linux/arch/x86/xen/mmu.c
<<
>>
Prefs
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49#include <linux/seq_file.h>
  50#include <linux/crash_dump.h>
  51
  52#include <trace/events/xen.h>
  53
  54#include <asm/pgtable.h>
  55#include <asm/tlbflush.h>
  56#include <asm/fixmap.h>
  57#include <asm/mmu_context.h>
  58#include <asm/setup.h>
  59#include <asm/paravirt.h>
  60#include <asm/e820.h>
  61#include <asm/linkage.h>
  62#include <asm/page.h>
  63#include <asm/init.h>
  64#include <asm/pat.h>
  65#include <asm/smp.h>
  66
  67#include <asm/xen/hypercall.h>
  68#include <asm/xen/hypervisor.h>
  69
  70#include <xen/xen.h>
  71#include <xen/page.h>
  72#include <xen/interface/xen.h>
  73#include <xen/interface/hvm/hvm_op.h>
  74#include <xen/interface/version.h>
  75#include <xen/interface/memory.h>
  76#include <xen/hvc-console.h>
  77
  78#include "multicalls.h"
  79#include "mmu.h"
  80#include "debugfs.h"
  81
  82/*
  83 * Protects atomic reservation decrease/increase against concurrent increases.
  84 * Also protects non-atomic updates of current_pages and balloon lists.
  85 */
  86DEFINE_SPINLOCK(xen_reservation_lock);
  87
  88#ifdef CONFIG_X86_32
  89/*
  90 * Identity map, in addition to plain kernel map.  This needs to be
  91 * large enough to allocate page table pages to allocate the rest.
  92 * Each page can map 2MB.
  93 */
  94#define LEVEL1_IDENT_ENTRIES    (PTRS_PER_PTE * 4)
  95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  96#endif
  97#ifdef CONFIG_X86_64
  98/* l3 pud for userspace vsyscall mapping */
  99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 100#endif /* CONFIG_X86_64 */
 101
 102/*
 103 * Note about cr3 (pagetable base) values:
 104 *
 105 * xen_cr3 contains the current logical cr3 value; it contains the
 106 * last set cr3.  This may not be the current effective cr3, because
 107 * its update may be being lazily deferred.  However, a vcpu looking
 108 * at its own cr3 can use this value knowing that it everything will
 109 * be self-consistent.
 110 *
 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 112 * hypercall to set the vcpu cr3 is complete (so it may be a little
 113 * out of date, but it will never be set early).  If one vcpu is
 114 * looking at another vcpu's cr3 value, it should use this variable.
 115 */
 116DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 117DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 118
 119
 120/*
 121 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 122 * redzone above it, so round it up to a PGD boundary.
 123 */
 124#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 125
 126unsigned long arbitrary_virt_to_mfn(void *vaddr)
 127{
 128        xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 129
 130        return PFN_DOWN(maddr.maddr);
 131}
 132
 133xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 134{
 135        unsigned long address = (unsigned long)vaddr;
 136        unsigned int level;
 137        pte_t *pte;
 138        unsigned offset;
 139
 140        /*
 141         * if the PFN is in the linear mapped vaddr range, we can just use
 142         * the (quick) virt_to_machine() p2m lookup
 143         */
 144        if (virt_addr_valid(vaddr))
 145                return virt_to_machine(vaddr);
 146
 147        /* otherwise we have to do a (slower) full page-table walk */
 148
 149        pte = lookup_address(address, &level);
 150        BUG_ON(pte == NULL);
 151        offset = address & ~PAGE_MASK;
 152        return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 153}
 154EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 155
 156void make_lowmem_page_readonly(void *vaddr)
 157{
 158        pte_t *pte, ptev;
 159        unsigned long address = (unsigned long)vaddr;
 160        unsigned int level;
 161
 162        pte = lookup_address(address, &level);
 163        if (pte == NULL)
 164                return;         /* vaddr missing */
 165
 166        ptev = pte_wrprotect(*pte);
 167
 168        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 169                BUG();
 170}
 171
 172void make_lowmem_page_readwrite(void *vaddr)
 173{
 174        pte_t *pte, ptev;
 175        unsigned long address = (unsigned long)vaddr;
 176        unsigned int level;
 177
 178        pte = lookup_address(address, &level);
 179        if (pte == NULL)
 180                return;         /* vaddr missing */
 181
 182        ptev = pte_mkwrite(*pte);
 183
 184        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 185                BUG();
 186}
 187
 188
 189static bool xen_page_pinned(void *ptr)
 190{
 191        struct page *page = virt_to_page(ptr);
 192
 193        return PagePinned(page);
 194}
 195
 196void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 197{
 198        struct multicall_space mcs;
 199        struct mmu_update *u;
 200
 201        trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 202
 203        mcs = xen_mc_entry(sizeof(*u));
 204        u = mcs.args;
 205
 206        /* ptep might be kmapped when using 32-bit HIGHPTE */
 207        u->ptr = virt_to_machine(ptep).maddr;
 208        u->val = pte_val_ma(pteval);
 209
 210        MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 211
 212        xen_mc_issue(PARAVIRT_LAZY_MMU);
 213}
 214EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 215
 216static void xen_extend_mmu_update(const struct mmu_update *update)
 217{
 218        struct multicall_space mcs;
 219        struct mmu_update *u;
 220
 221        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 222
 223        if (mcs.mc != NULL) {
 224                mcs.mc->args[1]++;
 225        } else {
 226                mcs = __xen_mc_entry(sizeof(*u));
 227                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 228        }
 229
 230        u = mcs.args;
 231        *u = *update;
 232}
 233
 234static void xen_extend_mmuext_op(const struct mmuext_op *op)
 235{
 236        struct multicall_space mcs;
 237        struct mmuext_op *u;
 238
 239        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 240
 241        if (mcs.mc != NULL) {
 242                mcs.mc->args[1]++;
 243        } else {
 244                mcs = __xen_mc_entry(sizeof(*u));
 245                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 246        }
 247
 248        u = mcs.args;
 249        *u = *op;
 250}
 251
 252static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 253{
 254        struct mmu_update u;
 255
 256        preempt_disable();
 257
 258        xen_mc_batch();
 259
 260        /* ptr may be ioremapped for 64-bit pagetable setup */
 261        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 262        u.val = pmd_val_ma(val);
 263        xen_extend_mmu_update(&u);
 264
 265        xen_mc_issue(PARAVIRT_LAZY_MMU);
 266
 267        preempt_enable();
 268}
 269
 270static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 271{
 272        trace_xen_mmu_set_pmd(ptr, val);
 273
 274        /* If page is not pinned, we can just update the entry
 275           directly */
 276        if (!xen_page_pinned(ptr)) {
 277                *ptr = val;
 278                return;
 279        }
 280
 281        xen_set_pmd_hyper(ptr, val);
 282}
 283
 284/*
 285 * Associate a virtual page frame with a given physical page frame
 286 * and protection flags for that frame.
 287 */
 288void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 289{
 290        set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 291}
 292
 293static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 294{
 295        struct mmu_update u;
 296
 297        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 298                return false;
 299
 300        xen_mc_batch();
 301
 302        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 303        u.val = pte_val_ma(pteval);
 304        xen_extend_mmu_update(&u);
 305
 306        xen_mc_issue(PARAVIRT_LAZY_MMU);
 307
 308        return true;
 309}
 310
 311static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 312{
 313        if (!xen_batched_set_pte(ptep, pteval)) {
 314                /*
 315                 * Could call native_set_pte() here and trap and
 316                 * emulate the PTE write but with 32-bit guests this
 317                 * needs two traps (one for each of the two 32-bit
 318                 * words in the PTE) so do one hypercall directly
 319                 * instead.
 320                 */
 321                struct mmu_update u;
 322
 323                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 324                u.val = pte_val_ma(pteval);
 325                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 326        }
 327}
 328
 329static void xen_set_pte(pte_t *ptep, pte_t pteval)
 330{
 331        trace_xen_mmu_set_pte(ptep, pteval);
 332        __xen_set_pte(ptep, pteval);
 333}
 334
 335static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 336                    pte_t *ptep, pte_t pteval)
 337{
 338        trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 339        __xen_set_pte(ptep, pteval);
 340}
 341
 342pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 343                                 unsigned long addr, pte_t *ptep)
 344{
 345        /* Just return the pte as-is.  We preserve the bits on commit */
 346        trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 347        return *ptep;
 348}
 349
 350void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 351                                 pte_t *ptep, pte_t pte)
 352{
 353        struct mmu_update u;
 354
 355        trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 356        xen_mc_batch();
 357
 358        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 359        u.val = pte_val_ma(pte);
 360        xen_extend_mmu_update(&u);
 361
 362        xen_mc_issue(PARAVIRT_LAZY_MMU);
 363}
 364
 365/* Assume pteval_t is equivalent to all the other *val_t types. */
 366static pteval_t pte_mfn_to_pfn(pteval_t val)
 367{
 368        if (val & _PAGE_PRESENT) {
 369                unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 370                unsigned long pfn = mfn_to_pfn(mfn);
 371
 372                pteval_t flags = val & PTE_FLAGS_MASK;
 373                if (unlikely(pfn == ~0))
 374                        val = flags & ~_PAGE_PRESENT;
 375                else
 376                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 377        }
 378
 379        return val;
 380}
 381
 382static pteval_t pte_pfn_to_mfn(pteval_t val)
 383{
 384        if (val & _PAGE_PRESENT) {
 385                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 386                pteval_t flags = val & PTE_FLAGS_MASK;
 387                unsigned long mfn;
 388
 389                if (!xen_feature(XENFEAT_auto_translated_physmap))
 390                        mfn = get_phys_to_machine(pfn);
 391                else
 392                        mfn = pfn;
 393                /*
 394                 * If there's no mfn for the pfn, then just create an
 395                 * empty non-present pte.  Unfortunately this loses
 396                 * information about the original pfn, so
 397                 * pte_mfn_to_pfn is asymmetric.
