linux/drivers/net/ethernet/smsc/smc91x.c
<<
>>
Prefs
   1/*
   2 * smc91x.c
   3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
   4 *
   5 * Copyright (C) 1996 by Erik Stahlman
   6 * Copyright (C) 2001 Standard Microsystems Corporation
   7 *      Developed by Simple Network Magic Corporation
   8 * Copyright (C) 2003 Monta Vista Software, Inc.
   9 *      Unified SMC91x driver by Nicolas Pitre
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  24 *
  25 * Arguments:
  26 *      io      = for the base address
  27 *      irq     = for the IRQ
  28 *      nowait  = 0 for normal wait states, 1 eliminates additional wait states
  29 *
  30 * original author:
  31 *      Erik Stahlman <erik@vt.edu>
  32 *
  33 * hardware multicast code:
  34 *    Peter Cammaert <pc@denkart.be>
  35 *
  36 * contributors:
  37 *      Daris A Nevil <dnevil@snmc.com>
  38 *      Nicolas Pitre <nico@fluxnic.net>
  39 *      Russell King <rmk@arm.linux.org.uk>
  40 *
  41 * History:
  42 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
  43 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
  44 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
  45 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
  46 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
  47 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
  48 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
  49 *                                more bus abstraction, big cleanup, etc.
  50 *   29/09/03  Russell King       - add driver model support
  51 *                                - ethtool support
  52 *                                - convert to use generic MII interface
  53 *                                - add link up/down notification
  54 *                                - don't try to handle full negotiation in
  55 *                                  smc_phy_configure
  56 *                                - clean up (and fix stack overrun) in PHY
  57 *                                  MII read/write functions
  58 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
  59 */
  60static const char version[] =
  61        "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
  62
  63/* Debugging level */
  64#ifndef SMC_DEBUG
  65#define SMC_DEBUG               0
  66#endif
  67
  68
  69#include <linux/init.h>
  70#include <linux/module.h>
  71#include <linux/kernel.h>
  72#include <linux/sched.h>
  73#include <linux/delay.h>
  74#include <linux/interrupt.h>
  75#include <linux/irq.h>
  76#include <linux/errno.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/platform_device.h>
  80#include <linux/spinlock.h>
  81#include <linux/ethtool.h>
  82#include <linux/mii.h>
  83#include <linux/workqueue.h>
  84#include <linux/of.h>
  85
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/skbuff.h>
  89
  90#include <asm/io.h>
  91
  92#include "smc91x.h"
  93
  94#ifndef SMC_NOWAIT
  95# define SMC_NOWAIT             0
  96#endif
  97static int nowait = SMC_NOWAIT;
  98module_param(nowait, int, 0400);
  99MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
 100
 101/*
 102 * Transmit timeout, default 5 seconds.
 103 */
 104static int watchdog = 1000;
 105module_param(watchdog, int, 0400);
 106MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 107
 108MODULE_LICENSE("GPL");
 109MODULE_ALIAS("platform:smc91x");
 110
 111/*
 112 * The internal workings of the driver.  If you are changing anything
 113 * here with the SMC stuff, you should have the datasheet and know
 114 * what you are doing.
 115 */
 116#define CARDNAME "smc91x"
 117
 118/*
 119 * Use power-down feature of the chip
 120 */
 121#define POWER_DOWN              1
 122
 123/*
 124 * Wait time for memory to be free.  This probably shouldn't be
 125 * tuned that much, as waiting for this means nothing else happens
 126 * in the system
 127 */
 128#define MEMORY_WAIT_TIME        16
 129
 130/*
 131 * The maximum number of processing loops allowed for each call to the
 132 * IRQ handler.
 133 */
 134#define MAX_IRQ_LOOPS           8
 135
 136/*
 137 * This selects whether TX packets are sent one by one to the SMC91x internal
 138 * memory and throttled until transmission completes.  This may prevent
 139 * RX overruns a litle by keeping much of the memory free for RX packets
 140 * but to the expense of reduced TX throughput and increased IRQ overhead.
 141 * Note this is not a cure for a too slow data bus or too high IRQ latency.
 142 */
 143#define THROTTLE_TX_PKTS        0
 144
 145/*
 146 * The MII clock high/low times.  2x this number gives the MII clock period
 147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
 148 */
 149#define MII_DELAY               1
 150
 151#if SMC_DEBUG > 0
 152#define DBG(n, args...)                                 \
 153        do {                                            \
 154                if (SMC_DEBUG >= (n))                   \
 155                        printk(args);   \
 156        } while (0)
 157
 158#define PRINTK(args...)   printk(args)
 159#else
 160#define DBG(n, args...)   do { } while(0)
 161#define PRINTK(args...)   printk(KERN_DEBUG args)
 162#endif
 163
 164#if SMC_DEBUG > 3
 165static void PRINT_PKT(u_char *buf, int length)
 166{
 167        int i;
 168        int remainder;
 169        int lines;
 170
 171        lines = length / 16;
 172        remainder = length % 16;
 173
 174        for (i = 0; i < lines ; i ++) {
 175                int cur;
 176                for (cur = 0; cur < 8; cur++) {
 177                        u_char a, b;
 178                        a = *buf++;
 179                        b = *buf++;
 180                        printk("%02x%02x ", a, b);
 181                }
 182                printk("\n");
 183        }
 184        for (i = 0; i < remainder/2 ; i++) {
 185                u_char a, b;
 186                a = *buf++;
 187                b = *buf++;
 188                printk("%02x%02x ", a, b);
 189        }
 190        printk("\n");
 191}
 192#else
 193#define PRINT_PKT(x...)  do { } while(0)
 194#endif
 195
 196
 197/* this enables an interrupt in the interrupt mask register */
 198#define SMC_ENABLE_INT(lp, x) do {                                      \
 199        unsigned char mask;                                             \
 200        unsigned long smc_enable_flags;                                 \
 201        spin_lock_irqsave(&lp->lock, smc_enable_flags);                 \
 202        mask = SMC_GET_INT_MASK(lp);                                    \
 203        mask |= (x);                                                    \
 204        SMC_SET_INT_MASK(lp, mask);                                     \
 205        spin_unlock_irqrestore(&lp->lock, smc_enable_flags);            \
 206} while (0)
 207
 208/* this disables an interrupt from the interrupt mask register */
 209#define SMC_DISABLE_INT(lp, x) do {                                     \
 210        unsigned char mask;                                             \
 211        unsigned long smc_disable_flags;                                \
 212        spin_lock_irqsave(&lp->lock, smc_disable_flags);                \
 213        mask = SMC_GET_INT_MASK(lp);                                    \
 214        mask &= ~(x);                                                   \
 215        SMC_SET_INT_MASK(lp, mask);                                     \
 216        spin_unlock_irqrestore(&lp->lock, smc_disable_flags);           \
 217} while (0)
 218
 219/*
 220 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
 221 * if at all, but let's avoid deadlocking the system if the hardware
 222 * decides to go south.
 223 */
 224#define SMC_WAIT_MMU_BUSY(lp) do {                                      \
 225        if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {          \
 226                unsigned long timeout = jiffies + 2;                    \
 227                while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {         \
 228                        if (time_after(jiffies, timeout)) {             \
 229                                printk("%s: timeout %s line %d\n",      \
 230                                        dev->name, __FILE__, __LINE__); \
 231                                break;                                  \
 232                        }                                               \
 233                        cpu_relax();                                    \
 234                }                                                       \
 235        }                                                               \
 236} while (0)
 237
 238
 239/*
 240 * this does a soft reset on the device
 241 */
 242static void smc_reset(struct net_device *dev)
 243{
 244        struct smc_local *lp = netdev_priv(dev);
 245        void __iomem *ioaddr = lp->base;
 246        unsigned int ctl, cfg;
 247        struct sk_buff *pending_skb;
 248
 249        DBG(2, "%s: %s\n", dev->name, __func__);
 250
 251        /* Disable all interrupts, block TX tasklet */
 252        spin_lock_irq(&lp->lock);
 253        SMC_SELECT_BANK(lp, 2);
 254        SMC_SET_INT_MASK(lp, 0);
 255        pending_skb = lp->pending_tx_skb;
 256        lp->pending_tx_skb = NULL;
 257        spin_unlock_irq(&lp->lock);
 258
 259        /* free any pending tx skb */
 260        if (pending_skb) {
 261                dev_kfree_skb(pending_skb);
 262                dev->stats.tx_errors++;
 263                dev->stats.tx_aborted_errors++;
 264        }
 265
 266        /*
 267         * This resets the registers mostly to defaults, but doesn't
 268         * affect EEPROM.  That seems unnecessary
 269         */
 270        SMC_SELECT_BANK(lp, 0);
 271        SMC_SET_RCR(lp, RCR_SOFTRST);
 272
 273        /*
 274         * Setup the Configuration Register
 275         * This is necessary because the CONFIG_REG is not affected
 276         * by a soft reset
 277         */
 278        SMC_SELECT_BANK(lp, 1);
 279
 280        cfg = CONFIG_DEFAULT;
 281
 282        /*
 283         * Setup for fast accesses if requested.  If the card/system
 284         * can't handle it then there will be no recovery except for
 285         * a hard reset or power cycle
 286         */
 287        if (lp->cfg.flags & SMC91X_NOWAIT)
 288                cfg |= CONFIG_NO_WAIT;
 289
 290        /*
 291         * Release from possible power-down state
 292         * Configuration register is not affected by Soft Reset
 293         */
 294        cfg |= CONFIG_EPH_POWER_EN;
 295
 296        SMC_SET_CONFIG(lp, cfg);
 297
 298        /* this should pause enough for the chip to be happy */
 299        /*
 300         * elaborate?  What does the chip _need_? --jgarzik
 301         *
 302         * This seems to be undocumented, but something the original
 303         * driver(s) have always done.  Suspect undocumented timing
 304         * info/determined empirically. --rmk
 305         */
 306        udelay(1);
 307
 308        /* Disable transmit and receive functionality */
 309        SMC_SELECT_BANK(lp, 0);
 310        SMC_SET_RCR(lp, RCR_CLEAR);
 311        SMC_SET_TCR(lp, TCR_CLEAR);
 312
 313        SMC_SELECT_BANK(lp, 1);
 314        ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
 315
 316        /*
 317         * Set the control register to automatically release successfully
 318         * transmitted packets, to make the best use out of our limited
 319         * memory
 320         */
 321        if(!THROTTLE_TX_PKTS)
 322                ctl |= CTL_AUTO_RELEASE;
 323        else
 324                ctl &= ~CTL_AUTO_RELEASE;
 325        SMC_SET_CTL(lp, ctl);
 326
 327        /* Reset the MMU */
 328        SMC_SELECT_BANK(lp, 2);
 329        SMC_SET_MMU_CMD(lp, MC_RESET);
 330        SMC_WAIT_MMU_BUSY(lp);
 331}
 332
 333/*
 334 * Enable Interrupts, Receive, and Transmit
 335 */
 336static void smc_enable(struct net_device *dev)
 337{
 338        struct smc_local *lp = netdev_priv(dev);
 339        void __iomem *ioaddr = lp->base;
 340        int mask;
 341
 342        DBG(2, "%s: %s\n", dev->name, __func__);
 343
 344        /* see the header file for options in TCR/RCR DEFAULT */
 345        SMC_SELECT_BANK(lp, 0);
 346        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 347        SMC_SET_RCR(lp, lp->rcr_cur_mode);
 348
 349        SMC_SELECT_BANK(lp, 1);
 350        SMC_SET_MAC_ADDR(lp, dev->dev_addr);
 351
 352        /* now, enable interrupts */
 353        mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
 354        if (lp->version >= (CHIP_91100 << 4))
 355                mask |= IM_MDINT;
 356        SMC_SELECT_BANK(lp, 2);
 357        SMC_SET_INT_MASK(lp, mask);
 358
 359        /*
 360         * From this point the register bank must _NOT_ be switched away
 361         * to something else than bank 2 without proper locking against
 362         * races with any tasklet or interrupt handlers until smc_shutdown()
 363         * or smc_reset() is called.
