQ window open exits if needed */
5669                if (vcpu->arch.nmi_pending)
5670                        kvm_x86_ops->enable_nmi_window(vcpu);
5671                else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5672                        kvm_x86_ops->enable_irq_window(vcpu);
5673
5674                if (kvm_lapic_enabled(vcpu)) {
5675                        update_cr8_intercept(vcpu);
5676                        kvm_lapic_sync_to_vapic(vcpu);
5677                }
5678        }
5679
5680        r = kvm_mmu_reload(vcpu);
5681        if (unlikely(r)) {
5682                goto cancel_injection;
5683        }
5684
5685        preempt_disable();
5686
5687        kvm_x86_ops->prepare_guest_switch(vcpu);
5688        if (vcpu->fpu_active)
5689                kvm_load_guest_fpu(vcpu);
5690        kvm_load_guest_xcr0(vcpu);
5691
5692        vcpu->mode = IN_GUEST_MODE;
5693
5694        /* We should set ->mode before check ->requests,
5695         * see the comment in make_all_cpus_request.
5696         */
5697        smp_mb();
5698
5699        local_irq_disable();
5700
5701        if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5702            || need_resched() || signal_pending(current)) {
5703                vcpu->mode = OUTSIDE_GUEST_MODE;
5704                smp_wmb();
5705                local_irq_enable();
5706                preempt_enable();
5707                r = 1;
5708                goto cancel_injection;
5709        }
5710
5711        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5712
5713        if (req_immediate_exit)
5714                smp_send_reschedule(vcpu->cpu);
5715
5716        kvm_guest_enter();
5717
5718        if (unlikely(vcpu->arch.switch_db_regs)) {
5719                set_debugreg(0, 7);
5720                set_debugreg(vcpu->arch.eff_db[0], 0);
5721                set_debugreg(vcpu->arch.eff_db[1], 1);
5722                set_debugreg(vcpu->arch.eff_db[2], 2);
5723                set_debugreg(vcpu->arch.eff_db[3], 3);
5724        }
5725
5726        trace_kvm_entry(vcpu->vcpu_id);
5727        kvm_x86_ops->run(vcpu);
5728
5729        /*
5730         * If the guest has used debug registers, at least dr7
5731         * will be disabled while returning to the host.
5732         * If we don't have active breakpoints in the host, we don't
5733         * care about the messed up debug address registers. But if
5734         * we have some of them active, restore the old state.
5735         */
5736        if (hw_breakpoint_active())
5737                hw_breakpoint_restore();
5738
5739        vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5740                                                           native_read_tsc());
5741
5742        vcpu->mode = OUTSIDE_GUEST_MODE;
5743        smp_wmb();
5744        local_irq_enable();
5745
5746        ++vcpu->stat.exits;
5747
5748        /*
5749         * We must have an instruction between local_irq_enable() and
5750         * kvm_guest_exit(), so the timer interrupt isn't delayed by
5751         * the interrupt shadow.  The stat.exits increment will do nicely.
5752         * But we need to prevent reordering, hence this barrier():
5753         */
5754        barrier();
5755
5756        kvm_guest_exit();
5757
5758        preempt_enable();
5759
5760        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5761
5762        /*
5763         * Profile KVM exit RIPs:
5764         */
5765        if (unlikely(prof_on == KVM_PROFILING)) {
5766                unsigned long rip = kvm_rip_read(vcpu);
5767                profile_hit(KVM_PROFILING, (void *)rip);
5768        }
5769
5770        if (unlikely(vcpu->arch.tsc_always_catchup))
5771                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5772
5773        if (vcpu->arch.apic_attention)
5774                kvm_lapic_sync_from_vapic(vcpu);
5775
5776        r = kvm_x86_ops->handle_exit(vcpu);
5777        return r;
5778
5779cancel_injection:
5780        kvm_x86_ops->cancel_injection(vcpu);
5781        if (unlikely(vcpu->arch.apic_attention))
5782                kvm_lapic_sync_from_vapic(vcpu);
5783out:
5784        return r;
5785}
5786
5787
5788static int __vcpu_run(struct kvm_vcpu *vcpu)
5789{
5790        int r;
5791        struct kvm *kvm = vcpu->kvm;
5792
5793        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5794                pr_debug("vcpu %d received sipi with vector # %x\n",
5795                         vcpu->vcpu_id, vcpu->arch.sipi_vector);
5796                kvm_lapic_reset(vcpu);
5797                r = kvm_vcpu_reset(vcpu);
5798                if (r)
5799                        return r;
5800                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5801        }
5802
5803        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5804        r = vapic_enter(vcpu);
5805        if (r) {
5806                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5807                return r;
5808        }
5809
5810        r = 1;
5811        while (r > 0) {
5812                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5813                    !vcpu->arch.apf.halted)
5814                        r = vcpu_enter_guest(vcpu);
5815                else {
5816                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5817                        kvm_vcpu_block(vcpu);
5818                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5819                        if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5820                        {
5821                                switch(vcpu->arch.mp_state) {
5822                                case KVM_MP_STATE_HALTED:
5823                                        vcpu->arch.mp_state =
5824                                                KVM_MP_STATE_RUNNABLE;
5825                                case KVM_MP_STATE_RUNNABLE:
5826                                        vcpu->arch.apf.halted = false;
5827                                        break;
5828                                case KVM_MP_STATE_SIPI_RECEIVED:
5829                                default:
5830                                        r = -EINTR;
5831                                        break;
5832                                }
5833                        }
5834                }
5835
5836                if (r <= 0)
5837                        break;
5838
5839                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5840                if (kvm_cpu_has_pending_timer(vcpu))
5841                        kvm_inject_pending_timer_irqs(vcpu);
5842
5843                if (dm_request_for_irq_injection(vcpu)) {
5844                        r = -EINTR;
5845                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5846                        ++vcpu->stat.request_irq_exits;
5847                }
5848
5849                kvm_check_async_pf_completion(vcpu);
5850
5851                if (signal_pending(current)) {
5852                        r = -EINTR;
5853                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5854                        ++vcpu->stat.signal_exits;
5855                }
5856                if (need_resched()) {
5857                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5858                        kvm_resched(vcpu);
5859                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5860                }