 398                 */
 399                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 400                        mfn = 0;
 401                        flags = 0;
 402                } else {
 403                        /*
 404                         * Paramount to do this test _after_ the
 405                         * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
 406                         * IDENTITY_FRAME_BIT resolves to true.
 407                         */
 408                        mfn &= ~FOREIGN_FRAME_BIT;
 409                        if (mfn & IDENTITY_FRAME_BIT) {
 410                                mfn &= ~IDENTITY_FRAME_BIT;
 411                                flags |= _PAGE_IOMAP;
 412                        }
 413                }
 414                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 415        }
 416
 417        return val;
 418}
 419
 420static pteval_t iomap_pte(pteval_t val)
 421{
 422        if (val & _PAGE_PRESENT) {
 423                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 424                pteval_t flags = val & PTE_FLAGS_MASK;
 425
 426                /* We assume the pte frame number is a MFN, so
 427                   just use it as-is. */
 428                val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 429        }
 430
 431        return val;
 432}
 433
 434static pteval_t xen_pte_val(pte_t pte)
 435{
 436        pteval_t pteval = pte.pte;
 437#if 0
 438        /* If this is a WC pte, convert back from Xen WC to Linux WC */
 439        if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
 440                WARN_ON(!pat_enabled);
 441                pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
 442        }
 443#endif
 444        if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
 445                return pteval;
 446
 447        return pte_mfn_to_pfn(pteval);
 448}
 449PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 450
 451static pgdval_t xen_pgd_val(pgd_t pgd)
 452{
 453        return pte_mfn_to_pfn(pgd.pgd);
 454}
 455PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 456
 457/*
 458 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 459 * are reserved for now, to correspond to the Intel-reserved PAT
 460 * types.
 461 *
 462 * We expect Linux's PAT set as follows:
 463 *
 464 * Idx  PTE flags        Linux    Xen    Default
 465 * 0                     WB       WB     WB
 466 * 1            PWT      WC       WT     WT
 467 * 2        PCD          UC-      UC-    UC-
 468 * 3        PCD PWT      UC       UC     UC
 469 * 4    PAT              WB       WC     WB
 470 * 5    PAT     PWT      WC       WP     WT
 471 * 6    PAT PCD          UC-      UC     UC-
 472 * 7    PAT PCD PWT      UC       UC     UC
 473 */
 474
 475void xen_set_pat(u64 pat)
 476{
 477        /* We expect Linux to use a PAT setting of
 478         * UC UC- WC WB (ignoring the PAT flag) */
 479        WARN_ON(pat != 0x0007010600070106ull);
 480}
 481
 482static pte_t xen_make_pte(pteval_t pte)
 483{
 484        phys_addr_t addr = (pte & PTE_PFN_MASK);
 485#if 0
 486        /* If Linux is trying to set a WC pte, then map to the Xen WC.
 487         * If _PAGE_PAT is set, then it probably means it is really
 488         * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
 489         * things work out OK...
 490         *
 491         * (We should never see kernel mappings with _PAGE_PSE set,
 492         * but we could see hugetlbfs mappings, I think.).
 493         */
 494        if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
 495                if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
 496                        pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
 497        }
 498#endif
 499        /*
 500         * Unprivileged domains are allowed to do IOMAPpings for
 501         * PCI passthrough, but not map ISA space.  The ISA
 502         * mappings are just dummy local mappings to keep other
 503         * parts of the kernel happy.
 504         */
 505        if (unlikely(pte & _PAGE_IOMAP) &&
 506            (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 507                pte = iomap_pte(pte);
 508        } else {
 509                pte &= ~_PAGE_IOMAP;
 510                pte = pte_pfn_to_mfn(pte);
 511        }
 512
 513        return native_make_pte(pte);
 514}
 515PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 516
 517static pgd_t xen_make_pgd(pgdval_t pgd)
 518{
 519        pgd = pte_pfn_to_mfn(pgd);
 520        return native_make_pgd(pgd);
 521}
 522PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 523
 524static pmdval_t xen_pmd_val(pmd_t pmd)
 525{
 526        return pte_mfn_to_pfn(pmd.pmd);
 527}
 528PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 529
 530static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 531{
 532        struct mmu_update u;
 533
 534        preempt_disable();
 535
 536        xen_mc_batch();
 537
 538        /* ptr may be ioremapped for 64-bit pagetable setup */
 539        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 540        u.val = pud_val_ma(val);
 541        xen_extend_mmu_update(&u);
 542
 543        xen_mc_issue(PARAVIRT_LAZY_MMU);
 544
 545        preempt_enable();
 546}
 547
 548static void xen_set_pud(pud_t *ptr, pud_t val)
 549{
 550        trace_xen_mmu_set_pud(ptr, val);
 551
 552        /* If page is not pinned, we can just update the entry
 553           directly */
 554        if (!xen_page_pinned(ptr)) {
 555                *ptr = val;
 556                return;
 557        }
 558
 559        xen_set_pud_hyper(ptr, val);
 560}
 561
 562#ifdef CONFIG_X86_PAE
 563static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 564{
 565        trace_xen_mmu_set_pte_atomic(ptep, pte);
 566        set_64bit((u64 *)ptep, native_pte_val(pte));
 567}
 568
 569static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 570{
 571        trace_xen_mmu_pte_clear(mm, addr, ptep);
 572        if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 573                native_pte_clear(mm, addr, ptep);
 574}
 575
 576static void xen_pmd_clear(pmd_t *pmdp)
 577{
 578        trace_xen_mmu_pmd_clear(pmdp);
 579        set_pmd(pmdp, __pmd(0));
 580}
 581#endif  /* CONFIG_X86_PAE */
 582
 583static pmd_t xen_make_pmd(pmdval_t pmd)
 584{
 585        pmd = pte_pfn_to_mfn(pmd);
 586        return native_make_pmd(pmd);
 587}
 588PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 589
 590#if PAGETABLE_LEVELS == 4
 591static pudval_t xen_pud_val(pud_t pud)
 592{
 593        return pte_mfn_to_pfn(pud.pud);
 594}
 595PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 596
 597static pud_t xen_make_pud(pudval_t pud)
 598{
 599        pud = pte_pfn_to_mfn(pud);
 600
 601        return native_make_pud(pud);
 602}
 603PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 604
 605static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 606{
 607        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 608        unsigned offset = pgd - pgd_page;
 609        pgd_t *user_ptr = NULL;
 610
 611        if (offset < pgd_index(USER_LIMIT)) {
 612                struct page *page = virt_to_page(pgd_page);
 613                user_ptr = (pgd_t *)page->private;
 614                if (user_ptr)
 615                        user_ptr += offset;
 616        }
 617
 618        return user_ptr;
 619}
 620
 621static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 622{
 623        struct mmu_update u;
 624
 625        u.ptr = virt_to_machine(ptr).maddr;
 626        u.val = pgd_val_ma(val);
 627        xen_extend_mmu_update(&u);
 628}
 629
 630/*
 631 * Raw hypercall-based set_pgd, intended for in early boot before
 632 * there's a page structure.  This implies:
 633 *  1. The only existing pagetable is the kernel's
 634 *  2. It is always pinned
 635 *  3. It has no user pagetable attached to it
 636 */
 637static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 638{
 639        preempt_disable();
 640
 641        xen_mc_batch();
 642
 643        __xen_set_pgd_hyper(ptr, val);
 644
 645        xen_mc_issue(PARAVIRT_LAZY_MMU);
 646
 647        preempt_enable();
 648}
 649
 650static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 651{
 652        pgd_t *user_ptr = xen_get_user_pgd(ptr);
 653
 654        trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 655
 656        /* If page is not pinned, we can just update the entry
 657           directly */
 658        if (!xen_page_pinned(ptr)) {
 659                *ptr = val;
 660                if (user_ptr) {
 661                        WARN_ON(xen_page_pinned(user_ptr));
 662                        *user_ptr = val;
 663                }
 664                return;
 665        }
 666
 667        /* If it's pinned, then we can at least batch the kernel and
 668           user updates together. */
 669        xen_mc_batch();
 670
 671        __xen_set_pgd_hyper(ptr, val);
 672        if (user_ptr)
 673                __xen_set_pgd_hyper(user_ptr, val);
 674
 675        xen_mc_issue(PARAVIRT_LAZY_MMU);
 676}
 677#endif  /* PAGETABLE_LEVELS == 4 */
 678
 679/*
 680 * (Yet another) pagetable walker.  This one is intended for pinning a
 681 * pagetable.  This means that it walks a pagetable and calls the
 682 * callback function on each page it finds making up the page table,
 683 * at every level.  It walks the entire pagetable, but it only bothers
 684 * pinning pte pages which are below limit.  In the normal case this
 685 * will be STACK_TOP_MAX, but at boot we need to pin up to
 686 * FIXADDR_TOP.
