linux/drivers/mmc/host/mmc_spi.c
<<
>>
Prefs
   1/*
   2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
   3 *
   4 * (C) Copyright 2005, Intec Automation,
   5 *              Mike Lavender (mike@steroidmicros)
   6 * (C) Copyright 2006-2007, David Brownell
   7 * (C) Copyright 2007, Axis Communications,
   8 *              Hans-Peter Nilsson (hp@axis.com)
   9 * (C) Copyright 2007, ATRON electronic GmbH,
  10 *              Jan Nikitenko <jan.nikitenko@gmail.com>
  11 *
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 */
  27#include <linux/sched.h>
  28#include <linux/delay.h>
  29#include <linux/slab.h>
  30#include <linux/module.h>
  31#include <linux/bio.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/crc7.h>
  34#include <linux/crc-itu-t.h>
  35#include <linux/scatterlist.h>
  36
  37#include <linux/mmc/host.h>
  38#include <linux/mmc/mmc.h>              /* for R1_SPI_* bit values */
  39
  40#include <linux/spi/spi.h>
  41#include <linux/spi/mmc_spi.h>
  42
  43#include <asm/unaligned.h>
  44
  45
  46/* NOTES:
  47 *
  48 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  49 *   controller, although some of them do have hardware support for
  50 *   SPI protocol.  The main reason for such configs would be mmc-ish
  51 *   cards like DataFlash, which don't support that "native" protocol.
  52 *
  53 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  54 *   switch between driver stacks, and in any case if "native" mode
  55 *   is available, it will be faster and hence preferable.
  56 *
  57 * - MMC depends on a different chipselect management policy than the
  58 *   SPI interface currently supports for shared bus segments:  it needs
  59 *   to issue multiple spi_message requests with the chipselect active,
  60 *   using the results of one message to decide the next one to issue.
  61 *
  62 *   Pending updates to the programming interface, this driver expects
  63 *   that it not share the bus with other drivers (precluding conflicts).
  64 *
  65 * - We tell the controller to keep the chipselect active from the
  66 *   beginning of an mmc_host_ops.request until the end.  So beware
  67 *   of SPI controller drivers that mis-handle the cs_change flag!
  68 *
  69 *   However, many cards seem OK with chipselect flapping up/down
  70 *   during that time ... at least on unshared bus segments.
  71 */
  72
  73
  74/*
  75 * Local protocol constants, internal to data block protocols.
  76 */
  77
  78/* Response tokens used to ack each block written: */
  79#define SPI_MMC_RESPONSE_CODE(x)        ((x) & 0x1f)
  80#define SPI_RESPONSE_ACCEPTED           ((2 << 1)|1)
  81#define SPI_RESPONSE_CRC_ERR            ((5 << 1)|1)
  82#define SPI_RESPONSE_WRITE_ERR          ((6 << 1)|1)
  83
  84/* Read and write blocks start with these tokens and end with crc;
  85 * on error, read tokens act like a subset of R2_SPI_* values.
  86 */
  87#define SPI_TOKEN_SINGLE        0xfe    /* single block r/w, multiblock read */
  88#define SPI_TOKEN_MULTI_WRITE   0xfc    /* multiblock write */
  89#define SPI_TOKEN_STOP_TRAN     0xfd    /* terminate multiblock write */
  90
  91#define MMC_SPI_BLOCKSIZE       512
  92
  93
  94/* These fixed timeouts come from the latest SD specs, which say to ignore
  95 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  96 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  97 * reads which takes nowhere near that long.  Older cards may be able to use
  98 * shorter timeouts ... but why bother?
  99 */
 100#define r1b_timeout             (HZ * 3)
 101
 102/* One of the critical speed parameters is the amount of data which may
 103 * be transferred in one command. If this value is too low, the SD card
 104 * controller has to do multiple partial block writes (argggh!). With
 105 * today (2008) SD cards there is little speed gain if we transfer more
 106 * than 64 KBytes at a time. So use this value until there is any indication
 107 * that we should do more here.
 108 */
 109#define MMC_SPI_BLOCKSATONCE    128
 110
 111/****************************************************************************/
 112
 113/*
 114 * Local Data Structures
 115 */
 116
 117/* "scratch" is per-{command,block} data exchanged with the card */
 118struct scratch {
 119        u8                      status[29];
 120        u8                      data_token;
 121        __be16                  crc_val;
 122};
 123
 124struct mmc_spi_host {
 125        struct mmc_host         *mmc;
 126        struct spi_device       *spi;
 127
 128        unsigned char           power_mode;
 129        u16                     powerup_msecs;
 130
 131        struct mmc_spi_platform_data    *pdata;
 132
 133        /* for bulk data transfers */
 134        struct spi_transfer     token, t, crc, early_status;
 135        struct spi_message      m;
 136
 137        /* for status readback */
 138        struct spi_transfer     status;
 139        struct spi_message      readback;
 140
 141        /* underlying DMA-aware controller, or null */
 142        struct device           *dma_dev;
 143
 144        /* buffer used for commands and for message "overhead" */
 145        struct scratch          *data;
 146        dma_addr_t              data_dma;
 147
 148        /* Specs say to write ones most of the time, even when the card
 149         * has no need to read its input data; and many cards won't care.
 150         * This is our source of those ones.
 151         */
 152        void                    *ones;
 153        dma_addr_t              ones_dma;
 154};
 155
 156
 157/****************************************************************************/
 158
 159/*
 160 * MMC-over-SPI protocol glue, used by the MMC stack interface
 161 */
 162
 163static inline int mmc_cs_off(struct mmc_spi_host *host)
 164{
 165        /* chipselect will always be inactive after setup() */
 166        return spi_setup(host->spi);
 167}
 168
 169static int
 170mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 171{
 172        int status;
 173
 174        if (len > sizeof(*host->data)) {
 175                WARN_ON(1);
 176                return -EIO;
 177        }
 178
 179        host->status.len = len;
 180
 181        if (host->dma_dev)
 182                dma_sync_single_for_device(host->dma_dev,
 183                                host->data_dma, sizeof(*host->data),
 184                                DMA_FROM_DEVICE);
 185
 186        status = spi_sync_locked(host->spi, &host->readback);
 187
 188        if (host->dma_dev)
 189                dma_sync_single_for_cpu(host->dma_dev,
 190                                host->data_dma, sizeof(*host->data),
 191                                DMA_FROM_DEVICE);
 192
 193        return status;
 194}
 195
 196static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 197                        unsigned n, u8 byte)
 198{
 199        u8              *cp = host->data->status;
 200        unsigned long start = jiffies;
 201
 202        while (1) {
 203                int             status;
 204                unsigned        i;
 205
 206                status = mmc_spi_readbytes(host, n);
 207                if (status < 0)
 208                        return status;
 209
 210                for (i = 0; i < n; i++) {
 211                        if (cp[i] != byte)
 212                                return cp[i];
 213                }
 214
 215                if (time_is_before_jiffies(start + timeout))
 216                        break;
 217
 218                /* If we need long timeouts, we may release the CPU.
