linux/drivers/net/fddi/defxx.c
<<
>>
Prefs
   1/*
   2 * File Name:
   3 *   defxx.c
   4 *
   5 * Copyright Information:
   6 *   Copyright Digital Equipment Corporation 1996.
   7 *
   8 *   This software may be used and distributed according to the terms of
   9 *   the GNU General Public License, incorporated herein by reference.
  10 *
  11 * Abstract:
  12 *   A Linux device driver supporting the Digital Equipment Corporation
  13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
  14 *   adapters include:
  15 *
  16 *              DEC FDDIcontroller/TURBOchannel (DEFTA)
  17 *              DEC FDDIcontroller/EISA         (DEFEA)
  18 *              DEC FDDIcontroller/PCI          (DEFPA)
  19 *
  20 * The original author:
  21 *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
  22 *
  23 * Maintainers:
  24 *   macro      Maciej W. Rozycki <macro@linux-mips.org>
  25 *
  26 * Credits:
  27 *   I'd like to thank Patricia Cross for helping me get started with
  28 *   Linux, David Davies for a lot of help upgrading and configuring
  29 *   my development system and for answering many OS and driver
  30 *   development questions, and Alan Cox for recommendations and
  31 *   integration help on getting FDDI support into Linux.  LVS
  32 *
  33 * Driver Architecture:
  34 *   The driver architecture is largely based on previous driver work
  35 *   for other operating systems.  The upper edge interface and
  36 *   functions were largely taken from existing Linux device drivers
  37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
  38 *   driver.
  39 *
  40 *   Adapter Probe -
  41 *              The driver scans for supported EISA adapters by reading the
  42 *              SLOT ID register for each EISA slot and making a match
  43 *              against the expected value.
  44 *
  45 *   Bus-Specific Initialization -
  46 *              This driver currently supports both EISA and PCI controller
  47 *              families.  While the custom DMA chip and FDDI logic is similar
  48 *              or identical, the bus logic is very different.  After
  49 *              initialization, the     only bus-specific differences is in how the
  50 *              driver enables and disables interrupts.  Other than that, the
  51 *              run-time critical code behaves the same on both families.
  52 *              It's important to note that both adapter families are configured
  53 *              to I/O map, rather than memory map, the adapter registers.
  54 *
  55 *   Driver Open/Close -
  56 *              In the driver open routine, the driver ISR (interrupt service
  57 *              routine) is registered and the adapter is brought to an
  58 *              operational state.  In the driver close routine, the opposite
  59 *              occurs; the driver ISR is deregistered and the adapter is
  60 *              brought to a safe, but closed state.  Users may use consecutive
  61 *              commands to bring the adapter up and down as in the following
  62 *              example:
  63 *                                      ifconfig fddi0 up
  64 *                                      ifconfig fddi0 down
  65 *                                      ifconfig fddi0 up
  66 *
  67 *   Driver Shutdown -
  68 *              Apparently, there is no shutdown or halt routine support under
  69 *              Linux.  This routine would be called during "reboot" or
  70 *              "shutdown" to allow the driver to place the adapter in a safe
  71 *              state before a warm reboot occurs.  To be really safe, the user
  72 *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
  73 *              to ensure that the adapter DMA engine is taken off-line.  However,
  74 *              the current driver code anticipates this problem and always issues
  75 *              a soft reset of the adapter     at the beginning of driver initialization.
  76 *              A future driver enhancement in this area may occur in 2.1.X where
  77 *              Alan indicated that a shutdown handler may be implemented.
  78 *
  79 *   Interrupt Service Routine -
  80 *              The driver supports shared interrupts, so the ISR is registered for
  81 *              each board with the appropriate flag and the pointer to that board's
  82 *              device structure.  This provides the context during interrupt
  83 *              processing to support shared interrupts and multiple boards.
  84 *
  85 *              Interrupt enabling/disabling can occur at many levels.  At the host
  86 *              end, you can disable system interrupts, or disable interrupts at the
  87 *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
  88 *              have a bus-logic chip interrupt enable/disable as well as a DMA
  89 *              controller interrupt enable/disable.
  90 *
  91 *              The driver currently enables and disables adapter interrupts at the
  92 *              bus-logic chip and assumes that Linux will take care of clearing or
  93 *              acknowledging any host-based interrupt chips.
  94 *
  95 *   Control Functions -
  96 *              Control functions are those used to support functions such as adding
  97 *              or deleting multicast addresses, enabling or disabling packet
  98 *              reception filters, or other custom/proprietary commands.  Presently,
  99 *              the driver supports the "get statistics", "set multicast list", and
 100 *              "set mac address" functions defined by Linux.  A list of possible
 101 *              enhancements include:
 102 *
 103 *                              - Custom ioctl interface for executing port interface commands
 104 *                              - Custom ioctl interface for adding unicast addresses to
 105 *                                adapter CAM (to support bridge functions).
 106 *                              - Custom ioctl interface for supporting firmware upgrades.
 107 *
 108 *   Hardware (port interface) Support Routines -
 109 *              The driver function names that start with "dfx_hw_" represent
 110 *              low-level port interface routines that are called frequently.  They
 111 *              include issuing a DMA or port control command to the adapter,
 112 *              resetting the adapter, or reading the adapter state.  Since the
 113 *              driver initialization and run-time code must make calls into the
 114 *              port interface, these routines were written to be as generic and
 115 *              usable as possible.
 116 *
 117 *   Receive Path -
 118 *              The adapter DMA engine supports a 256 entry receive descriptor block
 119 *              of which up to 255 entries can be used at any given time.  The
 120 *              architecture is a standard producer, consumer, completion model in
 121 *              which the driver "produces" receive buffers to the adapter, the
 122 *              adapter "consumes" the receive buffers by DMAing incoming packet data,
 123 *              and the driver "completes" the receive buffers by servicing the
 124 *              incoming packet, then "produces" a new buffer and starts the cycle
 125 *              again.  Receive buffers can be fragmented in up to 16 fragments
 126 *              (descriptor     entries).  For simplicity, this driver posts
 127 *              single-fragment receive buffers of 4608 bytes, then allocates a
 128 *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
 129 *              utilization, a better approach would be to pass up the receive
 130 *              buffer (no extra copy) then allocate and post a replacement buffer.
 131 *              This is a performance enhancement that should be looked into at
 132 *              some point.
 133 *
 134 *   Transmit Path -
 135 *              Like the receive path, the adapter DMA engine supports a 256 entry
 136 *              transmit descriptor block of which up to 255 entries can be used at
 137 *              any     given time.  Transmit buffers can be fragmented in up to 255
 138 *              fragments (descriptor entries).  This driver always posts one
 139 *              fragment per transmit packet request.
 140 *
 141 *              The fragment contains the entire packet from FC to end of data.
 142 *              Before posting the buffer to the adapter, the driver sets a three-byte
 143 *              packet request header (PRH) which is required by the Motorola MAC chip
 144 *              used on the adapters.  The PRH tells the MAC the type of token to
 145 *              receive/send, whether or not to generate and append the CRC, whether
 146 *              synchronous or asynchronous framing is used, etc.  Since the PRH
 147 *              definition is not necessarily consistent across all FDDI chipsets,
 148 *              the driver, rather than the common FDDI packet handler routines,
 149 *              sets these bytes.
 150 *
 151 *              To reduce the amount of descriptor fetches needed per transmit request,
 152 *              the driver takes advantage of the fact that there are at least three
 153 *              bytes available before the skb->data field on the outgoing transmit
 154 *              request.  This is guaranteed by having fddi_setup() in net_init.c set
 155 *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
 156 *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
 157 *              bytes which we'll use to store the PRH.
 158 *
 159 *              There's a subtle advantage to adding these pad bytes to the
 160 *              hard_header_len, it ensures that the data portion of the packet for
 161 *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
 162 *              implementations may not need the extra padding and can start copying
 163 *              or DMAing directly from the FC byte which starts at skb->data.  Should
 164 *              another driver implementation need ADDITIONAL padding, the net_init.c
 165 *              module should be updated and dev->hard_header_len should be increased.
 166 *              NOTE: To maintain the alignment on the data portion of the packet,
 167 *              dev->hard_header_len should always be evenly divisible by 4 and at
 168 *              least 24 bytes in size.
 169 *
 170 * Modification History:
 171 *              Date            Name    Description
 172 *              16-Aug-96       LVS             Created.
 173 *              20-Aug-96       LVS             Updated dfx_probe so that version information
 174 *                                                      string is only displayed if 1 or more cards are
 175 *                                                      found.  Changed dfx_rcv_queue_process to copy
 176 *                                                      3 NULL bytes before FC to ensure that data is
 177 *                                                      longword aligned in receive buffer.
 178 *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
 179 *                                                      LLC group promiscuous mode if multicast list
 180 *                                                      is too large.  LLC individual/group promiscuous
 181 *                                                      mode is now disabled if IFF_PROMISC flag not set.
 182 *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
 183 *                                                      on Alan Cox recommendation.  Added node address
 184 *                                                      override support.
 185 *              12-Sep-96       LVS             Reset current address to factory address during
 186 *                                                      device open.  Updated transmit path to post a
 187 *                                                      single fragment which includes PRH->end of data.
 188 *              Mar 2000        AC              Did various cleanups for 2.3.x
 189 *              Jun 2000        jgarzik         PCI and resource alloc cleanups
 190 *              Jul 2000        tjeerd          Much cleanup and some bug fixes
 191 *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
 192 *              Feb 2001                        Skb allocation fixes
 193 *              Feb 2001        davej           PCI enable cleanups.
 194 *              04 Aug 2003     macro           Converted to the DMA API.
 195 *              14 Aug 2004     macro           Fix device names reported.
 196 *              14 Jun 2005     macro           Use irqreturn_t.
 197 *              23 Oct 2006     macro           Big-endian host support.
 198 *              14 Dec 2006     macro           TURBOchannel support.
 199 */
 200
 201/* Include files */
 202#include <linux/bitops.h>
 203#include <linux/compiler.h>
 204#include <linux/delay.h>
 205#include <linux/dma-mapping.h>
 206#include <linux/eisa.h>
 207#include <linux/errno.h>
 208#include <linux/fddidevice.h>
 209#include <linux/init.h>
 210#include <linux/interrupt.h>
 211#include <linux/ioport.h>
 212#include <linux/kernel.h>
 213#include <linux/module.h>
 214#include <linux/netdevice.h>
 215#include <linux/pci.h>
 216#include <linux/skbuff.h>
 217#include <linux/slab.h>
 218#include <linux/string.h>
 219#include <linux/tc.h>
 220
 221#include <asm/byteorder.h>
 222#include <asm/io.h>
 223
 224#include "defxx.h"
 225
 226/* Version information string should be updated prior to each new release!  */
 227#define DRV_NAME "defxx"
 228#define DRV_VERSION "v1.10"
 229#define DRV_RELDATE "2006/12/14"
 230
 231static char version[] =
 232        DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
 233        "  Lawrence V. Stefani and others\n";
 234
 235#define DYNAMIC_BUFFERS 1
 236
 237#define SKBUFF_RX_COPYBREAK 200
 238/*
 239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
 240 * alignment for compatibility with old EISA boards.