5861        }
5862
5863        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5864
5865        vapic_exit(vcpu);
5866
5867        return r;
5868}
5869
5870static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5871{
5872        int r;
5873        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5874        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5875        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5876        if (r != EMULATE_DONE)
5877                return 0;
5878        return 1;
5879}
5880
5881static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5882{
5883        BUG_ON(!vcpu->arch.pio.count);
5884
5885        return complete_emulated_io(vcpu);
5886}
5887
5888/*
5889 * Implements the following, as a state machine:
5890 *
5891 * read:
5892 *   for each fragment
5893 *     for each mmio piece in the fragment
5894 *       write gpa, len
5895 *       exit
5896 *       copy data
5897 *   execute insn
5898 *
5899 * write:
5900 *   for each fragment
5901 *     for each mmio piece in the fragment
5902 *       write gpa, len
5903 *       copy data
5904 *       exit
5905 */
5906static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5907{
5908        struct kvm_run *run = vcpu->run;
5909        struct kvm_mmio_fragment *frag;
5910        unsigned len;
5911
5912        BUG_ON(!vcpu->mmio_needed);
5913
5914        /* Complete previous fragment */
5915        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5916        len = min(8u, frag->len);
5917        if (!vcpu->mmio_is_write)
5918                memcpy(frag->data, run->mmio.data, len);
5919
5920        if (frag->len <= 8) {
5921                /* Switch to the next fragment. */
5922                frag++;
5923                vcpu->mmio_cur_fragment++;
5924        } else {
5925                /* Go forward to the next mmio piece. */
5926                frag->data += len;
5927                frag->gpa += len;
5928                frag->len -= len;
5929        }
5930
5931        if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5932                vcpu->mmio_needed = 0;
5933                if (vcpu->mmio_is_write)
5934                        return 1;
5935                vcpu->mmio_read_completed = 1;
5936                return complete_emulated_io(vcpu);
5937        }
5938
5939        run->exit_reason = KVM_EXIT_MMIO;
5940        run->mmio.phys_addr = frag->gpa;
5941        if (vcpu->mmio_is_write)
5942                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5943        run->mmio.len = min(8u, frag->len);
5944        run->mmio.is_write = vcpu->mmio_is_write;
5945        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5946        return 0;
5947}
5948
5949
5950int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5951{
5952        int r;
5953        sigset_t sigsaved;
5954
5955        if (!tsk_used_math(current) && init_fpu(current))
5956                return -ENOMEM;
5957
5958        if (vcpu->sigset_active)
5959                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5960
5961        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5962                kvm_vcpu_block(vcpu);
5963                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5964                r = -EAGAIN;
5965                goto out;
5966        }
5967
5968        /* re-sync apic's tpr */
5969        if (!irqchip_in_kernel(vcpu->kvm)) {
5970                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5971                        r = -EINVAL;
5972                        goto out;
5973                }
5974        }
5975
5976        if (unlikely(vcpu->arch.complete_userspace_io)) {
5977                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5978                vcpu->arch.complete_userspace_io = NULL;
5979                r = cui(vcpu);
5980                if (r <= 0)
5981                        goto out;
5982        } else
5983                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5984
5985        r = __vcpu_run(vcpu);
5986
5987out:
5988        post_kvm_run_save(vcpu);
5989        if (vcpu->sigset_active)
5990                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5991
5992        return r;
5993}
5994
5995int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5996{
5997        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5998                /*
5999                 * We are here if userspace calls get_regs() in the middle of
6000                 * instruction emulation. Registers state needs to be copied
6001                 * back from emulation context to vcpu. Userspace shouldn't do
6002                 * that usually, but some bad designed PV devices (vmware
6003                 * backdoor interface) need this to work
6004                 */
6005                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6006                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6007        }
6008        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6009        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6010        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6011        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6012        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6013        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6014        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6015        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6016#ifdef CONFIG_X86_64
6017        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6018        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6019        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6020        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6021        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6022        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6023        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6024        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6025#endif
6026
6027        regs->rip = kvm_rip_read(vcpu);
6028        regs->rflags = kvm_get_rflags(vcpu);
6029
6030        return 0;
6031}
6032
6033int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6034{
6035        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6036        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6037
6038        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6039        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6040        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6041        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6042        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6043        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6044        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6045        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6046#ifdef CONFIG_X86_64
6047        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6048        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6049        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6050        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6051        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6052        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6053        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6054        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6055#endif
