linux/drivers/hwmon/lineage-pem.c
<<
>>
Prefs
   1/*
   2 * Driver for Lineage Compact Power Line series of power entry modules.
   3 *
   4 * Copyright (C) 2010, 2011 Ericsson AB.
   5 *
   6 * Documentation:
   7 *  http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/init.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/i2c.h>
  30#include <linux/hwmon.h>
  31#include <linux/hwmon-sysfs.h>
  32#include <linux/jiffies.h>
  33
  34/*
  35 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
  36 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
  37 *
  38 * The devices are nominally PMBus compliant. However, most standard PMBus
  39 * commands are not supported. Specifically, all hardware monitoring and
  40 * status reporting commands are non-standard. For this reason, a standard
  41 * PMBus driver can not be used.
  42 *
  43 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
  44 * To ensure device access, this driver should only be used as client driver
  45 * to the pca9541 I2C master selector driver.
  46 */
  47
  48/* Command codes */
  49#define PEM_OPERATION           0x01
  50#define PEM_CLEAR_INFO_FLAGS    0x03
  51#define PEM_VOUT_COMMAND        0x21
  52#define PEM_VOUT_OV_FAULT_LIMIT 0x40
  53#define PEM_READ_DATA_STRING    0xd0
  54#define PEM_READ_INPUT_STRING   0xdc
  55#define PEM_READ_FIRMWARE_REV   0xdd
  56#define PEM_READ_RUN_TIMER      0xde
  57#define PEM_FAN_HI_SPEED        0xdf
  58#define PEM_FAN_NORMAL_SPEED    0xe0
  59#define PEM_READ_FAN_SPEED      0xe1
  60
  61/* offsets in data string */
  62#define PEM_DATA_STATUS_2       0
  63#define PEM_DATA_STATUS_1       1
  64#define PEM_DATA_ALARM_2        2
  65#define PEM_DATA_ALARM_1        3
  66#define PEM_DATA_VOUT_LSB       4
  67#define PEM_DATA_VOUT_MSB       5
  68#define PEM_DATA_CURRENT        6
  69#define PEM_DATA_TEMP           7
  70
  71/* Virtual entries, to report constants */
  72#define PEM_DATA_TEMP_MAX       10
  73#define PEM_DATA_TEMP_CRIT      11
  74
  75/* offsets in input string */
  76#define PEM_INPUT_VOLTAGE       0
  77#define PEM_INPUT_POWER_LSB     1
  78#define PEM_INPUT_POWER_MSB     2
  79
  80/* offsets in fan data */
  81#define PEM_FAN_ADJUSTMENT      0
  82#define PEM_FAN_FAN1            1
  83#define PEM_FAN_FAN2            2
  84#define PEM_FAN_FAN3            3
  85
  86/* Status register bits */
  87#define STS1_OUTPUT_ON          (1 << 0)
  88#define STS1_LEDS_FLASHING      (1 << 1)
  89#define STS1_EXT_FAULT          (1 << 2)
  90#define STS1_SERVICE_LED_ON     (1 << 3)
  91#define STS1_SHUTDOWN_OCCURRED  (1 << 4)
  92#define STS1_INT_FAULT          (1 << 5)
  93#define STS1_ISOLATION_TEST_OK  (1 << 6)
  94
  95#define STS2_ENABLE_PIN_HI      (1 << 0)
  96#define STS2_DATA_OUT_RANGE     (1 << 1)
  97#define STS2_RESTARTED_OK       (1 << 1)
  98#define STS2_ISOLATION_TEST_FAIL (1 << 3)
  99#define STS2_HIGH_POWER_CAP     (1 << 4)
 100#define STS2_INVALID_INSTR      (1 << 5)
 101#define STS2_WILL_RESTART       (1 << 6)
 102#define STS2_PEC_ERR            (1 << 7)
 103
 104/* Alarm register bits */
 105#define ALRM1_VIN_OUT_LIMIT     (1 << 0)
 106#define ALRM1_VOUT_OUT_LIMIT    (1 << 1)
 107#define ALRM1_OV_VOLT_SHUTDOWN  (1 << 2)
 108#define ALRM1_VIN_OVERCURRENT   (1 << 3)
 109#define ALRM1_TEMP_WARNING      (1 << 4)
 110#define ALRM1_TEMP_SHUTDOWN     (1 << 5)
 111#define ALRM1_PRIMARY_FAULT     (1 << 6)
 112#define ALRM1_POWER_LIMIT       (1 << 7)
 113
 114#define ALRM2_5V_OUT_LIMIT      (1 << 1)
 115#define ALRM2_TEMP_FAULT        (1 << 2)
 116#define ALRM2_OV_LOW            (1 << 3)
 117#define ALRM2_DCDC_TEMP_HIGH    (1 << 4)
 118#define ALRM2_PRI_TEMP_HIGH     (1 << 5)
 119#define ALRM2_NO_PRIMARY        (1 << 6)
 120#define ALRM2_FAN_FAULT         (1 << 7)
 121
 122#define FIRMWARE_REV_LEN        4
 123#define DATA_STRING_LEN         9
 124#define INPUT_STRING_LEN        5       /* 4 for most devices   */
 125#define FAN_SPEED_LEN           5
 126
 127struct pem_data {
 128        struct device *hwmon_dev;
 129
 130        struct mutex update_lock;
 131        bool valid;
 132        bool fans_supported;
 133        int input_length;
 134        unsigned long last_updated;     /* in jiffies */
