linux/drivers/net/ethernet/chelsio/cxgb4/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/skbuff.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/if_vlan.h>
  39#include <linux/ip.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/jiffies.h>
  42#include <linux/prefetch.h>
  43#include <linux/export.h>
  44#include <net/ipv6.h>
  45#include <net/tcp.h>
  46#include "cxgb4.h"
  47#include "t4_regs.h"
  48#include "t4_msg.h"
  49#include "t4fw_api.h"
  50
  51/*
  52 * Rx buffer size.  We use largish buffers if possible but settle for single
  53 * pages under memory shortage.
  54 */
  55#if PAGE_SHIFT >= 16
  56# define FL_PG_ORDER 0
  57#else
  58# define FL_PG_ORDER (16 - PAGE_SHIFT)
  59#endif
  60
  61/* RX_PULL_LEN should be <= RX_COPY_THRES */
  62#define RX_COPY_THRES    256
  63#define RX_PULL_LEN      128
  64
  65/*
  66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
  67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
  68 */
  69#define RX_PKT_SKB_LEN   512
  70
  71/*
  72 * Max number of Tx descriptors we clean up at a time.  Should be modest as
  73 * freeing skbs isn't cheap and it happens while holding locks.  We just need
  74 * to free packets faster than they arrive, we eventually catch up and keep
  75 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
  76 */
  77#define MAX_TX_RECLAIM 16
  78
  79/*
  80 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
  81 * allocating buffers isn't cheap either.
  82 */
  83#define MAX_RX_REFILL 16U
  84
  85/*
  86 * Period of the Rx queue check timer.  This timer is infrequent as it has
  87 * something to do only when the system experiences severe memory shortage.
  88 */
  89#define RX_QCHECK_PERIOD (HZ / 2)
  90
  91/*
  92 * Period of the Tx queue check timer.
  93 */
  94#define TX_QCHECK_PERIOD (HZ / 2)
  95
  96/*
  97 * Max number of Tx descriptors to be reclaimed by the Tx timer.
  98 */
  99#define MAX_TIMER_TX_RECLAIM 100
 100
 101/*
 102 * Timer index used when backing off due to memory shortage.
 103 */
 104#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
 105
 106/*
 107 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
 108 * attempt to refill it.
 109 */
 110#define FL_STARVE_THRES 4
 111
 112/*
 113 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
 114 * This is the same as calc_tx_descs() for a TSO packet with
 115 * nr_frags == MAX_SKB_FRAGS.
 116 */
 117#define ETHTXQ_STOP_THRES \
 118        (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
 119
 120/*
 121 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 122 * for a full sized WR.
 123 */
 124#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
 125
 126/*
 127 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 128 * into a WR.
 129 */
 130#define MAX_IMM_TX_PKT_LEN 128
 131
 132/*
 133 * Max size of a WR sent through a control Tx queue.
 134 */
 135#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
 136
 137struct tx_sw_desc {                /* SW state per Tx descriptor */
 138        struct sk_buff *skb;
 139        struct ulptx_sgl *sgl;
 140};
 141
 142struct rx_sw_desc {                /* SW state per Rx descriptor */
 143        struct page *page;
 144        dma_addr_t dma_addr;
 145};
 146
 147/*
 148 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 149 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 150 * We could easily support more but there doesn't seem to be much need for
 151 * that ...
 152 */
 153#define FL_MTU_SMALL 1500
 154#define FL_MTU_LARGE 9000
 155
 156static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
 157                                          unsigned int mtu)
 158{
 159        struct sge *s = &adapter->sge;
 160
 161        return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
 162}
 163
 164#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
 165#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
 166
 167/*
 168 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 169 * these to specify the buffer size as an index into the SGE Free List Buffer
 170 * Size register array.  We also use bit 4, when the buffer has been unmapped
 171 * for DMA, but this is of course never sent to the hardware and is only used
 172 * to prevent double unmappings.  All of the above requires that the Free List
 173 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 174 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 175 * Free List Buffer alignment is 32 bytes, this works out for us ...
 176 */
 177enum {
 178        RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
 179        RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
 180        RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
 181
 182        /*
 183         * XXX We shouldn't depend on being able to use these indices.
 184         * XXX Especially when some other Master PF has initialized the
 185         * XXX adapter or we use the Firmware Configuration File.  We
 186         * XXX should really search through the Host Buffer Size register
 187         * XXX array for the appropriately sized buffer indices.
 188         */
 189        RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
 190        RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
 191
 192        RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
 193        RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
 194};
 195
 196static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
 197{
 198        return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
 199}
 200
 201static inline bool is_buf_mapped(const struct rx_sw_desc *d)
 202{
 203        return !(d->dma_addr & RX_UNMAPPED_BUF);
 204}
 205
 206/**
 207 *      txq_avail - return the number of available slots in a Tx queue
 208 *      @q: the Tx queue
 209 *
 210 *      Returns the number of descriptors in a Tx queue available to write new
 211 *      packets.
 212 */
 213static inline unsigned int txq_avail(const struct sge_txq *q)
 214{
 215        return q->size - 1 - q->in_use;
 216}
 217
 218/**
 219 *      fl_cap - return the capacity of a free-buffer list
 220 *      @fl: the FL
 221 *
 222 *      Returns the capacity of a free-buffer list.  The capacity is less than
 223 *      the size because one descriptor needs to be left unpopulated, otherwise
 224 *      HW will think the FL is empty.
 225 */
 226static inline unsigned int fl_cap(const struct sge_fl *fl)
 227{
 228        return fl->size - 8;   /* 1 descriptor = 8 buffers */
 229}
 230
 231static inline bool fl_starving(const struct sge_fl *fl)
 232{
 233        return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
 234}
 235
 236static int map_skb(struct device *dev, const struct sk_buff *skb,
 237                   dma_addr_t *addr)
 238{
 239        const skb_frag_t *fp, *end;
 240        const struct skb_shared_info *si;
 241
 242        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 243        if (dma_mapping_error(dev, *addr))
 244                goto out_err;
 245
 246        si = skb_shinfo(skb);
 247        end = &si->frags[si->nr_frags];
 248
 249        for (fp = si->frags; fp < end; fp++) {
 250                *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 251                                           DMA_TO_DEVICE);
 252                if (dma_mapping_error(dev, *addr))
 253                        goto unwind;
 254        }
 255        return 0;
 256
 257unwind:
 258        while (fp-- > si->frags)
 259                dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 260
 261        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 262out_err:
 263        return -ENOMEM;
 264}
 265
 266#ifdef CONFIG_NEED_DMA_MAP_STATE
 267static void unmap_skb(struct device *dev, const struct sk_buff *skb,
 268                      const dma_addr_t *addr)
 269{
 270        const skb_frag_t *fp, *end;
 271        const struct skb_shared_info *si;
 272
 273        dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
 274
 275        si = skb_shinfo(skb);
 276        end = &si->frags[si->nr_frags];
 277        for (fp = si->frags; fp < end; fp++)
 278                dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
 279}
 280
 281/**
 282 *      deferred_unmap_destructor - unmap a packet when it is freed
 283 *      @skb: the packet
 284 *
 285 *      This is the packet destructor used for Tx packets that need to remain
 286 *      mapped until they are freed rather than until their Tx descriptors are
 287 *      freed.
 288 */
 289static void deferred_unmap_destructor(struct sk_buff *skb)
 290{
 291        unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
 292}
 293#endif
 294
 295static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 296                      const struct ulptx_sgl *sgl, const struct sge_txq *q)
 297{
 298        const struct ulptx_sge_pair *p;
 299        unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 300
 301        if (likely(skb_headlen(skb)))
 302                dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 303                                 DMA_TO_DEVICE);
 304        else {
 305                dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 306                               DMA_TO_DEVICE);
 307                nfrags--;
 308        }
 309
 310        /*
 311         * the complexity below is because of the possibility of a wrap-around
 312         * in the middle of an SGL
 313         */
 314        for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 315                if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
 316unmap:                  dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 317                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 318                        dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 319                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 320                        p++;
 321                } else if ((u8 *)p == (u8 *)q->stat) {
 322                        p = (const struct ulptx_sge_pair *)q->desc;
 323                        goto unmap;
 324                } else if ((u8 *)p + 8 == (u8 *)q->stat) {
 325                        const __be64 *addr = (const __be64 *)q->desc;
 326
 327                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 328                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 329                        dma_unmap_page(dev, be64_to_cpu(addr[1]),
 330                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 331                        p = (const struct ulptx_sge_pair *)&addr[2];
 332                } else {
 333                        const __be64 *addr = (const __be64 *)q->desc;
 334
 335                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 336                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 337                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 338                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 339                        p = (const struct ulptx_sge_pair *)&addr[1];
 340                }
 341        }
 342        if (nfrags) {
 343                __be64 addr;
 344
 345                if ((u8 *)p == (u8 *)q->stat)
 346                        p = (const struct ulptx_sge_pair *)q->desc;
 347                addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
 348                                                       *(const __be64 *)q->desc;
 349                dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
 350                               DMA_TO_DEVICE);
 351        }
 352}
 353
 354/**
 355 *      free_tx_desc - reclaims Tx descriptors and their buffers
 356 *      @adapter: the adapter
 357 *      @q: the Tx queue to reclaim descriptors from
 358 *      @n: the number of descriptors to reclaim
 359 *      @unmap: whether the buffers should be unmapped for DMA
 360 *
 361 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 362 *      Tx buffers.  Called with the Tx queue lock held.
 363 */
 364static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
 365                         unsigned int n, bool unmap)
 366{
 367        struct tx_sw_desc *d;
 368        unsigned int cidx = q->cidx;
 369        struct device *dev = adap->pdev_dev;
 370
 371        d = &q->sdesc[cidx];
 372        while (n--) {
 373                if (d->skb) {                       /* an SGL is present */
 374                        if (unmap)
 375                                unmap_sgl(dev, d->skb, d->sgl, q);
 376                        kfree_skb(d->skb);
 377                        d->skb = NULL;
 378                }
 379                ++d;
 380                if (++cidx == q->size) {
 381                        cidx = 0;
 382                        d = q->sdesc;
 383                }
 384        }
 385        q->cidx = cidx;
 386}
 387
 388/*
 389 * Return the number of reclaimable descriptors in a Tx queue.