6056
6057        kvm_rip_write(vcpu, regs->rip);
6058        kvm_set_rflags(vcpu, regs->rflags);
6059
6060        vcpu->arch.exception.pending = false;
6061
6062        kvm_make_request(KVM_REQ_EVENT, vcpu);
6063
6064        return 0;
6065}
6066
6067void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6068{
6069        struct kvm_segment cs;
6070
6071        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6072        *db = cs.db;
6073        *l = cs.l;
6074}
6075EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6076
6077int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6078                                  struct kvm_sregs *sregs)
6079{
6080        struct desc_ptr dt;
6081
6082        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6083        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6084        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6085        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6086        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6087        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6088
6089        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6090        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6091
6092        kvm_x86_ops->get_idt(vcpu, &dt);
6093        sregs->idt.limit = dt.size;
6094        sregs->idt.base = dt.address;
6095        kvm_x86_ops->get_gdt(vcpu, &dt);
6096        sregs->gdt.limit = dt.size;
6097        sregs->gdt.base = dt.address;
6098
6099        sregs->cr0 = kvm_read_cr0(vcpu);
6100        sregs->cr2 = vcpu->arch.cr2;
6101        sregs->cr3 = kvm_read_cr3(vcpu);
6102        sregs->cr4 = kvm_read_cr4(vcpu);
6103        sregs->cr8 = kvm_get_cr8(vcpu);
6104        sregs->efer = vcpu->arch.efer;
6105        sregs->apic_base = kvm_get_apic_base(vcpu);
6106
6107        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6108
6109        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6110                set_bit(vcpu->arch.interrupt.nr,
6111                        (unsigned long *)sregs->interrupt_bitmap);
6112
6113        return 0;
6114}
6115
6116int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6117                                    struct kvm_mp_state *mp_state)
6118{
6119        mp_state->mp_state = vcpu->arch.mp_state;
6120        return 0;
6121}
6122
6123int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6124                                    struct kvm_mp_state *mp_state)
6125{
6126        vcpu->arch.mp_state = mp_state->mp_state;
6127        kvm_make_request(KVM_REQ_EVENT, vcpu);
6128        return 0;
6129}
6130
6131int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6132                    int reason, bool has_error_code, u32 error_code)
6133{
6134        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6135        int ret;
6136
6137        init_emulate_ctxt(vcpu);
6138
6139        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6140                                   has_error_code, error_code);
6141
6142        if (ret)
6143                return EMULATE_FAIL;
6144
6145        kvm_rip_write(vcpu, ctxt->eip);
6146        kvm_set_rflags(vcpu, ctxt->eflags);
6147        kvm_make_request(KVM_REQ_EVENT, vcpu);
6148        return EMULATE_DONE;
6149}
6150EXPORT_SYMBOL_GPL(kvm_task_switch);
6151
6152int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6153                                  struct kvm_sregs *sregs)
6154{
6155        int mmu_reset_needed = 0;
6156        int pending_vec, max_bits, idx;
6157        struct desc_ptr dt;
6158
6159        if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6160                return -EINVAL;
6161
6162        dt.size = sregs->idt.limit;
6163        dt.address = sregs->idt.base;
6164        kvm_x86_ops->set_idt(vcpu, &dt);
6165        dt.size = sregs->gdt.limit;
6166        dt.address = sregs->gdt.base;
6167        kvm_x86_ops->set_gdt(vcpu, &dt);
6168
6169        vcpu->arch.cr2 = sregs->cr2;
6170        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6171        vcpu->arch.cr3 = sregs->cr3;
6172        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6173
6174        kvm_set_cr8(vcpu, sregs->cr8);
6175
6176        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6177        kvm_x86_ops->set_efer(vcpu, sregs->efer);
6178        kvm_set_apic_base(vcpu, sregs->apic_base);
6179
6180        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6181        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6182        vcpu->arch.cr0 = sregs->cr0;
6183
6184        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6185        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6186        if (sregs->cr4 & X86_CR4_OSXSAVE)
6187                kvm_update_cpuid(vcpu);
6188
6189        idx = srcu_read_lock(&vcpu->kvm->srcu);
6190        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6191                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6192                mmu_reset_needed = 1;
6193        }
6194        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6195
6196        if (mmu_reset_needed)
6197                kvm_mmu_reset_context(vcpu);
6198
6199        max_bits = KVM_NR_INTERRUPTS;
6200        pending_vec = find_first_bit(
6201                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6202        if (pending_vec < max_bits) {
6203                kvm_queue_interrupt(vcpu, pending_vec, false);
6204                pr_debug("Set back pending irq %d\n", pending_vec);
6205        }
6206
6207        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6208        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6209        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6210        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6211        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6212        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6213
6214        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6215        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6216
6217        update_cr8_intercept(vcpu);
6218
6219        /* Older userspace won't unhalt the vcpu on reset. */
6220        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6221            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6222            !is_protmode(vcpu))
6223                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6224
6225        kvm_make_request(KVM_REQ_EVENT, vcpu);
6226
6227        return 0;
6228}
6229
6230int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6231                                        struct kvm_guest_debug *dbg)
6232{
6233        unsigned long rflags;
6234        int i, r;
6235
6236        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6237                r = -EBUSY;
6238                if (vcpu->arch.exception.pending)
6239                        goto out;
6240                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6241                        kvm_queue_exception(vcpu, DB_VECTOR);
6242                else
6243                        kvm_queue_exception(vcpu, BP_VECTOR);
6244        }
6245
6246        /*
6247         * Read rflags as long as potentially injected trace flags are still
6248         * filtered out.