 135
 136        u8 firmware_rev[FIRMWARE_REV_LEN];
 137        u8 data_string[DATA_STRING_LEN];
 138        u8 input_string[INPUT_STRING_LEN];
 139        u8 fan_speed[FAN_SPEED_LEN];
 140};
 141
 142static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
 143                          int data_len)
 144{
 145        u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
 146        int result;
 147
 148        result = i2c_smbus_read_block_data(client, command, block_buffer);
 149        if (unlikely(result < 0))
 150                goto abort;
 151        if (unlikely(result == 0xff || result != data_len)) {
 152                result = -EIO;
 153                goto abort;
 154        }
 155        memcpy(data, block_buffer, data_len);
 156        result = 0;
 157abort:
 158        return result;
 159}
 160
 161static struct pem_data *pem_update_device(struct device *dev)
 162{
 163        struct i2c_client *client = to_i2c_client(dev);
 164        struct pem_data *data = i2c_get_clientdata(client);
 165        struct pem_data *ret = data;
 166
 167        mutex_lock(&data->update_lock);
 168
 169        if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
 170                int result;
 171
 172                /* Read data string */
 173                result = pem_read_block(client, PEM_READ_DATA_STRING,
 174                                        data->data_string,
 175                                        sizeof(data->data_string));
 176                if (unlikely(result < 0)) {
 177                        ret = ERR_PTR(result);
 178                        goto abort;
 179                }
 180
 181                /* Read input string */
 182                if (data->input_length) {
 183                        result = pem_read_block(client, PEM_READ_INPUT_STRING,
 184                                                data->input_string,
 185                                                data->input_length);
 186                        if (unlikely(result < 0)) {
 187                                ret = ERR_PTR(result);
 188                                goto abort;
 189                        }
 190                }
 191
 192                /* Read fan speeds */
 193                if (data->fans_supported) {
 194                        result = pem_read_block(client, PEM_READ_FAN_SPEED,
 195                                                data->fan_speed,
 196                                                sizeof(data->fan_speed));
 197                        if (unlikely(result < 0)) {
 198                                ret = ERR_PTR(result);
 199                                goto abort;
 200                        }
 201                }
 202
 203                i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
 204
 205                data->last_updated = jiffies;
 206                data->valid = 1;
 207        }
 208abort:
 209        mutex_unlock(&data->update_lock);
 210        return ret;
 211}
 212
 213static long pem_get_data(u8 *data, int len, int index)
 214{
 215        long val;
 216
 217        switch (index) {
 218        case PEM_DATA_VOUT_LSB:
 219                val = (data[index] + (data[index+1] << 8)) * 5 / 2;
 220                break;
 221        case PEM_DATA_CURRENT:
 222                val = data[index] * 200;
 223                break;
 224        case PEM_DATA_TEMP:
 225                val = data[index] * 1000;
 226                break;
 227        case PEM_DATA_TEMP_MAX:
 228                val = 97 * 1000;        /* 97 degrees C per datasheet */
 229                break;
 230        case PEM_DATA_TEMP_CRIT:
 231                val = 107 * 1000;       /* 107 degrees C per datasheet */
 232                break;
 233        default:
 234                WARN_ON_ONCE(1);
 235                val = 0;
 236        }
 237        return val;
 238}
 239
 240static long pem_get_input(u8 *data, int len, int index)
 241{
 242        long val;
 243
 244        switch (index) {
 245        case PEM_INPUT_VOLTAGE:
 246                if (len == INPUT_STRING_LEN)
 247                        val = (data[index] + (data[index+1] << 8) - 75) * 1000;
 248                else