 390 */
 391static inline int reclaimable(const struct sge_txq *q)
 392{
 393        int hw_cidx = ntohs(q->stat->cidx);
 394        hw_cidx -= q->cidx;
 395        return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
 396}
 397
 398/**
 399 *      reclaim_completed_tx - reclaims completed Tx descriptors
 400 *      @adap: the adapter
 401 *      @q: the Tx queue to reclaim completed descriptors from
 402 *      @unmap: whether the buffers should be unmapped for DMA
 403 *
 404 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 405 *      and frees the associated buffers if possible.  Called with the Tx
 406 *      queue locked.
 407 */
 408static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 409                                        bool unmap)
 410{
 411        int avail = reclaimable(q);
 412
 413        if (avail) {
 414                /*
 415                 * Limit the amount of clean up work we do at a time to keep
 416                 * the Tx lock hold time O(1).
 417                 */
 418                if (avail > MAX_TX_RECLAIM)
 419                        avail = MAX_TX_RECLAIM;
 420
 421                free_tx_desc(adap, q, avail, unmap);
 422                q->in_use -= avail;
 423        }
 424}
 425
 426static inline int get_buf_size(struct adapter *adapter,
 427                               const struct rx_sw_desc *d)
 428{
 429        struct sge *s = &adapter->sge;
 430        unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
 431        int buf_size;
 432
 433        switch (rx_buf_size_idx) {
 434        case RX_SMALL_PG_BUF:
 435                buf_size = PAGE_SIZE;
 436                break;
 437
 438        case RX_LARGE_PG_BUF:
 439                buf_size = PAGE_SIZE << s->fl_pg_order;
 440                break;
 441
 442        case RX_SMALL_MTU_BUF:
 443                buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
 444                break;
 445
 446        case RX_LARGE_MTU_BUF:
 447                buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
 448                break;
 449
 450        default:
 451                BUG_ON(1);
 452        }
 453
 454        return buf_size;
 455}
 456
 457/**
 458 *      free_rx_bufs - free the Rx buffers on an SGE free list
 459 *      @adap: the adapter
 460 *      @q: the SGE free list to free buffers from
 461 *      @n: how many buffers to free
 462 *
 463 *      Release the next @n buffers on an SGE free-buffer Rx queue.   The
 464 *      buffers must be made inaccessible to HW before calling this function.
 465 */
 466static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
 467{
 468        while (n--) {
 469                struct rx_sw_desc *d = &q->sdesc[q->cidx];
 470
 471                if (is_buf_mapped(d))
 472                        dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 473                                       get_buf_size(adap, d),
 474                                       PCI_DMA_FROMDEVICE);
 475                put_page(d->page);
 476                d->page = NULL;
 477                if (++q->cidx == q->size)
 478                        q->cidx = 0;
 479                q->avail--;
 480        }
 481}
 482
 483/**
 484 *      unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 485 *      @adap: the adapter
 486 *      @q: the SGE free list
 487 *
 488 *      Unmap the current buffer on an SGE free-buffer Rx queue.   The
 489 *      buffer must be made inaccessible to HW before calling this function.
 490 *
 491 *      This is similar to @free_rx_bufs above but does not free the buffer.
 492 *      Do note that the FL still loses any further access to the buffer.
 493 */
 494static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
 495{
 496        struct rx_sw_desc *d = &q->sdesc[q->cidx];
 497
 498        if (is_buf_mapped(d))
 499                dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 500                               get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
 501        d->page = NULL;
 502        if (++q->cidx == q->size)
 503                q->cidx = 0;
 504        q->avail--;
 505}
 506
 507static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 508{
 509        if (q->pend_cred >= 8) {
 510                wmb();
 511                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
 512                             QID(q->cntxt_id) | PIDX(q->pend_cred / 8));
 513                q->pend_cred &= 7;
 514        }
 515}
 516
 517static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
 518                                  dma_addr_t mapping)
 519{
 520        sd->page = pg;
 521        sd->dma_addr = mapping;      /* includes size low bits */
 522}
 523
 524/**
 525 *      refill_fl - refill an SGE Rx buffer ring
 526 *      @adap: the adapter
 527 *      @q: the ring to refill
 528 *      @n: the number of new buffers to allocate
 529 *      @gfp: the gfp flags for the allocations
 530 *
 531 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 532 *      allocated with the supplied gfp flags.  The caller must assure that
 533 *      @n does not exceed the queue's capacity.  If afterwards the queue is
 534 *      found critically low mark it as starving in the bitmap of starving FLs.
 535 *
 536 *      Returns the number of buffers allocated.
 537 */
 538static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
 539                              gfp_t gfp)
 540{
 541        struct sge *s = &adap->sge;
 542        struct page *pg;
 543        dma_addr_t mapping;
 544        unsigned int cred = q->avail;
 545        __be64 *d = &q->desc[q->pidx];
 546        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 547
 548        gfp |= __GFP_NOWARN | __GFP_COLD;
 549
 550        if (s->fl_pg_order == 0)
 551                goto alloc_small_pages;
 552
 553        /*
 554         * Prefer large buffers
 555         */
 556        while (n) {
 557                pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
 558                if (unlikely(!pg)) {
 559                        q->large_alloc_failed++;
 560                        break;       /* fall back to single pages */
 561                }
 562
 563                mapping = dma_map_page(adap->pdev_dev, pg, 0,
 564                                       PAGE_SIZE << s->fl_pg_order,
 565                                       PCI_DMA_FROMDEVICE);
 566                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 567                        __free_pages(pg, s->fl_pg_order);
 568                        goto out;   /* do not try small pages for this error */
 569                }
 570                mapping |= RX_LARGE_PG_BUF;
 571                *d++ = cpu_to_be64(mapping);
 572
 573                set_rx_sw_desc(sd, pg, mapping);
 574                sd++;
 575
 576                q->avail++;
 577                if (++q->pidx == q->size) {
 578                        q->pidx = 0;
 579                        sd = q->sdesc;
 580                        d = q->desc;
 581                }
 582                n--;
 583        }
 584
 585alloc_small_pages:
 586        while (n--) {
 587                pg = __skb_alloc_page(gfp, NULL);
 588                if (unlikely(!pg)) {
 589                        q->alloc_failed++;
 590                        break;
 591                }
 592
 593                mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
 594                                       PCI_DMA_FROMDEVICE);
 595                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 596                        put_page(pg);
 597                        goto out;
 598                }
 599                *d++ = cpu_to_be64(mapping);
 600
 601                set_rx_sw_desc(sd, pg, mapping);
 602                sd++;
 603
 604                q->avail++;
 605                if (++q->pidx == q->size) {
 606                        q->pidx = 0;
 607                        sd = q->sdesc;
 608                        d = q->desc;
 609                }
 610        }
 611
 612out:    cred = q->avail - cred;
 613        q->pend_cred += cred;
 614        ring_fl_db(adap, q);
 615
 616        if (unlikely(fl_starving(q))) {
 617                smp_wmb();
 618                set_bit(q->cntxt_id - adap->sge.egr_start,
 619                        adap->sge.starving_fl);
 620        }
 621
 622        return cred;
 623}
 624
 625static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 626{
 627        refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 628                  GFP_ATOMIC);
 629}
 630
 631/**
 632 *      alloc_ring - allocate resources for an SGE descriptor ring
 633 *      @dev: the PCI device's core device
 634 *      @nelem: the number of descriptors
 635 *      @elem_size: the size of each descriptor
 636 *      @sw_size: the size of the SW state associated with each ring element
 637 *      @phys: the physical address of the allocated ring
 638 *      @metadata: address of the array holding the SW state for the ring
 639 *      @stat_size: extra space in HW ring for status information
 640 *      @node: preferred node for memory allocations
 641 *
 642 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 643 *      free buffer lists, or response queues.  Each SGE ring requires
 644 *      space for its HW descriptors plus, optionally, space for the SW state
 645 *      associated with each HW entry (the metadata).  The function returns
 646 *      three values: the virtual address for the HW ring (the return value
 647 *      of the function), the bus address of the HW ring, and the address
 648 *      of the SW ring.
 649 */
 650static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
 651                        size_t sw_size, dma_addr_t *phys, void *metadata,
 652                        size_t stat_size, int node)
 653{
 654        size_t len = nelem * elem_size + stat_size;
 655        void *s = NULL;
 656        void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
 657
 658        if (!p)
 659                return NULL;
 660        if (sw_size) {
 661                s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
 662
 663                if (!s) {
 664                        dma_free_coherent(dev, len, p, *phys);
 665                        return NULL;
 666                }
 667        }
 668        if (metadata)
 669                *(void **)metadata = s;
 670        memset(p, 0, len);
 671        return p;
 672}
 673
 674/**
 675 *      sgl_len - calculates the size of an SGL of the given capacity
 676 *      @n: the number of SGL entries
 677 *
 678 *      Calculates the number of flits needed for a scatter/gather list that
 679 *      can hold the given number of entries.
 680 */
 681static inline unsigned int sgl_len(unsigned int n)
 682{
 683        n--;
 684        return (3 * n) / 2 + (n & 1) + 2;
 685}
 686
 687/**
 688 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 689 *      @n: the number of flits
 690 *
 691 *      Returns the number of Tx descriptors needed for the supplied number
 692 *      of flits.
 693 */
 694static inline unsigned int flits_to_desc(unsigned int n)
 695{
 696        BUG_ON(n > SGE_MAX_WR_LEN / 8);
 697        return DIV_ROUND_UP(n, 8);
 698}
 699
 700/**
 701 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 702 *      @skb: the packet
 703 *
 704 *      Returns whether an Ethernet packet is small enough to fit as
 705 *      immediate data.
 706 */
 707static inline int is_eth_imm(const struct sk_buff *skb)
 708{
 709        return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
 710}
 711
 712/**
 713 *      calc_tx_flits - calculate the number of flits for a packet Tx WR
 714 *      @skb: the packet
 715 *
 716 *      Returns the number of flits needed for a Tx WR for the given Ethernet
 717 *      packet, including the needed WR and CPL headers.
 718 */
 719static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 720{
 721        unsigned int flits;
 722
 723        if (is_eth_imm(skb))
 724                return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
 725
 726        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
 727        if (skb_shinfo(skb)->gso_size)
 728                flits += 2;
 729        return flits;
 730}
 731
 732/**
 733 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 734 *      @skb: the packet
 735 *
 736 *      Returns the number of Tx descriptors needed for the given Ethernet
 737 *      packet, including the needed WR and CPL headers.