 219                 * We use jiffies here because we want to have a relation
 220                 * between elapsed time and the blocking of the scheduler.
 221                 */
 222                if (time_is_before_jiffies(start+1))
 223                        schedule();
 224        }
 225        return -ETIMEDOUT;
 226}
 227
 228static inline int
 229mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 230{
 231        return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 232}
 233
 234static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 235{
 236        return mmc_spi_skip(host, timeout, 1, 0xff);
 237}
 238
 239
 240/*
 241 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 242 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 243 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 244 *
 245 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 246 * newer cards R7 (IF_COND).
 247 */
 248
 249static char *maptype(struct mmc_command *cmd)
 250{
 251        switch (mmc_spi_resp_type(cmd)) {
 252        case MMC_RSP_SPI_R1:    return "R1";
 253        case MMC_RSP_SPI_R1B:   return "R1B";
 254        case MMC_RSP_SPI_R2:    return "R2/R5";
 255        case MMC_RSP_SPI_R3:    return "R3/R4/R7";
 256        default:                return "?";
 257        }
 258}
 259
 260/* return zero, else negative errno after setting cmd->error */
 261static int mmc_spi_response_get(struct mmc_spi_host *host,
 262                struct mmc_command *cmd, int cs_on)
 263{
 264        u8      *cp = host->data->status;
 265        u8      *end = cp + host->t.len;
 266        int     value = 0;
 267        int     bitshift;
 268        u8      leftover = 0;
 269        unsigned short rotator;
 270        int     i;
 271        char    tag[32];
 272
 273        snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 274                cmd->opcode, maptype(cmd));
 275
 276        /* Except for data block reads, the whole response will already
 277         * be stored in the scratch buffer.  It's somewhere after the
 278         * command and the first byte we read after it.  We ignore that
 279         * first byte.  After STOP_TRANSMISSION command it may include
 280         * two data bits, but otherwise it's all ones.
 281         */
 282        cp += 8;
 283        while (cp < end && *cp == 0xff)
 284                cp++;
 285
 286        /* Data block reads (R1 response types) may need more data... */
 287        if (cp == end) {
 288                cp = host->data->status;
 289                end = cp+1;
 290
 291                /* Card sends N(CR) (== 1..8) bytes of all-ones then one
 292                 * status byte ... and we already scanned 2 bytes.
 293                 *
 294                 * REVISIT block read paths use nasty byte-at-a-time I/O
 295                 * so it can always DMA directly into the target buffer.
 296                 * It'd probably be better to memcpy() the first chunk and
 297                 * avoid extra i/o calls...
 298                 *
 299                 * Note we check for more than 8 bytes, because in practice,
 300                 * some SD cards are slow...
 301                 */
 302                for (i = 2; i < 16; i++) {
 303                        value = mmc_spi_readbytes(host, 1);
 304                        if (value < 0)
 305                                goto done;
 306                        if (*cp != 0xff)
 307                                goto checkstatus;
 308                }
 309                value = -ETIMEDOUT;
 310                goto done;
 311        }
 312
 313checkstatus:
 314        bitshift = 0;
 315        if (*cp & 0x80) {
 316                /* Houston, we have an ugly card with a bit-shifted response */
 317                rotator = *cp++ << 8;
 318                /* read the next byte */
 319                if (cp == end) {
 320                        value = mmc_spi_readbytes(host, 1);
 321                        if (value < 0)
 322                                goto done;
 323                        cp = host->data->status;
 324                        end = cp+1;
 325                }
 326                rotator |= *cp++;
 327                while (rotator & 0x8000) {
 328                        bitshift++;
 329                        rotator <<= 1;
 330                }
 331                cmd->resp[0] = rotator >> 8;
 332                leftover = rotator;
 333        } else {
 334                cmd->resp[0] = *cp++;
 335        }
 336        cmd->error = 0;
 337
 338        /* Status byte: the entire seven-bit R1 response.  */
 339        if (cmd->resp[0] != 0) {
 340                if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 341                                & cmd->resp[0])
 342                        value = -EFAULT; /* Bad address */
 343                else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 344                        value = -ENOSYS; /* Function not implemented */
 345                else if (R1_SPI_COM_CRC & cmd->resp[0])
 346                        value = -EILSEQ; /* Illegal byte sequence */
 347                else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 348                                & cmd->resp[0])
 349                        value = -EIO;    /* I/O error */
 350                /* else R1_SPI_IDLE, "it's resetting" */
 351        }
 352
 353        switch (mmc_spi_resp_type(cmd)) {
 354
 355        /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 356         * and less-common stuff like various erase operations.
 357         */
 358        case MMC_RSP_SPI_R1B:
 359                /* maybe we read all the busy tokens already */
 360                while (cp < end && *cp == 0)
 361                        cp++;
 362                if (cp == end)
 363                        mmc_spi_wait_unbusy(host, r1b_timeout);
 364                break;
 365
 366        /* SPI R2 == R1 + second status byte; SEND_STATUS
 367         * SPI R5 == R1 + data byte; IO_RW_DIRECT
 368         */
 369        case MMC_RSP_SPI_R2:
 370                /* read the next byte */
 371                if (cp == end) {
 372                        value = mmc_spi_readbytes(host, 1);
 373                        if (value < 0)
 374                                goto done;
 375                        cp = host->data->status;
 376                        end = cp+1;
 377                }
 378                if (bitshift) {
 379                        rotator = leftover << 8;
 380                        rotator |= *cp << bitshift;
 381                        cmd->resp[0] |= (rotator & 0xFF00);
 382                } else {
 383                        cmd->resp[0] |= *cp << 8;
 384                }
 385                break;
 386
 387        /* SPI R3, R4, or R7 == R1 + 4 bytes */
 388        case MMC_RSP_SPI_R3:
 389                rotator = leftover << 8;
 390                cmd->resp[1] = 0;
 391                for (i = 0; i < 4; i++) {
 392                        cmd->resp[1] <<= 8;
 393                        /* read the next byte */
 394                        if (cp == end) {
 395                                value = mmc_spi_readbytes(host, 1);
 396                                if (value < 0)
 397                                        goto done;
 398                                cp = host->data->status;
 399                                end = cp+1;
 400                        }
 401                        if (bitshift) {
 402                                rotator |= *cp++ << bitshift;
 403                                cmd->resp[1] |= (rotator >> 8);
 404                                rotator <<= 8;
 405                        } else {
 406                                cmd->resp[1] |= *cp++;
 407                        }
 408                }
 409                break;
 410
 411        /* SPI R1 == just one status byte */
 412        case MMC_RSP_SPI_R1:
 413                break;
 414
 415        default:
 416                dev_dbg(&host->spi->dev, "bad response type %04x\n",
 417                                mmc_spi_resp_type(cmd));
 418                if (value >= 0)
 419                        value = -EINVAL;
 420                goto done;
 421        }
 422
 423        if (value < 0)
 424                dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 425                        tag, cmd->resp[0], cmd->resp[1]);
 426
 427        /* disable chipselect on errors and some success cases */
 428        if (value >= 0 && cs_on)
 429                return value;
 430done:
 431        if (value < 0)
 432                cmd->error = value;
 433        mmc_cs_off(host);
 434        return value;
 435}
 436
 437/* Issue command and read its response.