 241 */
 242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
 243
 244#ifdef CONFIG_PCI
 245#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
 246#else
 247#define DFX_BUS_PCI(dev) 0
 248#endif
 249
 250#ifdef CONFIG_EISA
 251#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
 252#else
 253#define DFX_BUS_EISA(dev) 0
 254#endif
 255
 256#ifdef CONFIG_TC
 257#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
 258#else
 259#define DFX_BUS_TC(dev) 0
 260#endif
 261
 262#ifdef CONFIG_DEFXX_MMIO
 263#define DFX_MMIO 1
 264#else
 265#define DFX_MMIO 0
 266#endif
 267
 268/* Define module-wide (static) routines */
 269
 270static void             dfx_bus_init(struct net_device *dev);
 271static void             dfx_bus_uninit(struct net_device *dev);
 272static void             dfx_bus_config_check(DFX_board_t *bp);
 273
 274static int              dfx_driver_init(struct net_device *dev,
 275                                        const char *print_name,
 276                                        resource_size_t bar_start);
 277static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
 278
 279static int              dfx_open(struct net_device *dev);
 280static int              dfx_close(struct net_device *dev);
 281
 282static void             dfx_int_pr_halt_id(DFX_board_t *bp);
 283static void             dfx_int_type_0_process(DFX_board_t *bp);
 284static void             dfx_int_common(struct net_device *dev);
 285static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
 286
 287static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
 288static void             dfx_ctl_set_multicast_list(struct net_device *dev);
 289static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
 290static int              dfx_ctl_update_cam(DFX_board_t *bp);
 291static int              dfx_ctl_update_filters(DFX_board_t *bp);
 292
 293static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
 294static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
 295static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
 296static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
 297static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
 298
 299static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
 300static void             dfx_rcv_queue_process(DFX_board_t *bp);
 301static void             dfx_rcv_flush(DFX_board_t *bp);
 302
 303static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
 304                                     struct net_device *dev);
 305static int              dfx_xmt_done(DFX_board_t *bp);
 306static void             dfx_xmt_flush(DFX_board_t *bp);
 307
 308/* Define module-wide (static) variables */
 309
 310static struct pci_driver dfx_pci_driver;
 311static struct eisa_driver dfx_eisa_driver;
 312static struct tc_driver dfx_tc_driver;
 313
 314
 315/*
 316 * =======================
 317 * = dfx_port_write_long =
 318 * = dfx_port_read_long  =
 319 * =======================
 320 *
 321 * Overview:
 322 *   Routines for reading and writing values from/to adapter
 323 *
 324 * Returns:
 325 *   None
 326 *
 327 * Arguments:
 328 *   bp         - pointer to board information
 329 *   offset     - register offset from base I/O address
 330 *   data       - for dfx_port_write_long, this is a value to write;
 331 *                for dfx_port_read_long, this is a pointer to store
 332 *                the read value
 333 *
 334 * Functional Description:
 335 *   These routines perform the correct operation to read or write
 336 *   the adapter register.
 337 *
 338 *   EISA port block base addresses are based on the slot number in which the
 339 *   controller is installed.  For example, if the EISA controller is installed
 340 *   in slot 4, the port block base address is 0x4000.  If the controller is
 341 *   installed in slot 2, the port block base address is 0x2000, and so on.
 342 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
 343 *   registers using the register offsets defined in DEFXX.H.
 344 *
 345 *   PCI port block base addresses are assigned by the PCI BIOS or system
 346 *   firmware.  There is one 128 byte port block which can be accessed.  It
 347 *   allows for I/O mapping of both PDQ and PFI registers using the register
 348 *   offsets defined in DEFXX.H.
 349 *
 350 * Return Codes:
 351 *   None
 352 *
 353 * Assumptions:
 354 *   bp->base is a valid base I/O address for this adapter.
 355 *   offset is a valid register offset for this adapter.
 356 *
 357 * Side Effects:
 358 *   Rather than produce macros for these functions, these routines
 359 *   are defined using "inline" to ensure that the compiler will
 360 *   generate inline code and not waste a procedure call and return.
 361 *   This provides all the benefits of macros, but with the
 362 *   advantage of strict data type checking.
 363 */
 364
 365static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
 366{
 367        writel(data, bp->base.mem + offset);
 368        mb();
 369}
 370
 371static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
 372{
 373        outl(data, bp->base.port + offset);
 374}
 375
 376static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
 377{
 378        struct device __maybe_unused *bdev = bp->bus_dev;
 379        int dfx_bus_tc = DFX_BUS_TC(bdev);
 380        int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 381
 382        if (dfx_use_mmio)
 383                dfx_writel(bp, offset, data);
 384        else
 385                dfx_outl(bp, offset, data);
 386}
 387
 388
 389static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
 390{
 391        mb();
 392        *data = readl(bp->base.mem + offset);
 393}
 394
 395static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
 396{
 397        *data = inl(bp->base.port + offset);
 398}
 399
 400static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
 401{
 402        struct device __maybe_unused *bdev = bp->bus_dev;
 403        int dfx_bus_tc = DFX_BUS_TC(bdev);
 404        int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 405
 406        if (dfx_use_mmio)
 407                dfx_readl(bp, offset, data);
 408        else
 409                dfx_inl(bp, offset, data);
 410}
 411
 412
 413/*
 414 * ================
 415 * = dfx_get_bars =
 416 * ================
 417 *
 418 * Overview:
 419 *   Retrieves the address range used to access control and status
 420 *   registers.
 421 *
 422 * Returns:
 423 *   None
 424 *
 425 * Arguments:
 426 *   bdev       - pointer to device information
 427 *   bar_start  - pointer to store the start address
 428 *   bar_len    - pointer to store the length of the area
 429 *
 430 * Assumptions:
 431 *   I am sure there are some.
 432 *
 433 * Side Effects:
 434 *   None
 435 */
 436static void dfx_get_bars(struct device *bdev,
 437                         resource_size_t *bar_start, resource_size_t *bar_len)
 438{
 439        int dfx_bus_pci = DFX_BUS_PCI(bdev);
 440        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 441        int dfx_bus_tc = DFX_BUS_TC(bdev);
 442        int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 443
 444        if (dfx_bus_pci) {
 445                int num = dfx_use_mmio ? 0 : 1;
 446
 447                *bar_start = pci_resource_start(to_pci_dev(bdev), num);
 448                *bar_len = pci_resource_len(to_pci_dev(bdev), num);
 449        }
 450        if (dfx_bus_eisa) {
 451                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 452                resource_size_t bar;
 453
 454                if (dfx_use_mmio) {
 455                        bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
 456                        bar <<= 8;
 457                        bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
 458                        bar <<= 8;
 459                        bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
 460                        bar <<= 16;
 461                        *bar_start = bar;
 462                        bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
 463                        bar <<= 8;
 464                        bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
 465                        bar <<= 8;
 466                        bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
 467                        bar <<= 16;
 468                        *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
 469                } else {
 470                        *bar_start = base_addr;
 471                        *bar_len = PI_ESIC_K_CSR_IO_LEN;
 472                }
 473        }
 474        if (dfx_bus_tc) {
 475                *bar_start = to_tc_dev(bdev)->resource.start +
 476                             PI_TC_K_CSR_OFFSET;
 477                *bar_len = PI_TC_K_CSR_LEN;
 478        }
 479}
 480
 481static const struct net_device_ops dfx_netdev_ops = {
 482        .ndo_open               = dfx_open,
 483        .ndo_stop               = dfx_close,
 484        .ndo_start_xmit         = dfx_xmt_queue_pkt,
 485        .ndo_get_stats          = dfx_ctl_get_stats,
 486        .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
 487        .ndo_set_mac_address    = dfx_ctl_set_mac_address,
 488};
 489
 490/*
 491 * ================
 492 * = dfx_register =
 493 * ================
 494 *
 495 * Overview:
 496 *   Initializes a supported FDDI controller
 497 *
 498 * Returns:
 499 *   Condition code
 500 *
 501 * Arguments:
 502 *   bdev - pointer to device information
 503 *
 504 * Functional Description:
 505 *
 506 * Return Codes:
 507 *   0           - This device (fddi0, fddi1, etc) configured successfully
 508 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
 509 *
 510 * Assumptions:
 511 *   It compiles so it should work :-( (PCI cards do :-)
 512 *
 513 * Side Effects:
 514 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 515 *   initialized and the board resources are read and stored in
 516 *   the device structure.
 517 */
 518static int dfx_register(struct device *bdev)
 519{
 520        static int version_disp;
 521        int dfx_bus_pci = DFX_BUS_PCI(bdev);
 522        int dfx_bus_tc = DFX_BUS_TC(bdev);
 523        int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 524        const char *print_name = dev_name(bdev);
 525        struct net_device *dev;
 526        DFX_board_t       *bp;                  /* board pointer */
 527        resource_size_t bar_start = 0;          /* pointer to port */
 528        resource_size_t bar_len = 0;            /* resource length */
 529        int alloc_size;                         /* total buffer size used */
 530        struct resource *region;
 531        int err = 0;
 532
 533        if (!version_disp) {    /* display version info if adapter is found */
 534                version_disp = 1;       /* set display flag to TRUE so that */
 535                printk(version);        /* we only display this string ONCE */
 536        }
 537
 538        dev = alloc_fddidev(sizeof(*bp));
 539        if (!dev) {
 540                printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
 541                       print_name);
 542                return -ENOMEM;
 543        }
 544
 545        /* Enable PCI device. */
 546        if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
 547                printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
 548                       print_name);
 549                goto err_out;
 550        }
 551
 552        SET_NETDEV_DEV(dev, bdev);
 553
 554        bp = netdev_priv(dev);
 555        bp->bus_dev = bdev;
 556        dev_set_drvdata(bdev, dev);
 557
 558        dfx_get_bars(bdev, &bar_start, &bar_len);
 559
 560        if (dfx_use_mmio)
 561                region = request_mem_region(bar_start, bar_len, print_name);
 562        else
 563                region = request_region(bar_start, bar_len, print_name);
 564        if (!region) {
 565                printk(KERN_ERR "%s: Cannot reserve I/O resource "
 566                       "0x%lx @ 0x%lx, aborting\n",
 567                       print_name, (long)bar_len, (long)bar_start);
 568                err = -EBUSY;
 569                goto err_out_disable;
 570        }
 571
 572        /* Set up I/O base address. */
 573        if (dfx_use_mmio) {
 574                bp->base.mem = ioremap_nocache(bar_start, bar_len);
 575                if (!bp->base.mem) {
 576                        printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
 577                        err = -ENOMEM;
 578                        goto err_out_region;
 579                }
 580        } else {
 581                bp->base.port = bar_start;
 582                dev->base_addr = bar_start;
 583        }
 584
 585        /* Initialize new device structure */
 586        dev->netdev_ops                 = &dfx_netdev_ops;
 587
 588        if (dfx_bus_pci)
 589                pci_set_master(to_pci_dev(bdev));
 590
 591        if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
 592                err = -ENODEV;
 593                goto err_out_unmap;
 594        }
 595
 596        err = register_netdev(dev);
 597        if (err)
 598                goto err_out_kfree;
 599
 600        printk("%s: registered as %s\n", print_name, dev->name);
 601        return 0;
 602
 603err_out_kfree:
 604        alloc_size = sizeof(PI_DESCR_BLOCK) +
 605                     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
 606#ifndef DYNAMIC_BUFFERS
 607                     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
 608#endif
 609                     sizeof(PI_CONSUMER_BLOCK) +
 610                     (PI_ALIGN_K_DESC_BLK - 1);
 611        if (bp->kmalloced)
 612                dma_free_coherent(bdev, alloc_size,
 613                                  bp->kmalloced, bp->kmalloced_dma);
 614
 615err_out_unmap:
 616        if (dfx_use_mmio)
 617                iounmap(bp->base.mem);
 618
 619err_out_region:
 620        if (dfx_use_mmio)
 621                release_mem_region(bar_start, bar_len);
 622        else
 623                release_region(bar_start, bar_len);
 624
 625err_out_disable:
 626        if (dfx_bus_pci)
 627                pci_disable_device(to_pci_dev(bdev));
 628
 629err_out:
 630        free_netdev(dev);
 631        return err;
 632}
 633
 634
 635/*
 636 * ================
 637 * = dfx_bus_init =
 638 * ================
 639 *
 640 * Overview:
 641 *   Initializes the bus-specific controller logic.
 642 *
 643 * Returns:
 644 *   None
 645 *
 646 * Arguments:
 647 *   dev - pointer to device information
 648 *
 649 * Functional Description:
 650 *   Determine and save adapter IRQ in device table,
 651 *   then perform bus-specific logic initialization.
 652 *
 653 * Return Codes:
 654 *   None
 655 *
 656 * Assumptions:
 657 *   bp->base has already been set with the proper
 658 *       base I/O address for this device.
 659 *
 660 * Side Effects:
 661 *   Interrupts are enabled at the adapter bus-specific logic.
 662 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
 663 *   enabled yet.