 738 */
 739static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 740{
 741        return flits_to_desc(calc_tx_flits(skb));
 742}
 743
 744/**
 745 *      write_sgl - populate a scatter/gather list for a packet
 746 *      @skb: the packet
 747 *      @q: the Tx queue we are writing into
 748 *      @sgl: starting location for writing the SGL
 749 *      @end: points right after the end of the SGL
 750 *      @start: start offset into skb main-body data to include in the SGL
 751 *      @addr: the list of bus addresses for the SGL elements
 752 *
 753 *      Generates a gather list for the buffers that make up a packet.
 754 *      The caller must provide adequate space for the SGL that will be written.
 755 *      The SGL includes all of the packet's page fragments and the data in its
 756 *      main body except for the first @start bytes.  @sgl must be 16-byte
 757 *      aligned and within a Tx descriptor with available space.  @end points
 758 *      right after the end of the SGL but does not account for any potential
 759 *      wrap around, i.e., @end > @sgl.
 760 */
 761static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
 762                      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 763                      const dma_addr_t *addr)
 764{
 765        unsigned int i, len;
 766        struct ulptx_sge_pair *to;
 767        const struct skb_shared_info *si = skb_shinfo(skb);
 768        unsigned int nfrags = si->nr_frags;
 769        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 770
 771        len = skb_headlen(skb) - start;
 772        if (likely(len)) {
 773                sgl->len0 = htonl(len);
 774                sgl->addr0 = cpu_to_be64(addr[0] + start);
 775                nfrags++;
 776        } else {
 777                sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 778                sgl->addr0 = cpu_to_be64(addr[1]);
 779        }
 780
 781        sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
 782        if (likely(--nfrags == 0))
 783                return;
 784        /*
 785         * Most of the complexity below deals with the possibility we hit the
 786         * end of the queue in the middle of writing the SGL.  For this case
 787         * only we create the SGL in a temporary buffer and then copy it.
 788         */
 789        to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 790
 791        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 792                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 793                to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 794                to->addr[0] = cpu_to_be64(addr[i]);
 795                to->addr[1] = cpu_to_be64(addr[++i]);
 796        }
 797        if (nfrags) {
 798                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 799                to->len[1] = cpu_to_be32(0);
 800                to->addr[0] = cpu_to_be64(addr[i + 1]);
 801        }
 802        if (unlikely((u8 *)end > (u8 *)q->stat)) {
 803                unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 804
 805                if (likely(part0))
 806                        memcpy(sgl->sge, buf, part0);
 807                part1 = (u8 *)end - (u8 *)q->stat;
 808                memcpy(q->desc, (u8 *)buf + part0, part1);
 809                end = (void *)q->desc + part1;
 810        }
 811        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 812                *end = 0;
 813}
 814
 815/**
 816 *      ring_tx_db - check and potentially ring a Tx queue's doorbell
 817 *      @adap: the adapter
 818 *      @q: the Tx queue
 819 *      @n: number of new descriptors to give to HW
 820 *
 821 *      Ring the doorbel for a Tx queue.
 822 */
 823static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
 824{
 825        wmb();            /* write descriptors before telling HW */
 826        spin_lock(&q->db_lock);
 827        if (!q->db_disabled) {
 828                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
 829                             QID(q->cntxt_id) | PIDX(n));
 830        }
 831        q->db_pidx = q->pidx;
 832        spin_unlock(&q->db_lock);
 833}
 834
 835/**
 836 *      inline_tx_skb - inline a packet's data into Tx descriptors
 837 *      @skb: the packet
 838 *      @q: the Tx queue where the packet will be inlined
 839 *      @pos: starting position in the Tx queue where to inline the packet
 840 *
 841 *      Inline a packet's contents directly into Tx descriptors, starting at
 842 *      the given position within the Tx DMA ring.
 843 *      Most of the complexity of this operation is dealing with wrap arounds
 844 *      in the middle of the packet we want to inline.
 845 */
 846static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
 847                          void *pos)
 848{
 849        u64 *p;
 850        int left = (void *)q->stat - pos;
 851
 852        if (likely(skb->len <= left)) {
 853                if (likely(!skb->data_len))
 854                        skb_copy_from_linear_data(skb, pos, skb->len);
 855                else
 856                        skb_copy_bits(skb, 0, pos, skb->len);
 857                pos += skb->len;
 858        } else {
 859                skb_copy_bits(skb, 0, pos, left);
 860                skb_copy_bits(skb, left, q->desc, skb->len - left);
 861                pos = (void *)q->desc + (skb->len - left);
 862        }
 863
 864        /* 0-pad to multiple of 16 */
 865        p = PTR_ALIGN(pos, 8);
 866        if ((uintptr_t)p & 8)
 867                *p = 0;
 868}
 869
 870/*
 871 * Figure out what HW csum a packet wants and return the appropriate control
 872 * bits.
 873 */
 874static u64 hwcsum(const struct sk_buff *skb)
 875{
 876        int csum_type;
 877        const struct iphdr *iph = ip_hdr(skb);
 878
 879        if (iph->version == 4) {
 880                if (iph->protocol == IPPROTO_TCP)
 881                        csum_type = TX_CSUM_TCPIP;
 882                else if (iph->protocol == IPPROTO_UDP)
 883                        csum_type = TX_CSUM_UDPIP;
 884                else {
 885nocsum:                 /*
 886                         * unknown protocol, disable HW csum
 887                         * and hope a bad packet is detected
 888                         */
 889                        return TXPKT_L4CSUM_DIS;
 890                }
 891        } else {
 892                /*
 893                 * this doesn't work with extension headers
 894                 */
 895                const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
 896
 897                if (ip6h->nexthdr == IPPROTO_TCP)
 898                        csum_type = TX_CSUM_TCPIP6;
 899                else if (ip6h->nexthdr == IPPROTO_UDP)
 900                        csum_type = TX_CSUM_UDPIP6;
 901                else
 902                        goto nocsum;
 903        }
 904
 905        if (likely(csum_type >= TX_CSUM_TCPIP))
 906                return TXPKT_CSUM_TYPE(csum_type) |
 907                        TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
 908                        TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
 909        else {
 910                int start = skb_transport_offset(skb);
 911
 912                return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
 913                        TXPKT_CSUM_LOC(start + skb->csum_offset);
 914        }
 915}
 916
 917static void eth_txq_stop(struct sge_eth_txq *q)
 918{
 919        netif_tx_stop_queue(q->txq);
 920        q->q.stops++;
 921}
 922
 923static inline void txq_advance(struct sge_txq *q, unsigned int n)
 924{
 925        q->in_use += n;
 926        q->pidx += n;
 927        if (q->pidx >= q->size)
 928                q->pidx -= q->size;
 929}
 930
 931/**
 932 *      t4_eth_xmit - add a packet to an Ethernet Tx queue
 933 *      @skb: the packet
 934 *      @dev: the egress net device
 935 *
 936 *      Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
 937 */
 938netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
 939{
 940        u32 wr_mid;
 941        u64 cntrl, *end;
 942        int qidx, credits;
 943        unsigned int flits, ndesc;
 944        struct adapter *adap;
 945        struct sge_eth_txq *q;
 946        const struct port_info *pi;
 947        struct fw_eth_tx_pkt_wr *wr;
 948        struct cpl_tx_pkt_core *cpl;
 949        const struct skb_shared_info *ssi;
 950        dma_addr_t addr[MAX_SKB_FRAGS + 1];
 951
 952        /*
 953         * The chip min packet length is 10 octets but play safe and reject
 954         * anything shorter than an Ethernet header.
 955         */
 956        if (unlikely(skb->len < ETH_HLEN)) {
 957out_free:       dev_kfree_skb(skb);
 958                return NETDEV_TX_OK;
 959        }
 960
 961        pi = netdev_priv(dev);
 962        adap = pi->adapter;
 963        qidx = skb_get_queue_mapping(skb);
 964        q = &adap->sge.ethtxq[qidx + pi->first_qset];
 965
 966        reclaim_completed_tx(adap, &q->q, true);
 967
 968        flits = calc_tx_flits(skb);
 969        ndesc = flits_to_desc(flits);
 970        credits = txq_avail(&q->q) - ndesc;
 971
 972        if (unlikely(credits < 0)) {
 973                eth_txq_stop(q);
 974                dev_err(adap->pdev_dev,
 975                        "%s: Tx ring %u full while queue awake!\n",
 976                        dev->name, qidx);
 977                return NETDEV_TX_BUSY;
 978        }
 979
 980        if (!is_eth_imm(skb) &&
 981            unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
 982                q->mapping_err++;
 983                goto out_free;
 984        }
 985
 986        wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
 987        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
 988                eth_txq_stop(q);
 989                wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
 990        }
 991
 992        wr = (void *)&q->q.desc[q->q.pidx];
 993        wr->equiq_to_len16 = htonl(wr_mid);
 994        wr->r3 = cpu_to_be64(0);
 995        end = (u64 *)wr + flits;
 996
 997        ssi = skb_shinfo(skb);
 998        if (ssi->gso_size) {
 999                struct cpl_tx_pkt_lso *lso = (void *)wr;
1000                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1001                int l3hdr_len = skb_network_header_len(skb);
1002                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1003
1004                wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1005                                       FW_WR_IMMDLEN(sizeof(*lso)));
1006                lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1007                                        LSO_FIRST_SLICE | LSO_LAST_SLICE |
1008                                        LSO_IPV6(v6) |
1009                                        LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1010                                        LSO_IPHDR_LEN(l3hdr_len / 4) |
1011                                        LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1012                lso->c.ipid_ofst = htons(0);
1013                lso->c.mss = htons(ssi->gso_size);
1014                lso->c.seqno_offset = htonl(0);
1015                lso->c.len = htonl(skb->len);
1016                cpl = (void *)(lso + 1);
1017                cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1018                        TXPKT_IPHDR_LEN(l3hdr_len) |
1019                        TXPKT_ETHHDR_LEN(eth_xtra_len);
1020                q->tso++;
1021                q->tx_cso += ssi->gso_segs;
1022        } else {
1023                int len;
1024
1025                len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1026                wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1027                                       FW_WR_IMMDLEN(len));
1028                cpl = (void *)(wr + 1);
1029                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1030                        cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1031                        q->tx_cso++;
1032                } else
1033                        cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1034        }
1035
1036        if (vlan_tx_tag_present(skb)) {
1037                q->vlan_ins++;
1038                cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1039        }
1040
1041        cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1042                           TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1043        cpl->pack = htons(0);
1044        cpl->len = htons(skb->len);
1045        cpl->ctrl1 = cpu_to_be64(cntrl);
1046
1047        if (is_eth_imm(skb)) {
1048                inline_tx_skb(skb, &q->q, cpl + 1);
1049                dev_kfree_skb(skb);
1050        } else {
1051                int last_desc;
1052
1053                write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1054                          addr);
1055                skb_orphan(skb);
1056
1057                last_desc = q->q.pidx + ndesc - 1;
1058                if (last_desc >= q->q.size)
1059                        last_desc -= q->q.size;
1060                q->q.sdesc[last_desc].skb = skb;
1061                q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1062        }
1063
1064        txq_advance(&q->q, ndesc);
1065
1066        ring_tx_db(adap, &q->q, ndesc);
1067        return NETDEV_TX_OK;
1068}
1069
1070/**
1071 *      reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1072 *      @q: the SGE control Tx queue
1073 *
1074 *      This is a variant of reclaim_completed_tx() that is used for Tx queues
1075 *      that send only immediate data (presently just the control queues) and
1076 *      thus do not have any sk_buffs to release.