 364         */
 365}
 366
 367/*
 368 * this puts the device in an inactive state
 369 */
 370static void smc_shutdown(struct net_device *dev)
 371{
 372        struct smc_local *lp = netdev_priv(dev);
 373        void __iomem *ioaddr = lp->base;
 374        struct sk_buff *pending_skb;
 375
 376        DBG(2, "%s: %s\n", CARDNAME, __func__);
 377
 378        /* no more interrupts for me */
 379        spin_lock_irq(&lp->lock);
 380        SMC_SELECT_BANK(lp, 2);
 381        SMC_SET_INT_MASK(lp, 0);
 382        pending_skb = lp->pending_tx_skb;
 383        lp->pending_tx_skb = NULL;
 384        spin_unlock_irq(&lp->lock);
 385        if (pending_skb)
 386                dev_kfree_skb(pending_skb);
 387
 388        /* and tell the card to stay away from that nasty outside world */
 389        SMC_SELECT_BANK(lp, 0);
 390        SMC_SET_RCR(lp, RCR_CLEAR);
 391        SMC_SET_TCR(lp, TCR_CLEAR);
 392
 393#ifdef POWER_DOWN
 394        /* finally, shut the chip down */
 395        SMC_SELECT_BANK(lp, 1);
 396        SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
 397#endif
 398}
 399
 400/*
 401 * This is the procedure to handle the receipt of a packet.
 402 */
 403static inline void  smc_rcv(struct net_device *dev)
 404{
 405        struct smc_local *lp = netdev_priv(dev);
 406        void __iomem *ioaddr = lp->base;
 407        unsigned int packet_number, status, packet_len;
 408
 409        DBG(3, "%s: %s\n", dev->name, __func__);
 410
 411        packet_number = SMC_GET_RXFIFO(lp);
 412        if (unlikely(packet_number & RXFIFO_REMPTY)) {
 413                PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
 414                return;
 415        }
 416
 417        /* read from start of packet */
 418        SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
 419
 420        /* First two words are status and packet length */
 421        SMC_GET_PKT_HDR(lp, status, packet_len);
 422        packet_len &= 0x07ff;  /* mask off top bits */
 423        DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
 424                dev->name, packet_number, status,
 425                packet_len, packet_len);
 426
 427        back:
 428        if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
 429                if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
 430                        /* accept VLAN packets */
 431                        status &= ~RS_TOOLONG;
 432                        goto back;
 433                }
 434                if (packet_len < 6) {
 435                        /* bloody hardware */
 436                        printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
 437                                        dev->name, packet_len, status);
 438                        status |= RS_TOOSHORT;
 439                }
 440                SMC_WAIT_MMU_BUSY(lp);
 441                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 442                dev->stats.rx_errors++;
 443                if (status & RS_ALGNERR)
 444                        dev->stats.rx_frame_errors++;
 445                if (status & (RS_TOOSHORT | RS_TOOLONG))
 446                        dev->stats.rx_length_errors++;
 447                if (status & RS_BADCRC)
 448                        dev->stats.rx_crc_errors++;
 449        } else {
 450                struct sk_buff *skb;
 451                unsigned char *data;
 452                unsigned int data_len;
 453
 454                /* set multicast stats */
 455                if (status & RS_MULTICAST)
 456                        dev->stats.multicast++;
 457
 458                /*
 459                 * Actual payload is packet_len - 6 (or 5 if odd byte).
 460                 * We want skb_reserve(2) and the final ctrl word
 461                 * (2 bytes, possibly containing the payload odd byte).
 462                 * Furthermore, we add 2 bytes to allow rounding up to
 463                 * multiple of 4 bytes on 32 bit buses.
 464                 * Hence packet_len - 6 + 2 + 2 + 2.
 465                 */
 466                skb = netdev_alloc_skb(dev, packet_len);
 467                if (unlikely(skb == NULL)) {
 468                        printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
 469                                dev->name);
 470                        SMC_WAIT_MMU_BUSY(lp);
 471                        SMC_SET_MMU_CMD(lp, MC_RELEASE);
 472                        dev->stats.rx_dropped++;
 473                        return;
 474                }
 475
 476                /* Align IP header to 32 bits */
 477                skb_reserve(skb, 2);
 478
 479                /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
 480                if (lp->version == 0x90)
 481                        status |= RS_ODDFRAME;
 482
 483                /*
 484                 * If odd length: packet_len - 5,
 485                 * otherwise packet_len - 6.
 486                 * With the trailing ctrl byte it's packet_len - 4.
 487                 */
 488                data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
 489                data = skb_put(skb, data_len);
 490                SMC_PULL_DATA(lp, data, packet_len - 4);
 491
 492                SMC_WAIT_MMU_BUSY(lp);
 493                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 494
 495                PRINT_PKT(data, packet_len - 4);
 496
 497                skb->protocol = eth_type_trans(skb, dev);
 498                netif_rx(skb);
 499                dev->stats.rx_packets++;
 500                dev->stats.rx_bytes += data_len;
 501        }
 502}
 503
 504#ifdef CONFIG_SMP
 505/*
 506 * On SMP we have the following problem:
 507 *
 508 *      A = smc_hardware_send_pkt()
 509 *      B = smc_hard_start_xmit()
 510 *      C = smc_interrupt()
 511 *
 512 * A and B can never be executed simultaneously.  However, at least on UP,
 513 * it is possible (and even desirable) for C to interrupt execution of
 514 * A or B in order to have better RX reliability and avoid overruns.
 515 * C, just like A and B, must have exclusive access to the chip and
 516 * each of them must lock against any other concurrent access.
 517 * Unfortunately this is not possible to have C suspend execution of A or
 518 * B taking place on another CPU. On UP this is no an issue since A and B
 519 * are run from softirq context and C from hard IRQ context, and there is
 520 * no other CPU where concurrent access can happen.
 521 * If ever there is a way to force at least B and C to always be executed
 522 * on the same CPU then we could use read/write locks to protect against
 523 * any other concurrent access and C would always interrupt B. But life
 524 * isn't that easy in a SMP world...
 525 */
 526#define smc_special_trylock(lock, flags)                                \
 527({                                                                      \
 528        int __ret;                                                      \
 529        local_irq_save(flags);                                          \
 530        __ret = spin_trylock(lock);                                     \
 531        if (!__ret)                                                     \
 532                local_irq_restore(flags);                               \
 533        __ret;                                                          \
 534})
 535#define smc_special_lock(lock, flags)           spin_lock_irqsave(lock, flags)
 536#define smc_special_unlock(lock, flags)         spin_unlock_irqrestore(lock, flags)
 537#else
 538#define smc_special_trylock(lock, flags)        (flags == flags)
 539#define smc_special_lock(lock, flags)           do { flags = 0; } while (0)
 540#define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
 541#endif
 542
 543/*
 544 * This is called to actually send a packet to the chip.
 545 */
 546static void smc_hardware_send_pkt(unsigned long data)
 547{
 548        struct net_device *dev = (struct net_device *)data;
 549        struct smc_local *lp = netdev_priv(dev);
 550        void __iomem *ioaddr = lp->base;
 551        struct sk_buff *skb;
 552        unsigned int packet_no, len;
 553        unsigned char *buf;
 554        unsigned long flags;
 555
 556        DBG(3, "%s: %s\n", dev->name, __func__);
 557
 558        if (!smc_special_trylock(&lp->lock, flags)) {
 559                netif_stop_queue(dev);
 560                tasklet_schedule(&lp->tx_task);
 561                return;
 562        }
 563
 564        skb = lp->pending_tx_skb;
 565        if (unlikely(!skb)) {
 566                smc_special_unlock(&lp->lock, flags);
 567                return;
 568        }
 569        lp->pending_tx_skb = NULL;
 570
 571        packet_no = SMC_GET_AR(lp);
 572        if (unlikely(packet_no & AR_FAILED)) {
 573                printk("%s: Memory allocation failed.\n", dev->name);
 574                dev->stats.tx_errors++;
 575                dev->stats.tx_fifo_errors++;
 576                smc_special_unlock(&lp->lock, flags);
 577                goto done;
 578        }
 579
 580        /* point to the beginning of the packet */
 581        SMC_SET_PN(lp, packet_no);
 582        SMC_SET_PTR(lp, PTR_AUTOINC);
 583
 584        buf = skb->data;
 585        len = skb->len;
 586        DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
 587                dev->name, packet_no, len, len, buf);
 588        PRINT_PKT(buf, len);
 589
 590        /*
 591         * Send the packet length (+6 for status words, length, and ctl.