 664 */
 665
 666static void dfx_bus_init(struct net_device *dev)
 667{
 668        DFX_board_t *bp = netdev_priv(dev);
 669        struct device *bdev = bp->bus_dev;
 670        int dfx_bus_pci = DFX_BUS_PCI(bdev);
 671        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 672        int dfx_bus_tc = DFX_BUS_TC(bdev);
 673        int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 674        u8 val;
 675
 676        DBG_printk("In dfx_bus_init...\n");
 677
 678        /* Initialize a pointer back to the net_device struct */
 679        bp->dev = dev;
 680
 681        /* Initialize adapter based on bus type */
 682
 683        if (dfx_bus_tc)
 684                dev->irq = to_tc_dev(bdev)->interrupt;
 685        if (dfx_bus_eisa) {
 686                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 687
 688                /* Get the interrupt level from the ESIC chip.  */
 689                val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 690                val &= PI_CONFIG_STAT_0_M_IRQ;
 691                val >>= PI_CONFIG_STAT_0_V_IRQ;
 692
 693                switch (val) {
 694                case PI_CONFIG_STAT_0_IRQ_K_9:
 695                        dev->irq = 9;
 696                        break;
 697
 698                case PI_CONFIG_STAT_0_IRQ_K_10:
 699                        dev->irq = 10;
 700                        break;
 701
 702                case PI_CONFIG_STAT_0_IRQ_K_11:
 703                        dev->irq = 11;
 704                        break;
 705
 706                case PI_CONFIG_STAT_0_IRQ_K_15:
 707                        dev->irq = 15;
 708                        break;
 709                }
 710
 711                /*
 712                 * Enable memory decoding (MEMCS0) and/or port decoding
 713                 * (IOCS1/IOCS0) as appropriate in Function Control
 714                 * Register.  One of the port chip selects seems to be
 715                 * used for the Burst Holdoff register, but this bit of
 716                 * documentation is missing and as yet it has not been
 717                 * determined which of the two.  This is also the reason
 718                 * the size of the decoded port range is twice as large
 719                 * as one required by the PDQ.
 720                 */
 721
 722                /* Set the decode range of the board.  */
 723                val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
 724                outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
 725                outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
 726                outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
 727                outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
 728                val = PI_ESIC_K_CSR_IO_LEN - 1;
 729                outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
 730                outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
 731                outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
 732                outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
 733
 734                /* Enable the decoders.  */
 735                val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
 736                if (dfx_use_mmio)
 737                        val |= PI_FUNCTION_CNTRL_M_MEMCS0;
 738                outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
 739
 740                /*
 741                 * Enable access to the rest of the module
 742                 * (including PDQ and packet memory).
 743                 */
 744                val = PI_SLOT_CNTRL_M_ENB;
 745                outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
 746
 747                /*
 748                 * Map PDQ registers into memory or port space.  This is
 749                 * done with a bit in the Burst Holdoff register.
 750                 */
 751                val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
 752                if (dfx_use_mmio)
 753                        val |= PI_BURST_HOLDOFF_V_MEM_MAP;
 754                else
 755                        val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
 756                outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
 757
 758                /* Enable interrupts at EISA bus interface chip (ESIC) */
 759                val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 760                val |= PI_CONFIG_STAT_0_M_INT_ENB;
 761                outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
 762        }
 763        if (dfx_bus_pci) {
 764                struct pci_dev *pdev = to_pci_dev(bdev);
 765
 766                /* Get the interrupt level from the PCI Configuration Table */
 767
 768                dev->irq = pdev->irq;
 769
 770                /* Check Latency Timer and set if less than minimal */
 771
 772                pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
 773                if (val < PFI_K_LAT_TIMER_MIN) {
 774                        val = PFI_K_LAT_TIMER_DEF;
 775                        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
 776                }
 777
 778                /* Enable interrupts at PCI bus interface chip (PFI) */
 779                val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
 780                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
 781        }
 782}
 783
 784/*
 785 * ==================
 786 * = dfx_bus_uninit =
 787 * ==================
 788 *
 789 * Overview:
 790 *   Uninitializes the bus-specific controller logic.
 791 *
 792 * Returns:
 793 *   None
 794 *
 795 * Arguments:
 796 *   dev - pointer to device information
 797 *
 798 * Functional Description:
 799 *   Perform bus-specific logic uninitialization.
 800 *
 801 * Return Codes:
 802 *   None
 803 *
 804 * Assumptions:
 805 *   bp->base has already been set with the proper
 806 *       base I/O address for this device.
 807 *
 808 * Side Effects:
 809 *   Interrupts are disabled at the adapter bus-specific logic.
 810 */
 811
 812static void dfx_bus_uninit(struct net_device *dev)
 813{
 814        DFX_board_t *bp = netdev_priv(dev);
 815        struct device *bdev = bp->bus_dev;
 816        int dfx_bus_pci = DFX_BUS_PCI(bdev);
 817        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 818        u8 val;
 819
 820        DBG_printk("In dfx_bus_uninit...\n");
 821
 822        /* Uninitialize adapter based on bus type */
 823
 824        if (dfx_bus_eisa) {
 825                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 826
 827                /* Disable interrupts at EISA bus interface chip (ESIC) */
 828                val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 829                val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
 830                outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
 831        }
 832        if (dfx_bus_pci) {
 833                /* Disable interrupts at PCI bus interface chip (PFI) */
 834                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
 835        }
 836}
 837
 838
 839/*
 840 * ========================
 841 * = dfx_bus_config_check =
 842 * ========================
 843 *
 844 * Overview:
 845 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
 846 *   are illegal, then this routine will set new defaults.
 847 *
 848 * Returns:
 849 *   None
 850 *
 851 * Arguments:
 852 *   bp - pointer to board information
 853 *
 854 * Functional Description:
 855 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
 856 *   PDQ, and all FDDI PCI controllers, all values are legal.
 857 *
 858 * Return Codes:
 859 *   None
 860 *
 861 * Assumptions:
 862 *   dfx_adap_init has NOT been called yet so burst size and other items have
 863 *   not been set.
 864 *
 865 * Side Effects:
 866 *   None
 867 */
 868
 869static void dfx_bus_config_check(DFX_board_t *bp)
 870{
 871        struct device __maybe_unused *bdev = bp->bus_dev;
 872        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 873        int     status;                         /* return code from adapter port control call */
 874        u32     host_data;                      /* LW data returned from port control call */
 875
 876        DBG_printk("In dfx_bus_config_check...\n");
 877
 878        /* Configuration check only valid for EISA adapter */
 879
 880        if (dfx_bus_eisa) {
 881                /*
 882                 * First check if revision 2 EISA controller.  Rev. 1 cards used
 883                 * PDQ revision B, so no workaround needed in this case.  Rev. 3
 884                 * cards used PDQ revision E, so no workaround needed in this
 885                 * case, either.  Only Rev. 2 cards used either Rev. D or E
 886                 * chips, so we must verify the chip revision on Rev. 2 cards.
 887                 */
 888                if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
 889                        /*
 890                         * Revision 2 FDDI EISA controller found,
 891                         * so let's check PDQ revision of adapter.
 892                         */
 893                        status = dfx_hw_port_ctrl_req(bp,
 894                                                                                        PI_PCTRL_M_SUB_CMD,
 895                                                                                        PI_SUB_CMD_K_PDQ_REV_GET,
 896                                                                                        0,
 897                                                                                        &host_data);
 898                        if ((status != DFX_K_SUCCESS) || (host_data == 2))
 899                                {
 900                                /*
 901                                 * Either we couldn't determine the PDQ revision, or
 902                                 * we determined that it is at revision D.  In either case,
 903                                 * we need to implement the workaround.
 904                                 */
 905
 906                                /* Ensure that the burst size is set to 8 longwords or less */
 907
 908                                switch (bp->burst_size)
 909                                        {
 910                                        case PI_PDATA_B_DMA_BURST_SIZE_32:
 911                                        case PI_PDATA_B_DMA_BURST_SIZE_16:
 912                                                bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
 913                                                break;
 914
 915                                        default:
 916                                                break;
 917                                        }
 918
 919                                /* Ensure that full-duplex mode is not enabled */
 920
 921                                bp->full_duplex_enb = PI_SNMP_K_FALSE;
 922                                }
 923                        }
 924                }
 925        }
 926
 927
 928/*
 929 * ===================
 930 * = dfx_driver_init =
 931 * ===================
 932 *
 933 * Overview:
 934 *   Initializes remaining adapter board structure information
 935 *   and makes sure adapter is in a safe state prior to dfx_open().
 936 *
 937 * Returns:
 938 *   Condition code
 939 *
 940 * Arguments:
 941 *   dev - pointer to device information
 942 *   print_name - printable device name
 943 *
 944 * Functional Description:
 945 *   This function allocates additional resources such as the host memory
 946 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
 947 *       Remaining bus initialization steps are also completed.  The adapter
 948 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
 949 *   must call dfx_open() to open the adapter and bring it on-line.
 950 *
 951 * Return Codes:
 952 *   DFX_K_SUCCESS      - initialization succeeded
 953 *   DFX_K_FAILURE      - initialization failed - could not allocate memory
 954 *                                              or read adapter MAC address
 955 *
 956 * Assumptions:
 957 *   Memory allocated from pci_alloc_consistent() call is physically
 958 *   contiguous, locked memory.
 959 *
 960 * Side Effects:
 961 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
 962 *   returning from this routine.
 963 */
 964
 965static int dfx_driver_init(struct net_device *dev, const char *print_name,
 966                           resource_size_t bar_start)
 967{
 968        DFX_board_t *bp = netdev_priv(dev);
 969        struct device *bdev = bp->bus_dev;
 970        int dfx_bus_pci = DFX_BUS_PCI(bdev);
 971        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 972        int dfx_bus_tc = DFX_BUS_TC(bdev);
 973        int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 974        int alloc_size;                 /* total buffer size needed */
 975        char *top_v, *curr_v;           /* virtual addrs into memory block */
 976        dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
 977        u32 data;                       /* host data register value */
 978        __le32 le32;
 979        char *board_name = NULL;
 980
 981        DBG_printk("In dfx_driver_init...\n");
 982
 983        /* Initialize bus-specific hardware registers */
 984
 985        dfx_bus_init(dev);
 986
 987        /*
 988         * Initialize default values for configurable parameters
 989         *
 990         * Note: All of these parameters are ones that a user may
 991         *       want to customize.  It'd be nice to break these
 992         *               out into Space.c or someplace else that's more
 993         *               accessible/understandable than this file.
 994         */
 995
 996        bp->full_duplex_enb             = PI_SNMP_K_FALSE;
 997        bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
 998        bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
 999        bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
1000
1001        /*
1002         * Ensure that HW configuration is OK
1003         *
1004         * Note: Depending on the hardware revision, we may need to modify
1005         *       some of the configurable parameters to workaround hardware
1006         *       limitations.  We'll perform this configuration check AFTER
1007         *       setting the parameters to their default values.
1008         */
1009
1010        dfx_bus_config_check(bp);
1011
1012        /* Disable PDQ interrupts first */
1013
1014        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1015
1016        /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1017
1018        (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1019
1020        /*  Read the factory MAC address from the adapter then save it */
1021
1022        if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1023                                 &data) != DFX_K_SUCCESS) {
1024                printk("%s: Could not read adapter factory MAC address!\n",
1025                       print_name);
1026                return DFX_K_FAILURE;
1027        }
1028        le32 = cpu_to_le32(data);
1029        memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1030
1031        if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1032                                 &data) != DFX_K_SUCCESS) {
1033                printk("%s: Could not read adapter factory MAC address!\n",
1034                       print_name);
1035                return DFX_K_FAILURE;
1036        }
1037        le32 = cpu_to_le32(data);
1038        memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1039
1040        /*
1041         * Set current address to factory address
1042         *
1043         * Note: Node address override support is handled through
1044         *       dfx_ctl_set_mac_address.
1045         */
1046
1047        memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1048        if (dfx_bus_tc)
1049                board_name = "DEFTA";
1050        if (dfx_bus_eisa)
1051                board_name = "DEFEA";
1052        if (dfx_bus_pci)
1053                board_name = "DEFPA";
1054        pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1055                print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1056                (long long)bar_start, dev->irq, dev->dev_addr);
1057
1058        /*
1059         * Get memory for descriptor block, consumer block, and other buffers
1060         * that need to be DMA read or written to by the adapter.