1077 */
1078static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1079{
1080        int hw_cidx = ntohs(q->stat->cidx);
1081        int reclaim = hw_cidx - q->cidx;
1082
1083        if (reclaim < 0)
1084                reclaim += q->size;
1085
1086        q->in_use -= reclaim;
1087        q->cidx = hw_cidx;
1088}
1089
1090/**
1091 *      is_imm - check whether a packet can be sent as immediate data
1092 *      @skb: the packet
1093 *
1094 *      Returns true if a packet can be sent as a WR with immediate data.
1095 */
1096static inline int is_imm(const struct sk_buff *skb)
1097{
1098        return skb->len <= MAX_CTRL_WR_LEN;
1099}
1100
1101/**
1102 *      ctrlq_check_stop - check if a control queue is full and should stop
1103 *      @q: the queue
1104 *      @wr: most recent WR written to the queue
1105 *
1106 *      Check if a control queue has become full and should be stopped.
1107 *      We clean up control queue descriptors very lazily, only when we are out.
1108 *      If the queue is still full after reclaiming any completed descriptors
1109 *      we suspend it and have the last WR wake it up.
1110 */
1111static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1112{
1113        reclaim_completed_tx_imm(&q->q);
1114        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1115                wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1116                q->q.stops++;
1117                q->full = 1;
1118        }
1119}
1120
1121/**
1122 *      ctrl_xmit - send a packet through an SGE control Tx queue
1123 *      @q: the control queue
1124 *      @skb: the packet
1125 *
1126 *      Send a packet through an SGE control Tx queue.  Packets sent through
1127 *      a control queue must fit entirely as immediate data.
1128 */
1129static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1130{
1131        unsigned int ndesc;
1132        struct fw_wr_hdr *wr;
1133
1134        if (unlikely(!is_imm(skb))) {
1135                WARN_ON(1);
1136                dev_kfree_skb(skb);
1137                return NET_XMIT_DROP;
1138        }
1139
1140        ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1141        spin_lock(&q->sendq.lock);
1142
1143        if (unlikely(q->full)) {
1144                skb->priority = ndesc;                  /* save for restart */
1145                __skb_queue_tail(&q->sendq, skb);
1146                spin_unlock(&q->sendq.lock);
1147                return NET_XMIT_CN;
1148        }
1149
1150        wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1151        inline_tx_skb(skb, &q->q, wr);
1152
1153        txq_advance(&q->q, ndesc);
1154        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1155                ctrlq_check_stop(q, wr);
1156
1157        ring_tx_db(q->adap, &q->q, ndesc);
1158        spin_unlock(&q->sendq.lock);
1159
1160        kfree_skb(skb);
1161        return NET_XMIT_SUCCESS;
1162}
1163
1164/**
1165 *      restart_ctrlq - restart a suspended control queue
1166 *      @data: the control queue to restart
1167 *
1168 *      Resumes transmission on a suspended Tx control queue.
1169 */
1170static void restart_ctrlq(unsigned long data)
1171{
1172        struct sk_buff *skb;
1173        unsigned int written = 0;
1174        struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1175
1176        spin_lock(&q->sendq.lock);
1177        reclaim_completed_tx_imm(&q->q);
1178        BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1179
1180        while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1181                struct fw_wr_hdr *wr;
1182                unsigned int ndesc = skb->priority;     /* previously saved */
1183
1184                /*
1185                 * Write descriptors and free skbs outside the lock to limit
1186                 * wait times.  q->full is still set so new skbs will be queued.
1187                 */
1188                spin_unlock(&q->sendq.lock);
1189
1190                wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1191                inline_tx_skb(skb, &q->q, wr);
1192                kfree_skb(skb);
1193
1194                written += ndesc;
1195                txq_advance(&q->q, ndesc);
1196                if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1197                        unsigned long old = q->q.stops;
1198
1199                        ctrlq_check_stop(q, wr);
1200                        if (q->q.stops != old) {          /* suspended anew */
1201                                spin_lock(&q->sendq.lock);
1202                                goto ringdb;
1203                        }
1204                }
1205                if (written > 16) {
1206                        ring_tx_db(q->adap, &q->q, written);
1207                        written = 0;
1208                }
1209                spin_lock(&q->sendq.lock);
1210        }
1211        q->full = 0;
1212ringdb: if (written)
1213                ring_tx_db(q->adap, &q->q, written);
1214        spin_unlock(&q->sendq.lock);
1215}
1216
1217/**
1218 *      t4_mgmt_tx - send a management message
1219 *      @adap: the adapter
1220 *      @skb: the packet containing the management message
1221 *
1222 *      Send a management message through control queue 0.
1223 */
1224int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1225{
1226        int ret;
1227
1228        local_bh_disable();
1229        ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1230        local_bh_enable();
1231        return ret;
1232}
1233
1234/**
1235 *      is_ofld_imm - check whether a packet can be sent as immediate data
1236 *      @skb: the packet
1237 *
1238 *      Returns true if a packet can be sent as an offload WR with immediate
1239 *      data.  We currently use the same limit as for Ethernet packets.
1240 */
1241static inline int is_ofld_imm(const struct sk_buff *skb)
1242{
1243        return skb->len <= MAX_IMM_TX_PKT_LEN;
1244}
1245
1246/**
1247 *      calc_tx_flits_ofld - calculate # of flits for an offload packet
1248 *      @skb: the packet
1249 *
1250 *      Returns the number of flits needed for the given offload packet.
1251 *      These packets are already fully constructed and no additional headers
1252 *      will be added.
1253 */
1254static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1255{
1256        unsigned int flits, cnt;
1257
1258        if (is_ofld_imm(skb))
1259                return DIV_ROUND_UP(skb->len, 8);
1260
1261        flits = skb_transport_offset(skb) / 8U;   /* headers */
1262        cnt = skb_shinfo(skb)->nr_frags;
1263        if (skb->tail != skb->transport_header)
1264                cnt++;
1265        return flits + sgl_len(cnt);
1266}
1267
1268/**
1269 *      txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1270 *      @adap: the adapter
1271 *      @q: the queue to stop
1272 *
1273 *      Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1274 *      inability to map packets.  A periodic timer attempts to restart
1275 *      queues so marked.
1276 */
1277static void txq_stop_maperr(struct sge_ofld_txq *q)
1278{
1279        q->mapping_err++;
1280        q->q.stops++;
1281        set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1282                q->adap->sge.txq_maperr);
1283}
1284
1285/**
1286 *      ofldtxq_stop - stop an offload Tx queue that has become full
1287 *      @q: the queue to stop
1288 *      @skb: the packet causing the queue to become full
1289 *
1290 *      Stops an offload Tx queue that has become full and modifies the packet
1291 *      being written to request a wakeup.
1292 */
1293static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1294{
1295        struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1296
1297        wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1298        q->q.stops++;
1299        q->full = 1;
1300}
1301
1302/**
1303 *      service_ofldq - restart a suspended offload queue
1304 *      @q: the offload queue
1305 *
1306 *      Services an offload Tx queue by moving packets from its packet queue
1307 *      to the HW Tx ring.  The function starts and ends with the queue locked.
1308 */
1309static void service_ofldq(struct sge_ofld_txq *q)
1310{
1311        u64 *pos;
1312        int credits;
1313        struct sk_buff *skb;
1314        unsigned int written = 0;
1315        unsigned int flits, ndesc;
1316
1317        while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1318                /*
1319                 * We drop the lock but leave skb on sendq, thus retaining
1320                 * exclusive access to the state of the queue.
1321                 */
1322                spin_unlock(&q->sendq.lock);
1323
1324                reclaim_completed_tx(q->adap, &q->q, false);
1325
1326                flits = skb->priority;                /* previously saved */
1327                ndesc = flits_to_desc(flits);
1328                credits = txq_avail(&q->q) - ndesc;
1329                BUG_ON(credits < 0);
1330                if (unlikely(credits < TXQ_STOP_THRES))
1331                        ofldtxq_stop(q, skb);
1332
1333                pos = (u64 *)&q->q.desc[q->q.pidx];
1334                if (is_ofld_imm(skb))
1335                        inline_tx_skb(skb, &q->q, pos);
1336                else if (map_skb(q->adap->pdev_dev, skb,
1337                                 (dma_addr_t *)skb->head)) {
1338                        txq_stop_maperr(q);
1339                        spin_lock(&q->sendq.lock);
1340                        break;
1341                } else {
1342                        int last_desc, hdr_len = skb_transport_offset(skb);
1343
1344                        memcpy(pos, skb->data, hdr_len);
1345                        write_sgl(skb, &q->q, (void *)pos + hdr_len,
1346                                  pos + flits, hdr_len,
1347                                  (dma_addr_t *)skb->head);
1348#ifdef CONFIG_NEED_DMA_MAP_STATE
1349                        skb->dev = q->adap->port[0];
1350                        skb->destructor = deferred_unmap_destructor;
1351#endif
1352                        last_desc = q->q.pidx + ndesc - 1;
1353                        if (last_desc >= q->q.size)
1354                                last_desc -= q->q.size;
1355                        q->q.sdesc[last_desc].skb = skb;
1356                }
1357
1358                txq_advance(&q->q, ndesc);
1359                written += ndesc;
1360                if (unlikely(written > 32)) {
1361                        ring_tx_db(q->adap, &q->q, written);
1362                        written = 0;
1363                }
1364
1365                spin_lock(&q->sendq.lock);
1366                __skb_unlink(skb, &q->sendq);
1367                if (is_ofld_imm(skb))
1368                        kfree_skb(skb);
1369        }
1370        if (likely(written))
1371                ring_tx_db(q->adap, &q->q, written);
1372}
1373
1374/**
1375 *      ofld_xmit - send a packet through an offload queue
1376 *      @q: the Tx offload queue
1377 *      @skb: the packet
1378 *
1379 *      Send an offload packet through an SGE offload queue.