6249         */
6250        rflags = kvm_get_rflags(vcpu);
6251
6252        vcpu->guest_debug = dbg->control;
6253        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6254                vcpu->guest_debug = 0;
6255
6256        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6257                for (i = 0; i < KVM_NR_DB_REGS; ++i)
6258                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6259                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6260        } else {
6261                for (i = 0; i < KVM_NR_DB_REGS; i++)
6262                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6263        }
6264        kvm_update_dr7(vcpu);
6265
6266        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6267                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6268                        get_segment_base(vcpu, VCPU_SREG_CS);
6269
6270        /*
6271         * Trigger an rflags update that will inject or remove the trace
6272         * flags.
6273         */
6274        kvm_set_rflags(vcpu, rflags);
6275
6276        kvm_x86_ops->update_db_bp_intercept(vcpu);
6277
6278        r = 0;
6279
6280out:
6281
6282        return r;
6283}
6284
6285/*
6286 * Translate a guest virtual address to a guest physical address.
6287 */
6288int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6289                                    struct kvm_translation *tr)
6290{
6291        unsigned long vaddr = tr->linear_address;
6292        gpa_t gpa;
6293        int idx;
6294
6295        idx = srcu_read_lock(&vcpu->kvm->srcu);
6296        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6297        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6298        tr->physical_address = gpa;
6299        tr->valid = gpa != UNMAPPED_GVA;
6300        tr->writeable = 1;
6301        tr->usermode = 0;
6302
6303        return 0;
6304}
6305
6306int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6307{
6308        struct i387_fxsave_struct *fxsave =
6309                        &vcpu->arch.guest_fpu.state->fxsave;
6310
6311        memcpy(fpu->fpr, fxsave->st_space, 128);
6312        fpu->fcw = fxsave->cwd;
6313        fpu->fsw = fxsave->swd;
6314        fpu->ftwx = fxsave->twd;
6315        fpu->last_opcode = fxsave->fop;
6316        fpu->last_ip = fxsave->rip;
6317        fpu->last_dp = fxsave->rdp;
6318        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6319
6320        return 0;
6321}
6322
6323int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6324{
6325        struct i387_fxsave_struct *fxsave =
6326                        &vcpu->arch.guest_fpu.state->fxsave;
6327
6328        memcpy(fxsave->st_space, fpu->fpr, 128);
6329        fxsave->cwd = fpu->fcw;
6330        fxsave->swd = fpu->fsw;
6331        fxsave->twd = fpu->ftwx;
6332        fxsave->fop = fpu->last_opcode;
6333        fxsave->rip = fpu->last_ip;
6334        fxsave->rdp = fpu->last_dp;
6335        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6336
6337        return 0;
6338}
6339
6340int fx_init(struct kvm_vcpu *vcpu)
6341{
6342        int err;
6343
6344        err = fpu_alloc(&vcpu->arch.guest_fpu);
6345        if (err)
6346                return err;
6347
6348        fpu_finit(&vcpu->arch.guest_fpu);
6349
6350        /*
6351         * Ensure guest xcr0 is valid for loading
6352         */
6353        vcpu->arch.xcr0 = XSTATE_FP;
6354
6355        vcpu->arch.cr0 |= X86_CR0_ET;
6356
6357        return 0;
6358}
6359EXPORT_SYMBOL_GPL(fx_init);
6360
6361static void fx_free(struct kvm_vcpu *vcpu)
6362{
6363        fpu_free(&vcpu->arch.guest_fpu);
6364}
6365
6366void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6367{
6368        if (vcpu->guest_fpu_loaded)
6369                return;
6370
6371        /*
6372         * Restore all possible states in the guest,
6373         * and assume host would use all available bits.
6374         * Guest xcr0 would be loaded later.
6375         */
6376        kvm_put_guest_xcr0(vcpu);
6377        vcpu->guest_fpu_loaded = 1;
6378        __kernel_fpu_begin();
6379        fpu_restore_checking(&vcpu->arch.guest_fpu);
6380        trace_kvm_fpu(1);
6381}
6382
6383void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6384{
6385        kvm_put_guest_xcr0(vcpu);
6386
6387        if (!vcpu->guest_fpu_loaded)
6388                return;
6389
6390        vcpu->guest_fpu_loaded = 0;
6391        fpu_save_init(&vcpu->arch.guest_fpu);
6392        __kernel_fpu_end();
6393        ++vcpu->stat.fpu_reload;
6394        kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6395        trace_kvm_fpu(0);
6396}
6397
6398void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6399{
6400        kvmclock_reset(vcpu);
6401
6402        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6403        fx_free(vcpu);
6404        kvm_x86_ops->vcpu_free(vcpu);
6405}
6406
6407struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6408                                                unsigned int id)
6409{
6410        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6411                printk_once(KERN_WARNING
6412                "kvm: SMP vm created on host with unstable TSC; "
6413                "guest TSC will not be reliable\n");
6414        return kvm_x86_ops->vcpu_create(kvm, id);
6415}
6416
6417int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6418{
6419        int r;
6420
6421        vcpu->arch.mtrr_state.have_fixed = 1;
6422        r = vcpu_load(vcpu);
6423        if (r)
6424                return r;
6425        r = kvm_vcpu_reset(vcpu);
6426        if (r == 0)