 438 * Returns zero on success, negative for error.
 439 *
 440 * On error, caller must cope with mmc core retry mechanism.  That
 441 * means immediate low-level resubmit, which affects the bus lock...
 442 */
 443static int
 444mmc_spi_command_send(struct mmc_spi_host *host,
 445                struct mmc_request *mrq,
 446                struct mmc_command *cmd, int cs_on)
 447{
 448        struct scratch          *data = host->data;
 449        u8                      *cp = data->status;
 450        u32                     arg = cmd->arg;
 451        int                     status;
 452        struct spi_transfer     *t;
 453
 454        /* We can handle most commands (except block reads) in one full
 455         * duplex I/O operation before either starting the next transfer
 456         * (data block or command) or else deselecting the card.
 457         *
 458         * First, write 7 bytes:
 459         *  - an all-ones byte to ensure the card is ready
 460         *  - opcode byte (plus start and transmission bits)
 461         *  - four bytes of big-endian argument
 462         *  - crc7 (plus end bit) ... always computed, it's cheap
 463         *
 464         * We init the whole buffer to all-ones, which is what we need
 465         * to write while we're reading (later) response data.
 466         */
 467        memset(cp++, 0xff, sizeof(data->status));
 468
 469        *cp++ = 0x40 | cmd->opcode;
 470        *cp++ = (u8)(arg >> 24);
 471        *cp++ = (u8)(arg >> 16);
 472        *cp++ = (u8)(arg >> 8);
 473        *cp++ = (u8)arg;
 474        *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
 475
 476        /* Then, read up to 13 bytes (while writing all-ones):
 477         *  - N(CR) (== 1..8) bytes of all-ones
 478         *  - status byte (for all response types)
 479         *  - the rest of the response, either:
 480         *      + nothing, for R1 or R1B responses
 481         *      + second status byte, for R2 responses
 482         *      + four data bytes, for R3 and R7 responses
 483         *
 484         * Finally, read some more bytes ... in the nice cases we know in
 485         * advance how many, and reading 1 more is always OK:
 486         *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 487         *  - N(RC) (== 1..N) bytes of all-ones, before next command
 488         *  - N(WR) (== 1..N) bytes of all-ones, before data write
 489         *
 490         * So in those cases one full duplex I/O of at most 21 bytes will
 491         * handle the whole command, leaving the card ready to receive a
 492         * data block or new command.  We do that whenever we can, shaving
 493         * CPU and IRQ costs (especially when using DMA or FIFOs).
 494         *
 495         * There are two other cases, where it's not generally practical
 496         * to rely on a single I/O:
 497         *
 498         *  - R1B responses need at least N(EC) bytes of all-zeroes.
 499         *
 500         *    In this case we can *try* to fit it into one I/O, then
 501         *    maybe read more data later.
 502         *
 503         *  - Data block reads are more troublesome, since a variable
 504         *    number of padding bytes precede the token and data.
 505         *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 506         *      + N(AC) (== 1..many) bytes of all-ones
 507         *
 508         *    In this case we currently only have minimal speedups here:
 509         *    when N(CR) == 1 we can avoid I/O in response_get().
 510         */
 511        if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 512                cp += 2;        /* min(N(CR)) + status */
 513                /* R1 */
 514        } else {
 515                cp += 10;       /* max(N(CR)) + status + min(N(RC),N(WR)) */
 516                if (cmd->flags & MMC_RSP_SPI_S2)        /* R2/R5 */
 517                        cp++;
 518                else if (cmd->flags & MMC_RSP_SPI_B4)   /* R3/R4/R7 */
 519                        cp += 4;
 520                else if (cmd->flags & MMC_RSP_BUSY)     /* R1B */
 521                        cp = data->status + sizeof(data->status);
 522                /* else:  R1 (most commands) */
 523        }
 524
 525        dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 526                cmd->opcode, maptype(cmd));
 527
 528        /* send command, leaving chipselect active */
 529        spi_message_init(&host->m);
 530
 531        t = &host->t;
 532        memset(t, 0, sizeof(*t));
 533        t->tx_buf = t->rx_buf = data->status;
 534        t->tx_dma = t->rx_dma = host->data_dma;
 535        t->len = cp - data->status;
 536        t->cs_change = 1;
 537        spi_message_add_tail(t, &host->m);
 538
 539        if (host->dma_dev) {
 540                host->m.is_dma_mapped = 1;
 541                dma_sync_single_for_device(host->dma_dev,
 542                                host->data_dma, sizeof(*host->data),
 543                                DMA_BIDIRECTIONAL);
 544        }
 545        status = spi_sync_locked(host->spi, &host->m);
 546
 547        if (host->dma_dev)
 548                dma_sync_single_for_cpu(host->dma_dev,
 549                                host->data_dma, sizeof(*host->data),
 550                                DMA_BIDIRECTIONAL);
 551        if (status < 0) {
 552                dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 553                cmd->error = status;
 554                return status;
 555        }
 556
 557        /* after no-data commands and STOP_TRANSMISSION, chipselect off */
 558        return mmc_spi_response_get(host, cmd, cs_on);
 559}
 560
 561/* Build data message with up to four separate transfers.  For TX, we
 562 * start by writing the data token.  And in most cases, we finish with
 563 * a status transfer.
 564 *
 565 * We always provide TX data for data and CRC.  The MMC/SD protocol
 566 * requires us to write ones; but Linux defaults to writing zeroes;
 567 * so we explicitly initialize it to all ones on RX paths.
 568 *
 569 * We also handle DMA mapping, so the underlying SPI controller does
 570 * not need to (re)do it for each message.