 687 *
 688 * For 32-bit the important bit is that we don't pin beyond there,
 689 * because then we start getting into Xen's ptes.
 690 *
 691 * For 64-bit, we must skip the Xen hole in the middle of the address
 692 * space, just after the big x86-64 virtual hole.
 693 */
 694static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 695                          int (*func)(struct mm_struct *mm, struct page *,
 696                                      enum pt_level),
 697                          unsigned long limit)
 698{
 699        int flush = 0;
 700        unsigned hole_low, hole_high;
 701        unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 702        unsigned pgdidx, pudidx, pmdidx;
 703
 704        /* The limit is the last byte to be touched */
 705        limit--;
 706        BUG_ON(limit >= FIXADDR_TOP);
 707
 708        if (xen_feature(XENFEAT_auto_translated_physmap))
 709                return 0;
 710
 711        /*
 712         * 64-bit has a great big hole in the middle of the address
 713         * space, which contains the Xen mappings.  On 32-bit these
 714         * will end up making a zero-sized hole and so is a no-op.
 715         */
 716        hole_low = pgd_index(USER_LIMIT);
 717        hole_high = pgd_index(PAGE_OFFSET);
 718
 719        pgdidx_limit = pgd_index(limit);
 720#if PTRS_PER_PUD > 1
 721        pudidx_limit = pud_index(limit);
 722#else
 723        pudidx_limit = 0;
 724#endif
 725#if PTRS_PER_PMD > 1
 726        pmdidx_limit = pmd_index(limit);
 727#else
 728        pmdidx_limit = 0;
 729#endif
 730
 731        for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 732                pud_t *pud;
 733
 734                if (pgdidx >= hole_low && pgdidx < hole_high)
 735                        continue;
 736
 737                if (!pgd_val(pgd[pgdidx]))
 738                        continue;
 739
 740                pud = pud_offset(&pgd[pgdidx], 0);
 741
 742                if (PTRS_PER_PUD > 1) /* not folded */
 743                        flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 744
 745                for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 746                        pmd_t *pmd;
 747
 748                        if (pgdidx == pgdidx_limit &&
 749                            pudidx > pudidx_limit)
 750                                goto out;
 751
 752                        if (pud_none(pud[pudidx]))
 753                                continue;
 754
 755                        pmd = pmd_offset(&pud[pudidx], 0);
 756
 757                        if (PTRS_PER_PMD > 1) /* not folded */
 758                                flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 759
 760                        for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 761                                struct page *pte;
 762
 763                                if (pgdidx == pgdidx_limit &&
 764                                    pudidx == pudidx_limit &&
 765                                    pmdidx > pmdidx_limit)
 766                                        goto out;
 767
 768                                if (pmd_none(pmd[pmdidx]))
 769                                        continue;
 770
 771                                pte = pmd_page(pmd[pmdidx]);
 772                                flush |= (*func)(mm, pte, PT_PTE);
 773                        }
 774                }
 775        }
 776
 777out:
 778        /* Do the top level last, so that the callbacks can use it as
 779           a cue to do final things like tlb flushes. */
 780        flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 781
 782        return flush;
 783}
 784
 785static int xen_pgd_walk(struct mm_struct *mm,
 786                        int (*func)(struct mm_struct *mm, struct page *,
 787                                    enum pt_level),
 788                        unsigned long limit)
 789{
 790        return __xen_pgd_walk(mm, mm->pgd, func, limit);
 791}
 792
 793/* If we're using split pte locks, then take the page's lock and
 794   return a pointer to it.  Otherwise return NULL. */
 795static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 796{
 797        spinlock_t *ptl = NULL;
 798
 799#if USE_SPLIT_PTLOCKS
 800        ptl = __pte_lockptr(page);
 801        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 802#endif
 803
 804        return ptl;
 805}
 806
 807static void xen_pte_unlock(void *v)
 808{
 809        spinlock_t *ptl = v;
 810        spin_unlock(ptl);
 811}
 812
 813static void xen_do_pin(unsigned level, unsigned long pfn)
 814{
 815        struct mmuext_op op;
 816
 817        op.cmd = level;
 818        op.arg1.mfn = pfn_to_mfn(pfn);
 819
 820        xen_extend_mmuext_op(&op);
 821}
 822
 823static int xen_pin_page(struct mm_struct *mm, struct page *page,
 824                        enum pt_level level)
 825{
 826        unsigned pgfl = TestSetPagePinned(page);
 827        int flush;
 828
 829        if (pgfl)
 830                flush = 0;              /* already pinned */
 831        else if (PageHighMem(page))
 832                /* kmaps need flushing if we found an unpinned
 833                   highpage */
 834                flush = 1;
 835        else {
 836                void *pt = lowmem_page_address(page);
 837                unsigned long pfn = page_to_pfn(page);
 838                struct multicall_space mcs = __xen_mc_entry(0);
 839                spinlock_t *ptl;
 840
 841                flush = 0;
 842
 843                /*
 844                 * We need to hold the pagetable lock between the time
 845                 * we make the pagetable RO and when we actually pin
 846                 * it.  If we don't, then other users may come in and
 847                 * attempt to update the pagetable by writing it,
 848                 * which will fail because the memory is RO but not
 849                 * pinned, so Xen won't do the trap'n'emulate.
 850                 *
 851                 * If we're using split pte locks, we can't hold the
 852                 * entire pagetable's worth of locks during the
 853                 * traverse, because we may wrap the preempt count (8
 854                 * bits).  The solution is to mark RO and pin each PTE
 855                 * page while holding the lock.  This means the number
 856                 * of locks we end up holding is never more than a
 857                 * batch size (~32 entries, at present).
 858                 *
 859                 * If we're not using split pte locks, we needn't pin
 860                 * the PTE pages independently, because we're
 861                 * protected by the overall pagetable lock.
 862                 */
 863                ptl = NULL;
 864                if (level == PT_PTE)
 865                        ptl = xen_pte_lock(page, mm);
 866
 867                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 868                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 869                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 870
 871                if (ptl) {
 872                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 873
 874                        /* Queue a deferred unlock for when this batch
 875                           is completed. */
 876                        xen_mc_callback(xen_pte_unlock, ptl);
 877                }
 878        }
 879
 880        return flush;
 881}
 882
 883/* This is called just after a mm has been created, but it has not
 884   been used yet.  We need to make sure that its pagetable is all
 885   read-only, and can be pinned. */
 886static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 887{
 888        trace_xen_mmu_pgd_pin(mm, pgd);
 889
 890        xen_mc_batch();
 891
 892        if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 893                /* re-enable interrupts for flushing */
 894                xen_mc_issue(0);
 895
 896                kmap_flush_unused();
 897
 898                xen_mc_batch();
 899        }
 900
 901#ifdef CONFIG_X86_64
 902        {
 903                pgd_t *user_pgd = xen_get_user_pgd(pgd);
 904
 905                xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 906
 907                if (user_pgd) {
 908                        xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 909                        xen_do_pin(MMUEXT_PIN_L4_TABLE,
 910                                   PFN_DOWN(__pa(user_pgd)));
 911                }
 912        }
 913#else /* CONFIG_X86_32 */
 914#ifdef CONFIG_X86_PAE
 915        /* Need to make sure unshared kernel PMD is pinnable */
 916        xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 917                     PT_PMD);
 918#endif
 919        xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 920#endif /* CONFIG_X86_64 */
 921        xen_mc_issue(0);
 922}
 923
 924static void xen_pgd_pin(struct mm_struct *mm)
 925{
 926        __xen_pgd_pin(mm, mm->pgd);
 927}
 928
 929/*
 930 * On save, we need to pin all pagetables to make sure they get their
 931 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 932 * them (unpinned pgds are not currently in use, probably because the
 933 * process is under construction or destruction).
 934 *
 935 * Expected to be called in stop_machine() ("equivalent to taking
 936 * every spinlock in the system"), so the locking doesn't really
 937 * matter all that much.
 938 */
 939void xen_mm_pin_all(void)
 940{
 941        struct page *page;
 942
 943        spin_lock(&pgd_lock);
 944
 945        list_for_each_entry(page, &pgd_list, lru) {
 946                if (!PagePinned(page)) {
 947                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 948                        SetPageSavePinned(page);
 949                }
 950        }
 951
 952        spin_unlock(&pgd_lock);
 953}
 954
 955/*
 956 * The init_mm pagetable is really pinned as soon as its created, but
 957 * that's before we have page structures to store the bits.  So do all
 958 * the book-keeping now.
 959 */
 960static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 961                                  enum pt_level level)
 962{
 963        SetPagePinned(page);
 964        return 0;
 965}
 966
 967static void __init xen_mark_init_mm_pinned(void)
 968{
 969        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 970}
 971
 972static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 973                          enum pt_level level)
 974{
 975        unsigned pgfl = TestClearPagePinned(page);
 976
 977        if (pgfl && !PageHighMem(page)) {
 978                void *pt = lowmem_page_address(page);
 979                unsigned long pfn = page_to_pfn(page);
 980                spinlock_t *ptl = NULL;
 981                struct multicall_space mcs;
 982
 983                /*
 984                 * Do the converse to pin_page.  If we're using split
 985                 * pte locks, we must be holding the lock for while
 986                 * the pte page is unpinned but still RO to prevent
 987                 * concurrent updates from seeing it in this
 988                 * partially-pinned state.