6427                r = kvm_mmu_setup(vcpu);
6428        vcpu_put(vcpu);
6429
6430        return r;
6431}
6432
6433int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6434{
6435        int r;
6436        struct msr_data msr;
6437
6438        r = vcpu_load(vcpu);
6439        if (r)
6440                return r;
6441        msr.data = 0x0;
6442        msr.index = MSR_IA32_TSC;
6443        msr.host_initiated = true;
6444        kvm_write_tsc(vcpu, &msr);
6445        vcpu_put(vcpu);
6446
6447        return r;
6448}
6449
6450void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6451{
6452        int r;
6453        vcpu->arch.apf.msr_val = 0;
6454
6455        r = vcpu_load(vcpu);
6456        BUG_ON(r);
6457        kvm_mmu_unload(vcpu);
6458        vcpu_put(vcpu);
6459
6460        fx_free(vcpu);
6461        kvm_x86_ops->vcpu_free(vcpu);
6462}
6463
6464static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6465{
6466        atomic_set(&vcpu->arch.nmi_queued, 0);
6467        vcpu->arch.nmi_pending = 0;
6468        vcpu->arch.nmi_injected = false;
6469
6470        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6471        vcpu->arch.dr6 = DR6_FIXED_1;
6472        vcpu->arch.dr7 = DR7_FIXED_1;
6473        kvm_update_dr7(vcpu);
6474
6475        kvm_make_request(KVM_REQ_EVENT, vcpu);
6476        vcpu->arch.apf.msr_val = 0;
6477        vcpu->arch.st.msr_val = 0;
6478
6479        kvmclock_reset(vcpu);
6480
6481        kvm_clear_async_pf_completion_queue(vcpu);
6482        kvm_async_pf_hash_reset(vcpu);
6483        vcpu->arch.apf.halted = false;
6484
6485        kvm_pmu_reset(vcpu);
6486
6487        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6488        vcpu->arch.regs_avail = ~0;
6489        vcpu->arch.regs_dirty = ~0;
6490
6491        return kvm_x86_ops->vcpu_reset(vcpu);
6492}
6493
6494int kvm_arch_hardware_enable(void *garbage)
6495{
6496        struct kvm *kvm;
6497        struct kvm_vcpu *vcpu;
6498        int i;
6499        int ret;
6500        u64 local_tsc;
6501        u64 max_tsc = 0;
6502        bool stable, backwards_tsc = false;
6503
6504        kvm_shared_msr_cpu_online();
6505        ret = kvm_x86_ops->hardware_enable(garbage);
6506        if (ret != 0)
6507                return ret;
6508
6509        local_tsc = native_read_tsc();
6510        stable = !check_tsc_unstable();
6511        list_for_each_entry(kvm, &vm_list, vm_list) {
6512                kvm_for_each_vcpu(i, vcpu, kvm) {
6513                        if (!stable && vcpu->cpu == smp_processor_id())
6514                                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6515                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6516                                backwards_tsc = true;
6517                                if (vcpu->arch.last_host_tsc > max_tsc)
6518                                        max_tsc = vcpu->arch.last_host_tsc;
6519                        }
6520                }
6521        }
6522
6523        /*
6524         * Sometimes, even reliable TSCs go backwards.  This happens on
6525         * platforms that reset TSC during suspend or hibernate actions, but
6526         * maintain synchronization.  We must compensate.  Fortunately, we can
6527         * detect that condition here, which happens early in CPU bringup,
6528         * before any KVM threads can be running.  Unfortunately, we can't
6529         * bring the TSCs fully up to date with real time, as we aren't yet far
6530         * enough into CPU bringup that we know how much real time has actually
6531         * elapsed; our helper function, get_kernel_ns() will be using boot
6532         * variables that haven't been updated yet.
6533         *
6534         * So we simply find the maximum observed TSC above, then record the
6535         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6536         * the adjustment will be applied.  Note that we accumulate
6537         * adjustments, in case multiple suspend cycles happen before some VCPU
6538         * gets a chance to run again.  In the event that no KVM threads get a
6539         * chance to run, we will miss the entire elapsed period, as we'll have
6540         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6541         * loose cycle time.  This isn't too big a deal, since the loss will be
6542         * uniform across all VCPUs (not to mention the scenario is extremely
6543         * unlikely). It is possible that a second hibernate recovery happens
6544         * much faster than a first, causing the observed TSC here to be
6545         * smaller; this would require additional padding adjustment, which is
6546         * why we set last_host_tsc to the local tsc observed here.
6547         *
6548         * N.B. - this code below runs only on platforms with reliable TSC,
6549         * as that is the only way backwards_tsc is set above.  Also note
6550         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6551         * have the same delta_cyc adjustment applied if backwards_tsc
6552         * is detected.  Note further, this adjustment is only done once,
6553         * as we reset last_host_tsc on all VCPUs to stop this from being
6554         * called multiple times (one for each physical CPU bringup).
6555         *
6556         * Platforms with unreliable TSCs don't have to deal with this, they
6557         * will be compensated by the logic in vcpu_load, which sets the TSC to
6558         * catchup mode.  This will catchup all VCPUs to real time, but cannot
6559         * guarantee that they stay in perfect synchronization.