 571 */
 572static void
 573mmc_spi_setup_data_message(
 574        struct mmc_spi_host     *host,
 575        int                     multiple,
 576        enum dma_data_direction direction)
 577{
 578        struct spi_transfer     *t;
 579        struct scratch          *scratch = host->data;
 580        dma_addr_t              dma = host->data_dma;
 581
 582        spi_message_init(&host->m);
 583        if (dma)
 584                host->m.is_dma_mapped = 1;
 585
 586        /* for reads, readblock() skips 0xff bytes before finding
 587         * the token; for writes, this transfer issues that token.
 588         */
 589        if (direction == DMA_TO_DEVICE) {
 590                t = &host->token;
 591                memset(t, 0, sizeof(*t));
 592                t->len = 1;
 593                if (multiple)
 594                        scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 595                else
 596                        scratch->data_token = SPI_TOKEN_SINGLE;
 597                t->tx_buf = &scratch->data_token;
 598                if (dma)
 599                        t->tx_dma = dma + offsetof(struct scratch, data_token);
 600                spi_message_add_tail(t, &host->m);
 601        }
 602
 603        /* Body of transfer is buffer, then CRC ...
 604         * either TX-only, or RX with TX-ones.
 605         */
 606        t = &host->t;
 607        memset(t, 0, sizeof(*t));
 608        t->tx_buf = host->ones;
 609        t->tx_dma = host->ones_dma;
 610        /* length and actual buffer info are written later */
 611        spi_message_add_tail(t, &host->m);
 612
 613        t = &host->crc;
 614        memset(t, 0, sizeof(*t));
 615        t->len = 2;
 616        if (direction == DMA_TO_DEVICE) {
 617                /* the actual CRC may get written later */
 618                t->tx_buf = &scratch->crc_val;
 619                if (dma)
 620                        t->tx_dma = dma + offsetof(struct scratch, crc_val);
 621        } else {
 622                t->tx_buf = host->ones;
 623                t->tx_dma = host->ones_dma;
 624                t->rx_buf = &scratch->crc_val;
 625                if (dma)
 626                        t->rx_dma = dma + offsetof(struct scratch, crc_val);
 627        }
 628        spi_message_add_tail(t, &host->m);
 629
 630        /*
 631         * A single block read is followed by N(EC) [0+] all-ones bytes
 632         * before deselect ... don't bother.
 633         *
 634         * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 635         * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 636         * collect that single byte, so readblock() doesn't need to.
 637         *
 638         * For a write, the one-byte data response follows immediately, then
 639         * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 640         * Then single block reads may deselect, and multiblock ones issue
 641         * the next token (next data block, or STOP_TRAN).  We can try to
 642         * minimize I/O ops by using a single read to collect end-of-busy.
 643         */
 644        if (multiple || direction == DMA_TO_DEVICE) {
 645                t = &host->early_status;
 646                memset(t, 0, sizeof(*t));
 647                t->len = (direction == DMA_TO_DEVICE)
 648                                ? sizeof(scratch->status)
 649                                : 1;
 650                t->tx_buf = host->ones;
 651                t->tx_dma = host->ones_dma;
 652                t->rx_buf = scratch->status;
 653                if (dma)
 654                        t->rx_dma = dma + offsetof(struct scratch, status);
 655                t->cs_change = 1;
 656                spi_message_add_tail(t, &host->m);
 657        }
 658}
 659
 660/*
 661 * Write one block:
 662 *  - caller handled preceding N(WR) [1+] all-ones bytes
 663 *  - data block
 664 *      + token
 665 *      + data bytes
 666 *      + crc16
 667 *  - an all-ones byte ... card writes a data-response byte
 668 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 669 *
 670 * Return negative errno, else success.
 671 */
 672static int
 673mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 674        unsigned long timeout)
 675{
 676        struct spi_device       *spi = host->spi;
 677        int                     status, i;
 678        struct scratch          *scratch = host->data;
 679        u32                     pattern;
 680
 681        if (host->mmc->use_spi_crc)
 682                scratch->crc_val = cpu_to_be16(
 683                                crc_itu_t(0, t->tx_buf, t->len));
 684        if (host->dma_dev)
 685                dma_sync_single_for_device(host->dma_dev,
 686                                host->data_dma, sizeof(*scratch),
 687                                DMA_BIDIRECTIONAL);
 688
 689        status = spi_sync_locked(spi, &host->m);
 690
 691        if (status != 0) {
 692                dev_dbg(&spi->dev, "write error (%d)\n", status);
 693                return status;
 694        }
 695
 696        if (host->dma_dev)
 697                dma_sync_single_for_cpu(host->dma_dev,
 698                                host->data_dma, sizeof(*scratch),
 699                                DMA_BIDIRECTIONAL);
 700
 701        /*
 702         * Get the transmission data-response reply.  It must follow
 703         * immediately after the data block we transferred.  This reply
 704         * doesn't necessarily tell whether the write operation succeeded;
 705         * it just says if the transmission was ok and whether *earlier*
 706         * writes succeeded; see the standard.
 707         *
 708         * In practice, there are (even modern SDHC-)cards which are late
 709         * in sending the response, and miss the time frame by a few bits,
 710         * so we have to cope with this situation and check the response
 711         * bit-by-bit. Arggh!!!
 712         */
 713        pattern  = scratch->status[0] << 24;
 714        pattern |= scratch->status[1] << 16;
 715        pattern |= scratch->status[2] << 8;
 716        pattern |= scratch->status[3];
 717
 718        /* First 3 bit of pattern are undefined */
 719        pattern |= 0xE0000000;
 720
 721        /* left-adjust to leading 0 bit */
 722        while (pattern & 0x80000000)
 723                pattern <<= 1;
 724        /* right-adjust for pattern matching. Code is in bit 4..0 now. */
 725        pattern >>= 27;
 726
 727        switch (pattern) {
 728        case SPI_RESPONSE_ACCEPTED:
 729                status = 0;
 730                break;
 731        case SPI_RESPONSE_CRC_ERR:
 732                /* host shall then issue MMC_STOP_TRANSMISSION */
 733                status = -EILSEQ;
 734                break;
 735        case SPI_RESPONSE_WRITE_ERR:
 736                /* host shall then issue MMC_STOP_TRANSMISSION,
 737                 * and should MMC_SEND_STATUS to sort it out
 738                 */
 739                status = -EIO;
 740                break;
 741        default:
 742                status = -EPROTO;
 743                break;
 744        }
 745        if (status != 0) {
 746                dev_dbg(&spi->dev, "write error %02x (%d)\n",
 747                        scratch->status[0], status);
 748                return status;
 749        }
 750
 751        t->tx_buf += t->len;
 752        if (host->dma_dev)
 753                t->tx_dma += t->len;
 754
 755        /* Return when not busy.  If we didn't collect that status yet,
 756         * we'll need some more I/O.