1061         */
1062
1063        alloc_size = sizeof(PI_DESCR_BLOCK) +
1064                                        PI_CMD_REQ_K_SIZE_MAX +
1065                                        PI_CMD_RSP_K_SIZE_MAX +
1066#ifndef DYNAMIC_BUFFERS
1067                                        (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1068#endif
1069                                        sizeof(PI_CONSUMER_BLOCK) +
1070                                        (PI_ALIGN_K_DESC_BLK - 1);
1071        bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1072                                                   &bp->kmalloced_dma,
1073                                                   GFP_ATOMIC);
1074        if (top_v == NULL) {
1075                printk("%s: Could not allocate memory for host buffers "
1076                       "and structures!\n", print_name);
1077                return DFX_K_FAILURE;
1078        }
1079        memset(top_v, 0, alloc_size);   /* zero out memory before continuing */
1080        top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1081
1082        /*
1083         *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1084         *  plus the amount of memory needed was allocated.  The physical address
1085         *      is now 8K aligned.  By carving up the memory in a specific order,
1086         *  we'll guarantee the alignment requirements for all other structures.
1087         *
1088         *  Note: If the assumptions change regarding the non-paged, non-cached,
1089         *                physically contiguous nature of the memory block or the address
1090         *                alignments, then we'll need to implement a different algorithm
1091         *                for allocating the needed memory.
1092         */
1093
1094        curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1095        curr_v = top_v + (curr_p - top_p);
1096
1097        /* Reserve space for descriptor block */
1098
1099        bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1100        bp->descr_block_phys = curr_p;
1101        curr_v += sizeof(PI_DESCR_BLOCK);
1102        curr_p += sizeof(PI_DESCR_BLOCK);
1103
1104        /* Reserve space for command request buffer */
1105
1106        bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1107        bp->cmd_req_phys = curr_p;
1108        curr_v += PI_CMD_REQ_K_SIZE_MAX;
1109        curr_p += PI_CMD_REQ_K_SIZE_MAX;
1110
1111        /* Reserve space for command response buffer */
1112
1113        bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1114        bp->cmd_rsp_phys = curr_p;
1115        curr_v += PI_CMD_RSP_K_SIZE_MAX;
1116        curr_p += PI_CMD_RSP_K_SIZE_MAX;
1117
1118        /* Reserve space for the LLC host receive queue buffers */
1119
1120        bp->rcv_block_virt = curr_v;
1121        bp->rcv_block_phys = curr_p;
1122
1123#ifndef DYNAMIC_BUFFERS
1124        curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1125        curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1126#endif
1127
1128        /* Reserve space for the consumer block */
1129
1130        bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1131        bp->cons_block_phys = curr_p;
1132
1133        /* Display virtual and physical addresses if debug driver */
1134
1135        DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1136                   print_name,
1137                   (long)bp->descr_block_virt, bp->descr_block_phys);
1138        DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1139                   print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1140        DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1141                   print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1142        DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1143                   print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1144        DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1145                   print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1146
1147        return DFX_K_SUCCESS;
1148}
1149
1150
1151/*
1152 * =================
1153 * = dfx_adap_init =
1154 * =================
1155 *
1156 * Overview:
1157 *   Brings the adapter to the link avail/link unavailable state.
1158 *
1159 * Returns:
1160 *   Condition code
1161 *
1162 * Arguments:
1163 *   bp - pointer to board information
1164 *   get_buffers - non-zero if buffers to be allocated
1165 *
1166 * Functional Description:
1167 *   Issues the low-level firmware/hardware calls necessary to bring
1168 *   the adapter up, or to properly reset and restore adapter during
1169 *   run-time.
1170 *
1171 * Return Codes:
1172 *   DFX_K_SUCCESS - Adapter brought up successfully
1173 *   DFX_K_FAILURE - Adapter initialization failed
1174 *
1175 * Assumptions:
1176 *   bp->reset_type should be set to a valid reset type value before
1177 *   calling this routine.
1178 *
1179 * Side Effects:
1180 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1181 *   upon a successful return of this routine.
1182 */
1183
1184static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1185        {
1186        DBG_printk("In dfx_adap_init...\n");
1187
1188        /* Disable PDQ interrupts first */
1189
1190        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1191
1192        /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1193
1194        if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1195                {
1196                printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1197                return DFX_K_FAILURE;
1198                }
1199
1200        /*
1201         * When the PDQ is reset, some false Type 0 interrupts may be pending,
1202         * so we'll acknowledge all Type 0 interrupts now before continuing.
1203         */
1204
1205        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1206
1207        /*
1208         * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1209         *
1210         * Note: We only need to clear host copies of these registers.  The PDQ reset
1211         *       takes care of the on-board register values.
1212         */
1213
1214        bp->cmd_req_reg.lword   = 0;
1215        bp->cmd_rsp_reg.lword   = 0;
1216        bp->rcv_xmt_reg.lword   = 0;
1217
1218        /* Clear consumer block before going to DMA_AVAILABLE state */
1219
1220        memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1221
1222        /* Initialize the DMA Burst Size */
1223
1224        if (dfx_hw_port_ctrl_req(bp,
1225                                                        PI_PCTRL_M_SUB_CMD,
1226                                                        PI_SUB_CMD_K_BURST_SIZE_SET,
1227                                                        bp->burst_size,
1228                                                        NULL) != DFX_K_SUCCESS)
1229                {
1230                printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1231                return DFX_K_FAILURE;
1232                }
1233
1234        /*
1235         * Set base address of Consumer Block
1236         *
1237         * Assumption: 32-bit physical address of consumer block is 64 byte
1238         *                         aligned.  That is, bits 0-5 of the address must be zero.
1239         */
1240
1241        if (dfx_hw_port_ctrl_req(bp,
1242                                                        PI_PCTRL_M_CONS_BLOCK,
1243                                                        bp->cons_block_phys,
1244                                                        0,
1245                                                        NULL) != DFX_K_SUCCESS)
1246                {
1247                printk("%s: Could not set consumer block address!\n", bp->dev->name);
1248                return DFX_K_FAILURE;
1249                }
1250
1251        /*
1252         * Set the base address of Descriptor Block and bring adapter
1253         * to DMA_AVAILABLE state.
1254         *
1255         * Note: We also set the literal and data swapping requirements
1256         *       in this command.
1257         *
1258         * Assumption: 32-bit physical address of descriptor block
1259         *       is 8Kbyte aligned.
1260         */
1261        if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1262                                 (u32)(bp->descr_block_phys |
1263                                       PI_PDATA_A_INIT_M_BSWAP_INIT),
1264                                 0, NULL) != DFX_K_SUCCESS) {
1265                printk("%s: Could not set descriptor block address!\n",
1266                       bp->dev->name);
1267                return DFX_K_FAILURE;
1268        }
1269
1270        /* Set transmit flush timeout value */
1271
1272        bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1273        bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1274        bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1275        bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1276        bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1277        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1278                {
1279                printk("%s: DMA command request failed!\n", bp->dev->name);
1280                return DFX_K_FAILURE;
1281                }
1282
1283        /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1284
1285        bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1286        bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1287        bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1288        bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1289        bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1290        bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1291        bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1292        bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1293        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1294                {
1295                printk("%s: DMA command request failed!\n", bp->dev->name);
1296                return DFX_K_FAILURE;
1297                }
1298
1299        /* Initialize adapter CAM */
1300
1301        if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1302                {
1303                printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1304                return DFX_K_FAILURE;
1305                }
1306
1307        /* Initialize adapter filters */
1308
1309        if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1310                {
1311                printk("%s: Adapter filters update failed!\n", bp->dev->name);
1312                return DFX_K_FAILURE;
1313                }
1314
1315        /*
1316         * Remove any existing dynamic buffers (i.e. if the adapter is being
1317         * reinitialized)
1318         */
1319
1320        if (get_buffers)
1321                dfx_rcv_flush(bp);
1322
1323        /* Initialize receive descriptor block and produce buffers */
1324
1325        if (dfx_rcv_init(bp, get_buffers))
1326                {
1327                printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1328                if (get_buffers)
1329                        dfx_rcv_flush(bp);
1330                return DFX_K_FAILURE;
1331                }
1332
1333        /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1334
1335        bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1336        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1337                {
1338                printk("%s: Start command failed\n", bp->dev->name);
1339                if (get_buffers)
1340                        dfx_rcv_flush(bp);
1341                return DFX_K_FAILURE;
1342                }
1343
1344        /* Initialization succeeded, reenable PDQ interrupts */
1345
1346        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1347        return DFX_K_SUCCESS;
1348        }
1349
1350
1351/*
1352 * ============
1353 * = dfx_open =
1354 * ============
1355 *
1356 * Overview:
1357 *   Opens the adapter
1358 *
1359 * Returns:
1360 *   Condition code
1361 *
1362 * Arguments:
1363 *   dev - pointer to device information
1364 *
1365 * Functional Description:
1366 *   This function brings the adapter to an operational state.
1367 *
1368 * Return Codes:
1369 *   0           - Adapter was successfully opened
1370 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1371 *
1372 * Assumptions:
1373 *   This routine should only be called for a device that was
1374 *   initialized successfully.
1375 *
1376 * Side Effects:
1377 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1378 *   if the open is successful.
1379 */
1380
1381static int dfx_open(struct net_device *dev)
1382{
1383        DFX_board_t *bp = netdev_priv(dev);
1384        int ret;
1385
1386        DBG_printk("In dfx_open...\n");
1387
1388        /* Register IRQ - support shared interrupts by passing device ptr */
1389
1390        ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1391                          dev);
1392        if (ret) {
1393                printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1394                return ret;
1395        }
1396
1397        /*
1398         * Set current address to factory MAC address
1399         *
1400         * Note: We've already done this step in dfx_driver_init.
1401         *       However, it's possible that a user has set a node
1402         *               address override, then closed and reopened the
1403         *               adapter.  Unless we reset the device address field
1404         *               now, we'll continue to use the existing modified
1405         *               address.
1406         */
1407
1408        memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1409
1410        /* Clear local unicast/multicast address tables and counts */
1411
1412        memset(bp->uc_table, 0, sizeof(bp->uc_table));
1413        memset(bp->mc_table, 0, sizeof(bp->mc_table));
1414        bp->uc_count = 0;
1415        bp->mc_count = 0;
1416
1417        /* Disable promiscuous filter settings */
1418
1419        bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1420        bp->group_prom          = PI_FSTATE_K_BLOCK;
1421
1422        spin_lock_init(&bp->lock);
1423
1424        /* Reset and initialize adapter */
1425
1426        bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1427        if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1428        {
1429                printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1430                free_irq(dev->irq, dev);
1431                return -EAGAIN;
1432        }
1433
1434        /* Set device structure info */
1435        netif_start_queue(dev);
1436        return 0;
1437}
1438
1439
1440/*
1441 * =============
1442 * = dfx_close =
1443 * =============
1444 *
1445 * Overview:
1446 *   Closes the device/module.
1447 *
1448 * Returns:
1449 *   Condition code
1450 *
1451 * Arguments:
1452 *   dev - pointer to device information
1453 *
1454 * Functional Description:
1455 *   This routine closes the adapter and brings it to a safe state.
1456 *   The interrupt service routine is deregistered with the OS.
1457 *   The adapter can be opened again with another call to dfx_open().
1458 *
1459 * Return Codes:
1460 *   Always return 0.
1461 *
1462 * Assumptions:
1463 *   No further requests for this adapter are made after this routine is
1464 *   called.  dfx_open() can be called to reset and reinitialize the
1465 *   adapter.
1466 *
1467 * Side Effects:
1468 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1469 *   routine.
1470 */
1471
1472static int dfx_close(struct net_device *dev)
1473{
1474        DFX_board_t *bp = netdev_priv(dev);
1475
1476        DBG_printk("In dfx_close...\n");
1477
1478        /* Disable PDQ interrupts first */
1479
1480        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1481
1482        /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1483
1484        (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1485
1486        /*
1487         * Flush any pending transmit buffers
1488         *
1489         * Note: It's important that we flush the transmit buffers
1490         *               BEFORE we clear our copy of the Type 2 register.
1491         *               Otherwise, we'll have no idea how many buffers
1492         *               we need to free.