 592         * The card will pad to 64 bytes with zeroes if packet is too small.
 593         */
 594        SMC_PUT_PKT_HDR(lp, 0, len + 6);
 595
 596        /* send the actual data */
 597        SMC_PUSH_DATA(lp, buf, len & ~1);
 598
 599        /* Send final ctl word with the last byte if there is one */
 600        SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
 601
 602        /*
 603         * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
 604         * have the effect of having at most one packet queued for TX
 605         * in the chip's memory at all time.
 606         *
 607         * If THROTTLE_TX_PKTS is not set then the queue is stopped only
 608         * when memory allocation (MC_ALLOC) does not succeed right away.
 609         */
 610        if (THROTTLE_TX_PKTS)
 611                netif_stop_queue(dev);
 612
 613        /* queue the packet for TX */
 614        SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
 615        smc_special_unlock(&lp->lock, flags);
 616
 617        dev->trans_start = jiffies;
 618        dev->stats.tx_packets++;
 619        dev->stats.tx_bytes += len;
 620
 621        SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
 622
 623done:   if (!THROTTLE_TX_PKTS)
 624                netif_wake_queue(dev);
 625
 626        dev_kfree_skb(skb);
 627}
 628
 629/*
 630 * Since I am not sure if I will have enough room in the chip's ram
 631 * to store the packet, I call this routine which either sends it
 632 * now, or set the card to generates an interrupt when ready
 633 * for the packet.
 634 */
 635static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
 636{
 637        struct smc_local *lp = netdev_priv(dev);
 638        void __iomem *ioaddr = lp->base;
 639        unsigned int numPages, poll_count, status;
 640        unsigned long flags;
 641
 642        DBG(3, "%s: %s\n", dev->name, __func__);
 643
 644        BUG_ON(lp->pending_tx_skb != NULL);
 645
 646        /*
 647         * The MMU wants the number of pages to be the number of 256 bytes
 648         * 'pages', minus 1 (since a packet can't ever have 0 pages :))
 649         *
 650         * The 91C111 ignores the size bits, but earlier models don't.
 651         *
 652         * Pkt size for allocating is data length +6 (for additional status
 653         * words, length and ctl)
 654         *
 655         * If odd size then last byte is included in ctl word.
 656         */
 657        numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
 658        if (unlikely(numPages > 7)) {
 659                printk("%s: Far too big packet error.\n", dev->name);
 660                dev->stats.tx_errors++;
 661                dev->stats.tx_dropped++;
 662                dev_kfree_skb(skb);
 663                return NETDEV_TX_OK;
 664        }
 665
 666        smc_special_lock(&lp->lock, flags);
 667
 668        /* now, try to allocate the memory */
 669        SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
 670
 671        /*
 672         * Poll the chip for a short amount of time in case the
 673         * allocation succeeds quickly.
 674         */
 675        poll_count = MEMORY_WAIT_TIME;
 676        do {
 677                status = SMC_GET_INT(lp);
 678                if (status & IM_ALLOC_INT) {
 679                        SMC_ACK_INT(lp, IM_ALLOC_INT);
 680                        break;
 681                }
 682        } while (--poll_count);
 683
 684        smc_special_unlock(&lp->lock, flags);
 685
 686        lp->pending_tx_skb = skb;
 687        if (!poll_count) {
 688                /* oh well, wait until the chip finds memory later */
 689                netif_stop_queue(dev);
 690                DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
 691                SMC_ENABLE_INT(lp, IM_ALLOC_INT);
 692        } else {
 693                /*
 694                 * Allocation succeeded: push packet to the chip's own memory
 695                 * immediately.
 696                 */
 697                smc_hardware_send_pkt((unsigned long)dev);
 698        }
 699
 700        return NETDEV_TX_OK;
 701}
 702
 703/*
 704 * This handles a TX interrupt, which is only called when:
 705 * - a TX error occurred, or
 706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
 707 */
 708static void smc_tx(struct net_device *dev)
 709{
 710        struct smc_local *lp = netdev_priv(dev);
 711        void __iomem *ioaddr = lp->base;
 712        unsigned int saved_packet, packet_no, tx_status, pkt_len;
 713
 714        DBG(3, "%s: %s\n", dev->name, __func__);
 715
 716        /* If the TX FIFO is empty then nothing to do */
 717        packet_no = SMC_GET_TXFIFO(lp);
 718        if (unlikely(packet_no & TXFIFO_TEMPTY)) {
 719                PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
 720                return;
 721        }
 722
 723        /* select packet to read from */
 724        saved_packet = SMC_GET_PN(lp);
 725        SMC_SET_PN(lp, packet_no);
 726
 727        /* read the first word (status word) from this packet */
 728        SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
 729        SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
 730        DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
 731                dev->name, tx_status, packet_no);
 732
 733        if (!(tx_status & ES_TX_SUC))
 734                dev->stats.tx_errors++;
 735
 736        if (tx_status & ES_LOSTCARR)
 737                dev->stats.tx_carrier_errors++;
 738
 739        if (tx_status & (ES_LATCOL | ES_16COL)) {
 740                PRINTK("%s: %s occurred on last xmit\n", dev->name,
 741                       (tx_status & ES_LATCOL) ?
 742                        "late collision" : "too many collisions");
 743                dev->stats.tx_window_errors++;
 744                if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
 745                        printk(KERN_INFO "%s: unexpectedly large number of "
 746                               "bad collisions. Please check duplex "
 747                               "setting.\n", dev->name);
 748                }
 749        }
 750
 751        /* kill the packet */
 752        SMC_WAIT_MMU_BUSY(lp);
 753        SMC_SET_MMU_CMD(lp, MC_FREEPKT);
 754
 755        /* Don't restore Packet Number Reg until busy bit is cleared */
 756        SMC_WAIT_MMU_BUSY(lp);
 757        SMC_SET_PN(lp, saved_packet);
 758
 759        /* re-enable transmit */
 760        SMC_SELECT_BANK(lp, 0);
 761        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 762        SMC_SELECT_BANK(lp, 2);
 763}
 764
 765
 766/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
 767
 768static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
 769{
 770        struct smc_local *lp = netdev_priv(dev);
 771        void __iomem *ioaddr = lp->base;
 772        unsigned int mii_reg, mask;
 773
 774        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 775        mii_reg |= MII_MDOE;
 776
 777        for (mask = 1 << (bits - 1); mask; mask >>= 1) {
 778                if (val & mask)
 779                        mii_reg |= MII_MDO;
 780                else
 781                        mii_reg &= ~MII_MDO;
 782
 783                SMC_SET_MII(lp, mii_reg);
 784                udelay(MII_DELAY);
 785                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 786                udelay(MII_DELAY);
 787        }
 788}
 789
 790static unsigned int smc_mii_in(struct net_device *dev, int bits)
 791{
 792        struct smc_local *lp = netdev_priv(dev);
 793        void __iomem *ioaddr = lp->base;
 794        unsigned int mii_reg, mask, val;
 795
 796        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 797        SMC_SET_MII(lp, mii_reg);
 798
 799        for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
 800                if (SMC_GET_MII(lp) & MII_MDI)
 801                        val |= mask;
 802
 803                SMC_SET_MII(lp, mii_reg);
 804                udelay(MII_DELAY);
 805                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 806                udelay(MII_DELAY);
 807        }
 808
 809        return val;
 810}
 811
 812/*
 813 * Reads a register from the MII Management serial interface
 814 */
 815static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
 816{
 817        struct smc_local *lp = netdev_priv(dev);
 818        void __iomem *ioaddr = lp->base;
 819        unsigned int phydata;
 820
 821        SMC_SELECT_BANK(lp, 3);
 822
 823        /* Idle - 32 ones */
 824        smc_mii_out(dev, 0xffffffff, 32);
 825
 826        /* Start code (01) + read (10) + phyaddr + phyreg */
 827        smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
 828
 829        /* Turnaround (2bits) + phydata */
 830        phydata = smc_mii_in(dev, 18);
 831
 832        /* Return to idle state */
 833        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 834
 835        DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 836                __func__, phyaddr, phyreg, phydata);
 837
 838        SMC_SELECT_BANK(lp, 2);
 839        return phydata;
 840}
 841
 842/*
 843 * Writes a register to the MII Management serial interface
 844 */
 845static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
 846                          int phydata)
 847{
 848        struct smc_local *lp = netdev_priv(dev);
 849        void __iomem *ioaddr = lp->base;
 850
 851        SMC_SELECT_BANK(lp, 3);
 852
 853        /* Idle - 32 ones */
 854        smc_mii_out(dev, 0xffffffff, 32);
 855
 856        /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
 857        smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
 858
 859        /* Return to idle state */
 860        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 861
 862        DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 863                __func__, phyaddr, phyreg, phydata);
 864
 865        SMC_SELECT_BANK(lp, 2);
 866}
 867
 868/*
 869 * Finds and reports the PHY address
 870 */
 871static void smc_phy_detect(struct net_device *dev)
 872{
 873        struct smc_local *lp = netdev_priv(dev);
 874        int phyaddr;
 875
 876        DBG(2, "%s: %s\n", dev->name, __func__);
 877
 878        lp->phy_type = 0;
 879
 880        /*
 881         * Scan all 32 PHY addresses if necessary, starting at
 882         * PHY#1 to PHY#31, and then PHY#0 last.