1380 */
1381static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1382{
1383        skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1384        spin_lock(&q->sendq.lock);
1385        __skb_queue_tail(&q->sendq, skb);
1386        if (q->sendq.qlen == 1)
1387                service_ofldq(q);
1388        spin_unlock(&q->sendq.lock);
1389        return NET_XMIT_SUCCESS;
1390}
1391
1392/**
1393 *      restart_ofldq - restart a suspended offload queue
1394 *      @data: the offload queue to restart
1395 *
1396 *      Resumes transmission on a suspended Tx offload queue.
1397 */
1398static void restart_ofldq(unsigned long data)
1399{
1400        struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1401
1402        spin_lock(&q->sendq.lock);
1403        q->full = 0;            /* the queue actually is completely empty now */
1404        service_ofldq(q);
1405        spin_unlock(&q->sendq.lock);
1406}
1407
1408/**
1409 *      skb_txq - return the Tx queue an offload packet should use
1410 *      @skb: the packet
1411 *
1412 *      Returns the Tx queue an offload packet should use as indicated by bits
1413 *      1-15 in the packet's queue_mapping.
1414 */
1415static inline unsigned int skb_txq(const struct sk_buff *skb)
1416{
1417        return skb->queue_mapping >> 1;
1418}
1419
1420/**
1421 *      is_ctrl_pkt - return whether an offload packet is a control packet
1422 *      @skb: the packet
1423 *
1424 *      Returns whether an offload packet should use an OFLD or a CTRL
1425 *      Tx queue as indicated by bit 0 in the packet's queue_mapping.
1426 */
1427static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1428{
1429        return skb->queue_mapping & 1;
1430}
1431
1432static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1433{
1434        unsigned int idx = skb_txq(skb);
1435
1436        if (unlikely(is_ctrl_pkt(skb)))
1437                return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1438        return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1439}
1440
1441/**
1442 *      t4_ofld_send - send an offload packet
1443 *      @adap: the adapter
1444 *      @skb: the packet
1445 *
1446 *      Sends an offload packet.  We use the packet queue_mapping to select the
1447 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1448 *      should be sent as regular or control, bits 1-15 select the queue.
1449 */
1450int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1451{
1452        int ret;
1453
1454        local_bh_disable();
1455        ret = ofld_send(adap, skb);
1456        local_bh_enable();
1457        return ret;
1458}
1459
1460/**
1461 *      cxgb4_ofld_send - send an offload packet
1462 *      @dev: the net device
1463 *      @skb: the packet
1464 *
1465 *      Sends an offload packet.  This is an exported version of @t4_ofld_send,
1466 *      intended for ULDs.
1467 */
1468int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1469{
1470        return t4_ofld_send(netdev2adap(dev), skb);
1471}
1472EXPORT_SYMBOL(cxgb4_ofld_send);
1473
1474static inline void copy_frags(struct sk_buff *skb,
1475                              const struct pkt_gl *gl, unsigned int offset)
1476{
1477        int i;
1478
1479        /* usually there's just one frag */
1480        __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1481                             gl->frags[0].offset + offset,
1482                             gl->frags[0].size - offset);
1483        skb_shinfo(skb)->nr_frags = gl->nfrags;
1484        for (i = 1; i < gl->nfrags; i++)
1485                __skb_fill_page_desc(skb, i, gl->frags[i].page,
1486                                     gl->frags[i].offset,
1487                                     gl->frags[i].size);
1488
1489        /* get a reference to the last page, we don't own it */
1490        get_page(gl->frags[gl->nfrags - 1].page);
1491}
1492
1493/**
1494 *      cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1495 *      @gl: the gather list
1496 *      @skb_len: size of sk_buff main body if it carries fragments
1497 *      @pull_len: amount of data to move to the sk_buff's main body
1498 *
1499 *      Builds an sk_buff from the given packet gather list.  Returns the
1500 *      sk_buff or %NULL if sk_buff allocation failed.
1501 */
1502struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1503                                   unsigned int skb_len, unsigned int pull_len)
1504{
1505        struct sk_buff *skb;
1506
1507        /*
1508         * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1509         * size, which is expected since buffers are at least PAGE_SIZEd.
1510         * In this case packets up to RX_COPY_THRES have only one fragment.
1511         */
1512        if (gl->tot_len <= RX_COPY_THRES) {
1513                skb = dev_alloc_skb(gl->tot_len);
1514                if (unlikely(!skb))
1515                        goto out;
1516                __skb_put(skb, gl->tot_len);
1517                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1518        } else {
1519                skb = dev_alloc_skb(skb_len);
1520                if (unlikely(!skb))
1521                        goto out;
1522                __skb_put(skb, pull_len);
1523                skb_copy_to_linear_data(skb, gl->va, pull_len);
1524
1525                copy_frags(skb, gl, pull_len);
1526                skb->len = gl->tot_len;
1527                skb->data_len = skb->len - pull_len;
1528                skb->truesize += skb->data_len;
1529        }
1530out:    return skb;
1531}
1532EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1533
1534/**
1535 *      t4_pktgl_free - free a packet gather list
1536 *      @gl: the gather list
1537 *
1538 *      Releases the pages of a packet gather list.  We do not own the last
1539 *      page on the list and do not free it.
1540 */
1541static void t4_pktgl_free(const struct pkt_gl *gl)
1542{
1543        int n;
1544        const struct page_frag *p;
1545
1546        for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1547                put_page(p->page);
1548}
1549
1550/*
1551 * Process an MPS trace packet.  Give it an unused protocol number so it won't
1552 * be delivered to anyone and send it to the stack for capture.
1553 */
1554static noinline int handle_trace_pkt(struct adapter *adap,
1555                                     const struct pkt_gl *gl)
1556{
1557        struct sk_buff *skb;
1558        struct cpl_trace_pkt *p;
1559
1560        skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1561        if (unlikely(!skb)) {
1562                t4_pktgl_free(gl);
1563                return 0;
1564        }
1565
1566        p = (struct cpl_trace_pkt *)skb->data;
1567        __skb_pull(skb, sizeof(*p));
1568        skb_reset_mac_header(skb);
1569        skb->protocol = htons(0xffff);
1570        skb->dev = adap->port[0];
1571        netif_receive_skb(skb);
1572        return 0;
1573}
1574
1575static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1576                   const struct cpl_rx_pkt *pkt)
1577{
1578        struct adapter *adapter = rxq->rspq.adap;
1579        struct sge *s = &adapter->sge;
1580        int ret;
1581        struct sk_buff *skb;
1582
1583        skb = napi_get_frags(&rxq->rspq.napi);
1584        if (unlikely(!skb)) {
1585                t4_pktgl_free(gl);
1586                rxq->stats.rx_drops++;
1587                return;
1588        }
1589
1590        copy_frags(skb, gl, s->pktshift);
1591        skb->len = gl->tot_len - s->pktshift;
1592        skb->data_len = skb->len;
1593        skb->truesize += skb->data_len;
1594        skb->ip_summed = CHECKSUM_UNNECESSARY;
1595        skb_record_rx_queue(skb, rxq->rspq.idx);
1596        if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1597                skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1598
1599        if (unlikely(pkt->vlan_ex)) {
1600                __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1601                rxq->stats.vlan_ex++;
1602        }
1603        ret = napi_gro_frags(&rxq->rspq.napi);
1604        if (ret == GRO_HELD)
1605                rxq->stats.lro_pkts++;
1606        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1607                rxq->stats.lro_merged++;
1608        rxq->stats.pkts++;
1609        rxq->stats.rx_cso++;
1610}
1611
1612/**
1613 *      t4_ethrx_handler - process an ingress ethernet packet
1614 *      @q: the response queue that received the packet
1615 *      @rsp: the response queue descriptor holding the RX_PKT message
1616 *      @si: the gather list of packet fragments
1617 *
1618 *      Process an ingress ethernet packet and deliver it to the stack.
1619 */
1620int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1621                     const struct pkt_gl *si)
1622{
1623        bool csum_ok;
1624        struct sk_buff *skb;
1625        const struct cpl_rx_pkt *pkt;
1626        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1627        struct sge *s = &q->adap->sge;
1628
1629        if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT))
1630                return handle_trace_pkt(q->adap, si);
1631
1632        pkt = (const struct cpl_rx_pkt *)rsp;
1633        csum_ok = pkt->csum_calc && !pkt->err_vec;
1634        if ((pkt->l2info & htonl(RXF_TCP)) &&
1635            (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1636                do_gro(rxq, si, pkt);
1637                return 0;
1638        }
1639
1640        skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1641        if (unlikely(!skb)) {
1642                t4_pktgl_free(si);
1643                rxq->stats.rx_drops++;
1644                return 0;
1645        }
1646
1647        __skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1648        skb->protocol = eth_type_trans(skb, q->netdev);
1649        skb_record_rx_queue(skb, q->idx);
1650        if (skb->dev->features & NETIF_F_RXHASH)
1651                skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1652
1653        rxq->stats.pkts++;
1654
1655        if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) &&
1656            (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1657                if (!pkt->ip_frag) {
1658                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1659                        rxq->stats.rx_cso++;
1660                } else if (pkt->l2info & htonl(RXF_IP)) {
1661                        __sum16 c = (__force __sum16)pkt->csum;
1662                        skb->csum = csum_unfold(c);
1663                        skb->ip_summed = CHECKSUM_COMPLETE;
1664                        rxq->stats.rx_cso++;
1665                }
1666        } else
1667                skb_checksum_none_assert(skb);
1668
1669        if (unlikely(pkt->vlan_ex)) {
1670                __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1671                rxq->stats.vlan_ex++;
1672        }
1673        netif_receive_skb(skb);
1674        return 0;
1675}
1676
1677/**
1678 *      restore_rx_bufs - put back a packet's Rx buffers
1679 *      @si: the packet gather list
1680 *      @q: the SGE free list
1681 *      @frags: number of FL buffers to restore
1682 *
1683 *      Puts back on an FL the Rx buffers associated with @si.  The buffers
1684 *      have already been unmapped and are left unmapped, we mark them so to
1685 *      prevent further unmapping attempts.
1686 *
1687 *      This function undoes a series of @unmap_rx_buf calls when we find out
1688 *      that the current packet can't be processed right away afterall and we
1689 *      need to come back to it later.  This is a very rare event and there's
1690 *      no effort to make this particularly efficient.