 989                 */
 990                if (level == PT_PTE) {
 991                        ptl = xen_pte_lock(page, mm);
 992
 993                        if (ptl)
 994                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 995                }
 996
 997                mcs = __xen_mc_entry(0);
 998
 999                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000                                        pfn_pte(pfn, PAGE_KERNEL),
1001                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002
1003                if (ptl) {
1004                        /* unlock when batch completed */
1005                        xen_mc_callback(xen_pte_unlock, ptl);
1006                }
1007        }
1008
1009        return 0;               /* never need to flush on unpin */
1010}
1011
1012/* Release a pagetables pages back as normal RW */
1013static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014{
1015        trace_xen_mmu_pgd_unpin(mm, pgd);
1016
1017        xen_mc_batch();
1018
1019        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020
1021#ifdef CONFIG_X86_64
1022        {
1023                pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024
1025                if (user_pgd) {
1026                        xen_do_pin(MMUEXT_UNPIN_TABLE,
1027                                   PFN_DOWN(__pa(user_pgd)));
1028                        xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029                }
1030        }
1031#endif
1032
1033#ifdef CONFIG_X86_PAE
1034        /* Need to make sure unshared kernel PMD is unpinned */
1035        xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036                       PT_PMD);
1037#endif
1038
1039        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040
1041        xen_mc_issue(0);
1042}
1043
1044static void xen_pgd_unpin(struct mm_struct *mm)
1045{
1046        __xen_pgd_unpin(mm, mm->pgd);
1047}
1048
1049/*
1050 * On resume, undo any pinning done at save, so that the rest of the
1051 * kernel doesn't see any unexpected pinned pagetables.
1052 */
1053void xen_mm_unpin_all(void)
1054{
1055        struct page *page;
1056
1057        spin_lock(&pgd_lock);
1058
1059        list_for_each_entry(page, &pgd_list, lru) {
1060                if (PageSavePinned(page)) {
1061                        BUG_ON(!PagePinned(page));
1062                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063                        ClearPageSavePinned(page);
1064                }
1065        }
1066
1067        spin_unlock(&pgd_lock);
1068}
1069
1070static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1071{
1072        spin_lock(&next->page_table_lock);
1073        xen_pgd_pin(next);
1074        spin_unlock(&next->page_table_lock);
1075}
1076
1077static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1078{
1079        spin_lock(&mm->page_table_lock);
1080        xen_pgd_pin(mm);
1081        spin_unlock(&mm->page_table_lock);
1082}
1083
1084
1085#ifdef CONFIG_SMP
1086/* Another cpu may still have their %cr3 pointing at the pagetable, so
1087   we need to repoint it somewhere else before we can unpin it. */
1088static void drop_other_mm_ref(void *info)
1089{
1090        struct mm_struct *mm = info;
1091        struct mm_struct *active_mm;
1092
1093        active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094
1095        if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096                leave_mm(smp_processor_id());
1097
1098        /* If this cpu still has a stale cr3 reference, then make sure
1099           it has been flushed. */
1100        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101                load_cr3(swapper_pg_dir);
1102}
1103
1104static void xen_drop_mm_ref(struct mm_struct *mm)
1105{
1106        cpumask_var_t mask;
1107        unsigned cpu;
1108
1109        if (current->active_mm == mm) {
1110                if (current->mm == mm)
1111                        load_cr3(swapper_pg_dir);
1112                else
1113                        leave_mm(smp_processor_id());
1114        }
1115
1116        /* Get the "official" set of cpus referring to our pagetable. */
1117        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118                for_each_online_cpu(cpu) {
1119                        if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120                            && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121                                continue;
1122                        smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123                }
1124                return;
1125        }
1126        cpumask_copy(mask, mm_cpumask(mm));
1127
1128        /* It's possible that a vcpu may have a stale reference to our
1129           cr3, because its in lazy mode, and it hasn't yet flushed
1130           its set of pending hypercalls yet.  In this case, we can
1131           look at its actual current cr3 value, and force it to flush
1132           if needed. */
1133        for_each_online_cpu(cpu) {
1134                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135                        cpumask_set_cpu(cpu, mask);
1136        }
1137
1138        if (!cpumask_empty(mask))
1139                smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140        free_cpumask_var(mask);
1141}
1142#else
1143static void xen_drop_mm_ref(struct mm_struct *mm)
1144{
1145        if (current->active_mm == mm)
1146                load_cr3(swapper_pg_dir);
1147}
1148#endif
1149
1150/*
1151 * While a process runs, Xen pins its pagetables, which means that the
1152 * hypervisor forces it to be read-only, and it controls all updates
1153 * to it.  This means that all pagetable updates have to go via the
1154 * hypervisor, which is moderately expensive.
1155 *
1156 * Since we're pulling the pagetable down, we switch to use init_mm,
1157 * unpin old process pagetable and mark it all read-write, which
1158 * allows further operations on it to be simple memory accesses.
1159 *
1160 * The only subtle point is that another CPU may be still using the
1161 * pagetable because of lazy tlb flushing.  This means we need need to
1162 * switch all CPUs off this pagetable before we can unpin it.
1163 */
1164static void xen_exit_mmap(struct mm_struct *mm)
1165{
1166        get_cpu();              /* make sure we don't move around */
1167        xen_drop_mm_ref(mm);
1168        put_cpu();
1169
1170        spin_lock(&mm->page_table_lock);
1171
1172        /* pgd may not be pinned in the error exit path of execve */
1173        if (xen_page_pinned(mm->pgd))
1174                xen_pgd_unpin(mm);
1175
1176        spin_unlock(&mm->page_table_lock);
1177}
1178
1179static void xen_post_allocator_init(void);
1180
1181static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1182{
1183        /* reserve the range used */
1184        native_pagetable_reserve(start, end);
1185
1186        /* set as RW the rest */
1187        printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1188                        PFN_PHYS(pgt_buf_top));
1189        while (end < PFN_PHYS(pgt_buf_top)) {
1190                make_lowmem_page_readwrite(__va(end));
1191                end += PAGE_SIZE;
1192        }
1193}
1194
1195#ifdef CONFIG_X86_64
1196static void __init xen_cleanhighmap(unsigned long vaddr,
1197                                    unsigned long vaddr_end)
1198{
1199        unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1200        pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1201
1202        /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1203         * We include the PMD passed in on _both_ boundaries. */
1204        for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1205                        pmd++, vaddr += PMD_SIZE) {
1206                if (pmd_none(*pmd))
1207                        continue;
1208                if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1209                        set_pmd(pmd, __pmd(0));
1210        }
1211        /* In case we did something silly, we should crash in this function
1212         * instead of somewhere later and be confusing. */
1213        xen_mc_flush();
1214}
1215#endif
1216static void __init xen_pagetable_init(void)
1217{
1218#ifdef CONFIG_X86_64
1219        unsigned long size;
1220        unsigned long addr;
1221#endif
1222        paging_init();
1223        xen_setup_shared_info();
1224#ifdef CONFIG_X86_64
1225        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1226                unsigned long new_mfn_list;
1227
1228                size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1229
1230                /* On 32-bit, we get zero so this never gets executed. */
1231                new_mfn_list = xen_revector_p2m_tree();
1232                if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
1233                        /* using __ka address and sticking INVALID_P2M_ENTRY! */
1234                        memset((void *)xen_start_info->mfn_list, 0xff, size);
1235
1236                        /* We should be in __ka space. */
1237                        BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1238                        addr = xen_start_info->mfn_list;
1239                        /* We roundup to the PMD, which means that if anybody at this stage is
1240                         * using the __ka address of xen_start_info or xen_start_info->shared_info
1241                         * they are in going to crash. Fortunatly we have already revectored
1242                         * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1243                        size = roundup(size, PMD_SIZE);
1244                        xen_cleanhighmap(addr, addr + size);
1245
1246                        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1247                        memblock_free(__pa(xen_start_info->mfn_list), size);
1248                        /* And revector! Bye bye old array */
1249                        xen_start_info->mfn_list = new_mfn_list;
1250                } else
1251                        goto skip;
1252        }
1253        /* At this stage, cleanup_highmap has already cleaned __ka space
1254         * from _brk_limit way up to the max_pfn_mapped (which is the end of
1255         * the ramdisk). We continue on, erasing PMD entries that point to page
1256         * tables - do note that they are accessible at this stage via __va.