 249                        val = (data[index] - 75) * 1000;
 250                break;
 251        case PEM_INPUT_POWER_LSB:
 252                if (len == INPUT_STRING_LEN)
 253                        index++;
 254                val = (data[index] + (data[index+1] << 8)) * 1000000L;
 255                break;
 256        default:
 257                WARN_ON_ONCE(1);
 258                val = 0;
 259        }
 260        return val;
 261}
 262
 263static long pem_get_fan(u8 *data, int len, int index)
 264{
 265        long val;
 266
 267        switch (index) {
 268        case PEM_FAN_FAN1:
 269        case PEM_FAN_FAN2:
 270        case PEM_FAN_FAN3:
 271                val = data[index] * 100;
 272                break;
 273        default:
 274                WARN_ON_ONCE(1);
 275                val = 0;
 276        }
 277        return val;
 278}
 279
 280/*
 281 * Show boolean, either a fault or an alarm.
 282 * .nr points to the register, .index is the bit mask to check
 283 */
 284static ssize_t pem_show_bool(struct device *dev,
 285                             struct device_attribute *da, char *buf)
 286{
 287        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
 288        struct pem_data *data = pem_update_device(dev);
 289        u8 status;
 290
 291        if (IS_ERR(data))
 292                return PTR_ERR(data);
 293
 294        status = data->data_string[attr->nr] & attr->index;
 295        return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
 296}
 297
 298static ssize_t pem_show_data(struct device *dev, struct device_attribute *da,
 299                             char *buf)
 300{
 301        struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 302        struct pem_data *data = pem_update_device(dev);
 303        long value;
 304
 305        if (IS_ERR(data))
 306                return PTR_ERR(data);
 307
 308        value = pem_get_data(data->data_string, sizeof(data->data_string),
 309                             attr->index);
 310
 311        return snprintf(buf, PAGE_SIZE, "%ld\n", value);
 312}
 313
 314static ssize_t pem_show_input(struct device *dev, struct device_attribute *da,
 315                              char *buf)
 316{
 317        struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 318        struct pem_data *data = pem_update_device(dev);
 319        long value;
 320
 321        if (IS_ERR(data))
 322                return PTR_ERR(data);
 323
 324        value = pem_get_input(data->input_string, sizeof(data->input_string),
 325                              attr->index);
 326
 327        return snprintf(buf, PAGE_SIZE, "%ld\n", value);
 328}
 329
 330static ssize_t pem_show_fan(struct device *dev, struct device_attribute *da,
 331                            char *buf)
 332{
 333        struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 334        struct pem_data *data = pem_update_device(dev);
 335        long value;
 336
 337        if (IS_ERR(data))
 338                return PTR_ERR(data);
 339
 340        value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
 341                            attr->index);
 342
 343        return snprintf(buf, PAGE_SIZE, "%ld\n", value);
 344}
 345
 346/* Voltages */
 347static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, pem_show_data, NULL,
 348                          PEM_DATA_VOUT_LSB);
 349static SENSOR_DEVICE_ATTR_2(in1_alarm, S_IRUGO, pem_show_bool, NULL,
 350                            PEM_DATA_ALARM_1, ALRM1_VOUT_OUT_LIMIT);
 351static SENSOR_DEVICE_ATTR_2(in1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
 352                            PEM_DATA_ALARM_1, ALRM1_OV_VOLT_SHUTDOWN);
 353static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, pem_show_input, NULL,
 354                          PEM_INPUT_VOLTAGE);
 355static SENSOR_DEVICE_ATTR_2(in2_alarm, S_IRUGO, pem_show_bool, NULL,
 356                            PEM_DATA_ALARM_1,
 357                            ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
 358
 359/* Currents */
 360static SENSOR_DEVICE_ATTR(curr1_input, S_IRUGO, pem_show_data, NULL,
 361                          PEM_DATA_CURRENT);
 362static SENSOR_DEVICE_ATTR_2(curr1_alarm, S_IRUGO, pem_show_bool, NULL,