 757         */
 758        for (i = 4; i < sizeof(scratch->status); i++) {
 759                /* card is non-busy if the most recent bit is 1 */
 760                if (scratch->status[i] & 0x01)
 761                        return 0;
 762        }
 763        return mmc_spi_wait_unbusy(host, timeout);
 764}
 765
 766/*
 767 * Read one block:
 768 *  - skip leading all-ones bytes ... either
 769 *      + N(AC) [1..f(clock,CSD)] usually, else
 770 *      + N(CX) [0..8] when reading CSD or CID
 771 *  - data block
 772 *      + token ... if error token, no data or crc
 773 *      + data bytes
 774 *      + crc16
 775 *
 776 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 777 * before dropping chipselect.
 778 *
 779 * For multiblock reads, caller either reads the next block or issues a
 780 * STOP_TRANSMISSION command.
 781 */
 782static int
 783mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 784        unsigned long timeout)
 785{
 786        struct spi_device       *spi = host->spi;
 787        int                     status;
 788        struct scratch          *scratch = host->data;
 789        unsigned int            bitshift;
 790        u8                      leftover;
 791
 792        /* At least one SD card sends an all-zeroes byte when N(CX)
 793         * applies, before the all-ones bytes ... just cope with that.
 794         */
 795        status = mmc_spi_readbytes(host, 1);
 796        if (status < 0)
 797                return status;
 798        status = scratch->status[0];
 799        if (status == 0xff || status == 0)
 800                status = mmc_spi_readtoken(host, timeout);
 801
 802        if (status < 0) {
 803                dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 804                return status;
 805        }
 806
 807        /* The token may be bit-shifted...
 808         * the first 0-bit precedes the data stream.
 809         */
 810        bitshift = 7;
 811        while (status & 0x80) {
 812                status <<= 1;
 813                bitshift--;
 814        }
 815        leftover = status << 1;
 816
 817        if (host->dma_dev) {
 818                dma_sync_single_for_device(host->dma_dev,
 819                                host->data_dma, sizeof(*scratch),
 820                                DMA_BIDIRECTIONAL);
 821                dma_sync_single_for_device(host->dma_dev,
 822                                t->rx_dma, t->len,
 823                                DMA_FROM_DEVICE);
 824        }
 825
 826        status = spi_sync_locked(spi, &host->m);
 827
 828        if (host->dma_dev) {
 829                dma_sync_single_for_cpu(host->dma_dev,
 830                                host->data_dma, sizeof(*scratch),
 831                                DMA_BIDIRECTIONAL);
 832                dma_sync_single_for_cpu(host->dma_dev,
 833                                t->rx_dma, t->len,
 834                                DMA_FROM_DEVICE);
 835        }
 836
 837        if (bitshift) {
 838                /* Walk through the data and the crc and do
 839                 * all the magic to get byte-aligned data.
 840                 */
 841                u8 *cp = t->rx_buf;
 842                unsigned int len;
 843                unsigned int bitright = 8 - bitshift;
 844                u8 temp;
 845                for (len = t->len; len; len--) {
 846                        temp = *cp;
 847                        *cp++ = leftover | (temp >> bitshift);
 848                        leftover = temp << bitright;
 849                }
 850                cp = (u8 *) &scratch->crc_val;
 851                temp = *cp;
 852                *cp++ = leftover | (temp >> bitshift);
 853                leftover = temp << bitright;
 854                temp = *cp;
 855                *cp = leftover | (temp >> bitshift);
 856        }
 857
 858        if (host->mmc->use_spi_crc) {
 859                u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 860
 861                be16_to_cpus(&scratch->crc_val);
 862                if (scratch->crc_val != crc) {
 863                        dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
 864                                        "computed=0x%04x len=%d\n",
 865                                        scratch->crc_val, crc, t->len);
 866                        return -EILSEQ;
 867                }
 868        }
 869
 870        t->rx_buf += t->len;
 871        if (host->dma_dev)
 872                t->rx_dma += t->len;
 873
 874        return 0;
 875}
 876
 877/*
 878 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 879 * and inline handshaking.  That handhaking makes it unlike most
 880 * other SPI protocol stacks.
 881 */
 882static void
 883mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 884                struct mmc_data *data, u32 blk_size)
 885{
 886        struct spi_device       *spi = host->spi;
 887        struct device           *dma_dev = host->dma_dev;
 888        struct spi_transfer     *t;
 889        enum dma_data_direction direction;
 890        struct scatterlist      *sg;
 891        unsigned                n_sg;
 892        int                     multiple = (data->blocks > 1);
 893        u32                     clock_rate;
 894        unsigned long           timeout;
 895
 896        if (data->flags & MMC_DATA_READ)
 897                direction = DMA_FROM_DEVICE;
 898        else
 899                direction = DMA_TO_DEVICE;
 900        mmc_spi_setup_data_message(host, multiple, direction);
 901        t = &host->t;
 902
 903        if (t->speed_hz)
 904                clock_rate = t->speed_hz;
 905        else
 906                clock_rate = spi->max_speed_hz;
 907
 908        timeout = data->timeout_ns +
 909                  data->timeout_clks * 1000000 / clock_rate;
 910        timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 911
 912        /* Handle scatterlist segments one at a time, with synch for
 913         * each 512-byte block
 914         */
 915        for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
 916                int                     status = 0;
 917                dma_addr_t              dma_addr = 0;
 918                void                    *kmap_addr;
 919                unsigned                length = sg->length;
 920                enum dma_data_direction dir = direction;
 921
 922                /* set up dma mapping for controller drivers that might
 923                 * use DMA ... though they may fall back to PIO
 924                 */
 925                if (dma_dev) {
 926                        /* never invalidate whole *shared* pages ... */
 927                        if ((sg->offset != 0 || length != PAGE_SIZE)
 928                                        && dir == DMA_FROM_DEVICE)
 929                                dir = DMA_BIDIRECTIONAL;
 930
 931                        dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 932                                                PAGE_SIZE, dir);
 933                        if (direction == DMA_TO_DEVICE)
 934                                t->tx_dma = dma_addr + sg->offset;
 935                        else
 936                                t->rx_dma = dma_addr + sg->offset;
 937                }
 938
 939                /* allow pio too; we don't allow highmem */
 940                kmap_addr = kmap(sg_page(sg));
 941                if (direction == DMA_TO_DEVICE)
 942                        t->tx_buf = kmap_addr + sg->offset;
 943                else
 944                        t->rx_buf = kmap_addr + sg->offset;
 945
 946                /* transfer each block, and update request status */
 947                while (length) {
 948                        t->len = min(length, blk_size);
 949
 950                        dev_dbg(&host->spi->dev,
 951                                "    mmc_spi: %s block, %d bytes\n",
 952                                (direction == DMA_TO_DEVICE)
 953                                ? "write"
 954                                : "read",
 955                                t->len);
 956
 957                        if (direction == DMA_TO_DEVICE)
 958                                status = mmc_spi_writeblock(host, t, timeout);
 959                        else
 960                                status = mmc_spi_readblock(host, t, timeout);
 961                        if (status < 0)
 962                                break;
 963
 964                        data->bytes_xfered += t->len;
 965                        length -= t->len;
 966
 967                        if (!multiple)
 968                                break;
 969                }
 970
 971                /* discard mappings */
 972                if (direction == DMA_FROM_DEVICE)
 973                        flush_kernel_dcache_page(sg_page(sg));
 974                kunmap(sg_page(sg));
 975                if (dma_dev)
 976                        dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 977
 978                if (status < 0) {
 979                        data->error = status;
 980                        dev_dbg(&spi->dev, "%s status %d\n",
 981                                (direction == DMA_TO_DEVICE)
 982                                        ? "write" : "read",
 983                                status);
 984                        break;
 985                }
 986        }
 987
 988        /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 989         * can be issued before multiblock writes.  Unlike its more widely
 990         * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 991         * that can affect the STOP_TRAN logic.   Complete (and current)
 992         * MMC specs should sort that out before Linux starts using CMD23.