1257         * For good measure we also round up to the PMD - which means that if
1258         * anybody is using __ka address to the initial boot-stack - and try
1259         * to use it - they are going to crash. The xen_start_info has been
1260         * taken care of already in xen_setup_kernel_pagetable. */
1261        addr = xen_start_info->pt_base;
1262        size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1263
1264        xen_cleanhighmap(addr, addr + size);
1265        xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1266#ifdef DEBUG
1267        /* This is superflous and is not neccessary, but you know what
1268         * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1269         * anything at this stage. */
1270        xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1271#endif
1272skip:
1273#endif
1274        xen_post_allocator_init();
1275}
1276static void xen_write_cr2(unsigned long cr2)
1277{
1278        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1279}
1280
1281static unsigned long xen_read_cr2(void)
1282{
1283        return this_cpu_read(xen_vcpu)->arch.cr2;
1284}
1285
1286unsigned long xen_read_cr2_direct(void)
1287{
1288        return this_cpu_read(xen_vcpu_info.arch.cr2);
1289}
1290
1291void xen_flush_tlb_all(void)
1292{
1293        struct mmuext_op *op;
1294        struct multicall_space mcs;
1295
1296        trace_xen_mmu_flush_tlb_all(0);
1297
1298        preempt_disable();
1299
1300        mcs = xen_mc_entry(sizeof(*op));
1301
1302        op = mcs.args;
1303        op->cmd = MMUEXT_TLB_FLUSH_ALL;
1304        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1305
1306        xen_mc_issue(PARAVIRT_LAZY_MMU);
1307
1308        preempt_enable();
1309}
1310static void xen_flush_tlb(void)
1311{
1312        struct mmuext_op *op;
1313        struct multicall_space mcs;
1314
1315        trace_xen_mmu_flush_tlb(0);
1316
1317        preempt_disable();
1318
1319        mcs = xen_mc_entry(sizeof(*op));
1320
1321        op = mcs.args;
1322        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1323        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1324
1325        xen_mc_issue(PARAVIRT_LAZY_MMU);
1326
1327        preempt_enable();
1328}
1329
1330static void xen_flush_tlb_single(unsigned long addr)
1331{
1332        struct mmuext_op *op;
1333        struct multicall_space mcs;
1334
1335        trace_xen_mmu_flush_tlb_single(addr);
1336
1337        preempt_disable();
1338
1339        mcs = xen_mc_entry(sizeof(*op));
1340        op = mcs.args;
1341        op->cmd = MMUEXT_INVLPG_LOCAL;
1342        op->arg1.linear_addr = addr & PAGE_MASK;
1343        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1344
1345        xen_mc_issue(PARAVIRT_LAZY_MMU);
1346
1347        preempt_enable();
1348}
1349
1350static void xen_flush_tlb_others(const struct cpumask *cpus,
1351                                 struct mm_struct *mm, unsigned long start,
1352                                 unsigned long end)
1353{
1354        struct {
1355                struct mmuext_op op;
1356#ifdef CONFIG_SMP
1357                DECLARE_BITMAP(mask, num_processors);
1358#else
1359                DECLARE_BITMAP(mask, NR_CPUS);
1360#endif
1361        } *args;
1362        struct multicall_space mcs;
1363
1364        trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1365
1366        if (cpumask_empty(cpus))
1367                return;         /* nothing to do */
1368
1369        mcs = xen_mc_entry(sizeof(*args));
1370        args = mcs.args;
1371        args->op.arg2.vcpumask = to_cpumask(args->mask);
1372
1373        /* Remove us, and any offline CPUS. */
1374        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1375        cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1376
1377        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1378        if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1379                args->op.cmd = MMUEXT_INVLPG_MULTI;
1380                args->op.arg1.linear_addr = start;
1381        }
1382
1383        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1384
1385        xen_mc_issue(PARAVIRT_LAZY_MMU);
1386}
1387
1388static unsigned long xen_read_cr3(void)
1389{
1390        return this_cpu_read(xen_cr3);
1391}
1392
1393static void set_current_cr3(void *v)
1394{
1395        this_cpu_write(xen_current_cr3, (unsigned long)v);
1396}
1397
1398static void __xen_write_cr3(bool kernel, unsigned long cr3)
1399{
1400        struct mmuext_op op;
1401        unsigned long mfn;
1402
1403        trace_xen_mmu_write_cr3(kernel, cr3);
1404
1405        if (cr3)
1406                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1407        else
1408                mfn = 0;
1409
1410        WARN_ON(mfn == 0 && kernel);
1411
1412        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1413        op.arg1.mfn = mfn;
1414
1415        xen_extend_mmuext_op(&op);
1416
1417        if (kernel) {
1418                this_cpu_write(xen_cr3, cr3);
1419
1420                /* Update xen_current_cr3 once the batch has actually
1421                   been submitted. */
1422                xen_mc_callback(set_current_cr3, (void *)cr3);
1423        }
1424}
1425
1426static void xen_write_cr3(unsigned long cr3)
1427{
1428        BUG_ON(preemptible());
1429
1430        xen_mc_batch();  /* disables interrupts */
1431
1432        /* Update while interrupts are disabled, so its atomic with
1433           respect to ipis */
1434        this_cpu_write(xen_cr3, cr3);
1435
1436        __xen_write_cr3(true, cr3);
1437
1438#ifdef CONFIG_X86_64
1439        {
1440                pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1441                if (user_pgd)
1442                        __xen_write_cr3(false, __pa(user_pgd));
1443                else
1444                        __xen_write_cr3(false, 0);
1445        }
1446#endif
1447
1448        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1449}
1450
1451static int xen_pgd_alloc(struct mm_struct *mm)
1452{
1453        pgd_t *pgd = mm->pgd;
1454        int ret = 0;
1455
1456        BUG_ON(PagePinned(virt_to_page(pgd)));
1457
1458#ifdef CONFIG_X86_64
1459        {
1460                struct page *page = virt_to_page(pgd);
1461                pgd_t *user_pgd;
1462
1463                BUG_ON(page->private != 0);
1464
1465                ret = -ENOMEM;
1466
1467                user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1468                page->private = (unsigned long)user_pgd;
1469
1470                if (user_pgd != NULL) {
1471                        user_pgd[pgd_index(VSYSCALL_START)] =
1472                                __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1473                        ret = 0;
1474                }
1475
1476                BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1477        }
1478#endif
1479
1480        return ret;
1481}
1482
1483static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1484{
1485#ifdef CONFIG_X86_64
1486        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1487
1488        if (user_pgd)
1489                free_page((unsigned long)user_pgd);
1490#endif
1491}
1492
1493#ifdef CONFIG_X86_32
1494static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1495{
1496        /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1497        if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1498                pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1499                               pte_val_ma(pte));
1500
1501        return pte;
1502}
1503#else /* CONFIG_X86_64 */
1504static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1505{
1506        unsigned long pfn = pte_pfn(pte);
1507
1508        /*
1509         * If the new pfn is within the range of the newly allocated
1510         * kernel pagetable, and it isn't being mapped into an
1511         * early_ioremap fixmap slot as a freshly allocated page, make sure
1512         * it is RO.
1513         */
1514        if (((!is_early_ioremap_ptep(ptep) &&
1515                        pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1516                        (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1517                pte = pte_wrprotect(pte);
1518
1519        return pte;
1520}
1521#endif /* CONFIG_X86_64 */
1522
1523/*
1524 * Init-time set_pte while constructing initial pagetables, which
1525 * doesn't allow RO page table pages to be remapped RW.
1526 *
1527 * If there is no MFN for this PFN then this page is initially
1528 * ballooned out so clear the PTE (as in decrease_reservation() in
1529 * drivers/xen/balloon.c).
1530 *
1531 * Many of these PTE updates are done on unpinned and writable pages
1532 * and doing a hypercall for these is unnecessary and expensive.  At
1533 * this point it is not possible to tell if a page is pinned or not,
1534 * so always write the PTE directly and rely on Xen trapping and
1535 * emulating any updates as necessary.