1691 */
1692static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1693                            int frags)
1694{
1695        struct rx_sw_desc *d;
1696
1697        while (frags--) {
1698                if (q->cidx == 0)
1699                        q->cidx = q->size - 1;
1700                else
1701                        q->cidx--;
1702                d = &q->sdesc[q->cidx];
1703                d->page = si->frags[frags].page;
1704                d->dma_addr |= RX_UNMAPPED_BUF;
1705                q->avail++;
1706        }
1707}
1708
1709/**
1710 *      is_new_response - check if a response is newly written
1711 *      @r: the response descriptor
1712 *      @q: the response queue
1713 *
1714 *      Returns true if a response descriptor contains a yet unprocessed
1715 *      response.
1716 */
1717static inline bool is_new_response(const struct rsp_ctrl *r,
1718                                   const struct sge_rspq *q)
1719{
1720        return RSPD_GEN(r->type_gen) == q->gen;
1721}
1722
1723/**
1724 *      rspq_next - advance to the next entry in a response queue
1725 *      @q: the queue
1726 *
1727 *      Updates the state of a response queue to advance it to the next entry.
1728 */
1729static inline void rspq_next(struct sge_rspq *q)
1730{
1731        q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1732        if (unlikely(++q->cidx == q->size)) {
1733                q->cidx = 0;
1734                q->gen ^= 1;
1735                q->cur_desc = q->desc;
1736        }
1737}
1738
1739/**
1740 *      process_responses - process responses from an SGE response queue
1741 *      @q: the ingress queue to process
1742 *      @budget: how many responses can be processed in this round
1743 *
1744 *      Process responses from an SGE response queue up to the supplied budget.
1745 *      Responses include received packets as well as control messages from FW
1746 *      or HW.
1747 *
1748 *      Additionally choose the interrupt holdoff time for the next interrupt
1749 *      on this queue.  If the system is under memory shortage use a fairly
1750 *      long delay to help recovery.
1751 */
1752static int process_responses(struct sge_rspq *q, int budget)
1753{
1754        int ret, rsp_type;
1755        int budget_left = budget;
1756        const struct rsp_ctrl *rc;
1757        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1758        struct adapter *adapter = q->adap;
1759        struct sge *s = &adapter->sge;
1760
1761        while (likely(budget_left)) {
1762                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1763                if (!is_new_response(rc, q))
1764                        break;
1765
1766                rmb();
1767                rsp_type = RSPD_TYPE(rc->type_gen);
1768                if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1769                        struct page_frag *fp;
1770                        struct pkt_gl si;
1771                        const struct rx_sw_desc *rsd;
1772                        u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1773
1774                        if (len & RSPD_NEWBUF) {
1775                                if (likely(q->offset > 0)) {
1776                                        free_rx_bufs(q->adap, &rxq->fl, 1);
1777                                        q->offset = 0;
1778                                }
1779                                len = RSPD_LEN(len);
1780                        }
1781                        si.tot_len = len;
1782
1783                        /* gather packet fragments */
1784                        for (frags = 0, fp = si.frags; ; frags++, fp++) {
1785                                rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1786                                bufsz = get_buf_size(adapter, rsd);
1787                                fp->page = rsd->page;
1788                                fp->offset = q->offset;
1789                                fp->size = min(bufsz, len);
1790                                len -= fp->size;
1791                                if (!len)
1792                                        break;
1793                                unmap_rx_buf(q->adap, &rxq->fl);
1794                        }
1795
1796                        /*
1797                         * Last buffer remains mapped so explicitly make it
1798                         * coherent for CPU access.
1799                         */
1800                        dma_sync_single_for_cpu(q->adap->pdev_dev,
1801                                                get_buf_addr(rsd),
1802                                                fp->size, DMA_FROM_DEVICE);
1803
1804                        si.va = page_address(si.frags[0].page) +
1805                                si.frags[0].offset;
1806                        prefetch(si.va);
1807
1808                        si.nfrags = frags + 1;
1809                        ret = q->handler(q, q->cur_desc, &si);
1810                        if (likely(ret == 0))
1811                                q->offset += ALIGN(fp->size, s->fl_align);
1812                        else
1813                                restore_rx_bufs(&si, &rxq->fl, frags);
1814                } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1815                        ret = q->handler(q, q->cur_desc, NULL);
1816                } else {
1817                        ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1818                }
1819
1820                if (unlikely(ret)) {
1821                        /* couldn't process descriptor, back off for recovery */
1822                        q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1823                        break;
1824                }
1825
1826                rspq_next(q);
1827                budget_left--;
1828        }
1829
1830        if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1831                __refill_fl(q->adap, &rxq->fl);
1832        return budget - budget_left;
1833}
1834
1835/**
1836 *      napi_rx_handler - the NAPI handler for Rx processing
1837 *      @napi: the napi instance
1838 *      @budget: how many packets we can process in this round
1839 *
1840 *      Handler for new data events when using NAPI.  This does not need any
1841 *      locking or protection from interrupts as data interrupts are off at
1842 *      this point and other adapter interrupts do not interfere (the latter
1843 *      in not a concern at all with MSI-X as non-data interrupts then have
1844 *      a separate handler).
1845 */
1846static int napi_rx_handler(struct napi_struct *napi, int budget)
1847{
1848        unsigned int params;
1849        struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1850        int work_done = process_responses(q, budget);
1851
1852        if (likely(work_done < budget)) {
1853                napi_complete(napi);
1854                params = q->next_intr_params;
1855                q->next_intr_params = q->intr_params;
1856        } else
1857                params = QINTR_TIMER_IDX(7);
1858
1859        t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1860                     INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1861        return work_done;
1862}
1863
1864/*
1865 * The MSI-X interrupt handler for an SGE response queue.
1866 */
1867irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1868{
1869        struct sge_rspq *q = cookie;
1870
1871        napi_schedule(&q->napi);
1872        return IRQ_HANDLED;
1873}
1874
1875/*
1876 * Process the indirect interrupt entries in the interrupt queue and kick off
1877 * NAPI for each queue that has generated an entry.
1878 */
1879static unsigned int process_intrq(struct adapter *adap)
1880{
1881        unsigned int credits;
1882        const struct rsp_ctrl *rc;
1883        struct sge_rspq *q = &adap->sge.intrq;
1884
1885        spin_lock(&adap->sge.intrq_lock);
1886        for (credits = 0; ; credits++) {
1887                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1888                if (!is_new_response(rc, q))
1889                        break;
1890
1891                rmb();
1892                if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1893                        unsigned int qid = ntohl(rc->pldbuflen_qid);
1894
1895                        qid -= adap->sge.ingr_start;
1896                        napi_schedule(&adap->sge.ingr_map[qid]->napi);
1897                }
1898
1899                rspq_next(q);
1900        }
1901
1902        t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1903                     INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1904        spin_unlock(&adap->sge.intrq_lock);
1905        return credits;
1906}
1907
1908/*
1909 * The MSI interrupt handler, which handles data events from SGE response queues
1910 * as well as error and other async events as they all use the same MSI vector.
1911 */
1912static irqreturn_t t4_intr_msi(int irq, void *cookie)
1913{
1914        struct adapter *adap = cookie;
1915
1916        t4_slow_intr_handler(adap);
1917        process_intrq(adap);
1918        return IRQ_HANDLED;
1919}
1920
1921/*
1922 * Interrupt handler for legacy INTx interrupts.
1923 * Handles data events from SGE response queues as well as error and other
1924 * async events as they all use the same interrupt line.
1925 */
1926static irqreturn_t t4_intr_intx(int irq, void *cookie)
1927{
1928        struct adapter *adap = cookie;
1929
1930        t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1931        if (t4_slow_intr_handler(adap) | process_intrq(adap))
1932                return IRQ_HANDLED;
1933        return IRQ_NONE;             /* probably shared interrupt */
1934}
1935
1936/**
1937 *      t4_intr_handler - select the top-level interrupt handler
1938 *      @adap: the adapter
1939 *
1940 *      Selects the top-level interrupt handler based on the type of interrupts
1941 *      (MSI-X, MSI, or INTx).