 883         */
 884        for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
 885                unsigned int id1, id2;
 886
 887                /* Read the PHY identifiers */
 888                id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
 889                id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
 890
 891                DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
 892                        dev->name, id1, id2);
 893
 894                /* Make sure it is a valid identifier */
 895                if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
 896                    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
 897                        /* Save the PHY's address */
 898                        lp->mii.phy_id = phyaddr & 31;
 899                        lp->phy_type = id1 << 16 | id2;
 900                        break;
 901                }
 902        }
 903}
 904
 905/*
 906 * Sets the PHY to a configuration as determined by the user
 907 */
 908static int smc_phy_fixed(struct net_device *dev)
 909{
 910        struct smc_local *lp = netdev_priv(dev);
 911        void __iomem *ioaddr = lp->base;
 912        int phyaddr = lp->mii.phy_id;
 913        int bmcr, cfg1;
 914
 915        DBG(3, "%s: %s\n", dev->name, __func__);
 916
 917        /* Enter Link Disable state */
 918        cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
 919        cfg1 |= PHY_CFG1_LNKDIS;
 920        smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
 921
 922        /*
 923         * Set our fixed capabilities
 924         * Disable auto-negotiation
 925         */
 926        bmcr = 0;
 927
 928        if (lp->ctl_rfduplx)
 929                bmcr |= BMCR_FULLDPLX;
 930
 931        if (lp->ctl_rspeed == 100)
 932                bmcr |= BMCR_SPEED100;
 933
 934        /* Write our capabilities to the phy control register */
 935        smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
 936
 937        /* Re-Configure the Receive/Phy Control register */
 938        SMC_SELECT_BANK(lp, 0);
 939        SMC_SET_RPC(lp, lp->rpc_cur_mode);
 940        SMC_SELECT_BANK(lp, 2);
 941
 942        return 1;
 943}
 944
 945/**
 946 * smc_phy_reset - reset the phy
 947 * @dev: net device
 948 * @phy: phy address
 949 *
 950 * Issue a software reset for the specified PHY and
 951 * wait up to 100ms for the reset to complete.  We should
 952 * not access the PHY for 50ms after issuing the reset.
 953 *
 954 * The time to wait appears to be dependent on the PHY.
 955 *
 956 * Must be called with lp->lock locked.
 957 */
 958static int smc_phy_reset(struct net_device *dev, int phy)
 959{
 960        struct smc_local *lp = netdev_priv(dev);
 961        unsigned int bmcr;
 962        int timeout;
 963
 964        smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
 965
 966        for (timeout = 2; timeout; timeout--) {
 967                spin_unlock_irq(&lp->lock);
 968                msleep(50);
 969                spin_lock_irq(&lp->lock);
 970
 971                bmcr = smc_phy_read(dev, phy, MII_BMCR);
 972                if (!(bmcr & BMCR_RESET))
 973                        break;
 974        }
 975
 976        return bmcr & BMCR_RESET;
 977}
 978
 979/**
 980 * smc_phy_powerdown - powerdown phy
 981 * @dev: net device
 982 *
 983 * Power down the specified PHY
 984 */
 985static void smc_phy_powerdown(struct net_device *dev)
 986{
 987        struct smc_local *lp = netdev_priv(dev);
 988        unsigned int bmcr;
 989        int phy = lp->mii.phy_id;
 990
 991        if (lp->phy_type == 0)
 992                return;
 993
 994        /* We need to ensure that no calls to smc_phy_configure are
 995           pending.
 996        */
 997        cancel_work_sync(&lp->phy_configure);
 998
 999        bmcr = smc_phy_read(dev, phy, MII_BMCR);
1000        smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1001}
1002
1003/**
1004 * smc_phy_check_media - check the media status and adjust TCR
1005 * @dev: net device
1006 * @init: set true for initialisation
1007 *
1008 * Select duplex mode depending on negotiation state.  This
1009 * also updates our carrier state.
1010 */
1011static void smc_phy_check_media(struct net_device *dev, int init)
1012{
1013        struct smc_local *lp = netdev_priv(dev);
1014        void __iomem *ioaddr = lp->base;
1015
1016        if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1017                /* duplex state has changed */
1018                if (lp->mii.full_duplex) {
1019                        lp->tcr_cur_mode |= TCR_SWFDUP;
1020                } else {
1021                        lp->tcr_cur_mode &= ~TCR_SWFDUP;
1022                }
1023
1024                SMC_SELECT_BANK(lp, 0);
1025                SMC_SET_TCR(lp, lp->tcr_cur_mode);
1026        }
1027}
1028
1029/*
1030 * Configures the specified PHY through the MII management interface
1031 * using Autonegotiation.
1032 * Calls smc_phy_fixed() if the user has requested a certain config.
1033 * If RPC ANEG bit is set, the media selection is dependent purely on
1034 * the selection by the MII (either in the MII BMCR reg or the result
1035 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1036 * is controlled by the RPC SPEED and RPC DPLX bits.
1037 */
1038static void smc_phy_configure(struct work_struct *work)
1039{
1040        struct smc_local *lp =
1041                container_of(work, struct smc_local, phy_configure);
1042        struct net_device *dev = lp->dev;
1043        void __iomem *ioaddr = lp->base;
1044        int phyaddr = lp->mii.phy_id;
1045        int my_phy_caps; /* My PHY capabilities */
1046        int my_ad_caps; /* My Advertised capabilities */
1047        int status;
1048
1049        DBG(3, "%s:smc_program_phy()\n", dev->name);
1050
1051        spin_lock_irq(&lp->lock);
1052
1053        /*
1054         * We should not be called if phy_type is zero.
1055         */
1056        if (lp->phy_type == 0)
1057                goto smc_phy_configure_exit;
1058
1059        if (smc_phy_reset(dev, phyaddr)) {
1060                printk("%s: PHY reset timed out\n", dev->name);
1061                goto smc_phy_configure_exit;
1062        }
1063
1064        /*
1065         * Enable PHY Interrupts (for register 18)
1066         * Interrupts listed here are disabled
1067         */
1068        smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1069                PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1070                PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1071                PHY_INT_SPDDET | PHY_INT_DPLXDET);
1072
1073        /* Configure the Receive/Phy Control register */
1074        SMC_SELECT_BANK(lp, 0);
1075        SMC_SET_RPC(lp, lp->rpc_cur_mode);
1076
1077        /* If the user requested no auto neg, then go set his request */
1078        if (lp->mii.force_media) {
1079                smc_phy_fixed(dev);
1080                goto smc_phy_configure_exit;
1081        }
1082
1083        /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1084        my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1085
1086        if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1087                printk(KERN_INFO "Auto negotiation NOT supported\n");
1088                smc_phy_fixed(dev);
1089                goto smc_phy_configure_exit;
1090        }
1091
1092        my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1093
1094        if (my_phy_caps & BMSR_100BASE4)
1095                my_ad_caps |= ADVERTISE_100BASE4;
1096        if (my_phy_caps & BMSR_100FULL)
1097                my_ad_caps |= ADVERTISE_100FULL;
1098        if (my_phy_caps & BMSR_100HALF)
1099                my_ad_caps |= ADVERTISE_100HALF;
1100        if (my_phy_caps & BMSR_10FULL)
1101                my_ad_caps |= ADVERTISE_10FULL;
1102        if (my_phy_caps & BMSR_10HALF)
1103                my_ad_caps |= ADVERTISE_10HALF;
1104
1105        /* Disable capabilities not selected by our user */
1106        if (lp->ctl_rspeed != 100)
1107                my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1108
1109        if (!lp->ctl_rfduplx)
1110                my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1111
1112        /* Update our Auto-Neg Advertisement Register */
1113        smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1114        lp->mii.advertising = my_ad_caps;
1115
1116        /*
1117         * Read the register back.  Without this, it appears that when
1118         * auto-negotiation is restarted, sometimes it isn't ready and
1119         * the link does not come up.
1120         */
1121        status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1122
1123        DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1124        DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1125
1126        /* Restart auto-negotiation process in order to advertise my caps */
1127        smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1128
1129        smc_phy_check_media(dev, 1);
1130
1131smc_phy_configure_exit:
1132        SMC_SELECT_BANK(lp, 2);
1133        spin_unlock_irq(&lp->lock);
1134}
1135
1136/*
1137 * smc_phy_interrupt
1138 *
1139 * Purpose:  Handle interrupts relating to PHY register 18. This is
1140 *  called from the "hard" interrupt handler under our private spinlock.
1141 */
1142static void smc_phy_interrupt(struct net_device *dev)
1143{
1144        struct smc_local *lp = netdev_priv(dev);
1145        int phyaddr = lp->mii.phy_id;
1146        int phy18;
1147
1148        DBG(2, "%s: %s\n", dev->name, __func__);
1149
1150        if (lp->phy_type == 0)
1151                return;
1152
1153        for(;;) {
1154                smc_phy_check_media(dev, 0);
1155
1156                /* Read PHY Register 18, Status Output */
1157                phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1158                if ((phy18 & PHY_INT_INT) == 0)
1159                        break;
1160        }
1161}
1162
1163/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1164
1165static void smc_10bt_check_media(struct net_device *dev, int init)
1166{
1167        struct smc_local *lp = netdev_priv(dev);
1168        void __iomem *ioaddr = lp->base;
1169        unsigned int old_carrier, new_carrier;
1170
1171        old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1172
1173        SMC_SELECT_BANK(lp, 0);
1174        new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1175        SMC_SELECT_BANK(lp, 2);
1176
1177        if (init || (old_carrier != new_carrier)) {
1178                if (!new_carrier) {
1179                        netif_carrier_off(dev);
1180                } else {
1181                        netif_carrier_on(dev);
1182                }
1183                if (netif_msg_link(lp))
1184                        printk(KERN_INFO "%s: link %s\n", dev->name,
1185                               new_carrier ? "up" : "down");
1186        }
1187}
1188
1189static void smc_eph_interrupt(struct net_device *dev)
1190{
1191        struct smc_local *lp = netdev_priv(dev);
1192        void __iomem *ioaddr = lp->base;
1193        unsigned int ctl;
1194
1195        smc_10bt_check_media(dev, 0);
1196
1197        SMC_SELECT_BANK(lp, 1);
1198        ctl = SMC_GET_CTL(lp);
1199        SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1200        SMC_SET_CTL(lp, ctl);
1201        SMC_SELECT_BANK(lp, 2);
1202}
1203
1204/*
1205 * This is the main routine of the driver, to handle the device when
1206 * it needs some attention.