1493         */
1494
1495        dfx_xmt_flush(bp);
1496
1497        /*
1498         * Clear Type 1 and Type 2 registers after adapter reset
1499         *
1500         * Note: Even though we're closing the adapter, it's
1501         *       possible that an interrupt will occur after
1502         *               dfx_close is called.  Without some assurance to
1503         *               the contrary we want to make sure that we don't
1504         *               process receive and transmit LLC frames and update
1505         *               the Type 2 register with bad information.
1506         */
1507
1508        bp->cmd_req_reg.lword   = 0;
1509        bp->cmd_rsp_reg.lword   = 0;
1510        bp->rcv_xmt_reg.lword   = 0;
1511
1512        /* Clear consumer block for the same reason given above */
1513
1514        memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1515
1516        /* Release all dynamically allocate skb in the receive ring. */
1517
1518        dfx_rcv_flush(bp);
1519
1520        /* Clear device structure flags */
1521
1522        netif_stop_queue(dev);
1523
1524        /* Deregister (free) IRQ */
1525
1526        free_irq(dev->irq, dev);
1527
1528        return 0;
1529}
1530
1531
1532/*
1533 * ======================
1534 * = dfx_int_pr_halt_id =
1535 * ======================
1536 *
1537 * Overview:
1538 *   Displays halt id's in string form.
1539 *
1540 * Returns:
1541 *   None
1542 *
1543 * Arguments:
1544 *   bp - pointer to board information
1545 *
1546 * Functional Description:
1547 *   Determine current halt id and display appropriate string.
1548 *
1549 * Return Codes:
1550 *   None
1551 *
1552 * Assumptions:
1553 *   None
1554 *
1555 * Side Effects:
1556 *   None
1557 */
1558
1559static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1560        {
1561        PI_UINT32       port_status;                    /* PDQ port status register value */
1562        PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1563
1564        /* Read the latest port status */
1565
1566        dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1567
1568        /* Display halt state transition information */
1569
1570        halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1571        switch (halt_id)
1572                {
1573                case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1574                        printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1575                        break;
1576
1577                case PI_HALT_ID_K_PARITY_ERROR:
1578                        printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1579                        break;
1580
1581                case PI_HALT_ID_K_HOST_DIR_HALT:
1582                        printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1583                        break;
1584
1585                case PI_HALT_ID_K_SW_FAULT:
1586                        printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1587                        break;
1588
1589                case PI_HALT_ID_K_HW_FAULT:
1590                        printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1591                        break;
1592
1593                case PI_HALT_ID_K_PC_TRACE:
1594                        printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1595                        break;
1596
1597                case PI_HALT_ID_K_DMA_ERROR:
1598                        printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1599                        break;
1600
1601                case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1602                        printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1603                        break;
1604
1605                case PI_HALT_ID_K_BUS_EXCEPTION:
1606                        printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1607                        break;
1608
1609                default:
1610                        printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1611                        break;
1612                }
1613        }
1614
1615
1616/*
1617 * ==========================
1618 * = dfx_int_type_0_process =
1619 * ==========================
1620 *
1621 * Overview:
1622 *   Processes Type 0 interrupts.
1623 *
1624 * Returns:
1625 *   None
1626 *
1627 * Arguments:
1628 *   bp - pointer to board information
1629 *
1630 * Functional Description:
1631 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1632 *   is a serious fault on the adapter, then an error message is displayed
1633 *   and the adapter is reset.
1634 *
1635 *   One tricky potential timing window is the rapid succession of "link avail"
1636 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1637 *   interrupt must be done before reading the state from the Port Status
1638 *   register.  This is true because a state change could occur after reading
1639 *   the data, but before acknowledging the interrupt.  If this state change
1640 *   does happen, it would be lost because the driver is using the old state,
1641 *   and it will never know about the new state because it subsequently
1642 *   acknowledges the state change interrupt.
1643 *
1644 *          INCORRECT                                      CORRECT
1645 *      read type 0 int reasons                   read type 0 int reasons
1646 *      read adapter state                        ack type 0 interrupts
1647 *      ack type 0 interrupts                     read adapter state
1648 *      ... process interrupt ...                 ... process interrupt ...
1649 *
1650 * Return Codes:
1651 *   None
1652 *
1653 * Assumptions:
1654 *   None
1655 *
1656 * Side Effects:
1657 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1658 *   or if the port status indicates that the adapter is halted.  The driver
1659 *   is responsible for reinitializing the adapter with the current CAM
1660 *   contents and adapter filter settings.
1661 */
1662
1663static void dfx_int_type_0_process(DFX_board_t  *bp)
1664
1665        {
1666        PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1667        PI_UINT32       state;                          /* current adap state (from port status) */
1668
1669        /*
1670         * Read host interrupt Type 0 register to determine which Type 0
1671         * interrupts are pending.  Immediately write it back out to clear
1672         * those interrupts.
1673         */
1674
1675        dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1676        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1677
1678        /* Check for Type 0 error interrupts */
1679
1680        if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1681                                                        PI_TYPE_0_STAT_M_PM_PAR_ERR |
1682                                                        PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1683                {
1684                /* Check for Non-Existent Memory error */
1685
1686                if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1687                        printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1688
1689                /* Check for Packet Memory Parity error */
1690
1691                if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1692                        printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1693
1694                /* Check for Host Bus Parity error */
1695
1696                if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1697                        printk("%s: Host Bus Parity Error\n", bp->dev->name);
1698
1699                /* Reset adapter and bring it back on-line */
1700
1701                bp->link_available = PI_K_FALSE;        /* link is no longer available */
1702                bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1703                printk("%s: Resetting adapter...\n", bp->dev->name);
1704                if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1705                        {
1706                        printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1707                        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1708                        return;
1709                        }
1710                printk("%s: Adapter reset successful!\n", bp->dev->name);
1711                return;
1712                }
1713
1714        /* Check for transmit flush interrupt */
1715
1716        if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1717                {
1718                /* Flush any pending xmt's and acknowledge the flush interrupt */
1719
1720                bp->link_available = PI_K_FALSE;                /* link is no longer available */
1721                dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1722                (void) dfx_hw_port_ctrl_req(bp,
1723                                                                        PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1724                                                                        0,
1725                                                                        0,
1726                                                                        NULL);
1727                }
1728
1729        /* Check for adapter state change */
1730
1731        if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1732                {
1733                /* Get latest adapter state */
1734
1735                state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1736                if (state == PI_STATE_K_HALTED)
1737                        {
1738                        /*
1739                         * Adapter has transitioned to HALTED state, try to reset
1740                         * adapter to bring it back on-line.  If reset fails,
1741                         * leave the adapter in the broken state.
1742                         */
1743
1744                        printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1745                        dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1746
1747                        /* Reset adapter and bring it back on-line */
1748
1749                        bp->link_available = PI_K_FALSE;        /* link is no longer available */
1750                        bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1751                        printk("%s: Resetting adapter...\n", bp->dev->name);
1752                        if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1753                                {
1754                                printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1755                                dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1756                                return;
1757                                }
1758                        printk("%s: Adapter reset successful!\n", bp->dev->name);
1759                        }
1760                else if (state == PI_STATE_K_LINK_AVAIL)
1761                        {
1762                        bp->link_available = PI_K_TRUE;         /* set link available flag */
1763                        }
1764                }
1765        }
1766
1767
1768/*
1769 * ==================
1770 * = dfx_int_common =
1771 * ==================
1772 *
1773 * Overview:
1774 *   Interrupt service routine (ISR)
1775 *
1776 * Returns:
1777 *   None
1778 *
1779 * Arguments:
1780 *   bp - pointer to board information
1781 *
1782 * Functional Description:
1783 *   This is the ISR which processes incoming adapter interrupts.
1784 *
1785 * Return Codes:
1786 *   None
1787 *
1788 * Assumptions:
1789 *   This routine assumes PDQ interrupts have not been disabled.
1790 *   When interrupts are disabled at the PDQ, the Port Status register
1791 *   is automatically cleared.  This routine uses the Port Status
1792 *   register value to determine whether a Type 0 interrupt occurred,
1793 *   so it's important that adapter interrupts are not normally
1794 *   enabled/disabled at the PDQ.
1795 *
1796 *   It's vital that this routine is NOT reentered for the
1797 *   same board and that the OS is not in another section of
1798 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1799 *   different thread.
1800 *
1801 * Side Effects:
1802 *   Pending interrupts are serviced.  Depending on the type of
1803 *   interrupt, acknowledging and clearing the interrupt at the
1804 *   PDQ involves writing a register to clear the interrupt bit
1805 *   or updating completion indices.
1806 */
1807
1808static void dfx_int_common(struct net_device *dev)
1809{
1810        DFX_board_t *bp = netdev_priv(dev);
1811        PI_UINT32       port_status;            /* Port Status register */
1812
1813        /* Process xmt interrupts - frequent case, so always call this routine */
1814
1815        if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1816                netif_wake_queue(dev);
1817
1818        /* Process rcv interrupts - frequent case, so always call this routine */
1819
1820        dfx_rcv_queue_process(bp);              /* service received LLC frames */
1821
1822        /*
1823         * Transmit and receive producer and completion indices are updated on the
1824         * adapter by writing to the Type 2 Producer register.  Since the frequent
1825         * case is that we'll be processing either LLC transmit or receive buffers,
1826         * we'll optimize I/O writes by doing a single register write here.
1827         */
1828
1829        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1830
1831        /* Read PDQ Port Status register to find out which interrupts need processing */
1832
1833        dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1834
1835        /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1836
1837        if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1838                dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1839        }
1840
1841
1842/*
1843 * =================
1844 * = dfx_interrupt =
1845 * =================
1846 *
1847 * Overview:
1848 *   Interrupt processing routine
1849 *
1850 * Returns:
1851 *   Whether a valid interrupt was seen.
1852 *
1853 * Arguments:
1854 *   irq        - interrupt vector
1855 *   dev_id     - pointer to device information
1856 *
1857 * Functional Description:
1858 *   This routine calls the interrupt processing routine for this adapter.  It
1859 *   disables and reenables adapter interrupts, as appropriate.  We can support
1860 *   shared interrupts since the incoming dev_id pointer provides our device
1861 *   structure context.
1862 *
1863 * Return Codes:
1864 *   IRQ_HANDLED - an IRQ was handled.
1865 *   IRQ_NONE    - no IRQ was handled.
1866 *
1867 * Assumptions:
1868 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1869 *   on Intel-based systems) is done by the operating system outside this
1870 *   routine.
1871 *
1872 *       System interrupts are enabled through this call.
1873 *
1874 * Side Effects:
1875 *   Interrupts are disabled, then reenabled at the adapter.
1876 */
1877
1878static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1879{
1880        struct net_device *dev = dev_id;
1881        DFX_board_t *bp = netdev_priv(dev);
1882        struct device *bdev = bp->bus_dev;
1883        int dfx_bus_pci = DFX_BUS_PCI(bdev);
1884        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1885        int dfx_bus_tc = DFX_BUS_TC(bdev);
1886
1887        /* Service adapter interrupts */
1888
1889        if (dfx_bus_pci) {
1890                u32 status;
1891
1892                dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1893                if (!(status & PFI_STATUS_M_PDQ_INT))
1894                        return IRQ_NONE;
1895
1896                spin_lock(&bp->lock);
1897
1898                /* Disable PDQ-PFI interrupts at PFI */
1899                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1900                                    PFI_MODE_M_DMA_ENB);
1901
1902                /* Call interrupt service routine for this adapter */
1903                dfx_int_common(dev);
1904
1905                /* Clear PDQ interrupt status bit and reenable interrupts */
1906                dfx_port_write_long(bp, PFI_K_REG_STATUS,
1907                                    PFI_STATUS_M_PDQ_INT);
1908                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1909                                    (PFI_MODE_M_PDQ_INT_ENB |
1910                                     PFI_MODE_M_DMA_ENB));
1911
1912                spin_unlock(&bp->lock);
1913        }
1914        if (dfx_bus_eisa) {
1915                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1916                u8 status;
1917
1918                status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1919                if (!(status & PI_CONFIG_STAT_0_M_PEND))
1920                        return IRQ_NONE;
1921
1922                spin_lock(&bp->lock);
1923
1924                /* Disable interrupts at the ESIC */
1925                status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1926                outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1927
1928                /* Call interrupt service routine for this adapter */
1929                dfx_int_common(dev);
1930
1931                /* Reenable interrupts at the ESIC */
1932                status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1933                status |= PI_CONFIG_STAT_0_M_INT_ENB;
1934                outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1935
1936                spin_unlock(&bp->lock);
1937        }
1938        if (dfx_bus_tc) {
1939                u32 status;
1940
1941                dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1942                if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1943                                PI_PSTATUS_M_XMT_DATA_PENDING |
1944                                PI_PSTATUS_M_SMT_HOST_PENDING |
1945                                PI_PSTATUS_M_UNSOL_PENDING |
1946                                PI_PSTATUS_M_CMD_RSP_PENDING |
1947                                PI_PSTATUS_M_CMD_REQ_PENDING |
1948                                PI_PSTATUS_M_TYPE_0_PENDING)))
1949                        return IRQ_NONE;
1950
1951                spin_lock(&bp->lock);
1952
1953                /* Call interrupt service routine for this adapter */
1954                dfx_int_common(dev);
1955
1956                spin_unlock(&bp->lock);
1957        }
1958
1959        return IRQ_HANDLED;
1960}
1961
1962
1963/*
1964 * =====================
1965 * = dfx_ctl_get_stats =
1966 * =====================
1967 *
1968 * Overview:
1969 *   Get statistics for FDDI adapter
1970 *
1971 * Returns:
1972 *   Pointer to FDDI statistics structure
1973 *
1974 * Arguments:
1975 *   dev - pointer to device information
1976 *
1977 * Functional Description:
1978 *   Gets current MIB objects from adapter, then
1979 *   returns FDDI statistics structure as defined
1980 *   in if_fddi.h.