1942 */
1943irq_handler_t t4_intr_handler(struct adapter *adap)
1944{
1945        if (adap->flags & USING_MSIX)
1946                return t4_sge_intr_msix;
1947        if (adap->flags & USING_MSI)
1948                return t4_intr_msi;
1949        return t4_intr_intx;
1950}
1951
1952static void sge_rx_timer_cb(unsigned long data)
1953{
1954        unsigned long m;
1955        unsigned int i, cnt[2];
1956        struct adapter *adap = (struct adapter *)data;
1957        struct sge *s = &adap->sge;
1958
1959        for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
1960                for (m = s->starving_fl[i]; m; m &= m - 1) {
1961                        struct sge_eth_rxq *rxq;
1962                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1963                        struct sge_fl *fl = s->egr_map[id];
1964
1965                        clear_bit(id, s->starving_fl);
1966                        smp_mb__after_clear_bit();
1967
1968                        if (fl_starving(fl)) {
1969                                rxq = container_of(fl, struct sge_eth_rxq, fl);
1970                                if (napi_reschedule(&rxq->rspq.napi))
1971                                        fl->starving++;
1972                                else
1973                                        set_bit(id, s->starving_fl);
1974                        }
1975                }
1976
1977        t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
1978        cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
1979        cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
1980
1981        for (i = 0; i < 2; i++)
1982                if (cnt[i] >= s->starve_thres) {
1983                        if (s->idma_state[i] || cnt[i] == 0xffffffff)
1984                                continue;
1985                        s->idma_state[i] = 1;
1986                        t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
1987                        m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
1988                        dev_warn(adap->pdev_dev,
1989                                 "SGE idma%u starvation detected for "
1990                                 "queue %lu\n", i, m & 0xffff);
1991                } else if (s->idma_state[i])
1992                        s->idma_state[i] = 0;
1993
1994        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1995}
1996
1997static void sge_tx_timer_cb(unsigned long data)
1998{
1999        unsigned long m;
2000        unsigned int i, budget;
2001        struct adapter *adap = (struct adapter *)data;
2002        struct sge *s = &adap->sge;
2003
2004        for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2005                for (m = s->txq_maperr[i]; m; m &= m - 1) {
2006                        unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2007                        struct sge_ofld_txq *txq = s->egr_map[id];
2008
2009                        clear_bit(id, s->txq_maperr);
2010                        tasklet_schedule(&txq->qresume_tsk);
2011                }
2012
2013        budget = MAX_TIMER_TX_RECLAIM;
2014        i = s->ethtxq_rover;
2015        do {
2016                struct sge_eth_txq *q = &s->ethtxq[i];
2017
2018                if (q->q.in_use &&
2019                    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2020                    __netif_tx_trylock(q->txq)) {
2021                        int avail = reclaimable(&q->q);
2022
2023                        if (avail) {
2024                                if (avail > budget)
2025                                        avail = budget;
2026
2027                                free_tx_desc(adap, &q->q, avail, true);
2028                                q->q.in_use -= avail;
2029                                budget -= avail;
2030                        }
2031                        __netif_tx_unlock(q->txq);
2032                }
2033
2034                if (++i >= s->ethqsets)
2035                        i = 0;
2036        } while (budget && i != s->ethtxq_rover);
2037        s->ethtxq_rover = i;
2038        mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2039}
2040
2041int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2042                     struct net_device *dev, int intr_idx,
2043                     struct sge_fl *fl, rspq_handler_t hnd)
2044{
2045        int ret, flsz = 0;
2046        struct fw_iq_cmd c;
2047        struct sge *s = &adap->sge;
2048        struct port_info *pi = netdev_priv(dev);
2049
2050        /* Size needs to be multiple of 16, including status entry. */
2051        iq->size = roundup(iq->size, 16);
2052
2053        iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2054                              &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2055        if (!iq->desc)
2056                return -ENOMEM;
2057
2058        memset(&c, 0, sizeof(c));
2059        c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2060                            FW_CMD_WRITE | FW_CMD_EXEC |
2061                            FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
2062        c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2063                                 FW_LEN16(c));
2064        c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2065                FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2066                FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2067                FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2068                                                        -intr_idx - 1));
2069        c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2070                FW_IQ_CMD_IQGTSMODE |
2071                FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2072                FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2073        c.iqsize = htons(iq->size);
2074        c.iqaddr = cpu_to_be64(iq->phys_addr);
2075
2076        if (fl) {
2077                fl->size = roundup(fl->size, 8);
2078                fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2079                                      sizeof(struct rx_sw_desc), &fl->addr,
2080                                      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2081                if (!fl->desc)
2082                        goto fl_nomem;
2083
2084                flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2085                c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
2086                                            FW_IQ_CMD_FL0FETCHRO(1) |
2087                                            FW_IQ_CMD_FL0DATARO(1) |
2088                                            FW_IQ_CMD_FL0PADEN(1));
2089                c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2090                                FW_IQ_CMD_FL0FBMAX(3));
2091                c.fl0size = htons(flsz);
2092                c.fl0addr = cpu_to_be64(fl->addr);
2093        }
2094
2095        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2096        if (ret)
2097                goto err;
2098
2099        netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2100        iq->cur_desc = iq->desc;
2101        iq->cidx = 0;
2102        iq->gen = 1;
2103        iq->next_intr_params = iq->intr_params;
2104        iq->cntxt_id = ntohs(c.iqid);
2105        iq->abs_id = ntohs(c.physiqid);
2106        iq->size--;                           /* subtract status entry */
2107        iq->adap = adap;
2108        iq->netdev = dev;
2109        iq->handler = hnd;
2110
2111        /* set offset to -1 to distinguish ingress queues without FL */
2112        iq->offset = fl ? 0 : -1;
2113
2114        adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2115
2116        if (fl) {
2117                fl->cntxt_id = ntohs(c.fl0id);
2118                fl->avail = fl->pend_cred = 0;
2119                fl->pidx = fl->cidx = 0;
2120                fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2121                adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2122                refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2123        }
2124        return 0;
2125
2126fl_nomem:
2127        ret = -ENOMEM;
2128err:
2129        if (iq->desc) {
2130                dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2131                                  iq->desc, iq->phys_addr);
2132                iq->desc = NULL;
2133        }
2134        if (fl && fl->desc) {
2135                kfree(fl->sdesc);
2136                fl->sdesc = NULL;
2137                dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2138                                  fl->desc, fl->addr);
2139                fl->desc = NULL;
2140        }
2141        return ret;
2142}
2143
2144static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2145{
2146        q->in_use = 0;
2147        q->cidx = q->pidx = 0;
2148        q->stops = q->restarts = 0;
2149        q->stat = (void *)&q->desc[q->size];
2150        q->cntxt_id = id;
2151        spin_lock_init(&q->db_lock);
2152        adap->sge.egr_map[id - adap->sge.egr_start] = q;
2153}
2154
2155int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2156                         struct net_device *dev, struct netdev_queue *netdevq,
2157                         unsigned int iqid)
2158{
2159        int ret, nentries;
2160        struct fw_eq_eth_cmd c;
2161        struct sge *s = &adap->sge;
2162        struct port_info *pi = netdev_priv(dev);
2163
2164        /* Add status entries */
2165        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2166
2167        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2168                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2169                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2170                        netdev_queue_numa_node_read(netdevq));
2171        if (!txq->q.desc)
2172                return -ENOMEM;
2173
2174        memset(&c, 0, sizeof(c));
2175        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2176                            FW_CMD_WRITE | FW_CMD_EXEC |
2177                            FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
2178        c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2179                                 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2180        c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2181        c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2182                                   FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
2183                                   FW_EQ_ETH_CMD_FETCHRO(1) |
2184                                   FW_EQ_ETH_CMD_IQID(iqid));
2185        c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2186                                  FW_EQ_ETH_CMD_FBMAX(3) |
2187                                  FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2188                                  FW_EQ_ETH_CMD_EQSIZE(nentries));
2189        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2190
2191        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2192        if (ret) {
2193                kfree(txq->q.sdesc);
2194                txq->q.sdesc = NULL;
2195                dma_free_coherent(adap->pdev_dev,
2196                                  nentries * sizeof(struct tx_desc),
2197                                  txq->q.desc, txq->q.phys_addr);
2198                txq->q.desc = NULL;
2199                return ret;
2200        }
2201
2202        init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2203        txq->txq = netdevq;
2204        txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2205        txq->mapping_err = 0;
2206        return 0;
2207}
2208
2209int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2210                          struct net_device *dev, unsigned int iqid,
2211                          unsigned int cmplqid)
2212{
2213        int ret, nentries;
2214        struct fw_eq_ctrl_cmd c;
2215        struct sge *s = &adap->sge;
2216        struct port_info *pi = netdev_priv(dev);
2217
2218        /* Add status entries */
2219        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2220
2221        txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2222                                 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2223                                 NULL, 0, NUMA_NO_NODE);
2224        if (!txq->q.desc)
2225                return -ENOMEM;
2226
2227        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2228                            FW_CMD_WRITE | FW_CMD_EXEC |
2229                            FW_EQ_CTRL_CMD_PFN(adap->fn) |
2230                            FW_EQ_CTRL_CMD_VFN(0));
2231        c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2232                                 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2233        c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2234        c.physeqid_pkd = htonl(0);
2235        c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2236                                   FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2237                                   FW_EQ_CTRL_CMD_FETCHRO |
2238                                   FW_EQ_CTRL_CMD_IQID(iqid));
2239        c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2240                                  FW_EQ_CTRL_CMD_FBMAX(3) |
2241                                  FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2242                                  FW_EQ_CTRL_CMD_EQSIZE(nentries));
2243        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2244
2245        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2246        if (ret) {
2247                dma_free_coherent(adap->pdev_dev,
2248                                  nentries * sizeof(struct tx_desc),
2249                                  txq->q.desc, txq->q.phys_addr);
2250                txq->q.desc = NULL;
2251                return ret;
2252        }
2253
2254        init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2255        txq->adap = adap;
2256        skb_queue_head_init(&txq->sendq);
2257        tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2258        txq->full = 0;
2259        return 0;
2260}
2261
2262int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2263                          struct net_device *dev, unsigned int iqid)
2264{
2265        int ret, nentries;
2266        struct fw_eq_ofld_cmd c;
2267        struct sge *s = &adap->sge;
2268        struct port_info *pi = netdev_priv(dev);
2269
2270        /* Add status entries */
2271        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2272
2273        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2274                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2275                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2276                        NUMA_NO_NODE);
2277        if (!txq->q.desc)
2278                return -ENOMEM;
2279
2280        memset(&c, 0, sizeof(c));
2281        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2282                            FW_CMD_WRITE | FW_CMD_EXEC |
2283                            FW_EQ_OFLD_CMD_PFN(adap->fn) |
2284                            FW_EQ_OFLD_CMD_VFN(0));
2285        c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2286                                 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2287        c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2288                                   FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
2289                                   FW_EQ_OFLD_CMD_FETCHRO(1) |
2290                                   FW_EQ_OFLD_CMD_IQID(iqid));
2291        c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2292                                  FW_EQ_OFLD_CMD_FBMAX(3) |
2293                                  FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2294                                  FW_EQ_OFLD_CMD_EQSIZE(nentries));
2295        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2296
2297        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2298        if (ret) {
2299                kfree(txq->q.sdesc);
2300                txq->q.sdesc = NULL;
2301                dma_free_coherent(adap->pdev_dev,
2302                                  nentries * sizeof(struct tx_desc),
2303                                  txq->q.desc, txq->q.phys_addr);
2304                txq->q.desc = NULL;
2305                return ret;
2306        }
2307
2308        init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2309        txq->adap = adap;
2310        skb_queue_head_init(&txq->sendq);
2311        tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2312        txq->full = 0;
2313        txq->mapping_err = 0;
2314        return 0;
2315}
2316
2317static void free_txq(struct adapter *adap, struct sge_txq *q)
2318{
2319        struct sge *s = &adap->sge;
2320
2321        dma_free_coherent(adap->pdev_dev,
2322                          q->size * sizeof(struct tx_desc) + s->stat_len,
2323                          q->desc, q->phys_addr);
2324        q->cntxt_id = 0;
2325        q->sdesc = NULL;
2326        q->desc = NULL;
2327}
2328
2329static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2330                         struct sge_fl *fl)
2331{
2332        struct sge *s = &adap->sge;
2333        unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2334
2335        adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2336        t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2337                   rq->cntxt_id, fl_id, 0xffff);
2338        dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2339                          rq->desc, rq->phys_addr);
2340        netif_napi_del(&rq->napi);
2341        rq->netdev = NULL;
2342        rq->cntxt_id = rq->abs_id = 0;
2343        rq->desc = NULL;
2344
2345        if (fl) {
2346                free_rx_bufs(adap, fl, fl->avail);
2347                dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2348                                  fl->desc, fl->addr);
2349                kfree(fl->sdesc);
2350                fl->sdesc = NULL;
2351                fl->cntxt_id = 0;
2352                fl->desc = NULL;
2353        }
2354}
2355
2356/**
2357 *      t4_free_sge_resources - free SGE resources
2358 *      @adap: the adapter
2359 *
2360 *      Frees resources used by the SGE queue sets.