 993         */
 994        if (direction == DMA_TO_DEVICE && multiple) {
 995                struct scratch  *scratch = host->data;
 996                int             tmp;
 997                const unsigned  statlen = sizeof(scratch->status);
 998
 999                dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
1000
1001                /* Tweak the per-block message we set up earlier by morphing
1002                 * it to hold single buffer with the token followed by some
1003                 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1004                 * "not busy any longer" status, and leave chip selected.
1005                 */
1006                INIT_LIST_HEAD(&host->m.transfers);
1007                list_add(&host->early_status.transfer_list,
1008                                &host->m.transfers);
1009
1010                memset(scratch->status, 0xff, statlen);
1011                scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1012
1013                host->early_status.tx_buf = host->early_status.rx_buf;
1014                host->early_status.tx_dma = host->early_status.rx_dma;
1015                host->early_status.len = statlen;
1016
1017                if (host->dma_dev)
1018                        dma_sync_single_for_device(host->dma_dev,
1019                                        host->data_dma, sizeof(*scratch),
1020                                        DMA_BIDIRECTIONAL);
1021
1022                tmp = spi_sync_locked(spi, &host->m);
1023
1024                if (host->dma_dev)
1025                        dma_sync_single_for_cpu(host->dma_dev,
1026                                        host->data_dma, sizeof(*scratch),
1027                                        DMA_BIDIRECTIONAL);
1028
1029                if (tmp < 0) {
1030                        if (!data->error)
1031                                data->error = tmp;
1032                        return;
1033                }
1034
1035                /* Ideally we collected "not busy" status with one I/O,
1036                 * avoiding wasteful byte-at-a-time scanning... but more
1037                 * I/O is often needed.
1038                 */
1039                for (tmp = 2; tmp < statlen; tmp++) {
1040                        if (scratch->status[tmp] != 0)
1041                                return;
1042                }
1043                tmp = mmc_spi_wait_unbusy(host, timeout);
1044                if (tmp < 0 && !data->error)
1045                        data->error = tmp;
1046        }
1047}
1048
1049/****************************************************************************/
1050
1051/*
1052 * MMC driver implementation -- the interface to the MMC stack
1053 */
1054
1055static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1056{
1057        struct mmc_spi_host     *host = mmc_priv(mmc);
1058        int                     status = -EINVAL;
1059        int                     crc_retry = 5;
1060        struct mmc_command      stop;
1061
1062#ifdef DEBUG
1063        /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1064        {
1065                struct mmc_command      *cmd;
1066                int                     invalid = 0;
1067
1068                cmd = mrq->cmd;
1069                if (!mmc_spi_resp_type(cmd)) {
1070                        dev_dbg(&host->spi->dev, "bogus command\n");
1071                        cmd->error = -EINVAL;
1072                        invalid = 1;
1073                }
1074
1075                cmd = mrq->stop;
1076                if (cmd && !mmc_spi_resp_type(cmd)) {
1077                        dev_dbg(&host->spi->dev, "bogus STOP command\n");
1078                        cmd->error = -EINVAL;
1079                        invalid = 1;
1080                }
1081
1082                if (invalid) {
1083                        dump_stack();
1084                        mmc_request_done(host->mmc, mrq);
1085                        return;
1086                }
1087        }
1088#endif
1089
1090        /* request exclusive bus access */
1091        spi_bus_lock(host->spi->master);
1092
1093crc_recover:
1094        /* issue command; then optionally data and stop */
1095        status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1096        if (status == 0 && mrq->data) {
1097                mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1098
1099                /*
1100                 * The SPI bus is not always reliable for large data transfers.
1101                 * If an occasional crc error is reported by the SD device with
1102                 * data read/write over SPI, it may be recovered by repeating
1103                 * the last SD command again. The retry count is set to 5 to
1104                 * ensure the driver passes stress tests.
1105                 */
1106                if (mrq->data->error == -EILSEQ && crc_retry) {
1107                        stop.opcode = MMC_STOP_TRANSMISSION;
1108                        stop.arg = 0;
1109                        stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1110                        status = mmc_spi_command_send(host, mrq, &stop, 0);
1111                        crc_retry--;
1112                        mrq->data->error = 0;
1113                        goto crc_recover;
1114                }
1115
1116                if (mrq->stop)
1117                        status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1118                else
1119                        mmc_cs_off(host);
1120        }
1121
1122        /* release the bus */
1123        spi_bus_unlock(host->spi->master);
1124
1125        mmc_request_done(host->mmc, mrq);
1126}
1127
1128/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1129 *
1130 * NOTE that here we can't know that the card has just been powered up;
1131 * not all MMC/SD sockets support power switching.
1132 *
1133 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1134 * this doesn't seem to do the right thing at all...
1135 */
1136static void mmc_spi_initsequence(struct mmc_spi_host *host)
1137{
1138        /* Try to be very sure any previous command has completed;
1139         * wait till not-busy, skip debris from any old commands.
1140         */
1141        mmc_spi_wait_unbusy(host, r1b_timeout);
1142        mmc_spi_readbytes(host, 10);
1143
1144        /*
1145         * Do a burst with chipselect active-high.  We need to do this to
1146         * meet the requirement of 74 clock cycles with both chipselect
1147         * and CMD (MOSI) high before CMD0 ... after the card has been
1148         * powered up to Vdd(min), and so is ready to take commands.
1149         *
1150         * Some cards are particularly needy of this (e.g. Viking "SD256")
1151         * while most others don't seem to care.