 363                            PEM_DATA_ALARM_1, ALRM1_VIN_OVERCURRENT);
 364
 365/* Power */
 366static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, pem_show_input, NULL,
 367                          PEM_INPUT_POWER_LSB);
 368static SENSOR_DEVICE_ATTR_2(power1_alarm, S_IRUGO, pem_show_bool, NULL,
 369                            PEM_DATA_ALARM_1, ALRM1_POWER_LIMIT);
 370
 371/* Fans */
 372static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, pem_show_fan, NULL,
 373                          PEM_FAN_FAN1);
 374static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, pem_show_fan, NULL,
 375                          PEM_FAN_FAN2);
 376static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, pem_show_fan, NULL,
 377                          PEM_FAN_FAN3);
 378static SENSOR_DEVICE_ATTR_2(fan1_alarm, S_IRUGO, pem_show_bool, NULL,
 379                            PEM_DATA_ALARM_2, ALRM2_FAN_FAULT);
 380
 381/* Temperatures */
 382static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, pem_show_data, NULL,
 383                          PEM_DATA_TEMP);
 384static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, pem_show_data, NULL,
 385                          PEM_DATA_TEMP_MAX);
 386static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, pem_show_data, NULL,
 387                          PEM_DATA_TEMP_CRIT);
 388static SENSOR_DEVICE_ATTR_2(temp1_alarm, S_IRUGO, pem_show_bool, NULL,
 389                            PEM_DATA_ALARM_1, ALRM1_TEMP_WARNING);
 390static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
 391                            PEM_DATA_ALARM_1, ALRM1_TEMP_SHUTDOWN);
 392static SENSOR_DEVICE_ATTR_2(temp1_fault, S_IRUGO, pem_show_bool, NULL,
 393                            PEM_DATA_ALARM_2, ALRM2_TEMP_FAULT);
 394
 395static struct attribute *pem_attributes[] = {
 396        &sensor_dev_attr_in1_input.dev_attr.attr,
 397        &sensor_dev_attr_in1_alarm.dev_attr.attr,
 398        &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
 399        &sensor_dev_attr_in2_alarm.dev_attr.attr,
 400
 401        &sensor_dev_attr_curr1_alarm.dev_attr.attr,
 402
 403        &sensor_dev_attr_power1_alarm.dev_attr.attr,
 404
 405        &sensor_dev_attr_fan1_alarm.dev_attr.attr,
 406
 407        &sensor_dev_attr_temp1_input.dev_attr.attr,
 408        &sensor_dev_attr_temp1_max.dev_attr.attr,
 409        &sensor_dev_attr_temp1_crit.dev_attr.attr,
 410        &sensor_dev_attr_temp1_alarm.dev_attr.attr,
 411        &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 412        &sensor_dev_attr_temp1_fault.dev_attr.attr,
 413
 414        NULL,
 415};
 416
 417static const struct attribute_group pem_group = {
 418        .attrs = pem_attributes,
 419};
 420
 421static struct attribute *pem_input_attributes[] = {
 422        &sensor_dev_attr_in2_input.dev_attr.attr,
 423        &sensor_dev_attr_curr1_input.dev_attr.attr,
 424        &sensor_dev_attr_power1_input.dev_attr.attr,
 425};
 426
 427static const struct attribute_group pem_input_group = {
 428        .attrs = pem_input_attributes,
 429};
 430
 431static struct attribute *pem_fan_attributes[] = {
 432        &sensor_dev_attr_fan1_input.dev_attr.attr,
 433        &sensor_dev_attr_fan2_input.dev_attr.attr,
 434        &sensor_dev_attr_fan3_input.dev_attr.attr,
 435};
 436
 437static const struct attribute_group pem_fan_group = {
 438        .attrs = pem_fan_attributes,
 439};
 440
 441static int pem_probe(struct i2c_client *client,
 442                     const struct i2c_device_id *id)
 443{
 444        struct i2c_adapter *adapter = client->adapter;
 445        struct pem_data *data;
 446        int ret;
 447
 448        if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
 449                                     | I2C_FUNC_SMBUS_WRITE_BYTE))
 450                return -ENODEV;
 451
 452        data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
 453        if (!data)
 454                return -ENOMEM;
 455
 456        i2c_set_clientdata(client, data);
 457        mutex_init(&data->update_lock);
 458
 459        /*
 460         * We use the next two commands to determine if the device is really
 461         * there.