1981 *
1982 *   Note: Since the FDDI statistics structure is
1983 *   still new and the device structure doesn't
1984 *   have an FDDI-specific get statistics handler,
1985 *   we'll return the FDDI statistics structure as
1986 *   a pointer to an Ethernet statistics structure.
1987 *   That way, at least the first part of the statistics
1988 *   structure can be decoded properly, and it allows
1989 *   "smart" applications to perform a second cast to
1990 *   decode the FDDI-specific statistics.
1991 *
1992 *   We'll have to pay attention to this routine as the
1993 *   device structure becomes more mature and LAN media
1994 *   independent.
1995 *
1996 * Return Codes:
1997 *   None
1998 *
1999 * Assumptions:
2000 *   None
2001 *
2002 * Side Effects:
2003 *   None
2004 */
2005
2006static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2007        {
2008        DFX_board_t *bp = netdev_priv(dev);
2009
2010        /* Fill the bp->stats structure with driver-maintained counters */
2011
2012        bp->stats.gen.rx_packets = bp->rcv_total_frames;
2013        bp->stats.gen.tx_packets = bp->xmt_total_frames;
2014        bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2015        bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2016        bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2017                                   bp->rcv_frame_status_errors +
2018                                   bp->rcv_length_errors;
2019        bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2020        bp->stats.gen.rx_dropped = bp->rcv_discards;
2021        bp->stats.gen.tx_dropped = bp->xmt_discards;
2022        bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2023        bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2024
2025        /* Get FDDI SMT MIB objects */
2026
2027        bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2028        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2029                return (struct net_device_stats *)&bp->stats;
2030
2031        /* Fill the bp->stats structure with the SMT MIB object values */
2032
2033        memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2034        bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2035        bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2036        bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2037        memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2038        bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2039        bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2040        bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2041        bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2042        bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2043        bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2044        bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2045        bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2046        bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2047        bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2048        bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2049        bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2050        bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2051        bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2052        bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2053        bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2054        bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2055        bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2056        bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2057        bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2058        bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2059        bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2060        bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2061        bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2062        memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2063        memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2064        memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2065        memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2066        bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2067        bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2068        bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2069        memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2070        bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2071        bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2072        bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2073        bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2074        bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2075        bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2076        bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2077        bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2078        bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2079        bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2080        bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2081        bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2082        bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2083        bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2084        bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2085        bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2086        memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2087        bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2088        bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2089        bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2090        bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2091        bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2092        bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2093        bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2094        bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2095        bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2096        bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2097        memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2098        memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2099        bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2100        bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2101        bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2102        bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2103        bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2104        bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2105        bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2106        bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2107        bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2108        bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2109        bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2110        bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2111        bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2112        bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2113        bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2114        bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2115        bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2116        bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2117        bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2118        bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2119        bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2120        bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2121        bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2122        bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2123        bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2124        bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2125
2126        /* Get FDDI counters */
2127
2128        bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2129        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2130                return (struct net_device_stats *)&bp->stats;
2131
2132        /* Fill the bp->stats structure with the FDDI counter values */
2133
2134        bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2135        bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2136        bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2137        bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2138        bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2139        bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2140        bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2141        bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2142        bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2143        bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2144        bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2145
2146        return (struct net_device_stats *)&bp->stats;
2147        }
2148
2149
2150/*
2151 * ==============================
2152 * = dfx_ctl_set_multicast_list =
2153 * ==============================
2154 *
2155 * Overview:
2156 *   Enable/Disable LLC frame promiscuous mode reception
2157 *   on the adapter and/or update multicast address table.
2158 *
2159 * Returns:
2160 *   None
2161 *
2162 * Arguments:
2163 *   dev - pointer to device information
2164 *
2165 * Functional Description:
2166 *   This routine follows a fairly simple algorithm for setting the
2167 *   adapter filters and CAM:
2168 *
2169 *              if IFF_PROMISC flag is set
2170 *                      enable LLC individual/group promiscuous mode
2171 *              else
2172 *                      disable LLC individual/group promiscuous mode
2173 *                      if number of incoming multicast addresses >
2174 *                                      (CAM max size - number of unicast addresses in CAM)
2175 *                              enable LLC group promiscuous mode
2176 *                              set driver-maintained multicast address count to zero
2177 *                      else
2178 *                              disable LLC group promiscuous mode
2179 *                              set driver-maintained multicast address count to incoming count
2180 *                      update adapter CAM
2181 *              update adapter filters
2182 *
2183 * Return Codes:
2184 *   None
2185 *
2186 * Assumptions:
2187 *   Multicast addresses are presented in canonical (LSB) format.
2188 *
2189 * Side Effects:
2190 *   On-board adapter CAM and filters are updated.
2191 */
2192
2193static void dfx_ctl_set_multicast_list(struct net_device *dev)
2194{
2195        DFX_board_t *bp = netdev_priv(dev);
2196        int                                     i;                      /* used as index in for loop */
2197        struct netdev_hw_addr *ha;
2198
2199        /* Enable LLC frame promiscuous mode, if necessary */
2200
2201        if (dev->flags & IFF_PROMISC)
2202                bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2203
2204        /* Else, update multicast address table */
2205
2206        else
2207                {
2208                bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2209                /*
2210                 * Check whether incoming multicast address count exceeds table size
2211                 *
2212                 * Note: The adapters utilize an on-board 64 entry CAM for
2213                 *       supporting perfect filtering of multicast packets
2214                 *               and bridge functions when adding unicast addresses.
2215                 *               There is no hash function available.  To support
2216                 *               additional multicast addresses, the all multicast
2217                 *               filter (LLC group promiscuous mode) must be enabled.
2218                 *
2219                 *               The firmware reserves two CAM entries for SMT-related
2220                 *               multicast addresses, which leaves 62 entries available.
2221                 *               The following code ensures that we're not being asked
2222                 *               to add more than 62 addresses to the CAM.  If we are,
2223                 *               the driver will enable the all multicast filter.
2224                 *               Should the number of multicast addresses drop below
2225                 *               the high water mark, the filter will be disabled and
2226                 *               perfect filtering will be used.
2227                 */
2228
2229                if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2230                        {
2231                        bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2232                        bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2233                        }
2234                else
2235                        {
2236                        bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2237                        bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2238                        }
2239
2240                /* Copy addresses to multicast address table, then update adapter CAM */
2241
2242                i = 0;
2243                netdev_for_each_mc_addr(ha, dev)
2244                        memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2245                               ha->addr, FDDI_K_ALEN);
2246
2247                if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2248                        {
2249                        DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2250                        }
2251                else
2252                        {
2253                        DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2254                        }
2255                }
2256
2257        /* Update adapter filters */
2258
2259        if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2260                {
2261                DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2262                }
2263        else
2264                {
2265                DBG_printk("%s: Adapter filters updated!\n", dev->name);
2266                }
2267        }
2268
2269
2270/*
2271 * ===========================
2272 * = dfx_ctl_set_mac_address =
2273 * ===========================
2274 *
2275 * Overview:
2276 *   Add node address override (unicast address) to adapter
2277 *   CAM and update dev_addr field in device table.
2278 *
2279 * Returns:
2280 *   None
2281 *
2282 * Arguments:
2283 *   dev  - pointer to device information
2284 *   addr - pointer to sockaddr structure containing unicast address to add
2285 *
2286 * Functional Description:
2287 *   The adapter supports node address overrides by adding one or more
2288 *   unicast addresses to the adapter CAM.  This is similar to adding
2289 *   multicast addresses.  In this routine we'll update the driver and
2290 *   device structures with the new address, then update the adapter CAM
2291 *   to ensure that the adapter will copy and strip frames destined and
2292 *   sourced by that address.
2293 *
2294 * Return Codes:
2295 *   Always returns zero.
2296 *
2297 * Assumptions:
2298 *   The address pointed to by addr->sa_data is a valid unicast
2299 *   address and is presented in canonical (LSB) format.
2300 *
2301 * Side Effects:
2302 *   On-board adapter CAM is updated.  On-board adapter filters
2303 *   may be updated.
2304 */
2305
2306static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2307        {
2308        struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2309        DFX_board_t *bp = netdev_priv(dev);
2310
2311        /* Copy unicast address to driver-maintained structs and update count */
2312
2313        memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2314        memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2315        bp->uc_count = 1;
2316
2317        /*
2318         * Verify we're not exceeding the CAM size by adding unicast address
2319         *
2320         * Note: It's possible that before entering this routine we've
2321         *       already filled the CAM with 62 multicast addresses.
2322         *               Since we need to place the node address override into
2323         *               the CAM, we have to check to see that we're not
2324         *               exceeding the CAM size.  If we are, we have to enable
2325         *               the LLC group (multicast) promiscuous mode filter as
2326         *               in dfx_ctl_set_multicast_list.
2327         */
2328
2329        if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2330                {
2331                bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2332                bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2333
2334                /* Update adapter filters */
2335
2336                if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2337                        {
2338                        DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2339                        }
2340                else
2341                        {
2342                        DBG_printk("%s: Adapter filters updated!\n", dev->name);
2343                        }
2344                }
2345
2346        /* Update adapter CAM with new unicast address */
2347
2348        if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2349                {
2350                DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2351                }
2352        else
2353                {
2354                DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2355                }
2356        return 0;                       /* always return zero */
2357        }
2358
2359
2360/*
2361 * ======================
2362 * = dfx_ctl_update_cam =
2363 * ======================
2364 *
2365 * Overview:
2366 *   Procedure to update adapter CAM (Content Addressable Memory)
2367 *   with desired unicast and multicast address entries.
2368 *
2369 * Returns:
2370 *   Condition code
2371 *
2372 * Arguments:
2373 *   bp - pointer to board information
2374 *
2375 * Functional Description:
2376 *   Updates adapter CAM with current contents of board structure
2377 *   unicast and multicast address tables.  Since there are only 62
2378 *   free entries in CAM, this routine ensures that the command
2379 *   request buffer is not overrun.
2380 *
2381 * Return Codes:
2382 *   DFX_K_SUCCESS - Request succeeded
2383 *   DFX_K_FAILURE - Request failed
2384 *
2385 * Assumptions:
2386 *   All addresses being added (unicast and multicast) are in canonical
2387 *   order.
2388 *
2389 * Side Effects:
2390 *   On-board adapter CAM is updated.
2391 */
2392
2393static int dfx_ctl_update_cam(DFX_board_t *bp)
2394        {
2395        int                     i;                              /* used as index */
2396        PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2397
2398        /*
2399         * Fill in command request information
2400         *
2401         * Note: Even though both the unicast and multicast address
2402         *       table entries are stored as contiguous 6 byte entries,
2403         *               the firmware address filter set command expects each
2404         *               entry to be two longwords (8 bytes total).  We must be
2405         *               careful to only copy the six bytes of each unicast and
2406         *               multicast table entry into each command entry.  This
2407         *               is also why we must first clear the entire command
2408         *               request buffer.