1207 */
1208static irqreturn_t smc_interrupt(int irq, void *dev_id)
1209{
1210        struct net_device *dev = dev_id;
1211        struct smc_local *lp = netdev_priv(dev);
1212        void __iomem *ioaddr = lp->base;
1213        int status, mask, timeout, card_stats;
1214        int saved_pointer;
1215
1216        DBG(3, "%s: %s\n", dev->name, __func__);
1217
1218        spin_lock(&lp->lock);
1219
1220        /* A preamble may be used when there is a potential race
1221         * between the interruptible transmit functions and this
1222         * ISR. */
1223        SMC_INTERRUPT_PREAMBLE;
1224
1225        saved_pointer = SMC_GET_PTR(lp);
1226        mask = SMC_GET_INT_MASK(lp);
1227        SMC_SET_INT_MASK(lp, 0);
1228
1229        /* set a timeout value, so I don't stay here forever */
1230        timeout = MAX_IRQ_LOOPS;
1231
1232        do {
1233                status = SMC_GET_INT(lp);
1234
1235                DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1236                        dev->name, status, mask,
1237                        ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1238                           meminfo = SMC_GET_MIR(lp);
1239                           SMC_SELECT_BANK(lp, 2); meminfo; }),
1240                        SMC_GET_FIFO(lp));
1241
1242                status &= mask;
1243                if (!status)
1244                        break;
1245
1246                if (status & IM_TX_INT) {
1247                        /* do this before RX as it will free memory quickly */
1248                        DBG(3, "%s: TX int\n", dev->name);
1249                        smc_tx(dev);
1250                        SMC_ACK_INT(lp, IM_TX_INT);
1251                        if (THROTTLE_TX_PKTS)
1252                                netif_wake_queue(dev);
1253                } else if (status & IM_RCV_INT) {
1254                        DBG(3, "%s: RX irq\n", dev->name);
1255                        smc_rcv(dev);
1256                } else if (status & IM_ALLOC_INT) {
1257                        DBG(3, "%s: Allocation irq\n", dev->name);
1258                        tasklet_hi_schedule(&lp->tx_task);
1259                        mask &= ~IM_ALLOC_INT;
1260                } else if (status & IM_TX_EMPTY_INT) {
1261                        DBG(3, "%s: TX empty\n", dev->name);
1262                        mask &= ~IM_TX_EMPTY_INT;
1263
1264                        /* update stats */
1265                        SMC_SELECT_BANK(lp, 0);
1266                        card_stats = SMC_GET_COUNTER(lp);
1267                        SMC_SELECT_BANK(lp, 2);
1268
1269                        /* single collisions */
1270                        dev->stats.collisions += card_stats & 0xF;
1271                        card_stats >>= 4;
1272
1273                        /* multiple collisions */
1274                        dev->stats.collisions += card_stats & 0xF;
1275                } else if (status & IM_RX_OVRN_INT) {
1276                        DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1277                               ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1278                                  eph_st = SMC_GET_EPH_STATUS(lp);
1279                                  SMC_SELECT_BANK(lp, 2); eph_st; }));
1280                        SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1281                        dev->stats.rx_errors++;
1282                        dev->stats.rx_fifo_errors++;
1283                } else if (status & IM_EPH_INT) {
1284                        smc_eph_interrupt(dev);
1285                } else if (status & IM_MDINT) {
1286                        SMC_ACK_INT(lp, IM_MDINT);
1287                        smc_phy_interrupt(dev);
1288                } else if (status & IM_ERCV_INT) {
1289                        SMC_ACK_INT(lp, IM_ERCV_INT);
1290                        PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT\n", dev->name);
1291                }
1292        } while (--timeout);
1293
1294        /* restore register states */
1295        SMC_SET_PTR(lp, saved_pointer);
1296        SMC_SET_INT_MASK(lp, mask);
1297        spin_unlock(&lp->lock);
1298
1299#ifndef CONFIG_NET_POLL_CONTROLLER
1300        if (timeout == MAX_IRQ_LOOPS)
1301                PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1302                       dev->name, mask);
1303#endif
1304        DBG(3, "%s: Interrupt done (%d loops)\n",
1305               dev->name, MAX_IRQ_LOOPS - timeout);
1306
1307        /*
1308         * We return IRQ_HANDLED unconditionally here even if there was
1309         * nothing to do.  There is a possibility that a packet might
1310         * get enqueued into the chip right after TX_EMPTY_INT is raised
1311         * but just before the CPU acknowledges the IRQ.
1312         * Better take an unneeded IRQ in some occasions than complexifying
1313         * the code for all cases.
1314         */
1315        return IRQ_HANDLED;
1316}
1317
1318#ifdef CONFIG_NET_POLL_CONTROLLER
1319/*
1320 * Polling receive - used by netconsole and other diagnostic tools
1321 * to allow network i/o with interrupts disabled.
1322 */
1323static void smc_poll_controller(struct net_device *dev)
1324{
1325        disable_irq(dev->irq);
1326        smc_interrupt(dev->irq, dev);
1327        enable_irq(dev->irq);
1328}
1329#endif
1330
1331/* Our watchdog timed out. Called by the networking layer */
1332static void smc_timeout(struct net_device *dev)
1333{
1334        struct smc_local *lp = netdev_priv(dev);
1335        void __iomem *ioaddr = lp->base;
1336        int status, mask, eph_st, meminfo, fifo;
1337
1338        DBG(2, "%s: %s\n", dev->name, __func__);
1339
1340        spin_lock_irq(&lp->lock);
1341        status = SMC_GET_INT(lp);
1342        mask = SMC_GET_INT_MASK(lp);
1343        fifo = SMC_GET_FIFO(lp);
1344        SMC_SELECT_BANK(lp, 0);
1345        eph_st = SMC_GET_EPH_STATUS(lp);
1346        meminfo = SMC_GET_MIR(lp);
1347        SMC_SELECT_BANK(lp, 2);
1348        spin_unlock_irq(&lp->lock);
1349        PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1350                "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1351                dev->name, status, mask, meminfo, fifo, eph_st );
1352
1353        smc_reset(dev);
1354        smc_enable(dev);
1355
1356        /*
1357         * Reconfiguring the PHY doesn't seem like a bad idea here, but
1358         * smc_phy_configure() calls msleep() which calls schedule_timeout()
1359         * which calls schedule().  Hence we use a work queue.
1360         */
1361        if (lp->phy_type != 0)
1362                schedule_work(&lp->phy_configure);
1363
1364        /* We can accept TX packets again */
1365        dev->trans_start = jiffies; /* prevent tx timeout */
1366        netif_wake_queue(dev);
1367}
1368
1369/*
1370 * This routine will, depending on the values passed to it,
1371 * either make it accept multicast packets, go into
1372 * promiscuous mode (for TCPDUMP and cousins) or accept
1373 * a select set of multicast packets
1374 */
1375static void smc_set_multicast_list(struct net_device *dev)
1376{
1377        struct smc_local *lp = netdev_priv(dev);
1378        void __iomem *ioaddr = lp->base;
1379        unsigned char multicast_table[8];
1380        int update_multicast = 0;
1381
1382        DBG(2, "%s: %s\n", dev->name, __func__);
1383
1384        if (dev->flags & IFF_PROMISC) {
1385                DBG(2, "%s: RCR_PRMS\n", dev->name);
1386                lp->rcr_cur_mode |= RCR_PRMS;
1387        }
1388
1389/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1390   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1391   when promiscuous mode is turned on.
1392*/
1393
1394        /*
1395         * Here, I am setting this to accept all multicast packets.
1396         * I don't need to zero the multicast table, because the flag is
1397         * checked before the table is
1398         */
1399        else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1400                DBG(2, "%s: RCR_ALMUL\n", dev->name);
1401                lp->rcr_cur_mode |= RCR_ALMUL;
1402        }
1403
1404        /*
1405         * This sets the internal hardware table to filter out unwanted
1406         * multicast packets before they take up memory.
1407         *
1408         * The SMC chip uses a hash table where the high 6 bits of the CRC of
1409         * address are the offset into the table.  If that bit is 1, then the
1410         * multicast packet is accepted.  Otherwise, it's dropped silently.
1411         *
1412         * To use the 6 bits as an offset into the table, the high 3 bits are
1413         * the number of the 8 bit register, while the low 3 bits are the bit
1414         * within that register.
1415         */
1416        else if (!netdev_mc_empty(dev)) {
1417                struct netdev_hw_addr *ha;
1418
1419                /* table for flipping the order of 3 bits */
1420                static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1421
1422                /* start with a table of all zeros: reject all */
1423                memset(multicast_table, 0, sizeof(multicast_table));
1424
1425                netdev_for_each_mc_addr(ha, dev) {
1426                        int position;
1427
1428                        /* only use the low order bits */
1429                        position = crc32_le(~0, ha->addr, 6) & 0x3f;
1430
1431                        /* do some messy swapping to put the bit in the right spot */
1432                        multicast_table[invert3[position&7]] |=
1433                                (1<<invert3[(position>>3)&7]);
1434                }
1435
1436                /* be sure I get rid of flags I might have set */
1437                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1438
1439                /* now, the table can be loaded into the chipset */
1440                update_multicast = 1;
1441        } else  {
1442                DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1443                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1444
1445                /*
1446                 * since I'm disabling all multicast entirely, I need to
1447                 * clear the multicast list
1448                 */
1449                memset(multicast_table, 0, sizeof(multicast_table));
1450                update_multicast = 1;
1451        }
1452
1453        spin_lock_irq(&lp->lock);
1454        SMC_SELECT_BANK(lp, 0);
1455        SMC_SET_RCR(lp, lp->rcr_cur_mode);
1456        if (update_multicast) {
1457                SMC_SELECT_BANK(lp, 3);
1458                SMC_SET_MCAST(lp, multicast_table);
1459        }
1460        SMC_SELECT_BANK(lp, 2);
1461        spin_unlock_irq(&lp->lock);
1462}
1463
1464
1465/*
1466 * Open and Initialize the board
1467 *
1468 * Set up everything, reset the card, etc..