6560         */
6561        if (backwards_tsc) {
6562                u64 delta_cyc = max_tsc - local_tsc;
6563                list_for_each_entry(kvm, &vm_list, vm_list) {
6564                        kvm_for_each_vcpu(i, vcpu, kvm) {
6565                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
6566                                vcpu->arch.last_host_tsc = local_tsc;
6567                                set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6568                                        &vcpu->requests);
6569                        }
6570
6571                        /*
6572                         * We have to disable TSC offset matching.. if you were
6573                         * booting a VM while issuing an S4 host suspend....
6574                         * you may have some problem.  Solving this issue is
6575                         * left as an exercise to the reader.
6576                         */
6577                        kvm->arch.last_tsc_nsec = 0;
6578                        kvm->arch.last_tsc_write = 0;
6579                }
6580
6581        }
6582        return 0;
6583}
6584
6585void kvm_arch_hardware_disable(void *garbage)
6586{
6587        kvm_x86_ops->hardware_disable(garbage);
6588        drop_user_return_notifiers(garbage);
6589}
6590
6591int kvm_arch_hardware_setup(void)
6592{
6593        return kvm_x86_ops->hardware_setup();
6594}
6595
6596void kvm_arch_hardware_unsetup(void)
6597{
6598        kvm_x86_ops->hardware_unsetup();
6599}
6600
6601void kvm_arch_check_processor_compat(void *rtn)
6602{
6603        kvm_x86_ops->check_processor_compatibility(rtn);
6604}
6605
6606bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6607{
6608        return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6609}
6610
6611struct static_key kvm_no_apic_vcpu __read_mostly;
6612
6613int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6614{
6615        struct page *page;
6616        struct kvm *kvm;
6617        int r;
6618
6619        BUG_ON(vcpu->kvm == NULL);
6620        kvm = vcpu->kvm;
6621
6622        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6623        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6624                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6625        else
6626                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6627
6628        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6629        if (!page) {
6630                r = -ENOMEM;
6631                goto fail;
6632        }
6633        vcpu->arch.pio_data = page_address(page);
6634
6635        kvm_set_tsc_khz(vcpu, max_tsc_khz);
6636
6637        r = kvm_mmu_create(vcpu);
6638        if (r < 0)
6639                goto fail_free_pio_data;
6640
6641        if (irqchip_in_kernel(kvm)) {
6642                r = kvm_create_lapic(vcpu);
6643                if (r < 0)
6644                        goto fail_mmu_destroy;
6645        } else
6646                static_key_slow_inc(&kvm_no_apic_vcpu);
6647
6648        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6649                                       GFP_KERNEL);
6650        if (!vcpu->arch.mce_banks) {
6651                r = -ENOMEM;
6652                goto fail_free_lapic;
6653        }
6654        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6655
6656        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6657                goto fail_free_mce_banks;
6658
6659        r = fx_init(vcpu);
6660        if (r)
6661                goto fail_free_wbinvd_dirty_mask;
6662
6663        vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6664        kvm_async_pf_hash_reset(vcpu);
6665        kvm_pmu_init(vcpu);
6666
6667        return 0;
6668fail_free_wbinvd_dirty_mask:
6669        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6670fail_free_mce_banks:
6671        kfree(vcpu->arch.mce_banks);
6672fail_free_lapic:
6673        kvm_free_lapic(vcpu);
6674fail_mmu_destroy:
6675        kvm_mmu_destroy(vcpu);
6676fail_free_pio_data:
6677        free_page((unsigned long)vcpu->arch.pio_data);
6678fail:
6679        return r;
6680}
6681
6682void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6683{
6684        int idx;
6685
6686        kvm_pmu_destroy(vcpu);
6687        kfree(vcpu->arch.mce_banks);
6688        kvm_free_lapic(vcpu);
6689        idx = srcu_read_lock(&vcpu->kvm->srcu);
6690        kvm_mmu_destroy(vcpu);
6691        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6692        free_page((unsigned long)vcpu->arch.pio_data);
6693        if (!irqchip_in_kernel(vcpu->kvm))
6694                static_key_slow_dec(&kvm_no_apic_vcpu);
6695}
6696
6697int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6698{
6699        if (type)
6700                return -EINVAL;
6701
6702        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6703        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6704
6705        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6706        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6707        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6708        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6709                &kvm->arch.irq_sources_bitmap);
6710
6711        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6712        mutex_init(&kvm->arch.apic_map_lock);
6713        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6714
6715        pvclock_update_vm_gtod_copy(kvm);
6716
6717        return 0;
6718}
6719
6720static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6721{
6722        int r;
6723        r = vcpu_load(vcpu);
6724        BUG_ON(r);
6725        kvm_mmu_unload(vcpu);
6726        vcpu_put(vcpu);
6727}
6728
6729static void kvm_free_vcpus(struct kvm *kvm)
6730{
6731        unsigned int i;
6732        struct kvm_vcpu *vcpu;
6733
6734        /*
6735         * Unpin any mmu pages first.