2361 */
2362void t4_free_sge_resources(struct adapter *adap)
2363{
2364        int i;
2365        struct sge_eth_rxq *eq = adap->sge.ethrxq;
2366        struct sge_eth_txq *etq = adap->sge.ethtxq;
2367        struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2368
2369        /* clean up Ethernet Tx/Rx queues */
2370        for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2371                if (eq->rspq.desc)
2372                        free_rspq_fl(adap, &eq->rspq, &eq->fl);
2373                if (etq->q.desc) {
2374                        t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2375                                       etq->q.cntxt_id);
2376                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2377                        kfree(etq->q.sdesc);
2378                        free_txq(adap, &etq->q);
2379                }
2380        }
2381
2382        /* clean up RDMA and iSCSI Rx queues */
2383        for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2384                if (oq->rspq.desc)
2385                        free_rspq_fl(adap, &oq->rspq, &oq->fl);
2386        }
2387        for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2388                if (oq->rspq.desc)
2389                        free_rspq_fl(adap, &oq->rspq, &oq->fl);
2390        }
2391
2392        /* clean up offload Tx queues */
2393        for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2394                struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2395
2396                if (q->q.desc) {
2397                        tasklet_kill(&q->qresume_tsk);
2398                        t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2399                                        q->q.cntxt_id);
2400                        free_tx_desc(adap, &q->q, q->q.in_use, false);
2401                        kfree(q->q.sdesc);
2402                        __skb_queue_purge(&q->sendq);
2403                        free_txq(adap, &q->q);
2404                }
2405        }
2406
2407        /* clean up control Tx queues */
2408        for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2409                struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2410
2411                if (cq->q.desc) {
2412                        tasklet_kill(&cq->qresume_tsk);
2413                        t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2414                                        cq->q.cntxt_id);
2415                        __skb_queue_purge(&cq->sendq);
2416                        free_txq(adap, &cq->q);
2417                }
2418        }
2419
2420        if (adap->sge.fw_evtq.desc)
2421                free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2422
2423        if (adap->sge.intrq.desc)
2424                free_rspq_fl(adap, &adap->sge.intrq, NULL);
2425
2426        /* clear the reverse egress queue map */
2427        memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2428}
2429
2430void t4_sge_start(struct adapter *adap)
2431{
2432        adap->sge.ethtxq_rover = 0;
2433        mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2434        mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2435}
2436
2437/**
2438 *      t4_sge_stop - disable SGE operation
2439 *      @adap: the adapter
2440 *
2441 *      Stop tasklets and timers associated with the DMA engine.  Note that
2442 *      this is effective only if measures have been taken to disable any HW
2443 *      events that may restart them.
2444 */
2445void t4_sge_stop(struct adapter *adap)
2446{
2447        int i;
2448        struct sge *s = &adap->sge;
2449
2450        if (in_interrupt())  /* actions below require waiting */
2451                return;
2452
2453        if (s->rx_timer.function)
2454                del_timer_sync(&s->rx_timer);
2455        if (s->tx_timer.function)
2456                del_timer_sync(&s->tx_timer);
2457
2458        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2459                struct sge_ofld_txq *q = &s->ofldtxq[i];
2460
2461                if (q->q.desc)
2462                        tasklet_kill(&q->qresume_tsk);
2463        }
2464        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2465                struct sge_ctrl_txq *cq = &s->ctrlq[i];
2466
2467                if (cq->q.desc)
2468                        tasklet_kill(&cq->qresume_tsk);
2469        }
2470}
2471
2472/**
2473 *      t4_sge_init - initialize SGE
2474 *      @adap: the adapter
2475 *
2476 *      Performs SGE initialization needed every time after a chip reset.
2477 *      We do not initialize any of the queues here, instead the driver
2478 *      top-level must request them individually.
2479 *
2480 *      Called in two different modes:
2481 *
2482 *       1. Perform actual hardware initialization and record hard-coded
2483 *          parameters which were used.  This gets used when we're the
2484 *          Master PF and the Firmware Configuration File support didn't
2485 *          work for some reason.
2486 *
2487 *       2. We're not the Master PF or initialization was performed with
2488 *          a Firmware Configuration File.  In this case we need to grab
2489 *          any of the SGE operating parameters that we need to have in
2490 *          order to do our job and make sure we can live with them ...
2491 */
2492
2493static int t4_sge_init_soft(struct adapter *adap)
2494{
2495        struct sge *s = &adap->sge;
2496        u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2497        u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2498        u32 ingress_rx_threshold;
2499
2500        /*
2501         * Verify that CPL messages are going to the Ingress Queue for
2502         * process_responses() and that only packet data is going to the
2503         * Free Lists.
2504         */
2505        if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2506            RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2507                dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2508                return -EINVAL;
2509        }
2510
2511        /*
2512         * Validate the Host Buffer Register Array indices that we want to
2513         * use ...
2514         *
2515         * XXX Note that we should really read through the Host Buffer Size
2516         * XXX register array and find the indices of the Buffer Sizes which
2517         * XXX meet our needs!
2518         */
2519        #define READ_FL_BUF(x) \
2520                t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2521
2522        fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2523        fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2524        fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2525        fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2526
2527        #undef READ_FL_BUF
2528
2529        if (fl_small_pg != PAGE_SIZE ||
2530            (fl_large_pg != 0 && (fl_large_pg <= fl_small_pg ||
2531                                  (fl_large_pg & (fl_large_pg-1)) != 0))) {
2532                dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2533                        fl_small_pg, fl_large_pg);
2534                return -EINVAL;
2535        }
2536        if (fl_large_pg)
2537                s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2538
2539        if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2540            fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2541                dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2542                        fl_small_mtu, fl_large_mtu);
2543                return -EINVAL;
2544        }
2545
2546        /*
2547         * Retrieve our RX interrupt holdoff timer values and counter
2548         * threshold values from the SGE parameters.
2549         */
2550        timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2551        timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2552        timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2553        s->timer_val[0] = core_ticks_to_us(adap,
2554                TIMERVALUE0_GET(timer_value_0_and_1));
2555        s->timer_val[1] = core_ticks_to_us(adap,
2556                TIMERVALUE1_GET(timer_value_0_and_1));
2557        s->timer_val[2] = core_ticks_to_us(adap,
2558                TIMERVALUE2_GET(timer_value_2_and_3));
2559        s->timer_val[3] = core_ticks_to_us(adap,
2560                TIMERVALUE3_GET(timer_value_2_and_3));
2561        s->timer_val[4] = core_ticks_to_us(adap,
2562                TIMERVALUE4_GET(timer_value_4_and_5));
2563        s->timer_val[5] = core_ticks_to_us(adap,
2564                TIMERVALUE5_GET(timer_value_4_and_5));
2565
2566        ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2567        s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2568        s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2569        s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2570        s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2571
2572        return 0;
2573}
2574
2575static int t4_sge_init_hard(struct adapter *adap)
2576{
2577        struct sge *s = &adap->sge;
2578
2579        /*
2580         * Set up our basic SGE mode to deliver CPL messages to our Ingress
2581         * Queue and Packet Date to the Free List.
2582         */
2583        t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2584                         RXPKTCPLMODE_MASK);
2585
2586        /*
2587         * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2588         * and generate an interrupt when this occurs so we can recover.
2589         */
2590        t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2591                        V_HP_INT_THRESH(M_HP_INT_THRESH) |
2592                        V_LP_INT_THRESH(M_LP_INT_THRESH),
2593                        V_HP_INT_THRESH(dbfifo_int_thresh) |
2594                        V_LP_INT_THRESH(dbfifo_int_thresh));
2595        t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2596                        F_ENABLE_DROP);
2597
2598        /*
2599         * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2600         * t4_fixup_host_params().
2601         */
2602        s->fl_pg_order = FL_PG_ORDER;
2603        if (s->fl_pg_order)
2604                t4_write_reg(adap,
2605                             SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2606                             PAGE_SIZE << FL_PG_ORDER);
2607        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2608                     FL_MTU_SMALL_BUFSIZE(adap));
2609        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2610                     FL_MTU_LARGE_BUFSIZE(adap));
2611
2612        /*
2613         * Note that the SGE Ingress Packet Count Interrupt Threshold and
2614         * Timer Holdoff values must be supplied by our caller.
2615         */
2616        t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2617                     THRESHOLD_0(s->counter_val[0]) |
2618                     THRESHOLD_1(s->counter_val[1]) |
2619                     THRESHOLD_2(s->counter_val[2]) |
2620                     THRESHOLD_3(s->counter_val[3]));
2621        t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2622                     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2623                     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2624        t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2625                     TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2626                     TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
2627        t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2628                     TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2629                     TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2630
2631        return 0;
2632}
2633
2634int t4_sge_init(struct adapter *adap)
2635{
2636        struct sge *s = &adap->sge;
2637        u32 sge_control;
2638        int ret;
2639
2640        /*
2641         * Ingress Padding Boundary and Egress Status Page Size are set up by
2642         * t4_fixup_host_params().
2643         */
2644        sge_control = t4_read_reg(adap, SGE_CONTROL);
2645        s->pktshift = PKTSHIFT_GET(sge_control);
2646        s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2647        s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
2648                            X_INGPADBOUNDARY_SHIFT);
2649
2650        if (adap->flags & USING_SOFT_PARAMS)
2651                ret = t4_sge_init_soft(adap);
2652        else
2653                ret = t4_sge_init_hard(adap);
2654        if (ret < 0)
2655                return ret;
2656
2657        /*
2658         * A FL with <= fl_starve_thres buffers is starving and a periodic
2659         * timer will attempt to refill it.  This needs to be larger than the
2660         * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2661         * stuck waiting for new packets while the SGE is waiting for us to
2662         * give it more Free List entries.  (Note that the SGE's Egress
2663         * Congestion Threshold is in units of 2 Free List pointers.)
2664         */
2665        s->fl_starve_thres
2666                = EGRTHRESHOLD_GET(t4_read_reg(adap, SGE_CONM_CTRL))*2 + 1;
2667
2668        setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2669        setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2670        s->starve_thres = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
2671        s->idma_state[0] = s->idma_state[1] = 0;
2672        spin_lock_init(&s->intrq_lock);
2673
2674        return 0;
2675}
2676