2409         */
2410
2411        memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2412        bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2413        p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2414
2415        /* Now add unicast addresses to command request buffer, if any */
2416
2417        for (i=0; i < (int)bp->uc_count; i++)
2418                {
2419                if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2420                        {
2421                        memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2422                        p_addr++;                       /* point to next command entry */
2423                        }
2424                }
2425
2426        /* Now add multicast addresses to command request buffer, if any */
2427
2428        for (i=0; i < (int)bp->mc_count; i++)
2429                {
2430                if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2431                        {
2432                        memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2433                        p_addr++;                       /* point to next command entry */
2434                        }
2435                }
2436
2437        /* Issue command to update adapter CAM, then return */
2438
2439        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2440                return DFX_K_FAILURE;
2441        return DFX_K_SUCCESS;
2442        }
2443
2444
2445/*
2446 * ==========================
2447 * = dfx_ctl_update_filters =
2448 * ==========================
2449 *
2450 * Overview:
2451 *   Procedure to update adapter filters with desired
2452 *   filter settings.
2453 *
2454 * Returns:
2455 *   Condition code
2456 *
2457 * Arguments:
2458 *   bp - pointer to board information
2459 *
2460 * Functional Description:
2461 *   Enables or disables filter using current filter settings.
2462 *
2463 * Return Codes:
2464 *   DFX_K_SUCCESS - Request succeeded.
2465 *   DFX_K_FAILURE - Request failed.
2466 *
2467 * Assumptions:
2468 *   We must always pass up packets destined to the broadcast
2469 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2470 *   broadcast filter enabled.
2471 *
2472 * Side Effects:
2473 *   On-board adapter filters are updated.
2474 */
2475
2476static int dfx_ctl_update_filters(DFX_board_t *bp)
2477        {
2478        int     i = 0;                                  /* used as index */
2479
2480        /* Fill in command request information */
2481
2482        bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2483
2484        /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2485
2486        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2487        bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2488
2489        /* Initialize LLC Individual/Group Promiscuous filter */
2490
2491        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2492        bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2493
2494        /* Initialize LLC Group Promiscuous filter */
2495
2496        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2497        bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2498
2499        /* Terminate the item code list */
2500
2501        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2502
2503        /* Issue command to update adapter filters, then return */
2504
2505        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2506                return DFX_K_FAILURE;
2507        return DFX_K_SUCCESS;
2508        }
2509
2510
2511/*
2512 * ======================
2513 * = dfx_hw_dma_cmd_req =
2514 * ======================
2515 *
2516 * Overview:
2517 *   Sends PDQ DMA command to adapter firmware
2518 *
2519 * Returns:
2520 *   Condition code
2521 *
2522 * Arguments:
2523 *   bp - pointer to board information
2524 *
2525 * Functional Description:
2526 *   The command request and response buffers are posted to the adapter in the manner
2527 *   described in the PDQ Port Specification:
2528 *
2529 *              1. Command Response Buffer is posted to adapter.
2530 *              2. Command Request Buffer is posted to adapter.
2531 *              3. Command Request consumer index is polled until it indicates that request
2532 *         buffer has been DMA'd to adapter.
2533 *              4. Command Response consumer index is polled until it indicates that response
2534 *         buffer has been DMA'd from adapter.
2535 *
2536 *   This ordering ensures that a response buffer is already available for the firmware
2537 *   to use once it's done processing the request buffer.
2538 *
2539 * Return Codes:
2540 *   DFX_K_SUCCESS        - DMA command succeeded
2541 *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2542 *   DFX_K_HW_TIMEOUT - DMA command timed out
2543 *
2544 * Assumptions:
2545 *   Command request buffer has already been filled with desired DMA command.
2546 *
2547 * Side Effects:
2548 *   None
2549 */
2550
2551static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2552        {
2553        int status;                     /* adapter status */
2554        int timeout_cnt;        /* used in for loops */
2555
2556        /* Make sure the adapter is in a state that we can issue the DMA command in */
2557
2558        status = dfx_hw_adap_state_rd(bp);
2559        if ((status == PI_STATE_K_RESET)                ||
2560                (status == PI_STATE_K_HALTED)           ||
2561                (status == PI_STATE_K_DMA_UNAVAIL)      ||
2562                (status == PI_STATE_K_UPGRADE))
2563                return DFX_K_OUTSTATE;
2564
2565        /* Put response buffer on the command response queue */
2566
2567        bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2568                        ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2569        bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2570
2571        /* Bump (and wrap) the producer index and write out to register */
2572
2573        bp->cmd_rsp_reg.index.prod += 1;
2574        bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2575        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2576
2577        /* Put request buffer on the command request queue */
2578
2579        bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2580                        PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2581        bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2582
2583        /* Bump (and wrap) the producer index and write out to register */
2584
2585        bp->cmd_req_reg.index.prod += 1;
2586        bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2587        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2588
2589        /*
2590         * Here we wait for the command request consumer index to be equal
2591         * to the producer, indicating that the adapter has DMAed the request.
2592         */
2593
2594        for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2595                {
2596                if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2597                        break;
2598                udelay(100);                    /* wait for 100 microseconds */
2599                }
2600        if (timeout_cnt == 0)
2601                return DFX_K_HW_TIMEOUT;
2602
2603        /* Bump (and wrap) the completion index and write out to register */
2604
2605        bp->cmd_req_reg.index.comp += 1;
2606        bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2607        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2608
2609        /*
2610         * Here we wait for the command response consumer index to be equal
2611         * to the producer, indicating that the adapter has DMAed the response.
2612         */
2613
2614        for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2615                {
2616                if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2617                        break;
2618                udelay(100);                    /* wait for 100 microseconds */
2619                }
2620        if (timeout_cnt == 0)
2621                return DFX_K_HW_TIMEOUT;
2622
2623        /* Bump (and wrap) the completion index and write out to register */
2624
2625        bp->cmd_rsp_reg.index.comp += 1;
2626        bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2627        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2628        return DFX_K_SUCCESS;
2629        }
2630
2631
2632/*
2633 * ========================
2634 * = dfx_hw_port_ctrl_req =
2635 * ========================
2636 *
2637 * Overview:
2638 *   Sends PDQ port control command to adapter firmware
2639 *
2640 * Returns:
2641 *   Host data register value in host_data if ptr is not NULL
2642 *
2643 * Arguments:
2644 *   bp                 - pointer to board information
2645 *       command        - port control command
2646 *       data_a         - port data A register value
2647 *       data_b         - port data B register value
2648 *       host_data      - ptr to host data register value
2649 *
2650 * Functional Description:
2651 *   Send generic port control command to adapter by writing
2652 *   to various PDQ port registers, then polling for completion.
2653 *
2654 * Return Codes:
2655 *   DFX_K_SUCCESS        - port control command succeeded
2656 *   DFX_K_HW_TIMEOUT - port control command timed out
2657 *
2658 * Assumptions:
2659 *   None
2660 *
2661 * Side Effects:
2662 *   None
2663 */
2664
2665static int dfx_hw_port_ctrl_req(
2666        DFX_board_t     *bp,
2667        PI_UINT32       command,
2668        PI_UINT32       data_a,
2669        PI_UINT32       data_b,
2670        PI_UINT32       *host_data
2671        )
2672
2673        {
2674        PI_UINT32       port_cmd;               /* Port Control command register value */
2675        int                     timeout_cnt;    /* used in for loops */
2676
2677        /* Set Command Error bit in command longword */
2678
2679        port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2680
2681        /* Issue port command to the adapter */
2682
2683        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2684        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2685        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2686
2687        /* Now wait for command to complete */
2688
2689        if (command == PI_PCTRL_M_BLAST_FLASH)
2690                timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2691        else
2692                timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2693
2694        for (; timeout_cnt > 0; timeout_cnt--)
2695                {
2696                dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2697                if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2698                        break;
2699                udelay(100);                    /* wait for 100 microseconds */
2700                }
2701        if (timeout_cnt == 0)
2702                return DFX_K_HW_TIMEOUT;
2703
2704        /*
2705         * If the address of host_data is non-zero, assume caller has supplied a
2706         * non NULL pointer, and return the contents of the HOST_DATA register in
2707         * it.
2708         */
2709
2710        if (host_data != NULL)
2711                dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2712        return DFX_K_SUCCESS;
2713        }
2714
2715
2716/*
2717 * =====================
2718 * = dfx_hw_adap_reset =
2719 * =====================
2720 *
2721 * Overview:
2722 *   Resets adapter
2723 *
2724 * Returns:
2725 *   None
2726 *
2727 * Arguments:
2728 *   bp   - pointer to board information
2729 *   type - type of reset to perform
2730 *
2731 * Functional Description:
2732 *   Issue soft reset to adapter by writing to PDQ Port Reset
2733 *   register.  Use incoming reset type to tell adapter what
2734 *   kind of reset operation to perform.
2735 *
2736 * Return Codes:
2737 *   None
2738 *
2739 * Assumptions:
2740 *   This routine merely issues a soft reset to the adapter.
2741 *   It is expected that after this routine returns, the caller
2742 *   will appropriately poll the Port Status register for the
2743 *   adapter to enter the proper state.
2744 *
2745 * Side Effects:
2746 *   Internal adapter registers are cleared.
2747 */
2748
2749static void dfx_hw_adap_reset(
2750        DFX_board_t     *bp,
2751        PI_UINT32       type
2752        )
2753
2754        {
2755        /* Set Reset type and assert reset */
2756
2757        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2758        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2759
2760        /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2761
2762        udelay(20);
2763
2764        /* Deassert reset */
2765
2766        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2767        }
2768
2769
2770/*
2771 * ========================
2772 * = dfx_hw_adap_state_rd =
2773 * ========================
2774 *
2775 * Overview:
2776 *   Returns current adapter state
2777 *
2778 * Returns:
2779 *   Adapter state per PDQ Port Specification
2780 *
2781 * Arguments:
2782 *   bp - pointer to board information
2783 *
2784 * Functional Description:
2785 *   Reads PDQ Port Status register and returns adapter state.
2786 *
2787 * Return Codes:
2788 *   None
2789 *
2790 * Assumptions:
2791 *   None
2792 *
2793 * Side Effects:
2794 *   None
2795 */
2796
2797static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2798        {
2799        PI_UINT32 port_status;          /* Port Status register value */
2800
2801        dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2802        return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2803        }
2804
2805
2806/*
2807 * =====================
2808 * = dfx_hw_dma_uninit =
2809 * =====================
2810 *
2811 * Overview:
2812 *   Brings adapter to DMA_UNAVAILABLE state
2813 *
2814 * Returns:
2815 *   Condition code
2816 *
2817 * Arguments:
2818 *   bp   - pointer to board information
2819 *   type - type of reset to perform
2820 *
2821 * Functional Description:
2822 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2823 *              1. Set reset type bit in Port Data A Register then reset adapter.
2824 *              2. Check that adapter is in DMA_UNAVAILABLE state.
2825 *
2826 * Return Codes:
2827 *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2828 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2829 *
2830 * Assumptions:
2831 *   None
2832 *
2833 * Side Effects:
2834 *   Internal adapter registers are cleared.
2835 */
2836
2837static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2838        {
2839        int timeout_cnt;        /* used in for loops */
2840
2841        /* Set reset type bit and reset adapter */
2842
2843        dfx_hw_adap_reset(bp, type);
2844
2845        /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2846
2847        for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2848                {
2849                if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2850                        break;
2851                udelay(100);                                    /* wait for 100 microseconds */
2852                }
2853        if (timeout_cnt == 0)
2854                return DFX_K_HW_TIMEOUT;
2855        return DFX_K_SUCCESS;
2856        }
2857
2858/*
2859 *      Align an sk_buff to a boundary power of 2
2860 *
2861 */
2862
2863static void my_skb_align(struct sk_buff *skb, int n)
2864{
2865        unsigned long x = (unsigned long)skb->data;
2866        unsigned long v;
2867
2868        v = ALIGN(x, n);        /* Where we want to be */
2869
2870        skb_reserve(skb, v - x);
2871}
2872
2873
2874/*
2875 * ================
2876 * = dfx_rcv_init =
2877 * ================
2878 *
2879 * Overview:
2880 *   Produces buffers to adapter LLC Host receive descriptor block
2881 *
2882 * Returns:
2883 *   None
2884 *
2885 * Arguments:
2886 *   bp - pointer to board information
2887 *   get_buffers - non-zero if buffers to be allocated
2888 *
2889 * Functional Description:
2890 *   This routine can be called during dfx_adap_init() or during an adapter
2891 *       reset.  It initializes the descriptor block and produces all allocated
2892 *   LLC Host queue receive buffers.