6736         */
6737        kvm_for_each_vcpu(i, vcpu, kvm) {
6738                kvm_clear_async_pf_completion_queue(vcpu);
6739                kvm_unload_vcpu_mmu(vcpu);
6740        }
6741        kvm_for_each_vcpu(i, vcpu, kvm)
6742                kvm_arch_vcpu_free(vcpu);
6743
6744        mutex_lock(&kvm->lock);
6745        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6746                kvm->vcpus[i] = NULL;
6747
6748        atomic_set(&kvm->online_vcpus, 0);
6749        mutex_unlock(&kvm->lock);
6750}
6751
6752void kvm_arch_sync_events(struct kvm *kvm)
6753{
6754        kvm_free_all_assigned_devices(kvm);
6755        kvm_free_pit(kvm);
6756}
6757
6758void kvm_arch_destroy_vm(struct kvm *kvm)
6759{
6760        kvm_iommu_unmap_guest(kvm);
6761        kfree(kvm->arch.vpic);
6762        kfree(kvm->arch.vioapic);
6763        kvm_free_vcpus(kvm);
6764        if (kvm->arch.apic_access_page)
6765                put_page(kvm->arch.apic_access_page);
6766        if (kvm->arch.ept_identity_pagetable)
6767                put_page(kvm->arch.ept_identity_pagetable);
6768        kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6769}
6770
6771void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6772                           struct kvm_memory_slot *dont)
6773{
6774        int i;
6775
6776        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6777                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6778                        kvm_kvfree(free->arch.rmap[i]);
6779                        free->arch.rmap[i] = NULL;
6780                }
6781                if (i == 0)
6782                        continue;
6783
6784                if (!dont || free->arch.lpage_info[i - 1] !=
6785                             dont->arch.lpage_info[i - 1]) {
6786                        kvm_kvfree(free->arch.lpage_info[i - 1]);
6787                        free->arch.lpage_info[i - 1] = NULL;
6788                }
6789        }
6790}
6791
6792int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6793{
6794        int i;
6795
6796        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6797                unsigned long ugfn;
6798                int lpages;
6799                int level = i + 1;
6800
6801                lpages = gfn_to_index(slot->base_gfn + npages - 1,
6802                                      slot->base_gfn, level) + 1;
6803
6804                slot->arch.rmap[i] =
6805                        kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6806                if (!slot->arch.rmap[i])
6807                        goto out_free;
6808                if (i == 0)
6809                        continue;
6810
6811                slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6812                                        sizeof(*slot->arch.lpage_info[i - 1]));
6813                if (!slot->arch.lpage_info[i - 1])
6814                        goto out_free;
6815
6816                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6817                        slot->arch.lpage_info[i - 1][0].write_count = 1;
6818                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6819                        slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6820                ugfn = slot->userspace_addr >> PAGE_SHIFT;
6821                /*
6822                 * If the gfn and userspace address are not aligned wrt each
6823                 * other, or if explicitly asked to, disable large page
6824                 * support for this slot
6825                 */
6826                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6827                    !kvm_largepages_enabled()) {
6828                        unsigned long j;
6829
6830                        for (j = 0; j < lpages; ++j)
6831                                slot->arch.lpage_info[i - 1][j].write_count = 1;
6832                }
6833        }
6834
6835        return 0;
6836
6837out_free:
6838        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6839                kvm_kvfree(slot->arch.rmap[i]);
6840                slot->arch.rmap[i] = NULL;
6841                if (i == 0)
6842                        continue;
6843
6844                kvm_kvfree(slot->arch.lpage_info[i - 1]);
6845                slot->arch.lpage_info[i - 1] = NULL;
6846        }
6847        return -ENOMEM;
6848}
6849
6850int kvm_arch_prepare_memory_region(struct kvm *kvm,
6851                                struct kvm_memory_slot *memslot,
6852                                struct kvm_memory_slot old,
6853                                struct kvm_userspace_memory_region *mem,
6854                                int user_alloc)
6855{
6856        int npages = memslot->npages;
6857        int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6858
6859        /* Prevent internal slot pages from being moved by fork()/COW. */
6860        if (memslot->id >= KVM_MEMORY_SLOTS)
6861                map_flags = MAP_SHARED | MAP_ANONYMOUS;
6862
6863        /*To keep backward compatibility with older userspace,
6864         *x86 needs to handle !user_alloc case.
6865         */
6866        if (!user_alloc) {
6867                if (npages && !old.npages) {
6868                        unsigned long userspace_addr;
6869
6870                        userspace_addr = vm_mmap(NULL, 0,
6871                                                 npages * PAGE_SIZE,
6872                                                 PROT_READ | PROT_WRITE,
6873                                                 map_flags,
6874                                                 0);
6875
6876                        if (IS_ERR((void *)userspace_addr))
6877                                return PTR_ERR((void *)userspace_addr);
6878
6879                        memslot->userspace_addr = userspace_addr;
6880                }
6881        }
6882
6883
6884        return 0;
6885}
6886
6887void kvm_arch_commit_memory_region(struct kvm *kvm,
6888                                struct kvm_userspace_memory_region *mem,
6889                                struct kvm_memory_slot old,
6890                                int user_alloc)
6891{
6892
6893        int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6894
6895        if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6896                int ret;
6897
6898                ret = vm_munmap(old.userspace_addr,
6899                                old.npages * PAGE_SIZE);
6900                if (ret < 0)
6901                        printk(KERN_WARNING
6902                               "kvm_vm_ioctl_set_memory_region: "
6903                               "failed to munmap memory\n");
6904        }
6905
6906        if (!kvm->arch.n_requested_mmu_pages)
6907                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6908
6909        spin_lock(&kvm->mmu_lock);
6910        if (nr_mmu_pages)
6911                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6912        kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6913        spin_unlock(&kvm->mmu_lock);
6914        /*
6915         * If memory slot is created, or moved, we need to clear all
6916         * mmio sptes.