1536 */
1537static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1538{
1539        if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1540                pte = mask_rw_pte(ptep, pte);
1541        else
1542                pte = __pte_ma(0);
1543
1544        native_set_pte(ptep, pte);
1545}
1546
1547static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1548{
1549        struct mmuext_op op;
1550        op.cmd = cmd;
1551        op.arg1.mfn = pfn_to_mfn(pfn);
1552        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1553                BUG();
1554}
1555
1556/* Early in boot, while setting up the initial pagetable, assume
1557   everything is pinned. */
1558static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1559{
1560#ifdef CONFIG_FLATMEM
1561        BUG_ON(mem_map);        /* should only be used early */
1562#endif
1563        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1564        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1565}
1566
1567/* Used for pmd and pud */
1568static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1569{
1570#ifdef CONFIG_FLATMEM
1571        BUG_ON(mem_map);        /* should only be used early */
1572#endif
1573        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1574}
1575
1576/* Early release_pte assumes that all pts are pinned, since there's
1577   only init_mm and anything attached to that is pinned. */
1578static void __init xen_release_pte_init(unsigned long pfn)
1579{
1580        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1581        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1582}
1583
1584static void __init xen_release_pmd_init(unsigned long pfn)
1585{
1586        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1587}
1588
1589static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1590{
1591        struct multicall_space mcs;
1592        struct mmuext_op *op;
1593
1594        mcs = __xen_mc_entry(sizeof(*op));
1595        op = mcs.args;
1596        op->cmd = cmd;
1597        op->arg1.mfn = pfn_to_mfn(pfn);
1598
1599        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1600}
1601
1602static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1603{
1604        struct multicall_space mcs;
1605        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1606
1607        mcs = __xen_mc_entry(0);
1608        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1609                                pfn_pte(pfn, prot), 0);
1610}
1611
1612/* This needs to make sure the new pte page is pinned iff its being
1613   attached to a pinned pagetable. */
1614static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1615                                    unsigned level)
1616{
1617        bool pinned = PagePinned(virt_to_page(mm->pgd));
1618
1619        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1620
1621        if (pinned) {
1622                struct page *page = pfn_to_page(pfn);
1623
1624                SetPagePinned(page);
1625
1626                if (!PageHighMem(page)) {
1627                        xen_mc_batch();
1628
1629                        __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1630
1631                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1632                                __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1633
1634                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1635                } else {
1636                        /* make sure there are no stray mappings of
1637                           this page */
1638                        kmap_flush_unused();
1639                }
1640        }
1641}
1642
1643static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1644{
1645        xen_alloc_ptpage(mm, pfn, PT_PTE);
1646}
1647
1648static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1649{
1650        xen_alloc_ptpage(mm, pfn, PT_PMD);
1651}
1652
1653/* This should never happen until we're OK to use struct page */
1654static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1655{
1656        struct page *page = pfn_to_page(pfn);
1657        bool pinned = PagePinned(page);
1658
1659        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1660
1661        if (pinned) {
1662                if (!PageHighMem(page)) {
1663                        xen_mc_batch();
1664
1665                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1666                                __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1667
1668                        __set_pfn_prot(pfn, PAGE_KERNEL);
1669
1670                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1671                }
1672                ClearPagePinned(page);
1673        }
1674}
1675
1676static void xen_release_pte(unsigned long pfn)
1677{
1678        xen_release_ptpage(pfn, PT_PTE);
1679}
1680
1681static void xen_release_pmd(unsigned long pfn)
1682{
1683        xen_release_ptpage(pfn, PT_PMD);
1684}
1685
1686#if PAGETABLE_LEVELS == 4
1687static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1688{
1689        xen_alloc_ptpage(mm, pfn, PT_PUD);
1690}
1691
1692static void xen_release_pud(unsigned long pfn)
1693{
1694        xen_release_ptpage(pfn, PT_PUD);
1695}
1696#endif
1697
1698void __init xen_reserve_top(void)
1699{
1700#ifdef CONFIG_X86_32
1701        unsigned long top = HYPERVISOR_VIRT_START;
1702        struct xen_platform_parameters pp;
1703
1704        if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1705                top = pp.virt_start;
1706
1707        reserve_top_address(-top);
1708#endif  /* CONFIG_X86_32 */
1709}
1710
1711/*
1712 * Like __va(), but returns address in the kernel mapping (which is
1713 * all we have until the physical memory mapping has been set up.
1714 */
1715static void *__ka(phys_addr_t paddr)
1716{
1717#ifdef CONFIG_X86_64
1718        return (void *)(paddr + __START_KERNEL_map);
1719#else
1720        return __va(paddr);
1721#endif
1722}
1723
1724/* Convert a machine address to physical address */
1725static unsigned long m2p(phys_addr_t maddr)
1726{
1727        phys_addr_t paddr;
1728
1729        maddr &= PTE_PFN_MASK;
1730        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1731
1732        return paddr;
1733}
1734
1735/* Convert a machine address to kernel virtual */
1736static void *m2v(phys_addr_t maddr)
1737{
1738        return __ka(m2p(maddr));
1739}
1740
1741/* Set the page permissions on an identity-mapped pages */
1742static void set_page_prot(void *addr, pgprot_t prot)
1743{
1744        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1745        pte_t pte = pfn_pte(pfn, prot);
1746
1747        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1748                BUG();
1749}
1750#ifdef CONFIG_X86_32
1751static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1752{
1753        unsigned pmdidx, pteidx;
1754        unsigned ident_pte;
1755        unsigned long pfn;
1756
1757        level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1758                                      PAGE_SIZE);
1759
1760        ident_pte = 0;
1761        pfn = 0;
1762        for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1763                pte_t *pte_page;
1764
1765                /* Reuse or allocate a page of ptes */
1766                if (pmd_present(pmd[pmdidx]))
1767                        pte_page = m2v(pmd[pmdidx].pmd);
1768                else {
1769                        /* Check for free pte pages */
1770                        if (ident_pte == LEVEL1_IDENT_ENTRIES)
1771                                break;
1772
1773                        pte_page = &level1_ident_pgt[ident_pte];
1774                        ident_pte += PTRS_PER_PTE;
1775
1776                        pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1777                }
1778
1779                /* Install mappings */
1780                for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1781                        pte_t pte;
1782
1783#ifdef CONFIG_X86_32
1784                        if (pfn > max_pfn_mapped)
1785                                max_pfn_mapped = pfn;
1786#endif
1787
1788                        if (!pte_none(pte_page[pteidx]))
1789                                continue;
1790
1791                        pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1792                        pte_page[pteidx] = pte;
1793                }
1794        }
1795
1796        for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1797                set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1798
1799        set_page_prot(pmd, PAGE_KERNEL_RO);
1800}
1801#endif
1802void __init xen_setup_machphys_mapping(void)
1803{
1804        struct xen_machphys_mapping mapping;
1805
1806        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1807                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1808                machine_to_phys_nr = mapping.max_mfn + 1;
1809        } else {
1810                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1811        }
1812#ifdef CONFIG_X86_32
1813        WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1814                < machine_to_phys_mapping);
1815#endif
1816}
1817
1818#ifdef CONFIG_X86_64
1819static void convert_pfn_mfn(void *v)
1820{
1821        pte_t *pte = v;
1822        int i;
1823
1824        /* All levels are converted the same way, so just treat them
1825           as ptes. */
1826        for (i = 0; i < PTRS_PER_PTE; i++)
1827                pte[i] = xen_make_pte(pte[i].pte);
1828}
1829static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1830                                 unsigned long addr)
1831{
1832        if (*pt_base == PFN_DOWN(__pa(addr))) {
1833                set_page_prot((void *)addr, PAGE_KERNEL);
1834                clear_page((void *)addr);
1835                (*pt_base)++;
1836        }
1837        if (*pt_end == PFN_DOWN(__pa(addr))) {
1838                set_page_prot((void *)addr, PAGE_KERNEL);
1839                clear_page((void *)addr);
1840                (*pt_end)--;
1841        }
1842}
1843/*
1844 * Set up the initial kernel pagetable.
1845 *
1846 * We can construct this by grafting the Xen provided pagetable into
1847 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1848 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1849 * means that only the kernel has a physical mapping to start with -
1850 * but that's enough to get __va working.  We need to fill in the rest
1851 * of the physical mapping once some sort of allocator has been set
1852 * up.
1853 */
1854void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1855{
1856        pud_t *l3;
1857        pmd_t *l2;
1858        unsigned long addr[3];
1859        unsigned long pt_base, pt_end;
1860        unsigned i;
1861
1862        /* max_pfn_mapped is the last pfn mapped in the initial memory
1863         * mappings. Considering that on Xen after the kernel mappings we
1864         * have the mappings of some pages that don't exist in pfn space, we
1865         * set max_pfn_mapped to the last real pfn mapped. */
1866        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1867
1868        pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1869        pt_end = pt_base + xen_start_info->nr_pt_frames;
1870
1871        /* Zap identity mapping */
1872        init_level4_pgt[0] = __pgd(0);
1873
1874        /* Pre-constructed entries are in pfn, so convert to mfn */
1875        /* L4[272] -> level3_ident_pgt
1876         * L4[511] -> level3_kernel_pgt */
1877        convert_pfn_mfn(init_level4_pgt);
1878
1879        /* L3_i[0] -> level2_ident_pgt */
1880        convert_pfn_mfn(level3_ident_pgt);
1881        /* L3_k[510] -> level2_kernel_pgt
1882         * L3_i[511] -> level2_fixmap_pgt */
1883        convert_pfn_mfn(level3_kernel_pgt);
1884
1885        /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1886        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1887        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1888
1889        addr[0] = (unsigned long)pgd;
1890        addr[1] = (unsigned long)l3;
1891        addr[2] = (unsigned long)l2;
1892        /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1893         * Both L4[272][0] and L4[511][511] have entries that point to the same
1894         * L2 (PMD) tables. Meaning that if you modify it in __va space
1895         * it will be also modified in the __ka space! (But if you just
1896         * modify the PMD table to point to other PTE's or none, then you
1897         * are OK - which is what cleanup_highmap does) */
1898        copy_page(level2_ident_pgt, l2);
1899        /* Graft it onto L4[511][511] */
1900        copy_page(level2_kernel_pgt, l2);
1901
1902        /* Get [511][510] and graft that in level2_fixmap_pgt */
1903        l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1904        l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1905        copy_page(level2_fixmap_pgt, l2);
1906        /* Note that we don't do anything with level1_fixmap_pgt which
1907         * we don't need. */
1908
1909        /* Make pagetable pieces RO */
1910        set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1911        set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1912        set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1913        set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1914        set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1915        set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1916        set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1917
1918        /* Pin down new L4 */
1919        pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1920                          PFN_DOWN(__pa_symbol(init_level4_pgt)));
1921
1922        /* Unpin Xen-provided one */
1923        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1924
1925        /*
1926         * At this stage there can be no user pgd, and no page
1927         * structure to attach it to, so make sure we just set kernel
1928         * pgd.