1469 */
1470static int
1471smc_open(struct net_device *dev)
1472{
1473        struct smc_local *lp = netdev_priv(dev);
1474
1475        DBG(2, "%s: %s\n", dev->name, __func__);
1476
1477        /* Setup the default Register Modes */
1478        lp->tcr_cur_mode = TCR_DEFAULT;
1479        lp->rcr_cur_mode = RCR_DEFAULT;
1480        lp->rpc_cur_mode = RPC_DEFAULT |
1481                                lp->cfg.leda << RPC_LSXA_SHFT |
1482                                lp->cfg.ledb << RPC_LSXB_SHFT;
1483
1484        /*
1485         * If we are not using a MII interface, we need to
1486         * monitor our own carrier signal to detect faults.
1487         */
1488        if (lp->phy_type == 0)
1489                lp->tcr_cur_mode |= TCR_MON_CSN;
1490
1491        /* reset the hardware */
1492        smc_reset(dev);
1493        smc_enable(dev);
1494
1495        /* Configure the PHY, initialize the link state */
1496        if (lp->phy_type != 0)
1497                smc_phy_configure(&lp->phy_configure);
1498        else {
1499                spin_lock_irq(&lp->lock);
1500                smc_10bt_check_media(dev, 1);
1501                spin_unlock_irq(&lp->lock);
1502        }
1503
1504        netif_start_queue(dev);
1505        return 0;
1506}
1507
1508/*
1509 * smc_close
1510 *
1511 * this makes the board clean up everything that it can
1512 * and not talk to the outside world.   Caused by
1513 * an 'ifconfig ethX down'
1514 */
1515static int smc_close(struct net_device *dev)
1516{
1517        struct smc_local *lp = netdev_priv(dev);
1518
1519        DBG(2, "%s: %s\n", dev->name, __func__);
1520
1521        netif_stop_queue(dev);
1522        netif_carrier_off(dev);
1523
1524        /* clear everything */
1525        smc_shutdown(dev);
1526        tasklet_kill(&lp->tx_task);
1527        smc_phy_powerdown(dev);
1528        return 0;
1529}
1530
1531/*
1532 * Ethtool support
1533 */
1534static int
1535smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1536{
1537        struct smc_local *lp = netdev_priv(dev);
1538        int ret;
1539
1540        cmd->maxtxpkt = 1;
1541        cmd->maxrxpkt = 1;
1542
1543        if (lp->phy_type != 0) {
1544                spin_lock_irq(&lp->lock);
1545                ret = mii_ethtool_gset(&lp->mii, cmd);
1546                spin_unlock_irq(&lp->lock);
1547        } else {
1548                cmd->supported = SUPPORTED_10baseT_Half |
1549                                 SUPPORTED_10baseT_Full |
1550                                 SUPPORTED_TP | SUPPORTED_AUI;
1551
1552                if (lp->ctl_rspeed == 10)
1553                        ethtool_cmd_speed_set(cmd, SPEED_10);
1554                else if (lp->ctl_rspeed == 100)
1555                        ethtool_cmd_speed_set(cmd, SPEED_100);
1556
1557                cmd->autoneg = AUTONEG_DISABLE;
1558                cmd->transceiver = XCVR_INTERNAL;
1559                cmd->port = 0;
1560                cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1561
1562                ret = 0;
1563        }
1564
1565        return ret;
1566}
1567
1568static int
1569smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1570{
1571        struct smc_local *lp = netdev_priv(dev);
1572        int ret;
1573
1574        if (lp->phy_type != 0) {
1575                spin_lock_irq(&lp->lock);
1576                ret = mii_ethtool_sset(&lp->mii, cmd);
1577                spin_unlock_irq(&lp->lock);
1578        } else {
1579                if (cmd->autoneg != AUTONEG_DISABLE ||
1580                    cmd->speed != SPEED_10 ||
1581                    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1582                    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1583                        return -EINVAL;
1584
1585//              lp->port = cmd->port;
1586                lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1587
1588//              if (netif_running(dev))
1589//                      smc_set_port(dev);
1590
1591                ret = 0;
1592        }
1593
1594        return ret;
1595}
1596
1597static void
1598smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1599{
1600        strncpy(info->driver, CARDNAME, sizeof(info->driver));
1601        strncpy(info->version, version, sizeof(info->version));
1602        strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1603}
1604
1605static int smc_ethtool_nwayreset(struct net_device *dev)
1606{
1607        struct smc_local *lp = netdev_priv(dev);
1608        int ret = -EINVAL;
1609
1610        if (lp->phy_type != 0) {
1611                spin_lock_irq(&lp->lock);
1612                ret = mii_nway_restart(&lp->mii);
1613                spin_unlock_irq(&lp->lock);
1614        }
1615
1616        return ret;
1617}
1618
1619static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1620{
1621        struct smc_local *lp = netdev_priv(dev);
1622        return lp->msg_enable;
1623}
1624
1625static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1626{
1627        struct smc_local *lp = netdev_priv(dev);
1628        lp->msg_enable = level;
1629}
1630
1631static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1632{
1633        u16 ctl;
1634        struct smc_local *lp = netdev_priv(dev);
1635        void __iomem *ioaddr = lp->base;
1636
1637        spin_lock_irq(&lp->lock);
1638        /* load word into GP register */
1639        SMC_SELECT_BANK(lp, 1);
1640        SMC_SET_GP(lp, word);
1641        /* set the address to put the data in EEPROM */
1642        SMC_SELECT_BANK(lp, 2);
1643        SMC_SET_PTR(lp, addr);
1644        /* tell it to write */
1645        SMC_SELECT_BANK(lp, 1);
1646        ctl = SMC_GET_CTL(lp);
1647        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1648        /* wait for it to finish */
1649        do {
1650                udelay(1);
1651        } while (SMC_GET_CTL(lp) & CTL_STORE);
1652        /* clean up */
1653        SMC_SET_CTL(lp, ctl);
1654        SMC_SELECT_BANK(lp, 2);
1655        spin_unlock_irq(&lp->lock);
1656        return 0;
1657}
1658
1659static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1660{
1661        u16 ctl;
1662        struct smc_local *lp = netdev_priv(dev);
1663        void __iomem *ioaddr = lp->base;
1664
1665        spin_lock_irq(&lp->lock);
1666        /* set the EEPROM address to get the data from */
1667        SMC_SELECT_BANK(lp, 2);
1668        SMC_SET_PTR(lp, addr | PTR_READ);
1669        /* tell it to load */
1670        SMC_SELECT_BANK(lp, 1);
1671        SMC_SET_GP(lp, 0xffff); /* init to known */
1672        ctl = SMC_GET_CTL(lp);
1673        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1674        /* wait for it to finish */
1675        do {
1676                udelay(1);
1677        } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1678        /* read word from GP register */
1679        *word = SMC_GET_GP(lp);
1680        /* clean up */
1681        SMC_SET_CTL(lp, ctl);
1682        SMC_SELECT_BANK(lp, 2);
1683        spin_unlock_irq(&lp->lock);
1684        return 0;
1685}
1686
1687static int smc_ethtool_geteeprom_len(struct net_device *dev)
1688{
1689        return 0x23 * 2;
1690}
1691
1692static int smc_ethtool_geteeprom(struct net_device *dev,
1693                struct ethtool_eeprom *eeprom, u8 *data)
1694{
1695        int i;
1696        int imax;
1697
1698        DBG(1, "Reading %d bytes at %d(0x%x)\n",
1699                eeprom->len, eeprom->offset, eeprom->offset);
1700        imax = smc_ethtool_geteeprom_len(dev);
1701        for (i = 0; i < eeprom->len; i += 2) {
1702                int ret;
1703                u16 wbuf;
1704                int offset = i + eeprom->offset;
1705                if (offset > imax)
1706                        break;
1707                ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1708                if (ret != 0)
1709                        return ret;
1710                DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1711                data[i] = (wbuf >> 8) & 0xff;
1712                data[i+1] = wbuf & 0xff;
1713        }
1714        return 0;
1715}
1716
1717static int smc_ethtool_seteeprom(struct net_device *dev,
1718                struct ethtool_eeprom *eeprom, u8 *data)
1719{
1720        int i;
1721        int imax;
1722
1723        DBG(1, "Writing %d bytes to %d(0x%x)\n",
1724                        eeprom->len, eeprom->offset, eeprom->offset);
1725        imax = smc_ethtool_geteeprom_len(dev);
1726        for (i = 0; i < eeprom->len; i += 2) {
1727                int ret;
1728                u16 wbuf;
1729                int offset = i + eeprom->offset;
1730                if (offset > imax)
1731                        break;
1732                wbuf = (data[i] << 8) | data[i + 1];
1733                DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1734                ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1735                if (ret != 0)
1736                        return ret;
1737        }
1738        return 0;
1739}
1740
1741
1742static const struct ethtool_ops smc_ethtool_ops = {
1743        .get_settings   = smc_ethtool_getsettings,
1744        .set_settings   = smc_ethtool_setsettings,
1745        .get_drvinfo    = smc_ethtool_getdrvinfo,
1746
1747        .get_msglevel   = smc_ethtool_getmsglevel,
1748        .set_msglevel   = smc_ethtool_setmsglevel,
1749        .nway_reset     = smc_ethtool_nwayreset,
1750        .get_link       = ethtool_op_get_link,
1751        .get_eeprom_len = smc_ethtool_geteeprom_len,
1752        .get_eeprom     = smc_ethtool_geteeprom,
1753        .set_eeprom     = smc_ethtool_seteeprom,
1754};
1755
1756static const struct net_device_ops smc_netdev_ops = {
1757        .ndo_open               = smc_open,
1758        .ndo_stop               = smc_close,
1759        .ndo_start_xmit         = smc_hard_start_xmit,
1760        .ndo_tx_timeout         = smc_timeout,
1761        .ndo_set_rx_mode        = smc_set_multicast_list,
1762        .ndo_change_mtu         = eth_change_mtu,
1763        .ndo_validate_addr      = eth_validate_addr,
1764        .ndo_set_mac_address    = eth_mac_addr,
1765#ifdef CONFIG_NET_POLL_CONTROLLER
1766        .ndo_poll_controller    = smc_poll_controller,
1767#endif
1768};
1769
1770/*
1771 * smc_findirq
1772 *
1773 * This routine has a simple purpose -- make the SMC chip generate an
1774 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1775 */
1776/*
1777 * does this still work?