1152         *
1153         * Note that this is one of the places MMC/SD plays games with the
1154         * SPI protocol.  Another is that when chipselect is released while
1155         * the card returns BUSY status, the clock must issue several cycles
1156         * with chipselect high before the card will stop driving its output.
1157         */
1158        host->spi->mode |= SPI_CS_HIGH;
1159        if (spi_setup(host->spi) != 0) {
1160                /* Just warn; most cards work without it. */
1161                dev_warn(&host->spi->dev,
1162                                "can't change chip-select polarity\n");
1163                host->spi->mode &= ~SPI_CS_HIGH;
1164        } else {
1165                mmc_spi_readbytes(host, 18);
1166
1167                host->spi->mode &= ~SPI_CS_HIGH;
1168                if (spi_setup(host->spi) != 0) {
1169                        /* Wot, we can't get the same setup we had before? */
1170                        dev_err(&host->spi->dev,
1171                                        "can't restore chip-select polarity\n");
1172                }
1173        }
1174}
1175
1176static char *mmc_powerstring(u8 power_mode)
1177{
1178        switch (power_mode) {
1179        case MMC_POWER_OFF: return "off";
1180        case MMC_POWER_UP:  return "up";
1181        case MMC_POWER_ON:  return "on";
1182        }
1183        return "?";
1184}
1185
1186static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1187{
1188        struct mmc_spi_host *host = mmc_priv(mmc);
1189
1190        if (host->power_mode != ios->power_mode) {
1191                int             canpower;
1192
1193                canpower = host->pdata && host->pdata->setpower;
1194
1195                dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1196                                mmc_powerstring(ios->power_mode),
1197                                ios->vdd,
1198                                canpower ? ", can switch" : "");
1199
1200                /* switch power on/off if possible, accounting for
1201                 * max 250msec powerup time if needed.
1202                 */
1203                if (canpower) {
1204                        switch (ios->power_mode) {
1205                        case MMC_POWER_OFF:
1206                        case MMC_POWER_UP:
1207                                host->pdata->setpower(&host->spi->dev,
1208                                                ios->vdd);
1209                                if (ios->power_mode == MMC_POWER_UP)
1210                                        msleep(host->powerup_msecs);
1211                        }
1212                }
1213
1214                /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1215                if (ios->power_mode == MMC_POWER_ON)
1216                        mmc_spi_initsequence(host);
1217
1218                /* If powering down, ground all card inputs to avoid power
1219                 * delivery from data lines!  On a shared SPI bus, this
1220                 * will probably be temporary; 6.4.2 of the simplified SD
1221                 * spec says this must last at least 1msec.
1222                 *
1223                 *   - Clock low means CPOL 0, e.g. mode 0
1224                 *   - MOSI low comes from writing zero
1225                 *   - Chipselect is usually active low...
1226                 */
1227                if (canpower && ios->power_mode == MMC_POWER_OFF) {
1228                        int mres;
1229                        u8 nullbyte = 0;
1230
1231                        host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1232                        mres = spi_setup(host->spi);
1233                        if (mres < 0)
1234                                dev_dbg(&host->spi->dev,
1235                                        "switch to SPI mode 0 failed\n");
1236
1237                        if (spi_write(host->spi, &nullbyte, 1) < 0)
1238                                dev_dbg(&host->spi->dev,
1239                                        "put spi signals to low failed\n");
1240
1241                        /*
1242                         * Now clock should be low due to spi mode 0;
1243                         * MOSI should be low because of written 0x00;
1244                         * chipselect should be low (it is active low)
1245                         * power supply is off, so now MMC is off too!
1246                         *
1247                         * FIXME no, chipselect can be high since the
1248                         * device is inactive and SPI_CS_HIGH is clear...
1249                         */
1250                        msleep(10);
1251                        if (mres == 0) {
1252                                host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1253                                mres = spi_setup(host->spi);
1254                                if (mres < 0)
1255                                        dev_dbg(&host->spi->dev,
1256                                                "switch back to SPI mode 3"
1257                                                " failed\n");
1258                        }
1259                }
1260
1261                host->power_mode = ios->power_mode;
1262        }
1263
1264        if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1265                int             status;
1266
1267                host->spi->max_speed_hz = ios->clock;
1268                status = spi_setup(host->spi);
1269                dev_dbg(&host->spi->dev,
1270                        "mmc_spi:  clock to %d Hz, %d\n",
1271                        host->spi->max_speed_hz, status);
1272        }
1273}
1274
1275static int mmc_spi_get_ro(struct mmc_host *mmc)
1276{
1277        struct mmc_spi_host *host = mmc_priv(mmc);
1278
1279        if (host->pdata && host->pdata->get_ro)
1280                return !!host->pdata->get_ro(mmc->parent);
1281        /*
1282         * Board doesn't support read only detection; let the mmc core
1283         * decide what to do.
1284         */
1285        return -ENOSYS;
1286}
1287
1288static int mmc_spi_get_cd(struct mmc_host *mmc)
1289{
1290        struct mmc_spi_host *host = mmc_priv(mmc);
1291
1292        if (host->pdata && host->pdata->get_cd)
1293                return !!host->pdata->get_cd(mmc->parent);
1294        return -ENOSYS;
1295}
1296
1297static const struct mmc_host_ops mmc_spi_ops = {
1298        .request        = mmc_spi_request,
1299        .set_ios        = mmc_spi_set_ios,
1300        .get_ro         = mmc_spi_get_ro,
1301        .get_cd         = mmc_spi_get_cd,
1302};
1303
1304
1305/****************************************************************************/
1306
1307/*
1308 * SPI driver implementation
1309 */
1310
1311static irqreturn_t
1312mmc_spi_detect_irq(int irq, void *mmc)
1313{
1314        struct mmc_spi_host *host = mmc_priv(mmc);
1315        u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1316
1317        mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1318        return IRQ_HANDLED;
1319}
1320
1321static int mmc_spi_probe(struct spi_device *spi)
1322{
1323        void                    *ones;
1324        struct mmc_host         *mmc;
1325        struct mmc_spi_host     *host;
1326        int                     status;
1327
1328        /* We rely on full duplex transfers, mostly to reduce
1329         * per-transfer overheads (by making fewer transfers).
1330         */
1331        if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1332                return -EINVAL;
1333
1334        /* MMC and SD specs only seem to care that sampling is on the
1335         * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1336         * should be legit.  We'll use mode 0 since the steady state is 0,
1337         * which is appropriate for hotplugging, unless the platform data
1338         * specify mode 3 (if hardware is not compatible to mode 0).