1929         */
1930        xen_mc_batch();
1931        __xen_write_cr3(true, __pa(init_level4_pgt));
1932        xen_mc_issue(PARAVIRT_LAZY_CPU);
1933
1934        /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1935         * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1936         * the initial domain. For guests using the toolstack, they are in:
1937         * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1938         * rip out the [L4] (pgd), but for guests we shave off three pages.
1939         */
1940        for (i = 0; i < ARRAY_SIZE(addr); i++)
1941                check_pt_base(&pt_base, &pt_end, addr[i]);
1942
1943        /* Our (by three pages) smaller Xen pagetable that we are using */
1944        memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1945        /* Revector the xen_start_info */
1946        xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1947}
1948#else   /* !CONFIG_X86_64 */
1949static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1950static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1951
1952static void __init xen_write_cr3_init(unsigned long cr3)
1953{
1954        unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1955
1956        BUG_ON(read_cr3() != __pa(initial_page_table));
1957        BUG_ON(cr3 != __pa(swapper_pg_dir));
1958
1959        /*
1960         * We are switching to swapper_pg_dir for the first time (from
1961         * initial_page_table) and therefore need to mark that page
1962         * read-only and then pin it.
1963         *
1964         * Xen disallows sharing of kernel PMDs for PAE
1965         * guests. Therefore we must copy the kernel PMD from
1966         * initial_page_table into a new kernel PMD to be used in
1967         * swapper_pg_dir.
1968         */
1969        swapper_kernel_pmd =
1970                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1971        copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1972        swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1973                __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1974        set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1975
1976        set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1977        xen_write_cr3(cr3);
1978        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1979
1980        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1981                          PFN_DOWN(__pa(initial_page_table)));
1982        set_page_prot(initial_page_table, PAGE_KERNEL);
1983        set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1984
1985        pv_mmu_ops.write_cr3 = &xen_write_cr3;
1986}
1987
1988void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1989{
1990        pmd_t *kernel_pmd;
1991
1992        initial_kernel_pmd =
1993                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1994
1995        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1996                                  xen_start_info->nr_pt_frames * PAGE_SIZE +
1997                                  512*1024);
1998
1999        kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2000        copy_page(initial_kernel_pmd, kernel_pmd);
2001
2002        xen_map_identity_early(initial_kernel_pmd, max_pfn);
2003
2004        copy_page(initial_page_table, pgd);
2005        initial_page_table[KERNEL_PGD_BOUNDARY] =
2006                __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2007
2008        set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2009        set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2010        set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2011
2012        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2013
2014        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2015                          PFN_DOWN(__pa(initial_page_table)));
2016        xen_write_cr3(__pa(initial_page_table));
2017
2018        memblock_reserve(__pa(xen_start_info->pt_base),
2019                         xen_start_info->nr_pt_frames * PAGE_SIZE);
2020}
2021#endif  /* CONFIG_X86_64 */
2022
2023static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2024
2025static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2026{
2027        pte_t pte;
2028
2029        phys >>= PAGE_SHIFT;
2030
2031        switch (idx) {
2032        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2033#ifdef CONFIG_X86_F00F_BUG
2034        case FIX_F00F_IDT:
2035#endif
2036#ifdef CONFIG_X86_32
2037        case FIX_WP_TEST:
2038        case FIX_VDSO:
2039# ifdef CONFIG_HIGHMEM
2040        case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2041# endif
2042#else
2043        case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2044        case VVAR_PAGE:
2045#endif
2046        case FIX_TEXT_POKE0:
2047        case FIX_TEXT_POKE1:
2048                /* All local page mappings */
2049                pte = pfn_pte(phys, prot);
2050                break;
2051
2052#ifdef CONFIG_X86_LOCAL_APIC
2053        case FIX_APIC_BASE:     /* maps dummy local APIC */
2054                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2055                break;
2056#endif
2057
2058#ifdef CONFIG_X86_IO_APIC
2059        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2060                /*
2061                 * We just don't map the IO APIC - all access is via
2062                 * hypercalls.  Keep the address in the pte for reference.
2063                 */
2064                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2065                break;
2066#endif
2067
2068        case FIX_PARAVIRT_BOOTMAP:
2069                /* This is an MFN, but it isn't an IO mapping from the
2070                   IO domain */
2071                pte = mfn_pte(phys, prot);
2072                break;
2073
2074        default:
2075                /* By default, set_fixmap is used for hardware mappings */
2076                pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2077                break;
2078        }
2079
2080        __native_set_fixmap(idx, pte);
2081
2082#ifdef CONFIG_X86_64
2083        /* Replicate changes to map the vsyscall page into the user
2084           pagetable vsyscall mapping. */
2085        if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2086            idx == VVAR_PAGE) {
2087                unsigned long vaddr = __fix_to_virt(idx);
2088                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2089        }
2090#endif
2091}
2092
2093static void __init xen_post_allocator_init(void)
2094{
2095        pv_mmu_ops.set_pte = xen_set_pte;
2096        pv_mmu_ops.set_pmd = xen_set_pmd;
2097        pv_mmu_ops.set_pud = xen_set_pud;
2098#if PAGETABLE_LEVELS == 4
2099        pv_mmu_ops.set_pgd = xen_set_pgd;
2100#endif
2101
2102        /* This will work as long as patching hasn't happened yet
2103           (which it hasn't) */
2104        pv_mmu_ops.alloc_pte = xen_alloc_pte;
2105        pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2106        pv_mmu_ops.release_pte = xen_release_pte;
2107        pv_mmu_ops.release_pmd = xen_release_pmd;
2108#if PAGETABLE_LEVELS == 4
2109        pv_mmu_ops.alloc_pud = xen_alloc_pud;
2110        pv_mmu_ops.release_pud = xen_release_pud;
2111#endif
2112
2113#ifdef CONFIG_X86_64
2114        SetPagePinned(virt_to_page(level3_user_vsyscall));
2115#endif
2116        xen_mark_init_mm_pinned();
2117}
2118
2119static void xen_leave_lazy_mmu(void)
2120{
2121        preempt_disable();
2122        xen_mc_flush();
2123        paravirt_leave_lazy_mmu();
2124        preempt_enable();
2125}
2126
2127static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2128        .read_cr2 = xen_read_cr2,
2129        .write_cr2 = xen_write_cr2,
2130
2131        .read_cr3 = xen_read_cr3,
2132#ifdef CONFIG_X86_32
2133        .write_cr3 = xen_write_cr3_init,
2134#else
2135        .write_cr3 = xen_write_cr3,
2136#endif
2137
2138        .flush_tlb_user = xen_flush_tlb,
2139        .flush_tlb_kernel = xen_flush_tlb,
2140        .flush_tlb_single = xen_flush_tlb_single,
2141        .flush_tlb_others = xen_flush_tlb_others,
2142
2143        .pte_update = paravirt_nop,
2144        .pte_update_defer = paravirt_nop,
2145
2146        .pgd_alloc = xen_pgd_alloc,
2147        .pgd_free = xen_pgd_free,
2148
2149        .alloc_pte = xen_alloc_pte_init,
2150        .release_pte = xen_release_pte_init,
2151        .alloc_pmd = xen_alloc_pmd_init,
2152        .release_pmd = xen_release_pmd_init,
2153
2154        .set_pte = xen_set_pte_init,
2155        .set_pte_at = xen_set_pte_at,
2156        .set_pmd = xen_set_pmd_hyper,
2157
2158        .ptep_modify_prot_start = __ptep_modify_prot_start,
2159        .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2160
2161        .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2162        .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2163
2164        .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2165        .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2166
2167#ifdef CONFIG_X86_PAE
2168        .set_pte_atomic = xen_set_pte_atomic,
2169        .pte_clear = xen_pte_clear,
2170        .pmd_clear = xen_pmd_clear,
2171#endif  /* CONFIG_X86_PAE */
2172        .set_pud = xen_set_pud_hyper,
2173
2174        .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2175        .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2176
2177#if PAGETABLE_LEVELS == 4
2178        .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2179        .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2180        .set_pgd = xen_set_pgd_hyper,
2181
2182        .alloc_pud = xen_alloc_pmd_init,
2183        .release_pud = xen_release_pmd_init,
2184#endif  /* PAGETABLE_LEVELS == 4 */
2185
2186        .activate_mm = xen_activate_mm,
2187        .dup_mmap = xen_dup_mmap,
2188        .exit_mmap = xen_exit_mmap,
2189
2190        .lazy_mode = {
2191                .enter = paravirt_enter_lazy_mmu,
2192                .leave = xen_leave_lazy_mmu,
2193        },
2194
2195        .set_fixmap = xen_set_fixmap,
2196};
2197
2198void __init xen_init_mmu_ops(void)
2199{
2200        x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2201        x86_init.paging.pagetable_init = xen_pagetable_init;
2202        pv_mmu_ops = xen_mmu_ops;
2203
2204        memset(dummy_mapping, 0xff, PAGE_SIZE);
2205}
2206
2207/* Protected by xen_reservation_lock. */
2208#define MAX_CONTIG_ORDER 9 /* 2MB */
2209static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2210
2211#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2212static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2213                                unsigned long *in_frames,
2214                                unsigned long *out_frames)
2215{
2216        int i;
2217        struct multicall_space mcs;
2218
2219        xen_mc_batch();
2220        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2221                mcs = __xen_mc_entry(0);
2222
2223                if (in_frames)
2224                        in_frames[i] = virt_to_mfn(vaddr);
2225
2226                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2227                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2228
2229                if (out_frames)
2230                        out_frames[i] = virt_to_pfn(vaddr);
2231        }
2232        xen_mc_issue(0);
2233}
2234
2235/*
2236 * Update the pfn-to-mfn mappings for a virtual address range, either to
2237 * point to an array of mfns, or contiguously from a single starting
2238 * mfn.