6917         */
6918        if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6919                kvm_mmu_zap_all(kvm);
6920                kvm_reload_remote_mmus(kvm);
6921        }
6922}
6923
6924void kvm_arch_flush_shadow_all(struct kvm *kvm)
6925{
6926        kvm_mmu_zap_all(kvm);
6927        kvm_reload_remote_mmus(kvm);
6928}
6929
6930void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6931                                   struct kvm_memory_slot *slot)
6932{
6933        kvm_arch_flush_shadow_all(kvm);
6934}
6935
6936int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6937{
6938        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6939                !vcpu->arch.apf.halted)
6940                || !list_empty_careful(&vcpu->async_pf.done)
6941                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6942                || atomic_read(&vcpu->arch.nmi_queued) ||
6943                (kvm_arch_interrupt_allowed(vcpu) &&
6944                 kvm_cpu_has_interrupt(vcpu));
6945}
6946
6947int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6948{
6949        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6950}
6951
6952int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6953{
6954        return kvm_x86_ops->interrupt_allowed(vcpu);
6955}
6956
6957bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6958{
6959        unsigned long current_rip = kvm_rip_read(vcpu) +
6960                get_segment_base(vcpu, VCPU_SREG_CS);
6961
6962        return current_rip == linear_rip;
6963}
6964EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6965
6966unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6967{
6968        unsigned long rflags;
6969
6970        rflags = kvm_x86_ops->get_rflags(vcpu);
6971        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6972                rflags &= ~X86_EFLAGS_TF;
6973        return rflags;
6974}
6975EXPORT_SYMBOL_GPL(kvm_get_rflags);
6976
6977void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6978{
6979        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6980            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6981                rflags |= X86_EFLAGS_TF;
6982        kvm_x86_ops->set_rflags(vcpu, rflags);
6983        kvm_make_request(KVM_REQ_EVENT, vcpu);
6984}
6985EXPORT_SYMBOL_GPL(kvm_set_rflags);
6986
6987void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6988{
6989        int r;
6990
6991        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6992              is_error_page(work->page))
6993                return;
6994
6995        r = kvm_mmu_reload(vcpu);
6996        if (unlikely(r))
6997                return;
6998
6999        if (!vcpu->arch.mmu.direct_map &&
7000              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7001                return;
7002
7003        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7004}
7005
7006static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7007{
7008        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7009}
7010
7011static inline u32 kvm_async_pf_next_probe(u32 key)
7012{
7013        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7014}
7015
7016static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7017{
7018        u32 key = kvm_async_pf_hash_fn(gfn);
7019
7020        while (vcpu->arch.apf.gfns[key] != ~0)
7021                key = kvm_async_pf_next_probe(key);
7022
7023        vcpu->arch.apf.gfns[key] = gfn;
7024}
7025
7026static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7027{
7028        int i;
7029        u32 key = kvm_async_pf_hash_fn(gfn);
7030
7031        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7032                     (vcpu->arch.apf.gfns[key] != gfn &&
7033                      vcpu->arch.apf.gfns[key] != ~0); i++)
7034                key = kvm_async_pf_next_probe(key);
7035
7036        return key;
7037}
7038
7039bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7040{
7041        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7042}
7043
7044static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7045{
7046        u32 i, j, k;
7047
7048        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7049        while (true) {
7050                vcpu->arch.apf.gfns[i] = ~0;
7051                do {
7052                        j = kvm_async_pf_next_probe(j);
7053                        if (vcpu->arch.apf.gfns[j] == ~0)
7054                                return;
7055                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7056                        /*
7057                         * k lies cyclically in ]i,j]
7058                         * |    i.k.j |
7059                         * |....j i.k.| or  |.k..j i...|
7060                         */
7061                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7062                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7063                i = j;
7064        }
7065}
7066
7067static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7068{
7069
7070        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7071                                      sizeof(val));
7072}
7073
7074void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7075                                     struct kvm_async_pf *work)
7076{
7077        struct x86_exception fault;
7078
7079        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7080        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7081
7082        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7083            (vcpu->arch.apf.send_user_only &&
7084             kvm_x86_ops->get_cpl(vcpu) == 0))
7085                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7086        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7087                fault.vector = PF_VECTOR;
7088                fault.error_code_valid = true;
7089                fault.error_code = 0;
7090                fault.nested_page_fault = false;
7091                fault.address = work->arch.token;
7092                kvm_inject_page_fault(vcpu, &fault);
7093        }
7094}
7095
7096void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7097                                 struct kvm_async_pf *work)
7098{
7099        struct x86_exception fault;
7100
7101        trace_kvm_async_pf_ready(work->arch.token, work->gva);
7102        if (is_error_page(work->page))
7103                work->arch.token = ~0; /* broadcast wakeup */
7104        else
7105                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7106
7107        if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7108            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7109                fault.vector = PF_VECTOR;
7110                fault.error_code_valid = true;
7111                fault.error_code = 0;
7112                fault.nested_page_fault = false;
7113                fault.address = work->arch.token;
7114                kvm_inject_page_fault(vcpu, &fault);
7115        }
7116        vcpu->arch.apf.halted = false;
7117        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7118}
7119
7120bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7121{
7122        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7123                return true;
7124        else
7125                return !kvm_event_needs_reinjection(vcpu) &&
7126                        kvm_x86_ops->interrupt_allowed(vcpu);
7127}
7128
7129EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7130EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7131EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7132EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7133EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7134EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7135EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7136EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7137EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7138EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7139EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7140EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7141