1778 *
1779 * I just deleted auto_irq.c, since it was never built...
1780 *   --jgarzik
1781 */
1782static int smc_findirq(struct smc_local *lp)
1783{
1784        void __iomem *ioaddr = lp->base;
1785        int timeout = 20;
1786        unsigned long cookie;
1787
1788        DBG(2, "%s: %s\n", CARDNAME, __func__);
1789
1790        cookie = probe_irq_on();
1791
1792        /*
1793         * What I try to do here is trigger an ALLOC_INT. This is done
1794         * by allocating a small chunk of memory, which will give an interrupt
1795         * when done.
1796         */
1797        /* enable ALLOCation interrupts ONLY */
1798        SMC_SELECT_BANK(lp, 2);
1799        SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1800
1801        /*
1802         * Allocate 512 bytes of memory.  Note that the chip was just
1803         * reset so all the memory is available
1804         */
1805        SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1806
1807        /*
1808         * Wait until positive that the interrupt has been generated
1809         */
1810        do {
1811                int int_status;
1812                udelay(10);
1813                int_status = SMC_GET_INT(lp);
1814                if (int_status & IM_ALLOC_INT)
1815                        break;          /* got the interrupt */
1816        } while (--timeout);
1817
1818        /*
1819         * there is really nothing that I can do here if timeout fails,
1820         * as autoirq_report will return a 0 anyway, which is what I
1821         * want in this case.   Plus, the clean up is needed in both
1822         * cases.
1823         */
1824
1825        /* and disable all interrupts again */
1826        SMC_SET_INT_MASK(lp, 0);
1827
1828        /* and return what I found */
1829        return probe_irq_off(cookie);
1830}
1831
1832/*
1833 * Function: smc_probe(unsigned long ioaddr)
1834 *
1835 * Purpose:
1836 *      Tests to see if a given ioaddr points to an SMC91x chip.
1837 *      Returns a 0 on success
1838 *
1839 * Algorithm:
1840 *      (1) see if the high byte of BANK_SELECT is 0x33
1841 *      (2) compare the ioaddr with the base register's address
1842 *      (3) see if I recognize the chip ID in the appropriate register
1843 *
1844 * Here I do typical initialization tasks.
1845 *
1846 * o  Initialize the structure if needed
1847 * o  print out my vanity message if not done so already
1848 * o  print out what type of hardware is detected
1849 * o  print out the ethernet address
1850 * o  find the IRQ
1851 * o  set up my private data
1852 * o  configure the dev structure with my subroutines
1853 * o  actually GRAB the irq.
1854 * o  GRAB the region
1855 */
1856static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1857                     unsigned long irq_flags)
1858{
1859        struct smc_local *lp = netdev_priv(dev);
1860        static int version_printed = 0;
1861        int retval;
1862        unsigned int val, revision_register;
1863        const char *version_string;
1864
1865        DBG(2, "%s: %s\n", CARDNAME, __func__);
1866
1867        /* First, see if the high byte is 0x33 */
1868        val = SMC_CURRENT_BANK(lp);
1869        DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1870        if ((val & 0xFF00) != 0x3300) {
1871                if ((val & 0xFF) == 0x33) {
1872                        printk(KERN_WARNING
1873                                "%s: Detected possible byte-swapped interface"
1874                                " at IOADDR %p\n", CARDNAME, ioaddr);
1875                }
1876                retval = -ENODEV;
1877                goto err_out;
1878        }
1879
1880        /*
1881         * The above MIGHT indicate a device, but I need to write to
1882         * further test this.
1883         */
1884        SMC_SELECT_BANK(lp, 0);
1885        val = SMC_CURRENT_BANK(lp);
1886        if ((val & 0xFF00) != 0x3300) {
1887                retval = -ENODEV;
1888                goto err_out;
1889        }
1890
1891        /*
1892         * well, we've already written once, so hopefully another
1893         * time won't hurt.  This time, I need to switch the bank
1894         * register to bank 1, so I can access the base address
1895         * register
1896         */
1897        SMC_SELECT_BANK(lp, 1);
1898        val = SMC_GET_BASE(lp);
1899        val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1900        if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1901                printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1902                        CARDNAME, ioaddr, val);
1903        }
1904
1905        /*
1906         * check if the revision register is something that I
1907         * recognize.  These might need to be added to later,
1908         * as future revisions could be added.
1909         */
1910        SMC_SELECT_BANK(lp, 3);
1911        revision_register = SMC_GET_REV(lp);
1912        DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1913        version_string = chip_ids[ (revision_register >> 4) & 0xF];
1914        if (!version_string || (revision_register & 0xff00) != 0x3300) {
1915                /* I don't recognize this chip, so... */
1916                printk("%s: IO %p: Unrecognized revision register 0x%04x"
1917                        ", Contact author.\n", CARDNAME,
1918                        ioaddr, revision_register);
1919
1920                retval = -ENODEV;
1921                goto err_out;
1922        }
1923
1924        /* At this point I'll assume that the chip is an SMC91x. */
1925        if (version_printed++ == 0)
1926                printk("%s", version);
1927
1928        /* fill in some of the fields */
1929        dev->base_addr = (unsigned long)ioaddr;
1930        lp->base = ioaddr;
1931        lp->version = revision_register & 0xff;
1932        spin_lock_init(&lp->lock);
1933
1934        /* Get the MAC address */
1935        SMC_SELECT_BANK(lp, 1);
1936        SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1937
1938        /* now, reset the chip, and put it into a known state */
1939        smc_reset(dev);
1940
1941        /*
1942         * If dev->irq is 0, then the device has to be banged on to see
1943         * what the IRQ is.
1944         *
1945         * This banging doesn't always detect the IRQ, for unknown reasons.
1946         * a workaround is to reset the chip and try again.
1947         *
1948         * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1949         * be what is requested on the command line.   I don't do that, mostly
1950         * because the card that I have uses a non-standard method of accessing
1951         * the IRQs, and because this _should_ work in most configurations.
1952         *
1953         * Specifying an IRQ is done with the assumption that the user knows
1954         * what (s)he is doing.  No checking is done!!!!
1955         */
1956        if (dev->irq < 1) {
1957                int trials;
1958
1959                trials = 3;
1960                while (trials--) {
1961                        dev->irq = smc_findirq(lp);
1962                        if (dev->irq)
1963                                break;
1964                        /* kick the card and try again */
1965                        smc_reset(dev);
1966                }
1967        }
1968        if (dev->irq == 0) {
1969                printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1970                        dev->name);
1971                retval = -ENODEV;
1972                goto err_out;
1973        }
1974        dev->irq = irq_canonicalize(dev->irq);
1975
1976        /* Fill in the fields of the device structure with ethernet values. */
1977        ether_setup(dev);
1978
1979        dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1980        dev->netdev_ops = &smc_netdev_ops;
1981        dev->ethtool_ops = &smc_ethtool_ops;
1982
1983        tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1984        INIT_WORK(&lp->phy_configure, smc_phy_configure);
1985        lp->dev = dev;
1986        lp->mii.phy_id_mask = 0x1f;
1987        lp->mii.reg_num_mask = 0x1f;
1988        lp->mii.force_media = 0;
1989        lp->mii.full_duplex = 0;
1990        lp->mii.dev = dev;
1991        lp->mii.mdio_read = smc_phy_read;
1992        lp->mii.mdio_write = smc_phy_write;
1993
1994        /*
1995         * Locate the phy, if any.
1996         */
1997        if (lp->version >= (CHIP_91100 << 4))
1998                smc_phy_detect(dev);
1999
2000        /* then shut everything down to save power */
2001        smc_shutdown(dev);
2002        smc_phy_powerdown(dev);
2003
2004        /* Set default parameters */
2005        lp->msg_enable = NETIF_MSG_LINK;
2006        lp->ctl_rfduplx = 0;
2007        lp->ctl_rspeed = 10;
2008
2009        if (lp->version >= (CHIP_91100 << 4)) {
2010                lp->ctl_rfduplx = 1;
2011                lp->ctl_rspeed = 100;
2012        }
2013
2014        /* Grab the IRQ */
2015        retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2016        if (retval)
2017                goto err_out;
2018
2019#ifdef CONFIG_ARCH_PXA
2020#  ifdef SMC_USE_PXA_DMA
2021        lp->cfg.flags |= SMC91X_USE_DMA;
2022#  endif
2023        if (lp->cfg.flags & SMC91X_USE_DMA) {
2024                int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2025                                          smc_pxa_dma_irq, NULL);
2026                if (dma >= 0)
2027                        dev->dma = dma;
2028        }
2029#endif
2030
2031        retval = register_netdev(dev);
2032        if (retval == 0) {
2033                /* now, print out the card info, in a short format.. */
2034                printk("%s: %s (rev %d) at %p IRQ %d",
2035                        dev->name, version_string, revision_register & 0x0f,
2036                        lp->base, dev->irq);
2037
2038                if (dev->dma != (unsigned char)-1)
2039                        printk(" DMA %d", dev->dma);
2040
2041                printk("%s%s\n",
2042                        lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2043                        THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2044
2045                if (!is_valid_ether_addr(dev->dev_addr)) {
2046                        printk("%s: Invalid ethernet MAC address.  Please "
2047                               "set using ifconfig\n", dev->name);
2048                } else {
2049                        /* Print the Ethernet address */
2050                        printk("%s: Ethernet addr: %pM\n",
2051                               dev->name, dev->dev_addr);
2052                }
2053
2054                if (lp->phy_type == 0) {
2055                        PRINTK("%s: No PHY found\n", dev->name);
2056                } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2057                        PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2058                } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2059                        PRINTK("%s: PHY LAN83C180\n", dev->name);
2060                }
2061        }
2062
2063err_out:
2064#ifdef CONFIG_ARCH_PXA
2065        if (retval && dev->dma != (unsigned char)-1)
2066                pxa_free_dma(dev->dma);
2067#endif
2068        return retval;
2069}
2070
2071static int smc_enable_device(struct platform_device *pdev)
2072{
2073        struct net_device *ndev = platform_get_drvdata(pdev);
2074        struct smc_local *lp = netdev_priv(ndev);
2075        unsigned long flags;
2076        unsigned char ecor, ecsr;
2077        void __iomem *addr;
2078        struct resource * res;
2079
2080        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2081        if (!res)
2082                return 0;
2083
2084        /*
2085         * Map the attribute space.  This is overkill, but clean.