2239 */
2240static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2241                                     unsigned long *mfns,
2242                                     unsigned long first_mfn)
2243{
2244        unsigned i, limit;
2245        unsigned long mfn;
2246
2247        xen_mc_batch();
2248
2249        limit = 1u << order;
2250        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2251                struct multicall_space mcs;
2252                unsigned flags;
2253
2254                mcs = __xen_mc_entry(0);
2255                if (mfns)
2256                        mfn = mfns[i];
2257                else
2258                        mfn = first_mfn + i;
2259
2260                if (i < (limit - 1))
2261                        flags = 0;
2262                else {
2263                        if (order == 0)
2264                                flags = UVMF_INVLPG | UVMF_ALL;
2265                        else
2266                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2267                }
2268
2269                MULTI_update_va_mapping(mcs.mc, vaddr,
2270                                mfn_pte(mfn, PAGE_KERNEL), flags);
2271
2272                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2273        }
2274
2275        xen_mc_issue(0);
2276}
2277
2278/*
2279 * Perform the hypercall to exchange a region of our pfns to point to
2280 * memory with the required contiguous alignment.  Takes the pfns as
2281 * input, and populates mfns as output.
2282 *
2283 * Returns a success code indicating whether the hypervisor was able to
2284 * satisfy the request or not.
2285 */
2286static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2287                               unsigned long *pfns_in,
2288                               unsigned long extents_out,
2289                               unsigned int order_out,
2290                               unsigned long *mfns_out,
2291                               unsigned int address_bits)
2292{
2293        long rc;
2294        int success;
2295
2296        struct xen_memory_exchange exchange = {
2297                .in = {
2298                        .nr_extents   = extents_in,
2299                        .extent_order = order_in,
2300                        .extent_start = pfns_in,
2301                        .domid        = DOMID_SELF
2302                },
2303                .out = {
2304                        .nr_extents   = extents_out,
2305                        .extent_order = order_out,
2306                        .extent_start = mfns_out,
2307                        .address_bits = address_bits,
2308                        .domid        = DOMID_SELF
2309                }
2310        };
2311
2312        BUG_ON(extents_in << order_in != extents_out << order_out);
2313
2314        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2315        success = (exchange.nr_exchanged == extents_in);
2316
2317        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2318        BUG_ON(success && (rc != 0));
2319
2320        return success;
2321}
2322
2323int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2324                                 unsigned int address_bits)
2325{
2326        unsigned long *in_frames = discontig_frames, out_frame;
2327        unsigned long  flags;
2328        int            success;
2329
2330        /*
2331         * Currently an auto-translated guest will not perform I/O, nor will
2332         * it require PAE page directories below 4GB. Therefore any calls to
2333         * this function are redundant and can be ignored.
2334         */
2335
2336        if (xen_feature(XENFEAT_auto_translated_physmap))
2337                return 0;
2338
2339        if (unlikely(order > MAX_CONTIG_ORDER))
2340                return -ENOMEM;
2341
2342        memset((void *) vstart, 0, PAGE_SIZE << order);
2343
2344        spin_lock_irqsave(&xen_reservation_lock, flags);
2345
2346        /* 1. Zap current PTEs, remembering MFNs. */
2347        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2348
2349        /* 2. Get a new contiguous memory extent. */
2350        out_frame = virt_to_pfn(vstart);
2351        success = xen_exchange_memory(1UL << order, 0, in_frames,
2352                                      1, order, &out_frame,
2353                                      address_bits);
2354
2355        /* 3. Map the new extent in place of old pages. */
2356        if (success)
2357                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2358        else
2359                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2360
2361        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2362
2363        return success ? 0 : -ENOMEM;
2364}
2365EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2366
2367void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2368{
2369        unsigned long *out_frames = discontig_frames, in_frame;
2370        unsigned long  flags;
2371        int success;
2372
2373        if (xen_feature(XENFEAT_auto_translated_physmap))
2374                return;
2375
2376        if (unlikely(order > MAX_CONTIG_ORDER))
2377                return;
2378
2379        memset((void *) vstart, 0, PAGE_SIZE << order);
2380
2381        spin_lock_irqsave(&xen_reservation_lock, flags);
2382
2383        /* 1. Find start MFN of contiguous extent. */
2384        in_frame = virt_to_mfn(vstart);
2385
2386        /* 2. Zap current PTEs. */
2387        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2388
2389        /* 3. Do the exchange for non-contiguous MFNs. */
2390        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2391                                        0, out_frames, 0);
2392
2393        /* 4. Map new pages in place of old pages. */
2394        if (success)
2395                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2396        else
2397                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2398
2399        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2400}
2401EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2402
2403#ifdef CONFIG_XEN_PVHVM
2404#ifdef CONFIG_PROC_VMCORE
2405/*
2406 * This function is used in two contexts:
2407 * - the kdump kernel has to check whether a pfn of the crashed kernel
2408 *   was a ballooned page. vmcore is using this function to decide
2409 *   whether to access a pfn of the crashed kernel.
2410 * - the kexec kernel has to check whether a pfn was ballooned by the
2411 *   previous kernel. If the pfn is ballooned, handle it properly.
2412 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2413 * handle the pfn special in this case.
2414 */
2415static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2416{
2417        struct xen_hvm_get_mem_type a = {
2418                .domid = DOMID_SELF,
2419                .pfn = pfn,
2420        };
2421        int ram;
2422
2423        if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2424                return -ENXIO;
2425
2426        switch (a.mem_type) {
2427                case HVMMEM_mmio_dm:
2428                        ram = 0;
2429                        break;
2430                case HVMMEM_ram_rw:
2431                case HVMMEM_ram_ro:
2432                default:
2433                        ram = 1;
2434                        break;
2435        }
2436
2437        return ram;
2438}
2439#endif
2440
2441static void xen_hvm_exit_mmap(struct mm_struct *mm)
2442{
2443        struct xen_hvm_pagetable_dying a;
2444        int rc;
2445
2446        a.domid = DOMID_SELF;
2447        a.gpa = __pa(mm->pgd);
2448        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2449        WARN_ON_ONCE(rc < 0);
2450}
2451
2452static int is_pagetable_dying_supported(void)
2453{
2454        struct xen_hvm_pagetable_dying a;
2455        int rc = 0;
2456
2457        a.domid = DOMID_SELF;
2458        a.gpa = 0x00;
2459        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2460        if (rc < 0) {
2461                printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2462                return 0;
2463        }
2464        return 1;
2465}
2466
2467void __init xen_hvm_init_mmu_ops(void)
2468{
2469        if (is_pagetable_dying_supported())
2470                pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2471#ifdef CONFIG_PROC_VMCORE
2472        register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2473#endif
2474}
2475#endif
2476
2477#define REMAP_BATCH_SIZE 16
2478
2479struct remap_data {
2480        unsigned long mfn;
2481        pgprot_t prot;
2482        struct mmu_update *mmu_update;
2483};
2484
2485static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2486                                 unsigned long addr, void *data)
2487{
2488        struct remap_data *rmd = data;
2489        pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2490
2491        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2492        rmd->mmu_update->val = pte_val_ma(pte);
2493        rmd->mmu_update++;
2494
2495        return 0;
2496}
2497
2498int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2499                               unsigned long addr,
2500                               xen_pfn_t mfn, int nr,
2501                               pgprot_t prot, unsigned domid,
2502                               struct page **pages)
2503
2504{
2505        struct remap_data rmd;
2506        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2507        int batch;
2508        unsigned long range;
2509        int err = 0;
2510
2511        if (xen_feature(XENFEAT_auto_translated_physmap))
2512                return -EINVAL;
2513
2514        prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2515
2516        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2517
2518        rmd.mfn = mfn;
2519        rmd.prot = prot;
2520
2521        while (nr) {
2522                batch = min(REMAP_BATCH_SIZE, nr);
2523                range = (unsigned long)batch << PAGE_SHIFT;
2524
2525                rmd.mmu_update = mmu_update;
2526                err = apply_to_page_range(vma->vm_mm, addr, range,
2527                                          remap_area_mfn_pte_fn, &rmd);
2528                if (err)
2529                        goto out;
2530
2531                err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2532                if (err < 0)
2533                        goto out;
2534
2535                nr -= batch;
2536                addr += range;
2537        }
2538
2539        err = 0;
2540out:
2541
2542        xen_flush_tlb_all();
2543
2544        return err;
2545}
2546EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2547
2548/* Returns: 0 success */
2549int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2550                               int numpgs, struct page **pages)
2551{
2552        if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2553                return 0;
2554
2555        return -EINVAL;
2556}
2557EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2558