1339         */
1340        if (spi->mode != SPI_MODE_3)
1341                spi->mode = SPI_MODE_0;
1342        spi->bits_per_word = 8;
1343
1344        status = spi_setup(spi);
1345        if (status < 0) {
1346                dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1347                                spi->mode, spi->max_speed_hz / 1000,
1348                                status);
1349                return status;
1350        }
1351
1352        /* We need a supply of ones to transmit.  This is the only time
1353         * the CPU touches these, so cache coherency isn't a concern.
1354         *
1355         * NOTE if many systems use more than one MMC-over-SPI connector
1356         * it'd save some memory to share this.  That's evidently rare.
1357         */
1358        status = -ENOMEM;
1359        ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1360        if (!ones)
1361                goto nomem;
1362        memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1363
1364        mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1365        if (!mmc)
1366                goto nomem;
1367
1368        mmc->ops = &mmc_spi_ops;
1369        mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1370        mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1371        mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1372        mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1373
1374        mmc->caps = MMC_CAP_SPI;
1375
1376        /* SPI doesn't need the lowspeed device identification thing for
1377         * MMC or SD cards, since it never comes up in open drain mode.
1378         * That's good; some SPI masters can't handle very low speeds!
1379         *
1380         * However, low speed SDIO cards need not handle over 400 KHz;
1381         * that's the only reason not to use a few MHz for f_min (until
1382         * the upper layer reads the target frequency from the CSD).
1383         */
1384        mmc->f_min = 400000;
1385        mmc->f_max = spi->max_speed_hz;
1386
1387        host = mmc_priv(mmc);
1388        host->mmc = mmc;
1389        host->spi = spi;
1390
1391        host->ones = ones;
1392
1393        /* Platform data is used to hook up things like card sensing
1394         * and power switching gpios.
1395         */
1396        host->pdata = mmc_spi_get_pdata(spi);
1397        if (host->pdata)
1398                mmc->ocr_avail = host->pdata->ocr_mask;
1399        if (!mmc->ocr_avail) {
1400                dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1401                mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1402        }
1403        if (host->pdata && host->pdata->setpower) {
1404                host->powerup_msecs = host->pdata->powerup_msecs;
1405                if (!host->powerup_msecs || host->powerup_msecs > 250)
1406                        host->powerup_msecs = 250;
1407        }
1408
1409        dev_set_drvdata(&spi->dev, mmc);
1410
1411        /* preallocate dma buffers */
1412        host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1413        if (!host->data)
1414                goto fail_nobuf1;
1415
1416        if (spi->master->dev.parent->dma_mask) {
1417                struct device   *dev = spi->master->dev.parent;
1418
1419                host->dma_dev = dev;
1420                host->ones_dma = dma_map_single(dev, ones,
1421                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1422                host->data_dma = dma_map_single(dev, host->data,
1423                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1424
1425                /* REVISIT in theory those map operations can fail... */
1426
1427                dma_sync_single_for_cpu(host->dma_dev,
1428                                host->data_dma, sizeof(*host->data),
1429                                DMA_BIDIRECTIONAL);
1430        }
1431
1432        /* setup message for status/busy readback */
1433        spi_message_init(&host->readback);
1434        host->readback.is_dma_mapped = (host->dma_dev != NULL);
1435
1436        spi_message_add_tail(&host->status, &host->readback);
1437        host->status.tx_buf = host->ones;
1438        host->status.tx_dma = host->ones_dma;
1439        host->status.rx_buf = &host->data->status;
1440        host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1441        host->status.cs_change = 1;
1442
1443        /* register card detect irq */
1444        if (host->pdata && host->pdata->init) {
1445                status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1446                if (status != 0)
1447                        goto fail_glue_init;
1448        }
1449
1450        /* pass platform capabilities, if any */
1451        if (host->pdata)
1452                mmc->caps |= host->pdata->caps;
1453
1454        status = mmc_add_host(mmc);
1455        if (status != 0)
1456                goto fail_add_host;
1457
1458        dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1459                        dev_name(&mmc->class_dev),
1460                        host->dma_dev ? "" : ", no DMA",
1461                        (host->pdata && host->pdata->get_ro)
1462                                ? "" : ", no WP",
1463                        (host->pdata && host->pdata->setpower)
1464                                ? "" : ", no poweroff",
1465                        (mmc->caps & MMC_CAP_NEEDS_POLL)
1466                                ? ", cd polling" : "");
1467        return 0;
1468
1469fail_add_host:
1470        mmc_remove_host (mmc);
1471fail_glue_init:
1472        if (host->dma_dev)
1473                dma_unmap_single(host->dma_dev, host->data_dma,
1474                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1475        kfree(host->data);
1476
1477fail_nobuf1:
1478        mmc_free_host(mmc);
1479        mmc_spi_put_pdata(spi);
1480        dev_set_drvdata(&spi->dev, NULL);
1481
1482nomem:
1483        kfree(ones);
1484        return status;
1485}
1486
1487
1488static int mmc_spi_remove(struct spi_device *spi)
1489{
1490        struct mmc_host         *mmc = dev_get_drvdata(&spi->dev);
1491        struct mmc_spi_host     *host;
1492
1493        if (mmc) {
1494                host = mmc_priv(mmc);
1495
1496                /* prevent new mmc_detect_change() calls */
1497                if (host->pdata && host->pdata->exit)
1498                        host->pdata->exit(&spi->dev, mmc);
1499
1500                mmc_remove_host(mmc);
1501
1502                if (host->dma_dev) {
1503                        dma_unmap_single(host->dma_dev, host->ones_dma,
1504                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1505                        dma_unmap_single(host->dma_dev, host->data_dma,
1506                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1507                }
1508
1509                kfree(host->data);
1510                kfree(host->ones);
1511
1512                spi->max_speed_hz = mmc->f_max;
1513                mmc_free_host(mmc);
1514                mmc_spi_put_pdata(spi);
1515                dev_set_drvdata(&spi->dev, NULL);
1516        }
1517        return 0;
1518}
1519
1520static struct of_device_id mmc_spi_of_match_table[] = {
1521        { .compatible = "mmc-spi-slot", },
1522        {},
1523};
1524
1525static struct spi_driver mmc_spi_driver = {
1526        .driver = {
1527                .name =         "mmc_spi",
1528                .owner =        THIS_MODULE,
1529                .of_match_table = mmc_spi_of_match_table,
1530        },
1531        .probe =        mmc_spi_probe,
1532        .remove =       mmc_spi_remove,
1533};
1534
1535module_spi_driver(mmc_spi_driver);
1536
1537MODULE_AUTHOR("Mike Lavender, David Brownell, "
1538                "Hans-Peter Nilsson, Jan Nikitenko");
1539MODULE_DESCRIPTION("SPI SD/MMC host driver");
1540MODULE_LICENSE("GPL");
1541MODULE_ALIAS("spi:mmc_spi");
1542