 462         */
 463        ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
 464                             data->firmware_rev, sizeof(data->firmware_rev));
 465        if (ret < 0)
 466                return ret;
 467
 468        ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
 469        if (ret < 0)
 470                return ret;
 471
 472        dev_info(&client->dev, "Firmware revision %d.%d.%d\n",
 473                 data->firmware_rev[0], data->firmware_rev[1],
 474                 data->firmware_rev[2]);
 475
 476        /* Register sysfs hooks */
 477        ret = sysfs_create_group(&client->dev.kobj, &pem_group);
 478        if (ret)
 479                return ret;
 480
 481        /*
 482         * Check if input readings are supported.
 483         * This is the case if we can read input data,
 484         * and if the returned data is not all zeros.
 485         * Note that input alarms are always supported.
 486         */
 487        ret = pem_read_block(client, PEM_READ_INPUT_STRING,
 488                             data->input_string,
 489                             sizeof(data->input_string) - 1);
 490        if (!ret && (data->input_string[0] || data->input_string[1] ||
 491                     data->input_string[2]))
 492                data->input_length = sizeof(data->input_string) - 1;
 493        else if (ret < 0) {
 494                /* Input string is one byte longer for some devices */
 495                ret = pem_read_block(client, PEM_READ_INPUT_STRING,
 496                                    data->input_string,
 497                                    sizeof(data->input_string));
 498                if (!ret && (data->input_string[0] || data->input_string[1] ||
 499                            data->input_string[2] || data->input_string[3]))
 500                        data->input_length = sizeof(data->input_string);
 501        }
 502        ret = 0;
 503        if (data->input_length) {
 504                ret = sysfs_create_group(&client->dev.kobj, &pem_input_group);
 505                if (ret)
 506                        goto out_remove_groups;
 507        }
 508
 509        /*
 510         * Check if fan speed readings are supported.
 511         * This is the case if we can read fan speed data,
 512         * and if the returned data is not all zeros.
 513         * Note that the fan alarm is always supported.
 514         */
 515        ret = pem_read_block(client, PEM_READ_FAN_SPEED,
 516                             data->fan_speed,
 517                             sizeof(data->fan_speed));
 518        if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
 519                     data->fan_speed[2] || data->fan_speed[3])) {
 520                data->fans_supported = true;
 521                ret = sysfs_create_group(&client->dev.kobj, &pem_fan_group);
 522                if (ret)
 523                        goto out_remove_groups;
 524        }
 525
 526        data->hwmon_dev = hwmon_device_register(&client->dev);
 527        if (IS_ERR(data->hwmon_dev)) {
 528                ret = PTR_ERR(data->hwmon_dev);
 529                goto out_remove_groups;
 530        }
 531
 532        return 0;
 533
 534out_remove_groups:
 535        sysfs_remove_group(&client->dev.kobj, &pem_input_group);
 536        sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
 537        sysfs_remove_group(&client->dev.kobj, &pem_group);
 538        return ret;
 539}
 540
 541static int pem_remove(struct i2c_client *client)
 542{
 543        struct pem_data *data = i2c_get_clientdata(client);
 544
 545        hwmon_device_unregister(data->hwmon_dev);
 546
 547        sysfs_remove_group(&client->dev.kobj, &pem_input_group);
 548        sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
 549        sysfs_remove_group(&client->dev.kobj, &pem_group);
 550
 551        return 0;
 552}
 553
 554static const struct i2c_device_id pem_id[] = {
 555        {"lineage_pem", 0},
 556        {}
 557};
 558MODULE_DEVICE_TABLE(i2c, pem_id);
 559
 560static struct i2c_driver pem_driver = {
 561        .driver = {
 562                   .name = "lineage_pem",
 563                   },
 564        .probe = pem_probe,
 565        .remove = pem_remove,
 566        .id_table = pem_id,
 567};
 568
 569module_i2c_driver(pem_driver);
 570
 571MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
 572MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
 573MODULE_LICENSE("GPL");
 574