2086         */
2087        addr = ioremap(res->start, ATTRIB_SIZE);
2088        if (!addr)
2089                return -ENOMEM;
2090
2091        /*
2092         * Reset the device.  We must disable IRQs around this
2093         * since a reset causes the IRQ line become active.
2094         */
2095        local_irq_save(flags);
2096        ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2097        writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2098        readb(addr + (ECOR << SMC_IO_SHIFT));
2099
2100        /*
2101         * Wait 100us for the chip to reset.
2102         */
2103        udelay(100);
2104
2105        /*
2106         * The device will ignore all writes to the enable bit while
2107         * reset is asserted, even if the reset bit is cleared in the
2108         * same write.  Must clear reset first, then enable the device.
2109         */
2110        writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2111        writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2112
2113        /*
2114         * Set the appropriate byte/word mode.
2115         */
2116        ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2117        if (!SMC_16BIT(lp))
2118                ecsr |= ECSR_IOIS8;
2119        writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2120        local_irq_restore(flags);
2121
2122        iounmap(addr);
2123
2124        /*
2125         * Wait for the chip to wake up.  We could poll the control
2126         * register in the main register space, but that isn't mapped
2127         * yet.  We know this is going to take 750us.
2128         */
2129        msleep(1);
2130
2131        return 0;
2132}
2133
2134static int smc_request_attrib(struct platform_device *pdev,
2135                              struct net_device *ndev)
2136{
2137        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2138        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2139
2140        if (!res)
2141                return 0;
2142
2143        if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2144                return -EBUSY;
2145
2146        return 0;
2147}
2148
2149static void smc_release_attrib(struct platform_device *pdev,
2150                               struct net_device *ndev)
2151{
2152        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2153        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2154
2155        if (res)
2156                release_mem_region(res->start, ATTRIB_SIZE);
2157}
2158
2159static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2160{
2161        if (SMC_CAN_USE_DATACS) {
2162                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2163                struct smc_local *lp = netdev_priv(ndev);
2164
2165                if (!res)
2166                        return;
2167
2168                if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2169                        printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2170                        return;
2171                }
2172
2173                lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2174        }
2175}
2176
2177static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2178{
2179        if (SMC_CAN_USE_DATACS) {
2180                struct smc_local *lp = netdev_priv(ndev);
2181                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2182
2183                if (lp->datacs)
2184                        iounmap(lp->datacs);
2185
2186                lp->datacs = NULL;
2187
2188                if (res)
2189                        release_mem_region(res->start, SMC_DATA_EXTENT);
2190        }
2191}
2192
2193/*
2194 * smc_init(void)
2195 *   Input parameters:
2196 *      dev->base_addr == 0, try to find all possible locations
2197 *      dev->base_addr > 0x1ff, this is the address to check
2198 *      dev->base_addr == <anything else>, return failure code
2199 *
2200 *   Output:
2201 *      0 --> there is a device
2202 *      anything else, error
2203 */
2204static int smc_drv_probe(struct platform_device *pdev)
2205{
2206        struct smc91x_platdata *pd = pdev->dev.platform_data;
2207        struct smc_local *lp;
2208        struct net_device *ndev;
2209        struct resource *res, *ires;
2210        unsigned int __iomem *addr;
2211        unsigned long irq_flags = SMC_IRQ_FLAGS;
2212        int ret;
2213
2214        ndev = alloc_etherdev(sizeof(struct smc_local));
2215        if (!ndev) {
2216                ret = -ENOMEM;
2217                goto out;
2218        }
2219        SET_NETDEV_DEV(ndev, &pdev->dev);
2220
2221        /* get configuration from platform data, only allow use of
2222         * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2223         */
2224
2225        lp = netdev_priv(ndev);
2226
2227        if (pd) {
2228                memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2229                lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2230        } else {
2231                lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2232                lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2233                lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2234                lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2235        }
2236
2237        if (!lp->cfg.leda && !lp->cfg.ledb) {
2238                lp->cfg.leda = RPC_LSA_DEFAULT;
2239                lp->cfg.ledb = RPC_LSB_DEFAULT;
2240        }
2241
2242        ndev->dma = (unsigned char)-1;
2243
2244        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2245        if (!res)
2246                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2247        if (!res) {
2248                ret = -ENODEV;
2249                goto out_free_netdev;
2250        }
2251
2252
2253        if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2254                ret = -EBUSY;
2255                goto out_free_netdev;
2256        }
2257
2258        ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2259        if (!ires) {
2260                ret = -ENODEV;
2261                goto out_release_io;
2262        }
2263
2264        ndev->irq = ires->start;
2265
2266        if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2267                irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2268
2269        ret = smc_request_attrib(pdev, ndev);
2270        if (ret)
2271                goto out_release_io;
2272#if defined(CONFIG_SA1100_ASSABET)
2273        neponset_ncr_set(NCR_ENET_OSC_EN);
2274#endif
2275        platform_set_drvdata(pdev, ndev);
2276        ret = smc_enable_device(pdev);
2277        if (ret)
2278                goto out_release_attrib;
2279
2280        addr = ioremap(res->start, SMC_IO_EXTENT);
2281        if (!addr) {
2282                ret = -ENOMEM;
2283                goto out_release_attrib;
2284        }
2285
2286#ifdef CONFIG_ARCH_PXA
2287        {
2288                struct smc_local *lp = netdev_priv(ndev);
2289                lp->device = &pdev->dev;
2290                lp->physaddr = res->start;
2291        }
2292#endif
2293
2294        ret = smc_probe(ndev, addr, irq_flags);
2295        if (ret != 0)
2296                goto out_iounmap;
2297
2298        smc_request_datacs(pdev, ndev);
2299
2300        return 0;
2301
2302 out_iounmap:
2303        platform_set_drvdata(pdev, NULL);
2304        iounmap(addr);
2305 out_release_attrib:
2306        smc_release_attrib(pdev, ndev);
2307 out_release_io:
2308        release_mem_region(res->start, SMC_IO_EXTENT);
2309 out_free_netdev:
2310        free_netdev(ndev);
2311 out:
2312        printk("%s: not found (%d).\n", CARDNAME, ret);
2313
2314        return ret;
2315}
2316
2317static int smc_drv_remove(struct platform_device *pdev)
2318{
2319        struct net_device *ndev = platform_get_drvdata(pdev);
2320        struct smc_local *lp = netdev_priv(ndev);
2321        struct resource *res;
2322
2323        platform_set_drvdata(pdev, NULL);
2324
2325        unregister_netdev(ndev);
2326
2327        free_irq(ndev->irq, ndev);
2328
2329#ifdef CONFIG_ARCH_PXA
2330        if (ndev->dma != (unsigned char)-1)
2331                pxa_free_dma(ndev->dma);
2332#endif
2333        iounmap(lp->base);
2334
2335        smc_release_datacs(pdev,ndev);
2336        smc_release_attrib(pdev,ndev);
2337
2338        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2339        if (!res)
2340                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2341        release_mem_region(res->start, SMC_IO_EXTENT);
2342
2343        free_netdev(ndev);
2344
2345        return 0;
2346}
2347
2348static int smc_drv_suspend(struct device *dev)
2349{
2350        struct platform_device *pdev = to_platform_device(dev);
2351        struct net_device *ndev = platform_get_drvdata(pdev);
2352
2353        if (ndev) {
2354                if (netif_running(ndev)) {
2355                        netif_device_detach(ndev);
2356                        smc_shutdown(ndev);
2357                        smc_phy_powerdown(ndev);
2358                }
2359        }
2360        return 0;
2361}
2362
2363static int smc_drv_resume(struct device *dev)
2364{
2365        struct platform_device *pdev = to_platform_device(dev);
2366        struct net_device *ndev = platform_get_drvdata(pdev);
2367
2368        if (ndev) {
2369                struct smc_local *lp = netdev_priv(ndev);
2370                smc_enable_device(pdev);
2371                if (netif_running(ndev)) {
2372                        smc_reset(ndev);
2373                        smc_enable(ndev);
2374                        if (lp->phy_type != 0)
2375                                smc_phy_configure(&lp->phy_configure);
2376                        netif_device_attach(ndev);
2377                }
2378        }
2379        return 0;
2380}
2381
2382#ifdef CONFIG_OF
2383static const struct of_device_id smc91x_match[] = {
2384        { .compatible = "smsc,lan91c94", },
2385        { .compatible = "smsc,lan91c111", },
2386        {},
2387};
2388MODULE_DEVICE_TABLE(of, smc91x_match);
2389#endif
2390
2391static struct dev_pm_ops smc_drv_pm_ops = {
2392        .suspend        = smc_drv_suspend,
2393        .resume         = smc_drv_resume,
2394};
2395
2396static struct platform_driver smc_driver = {
2397        .probe          = smc_drv_probe,
2398        .remove         = smc_drv_remove,
2399        .driver         = {
2400                .name   = CARDNAME,
2401                .owner  = THIS_MODULE,
2402                .pm     = &smc_drv_pm_ops,
2403                .of_match_table = of_match_ptr(smc91x_match),
2404        },
2405};
2406
2407module_platform_driver(smc_driver);
2408