2893 *
2894 * Return Codes:
2895 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2896 *   dynamic buffer allocation). If the buffer allocation failed, the
2897 *   already allocated buffers will not be released and the caller should do
2898 *   this.
2899 *
2900 * Assumptions:
2901 *   The PDQ has been reset and the adapter and driver maintained Type 2
2902 *   register indices are cleared.
2903 *
2904 * Side Effects:
2905 *   Receive buffers are posted to the adapter LLC queue and the adapter
2906 *   is notified.
2907 */
2908
2909static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2910        {
2911        int     i, j;                                   /* used in for loop */
2912
2913        /*
2914         *  Since each receive buffer is a single fragment of same length, initialize
2915         *  first longword in each receive descriptor for entire LLC Host descriptor
2916         *  block.  Also initialize second longword in each receive descriptor with
2917         *  physical address of receive buffer.  We'll always allocate receive
2918         *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2919         *  block and produce new receive buffers by simply updating the receive
2920         *  producer index.
2921         *
2922         *      Assumptions:
2923         *              To support all shipping versions of PDQ, the receive buffer size
2924         *              must be mod 128 in length and the physical address must be 128 byte
2925         *              aligned.  In other words, bits 0-6 of the length and address must
2926         *              be zero for the following descriptor field entries to be correct on
2927         *              all PDQ-based boards.  We guaranteed both requirements during
2928         *              driver initialization when we allocated memory for the receive buffers.
2929         */
2930
2931        if (get_buffers) {
2932#ifdef DYNAMIC_BUFFERS
2933        for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2934                for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2935                {
2936                        struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
2937                        if (!newskb)
2938                                return -ENOMEM;
2939                        bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2940                                ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2941                        /*
2942                         * align to 128 bytes for compatibility with
2943                         * the old EISA boards.
2944                         */
2945
2946                        my_skb_align(newskb, 128);
2947                        bp->descr_block_virt->rcv_data[i + j].long_1 =
2948                                (u32)dma_map_single(bp->bus_dev, newskb->data,
2949                                                    NEW_SKB_SIZE,
2950                                                    DMA_FROM_DEVICE);
2951                        /*
2952                         * p_rcv_buff_va is only used inside the
2953                         * kernel so we put the skb pointer here.
2954                         */
2955                        bp->p_rcv_buff_va[i+j] = (char *) newskb;
2956                }
2957#else
2958        for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2959                for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2960                        {
2961                        bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2962                                ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2963                        bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2964                        bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2965                        }
2966#endif
2967        }
2968
2969        /* Update receive producer and Type 2 register */
2970
2971        bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2972        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2973        return 0;
2974        }
2975
2976
2977/*
2978 * =========================
2979 * = dfx_rcv_queue_process =
2980 * =========================
2981 *
2982 * Overview:
2983 *   Process received LLC frames.
2984 *
2985 * Returns:
2986 *   None
2987 *
2988 * Arguments:
2989 *   bp - pointer to board information
2990 *
2991 * Functional Description:
2992 *   Received LLC frames are processed until there are no more consumed frames.
2993 *   Once all frames are processed, the receive buffers are returned to the
2994 *   adapter.  Note that this algorithm fixes the length of time that can be spent
2995 *   in this routine, because there are a fixed number of receive buffers to
2996 *   process and buffers are not produced until this routine exits and returns
2997 *   to the ISR.
2998 *
2999 * Return Codes:
3000 *   None
3001 *
3002 * Assumptions:
3003 *   None
3004 *
3005 * Side Effects:
3006 *   None
3007 */
3008
3009static void dfx_rcv_queue_process(
3010        DFX_board_t *bp
3011        )
3012
3013        {
3014        PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3015        char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3016        u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3017        struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
3018
3019        /* Service all consumed LLC receive frames */
3020
3021        p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3022        while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3023                {
3024                /* Process any errors */
3025
3026                int entry;
3027
3028                entry = bp->rcv_xmt_reg.index.rcv_comp;
3029#ifdef DYNAMIC_BUFFERS
3030                p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3031#else
3032                p_buff = bp->p_rcv_buff_va[entry];
3033#endif
3034                memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3035
3036                if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3037                        {
3038                        if (descr & PI_FMC_DESCR_M_RCC_CRC)
3039                                bp->rcv_crc_errors++;
3040                        else
3041                                bp->rcv_frame_status_errors++;
3042                        }
3043                else
3044                {
3045                        int rx_in_place = 0;
3046
3047                        /* The frame was received without errors - verify packet length */
3048
3049                        pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3050                        pkt_len -= 4;                           /* subtract 4 byte CRC */
3051                        if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3052                                bp->rcv_length_errors++;
3053                        else{
3054#ifdef DYNAMIC_BUFFERS
3055                                if (pkt_len > SKBUFF_RX_COPYBREAK) {
3056                                        struct sk_buff *newskb;
3057
3058                                        newskb = dev_alloc_skb(NEW_SKB_SIZE);
3059                                        if (newskb){
3060                                                rx_in_place = 1;
3061
3062                                                my_skb_align(newskb, 128);
3063                                                skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3064                                                dma_unmap_single(bp->bus_dev,
3065                                                        bp->descr_block_virt->rcv_data[entry].long_1,
3066                                                        NEW_SKB_SIZE,
3067                                                        DMA_FROM_DEVICE);
3068                                                skb_reserve(skb, RCV_BUFF_K_PADDING);
3069                                                bp->p_rcv_buff_va[entry] = (char *)newskb;
3070                                                bp->descr_block_virt->rcv_data[entry].long_1 =
3071                                                        (u32)dma_map_single(bp->bus_dev,
3072                                                                newskb->data,
3073                                                                NEW_SKB_SIZE,
3074                                                                DMA_FROM_DEVICE);
3075                                        } else
3076                                                skb = NULL;
3077                                } else
3078#endif
3079                                        skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3080                                if (skb == NULL)
3081                                        {
3082                                        printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3083                                        bp->rcv_discards++;
3084                                        break;
3085                                        }
3086                                else {
3087#ifndef DYNAMIC_BUFFERS
3088                                        if (! rx_in_place)
3089#endif
3090                                        {
3091                                                /* Receive buffer allocated, pass receive packet up */
3092
3093                                                skb_copy_to_linear_data(skb,
3094                                                               p_buff + RCV_BUFF_K_PADDING,
3095                                                               pkt_len + 3);
3096                                        }
3097
3098                                        skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3099                                        skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3100                                        skb->protocol = fddi_type_trans(skb, bp->dev);
3101                                        bp->rcv_total_bytes += skb->len;
3102                                        netif_rx(skb);
3103
3104                                        /* Update the rcv counters */
3105                                        bp->rcv_total_frames++;
3106                                        if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3107                                                bp->rcv_multicast_frames++;
3108                                }
3109                        }
3110                        }
3111
3112                /*
3113                 * Advance the producer (for recycling) and advance the completion
3114                 * (for servicing received frames).  Note that it is okay to
3115                 * advance the producer without checking that it passes the
3116                 * completion index because they are both advanced at the same
3117                 * rate.
3118                 */
3119
3120                bp->rcv_xmt_reg.index.rcv_prod += 1;
3121                bp->rcv_xmt_reg.index.rcv_comp += 1;
3122                }
3123        }
3124
3125
3126/*
3127 * =====================
3128 * = dfx_xmt_queue_pkt =
3129 * =====================
3130 *
3131 * Overview:
3132 *   Queues packets for transmission
3133 *
3134 * Returns:
3135 *   Condition code
3136 *
3137 * Arguments:
3138 *   skb - pointer to sk_buff to queue for transmission
3139 *   dev - pointer to device information
3140 *
3141 * Functional Description:
3142 *   Here we assume that an incoming skb transmit request
3143 *   is contained in a single physically contiguous buffer
3144 *   in which the virtual address of the start of packet
3145 *   (skb->data) can be converted to a physical address
3146 *   by using pci_map_single().
3147 *
3148 *   Since the adapter architecture requires a three byte
3149 *   packet request header to prepend the start of packet,
3150 *   we'll write the three byte field immediately prior to
3151 *   the FC byte.  This assumption is valid because we've
3152 *   ensured that dev->hard_header_len includes three pad
3153 *   bytes.  By posting a single fragment to the adapter,
3154 *   we'll reduce the number of descriptor fetches and
3155 *   bus traffic needed to send the request.
3156 *
3157 *   Also, we can't free the skb until after it's been DMA'd
3158 *   out by the adapter, so we'll queue it in the driver and
3159 *   return it in dfx_xmt_done.
3160 *
3161 * Return Codes:
3162 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3163 *       1 - caller should requeue the sk_buff for later transmission
3164 *
3165 * Assumptions:
3166 *       First and foremost, we assume the incoming skb pointer
3167 *   is NOT NULL and is pointing to a valid sk_buff structure.
3168 *
3169 *   The outgoing packet is complete, starting with the
3170 *   frame control byte including the last byte of data,
3171 *   but NOT including the 4 byte CRC.  We'll let the
3172 *   adapter hardware generate and append the CRC.
3173 *
3174 *   The entire packet is stored in one physically
3175 *   contiguous buffer which is not cached and whose
3176 *   32-bit physical address can be determined.
3177 *
3178 *   It's vital that this routine is NOT reentered for the
3179 *   same board and that the OS is not in another section of
3180 *   code (eg. dfx_int_common) for the same board on a
3181 *   different thread.
3182 *
3183 * Side Effects:
3184 *   None
3185 */
3186
3187static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3188                                     struct net_device *dev)
3189        {
3190        DFX_board_t             *bp = netdev_priv(dev);
3191        u8                      prod;                           /* local transmit producer index */
3192        PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3193        XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3194        unsigned long           flags;
3195
3196        netif_stop_queue(dev);
3197
3198        /*
3199         * Verify that incoming transmit request is OK
3200         *
3201         * Note: The packet size check is consistent with other
3202         *               Linux device drivers, although the correct packet
3203         *               size should be verified before calling the
3204         *               transmit routine.
3205         */
3206
3207        if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3208        {
3209                printk("%s: Invalid packet length - %u bytes\n",
3210                        dev->name, skb->len);
3211                bp->xmt_length_errors++;                /* bump error counter */
3212                netif_wake_queue(dev);
3213                dev_kfree_skb(skb);
3214                return NETDEV_TX_OK;                    /* return "success" */
3215        }
3216        /*
3217         * See if adapter link is available, if not, free buffer
3218         *
3219         * Note: If the link isn't available, free buffer and return 0
3220         *               rather than tell the upper layer to requeue the packet.
3221         *               The methodology here is that by the time the link
3222         *               becomes available, the packet to be sent will be
3223         *               fairly stale.  By simply dropping the packet, the
3224         *               higher layer protocols will eventually time out
3225         *               waiting for response packets which it won't receive.
3226         */
3227
3228        if (bp->link_available == PI_K_FALSE)
3229                {
3230                if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3231                        bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3232                else
3233                        {
3234                        bp->xmt_discards++;                                     /* bump error counter */
3235                        dev_kfree_skb(skb);             /* free sk_buff now */
3236                        netif_wake_queue(dev);
3237                        return NETDEV_TX_OK;            /* return "success" */
3238                        }
3239                }
3240
3241        spin_lock_irqsave(&bp->lock, flags);
3242
3243        /* Get the current producer and the next free xmt data descriptor */
3244
3245        prod            = bp->rcv_xmt_reg.index.xmt_prod;
3246        p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3247
3248        /*
3249         * Get pointer to auxiliary queue entry to contain information
3250         * for this packet.
3251         *
3252         * Note: The current xmt producer index will become the
3253         *       current xmt completion index when we complete this
3254         *       packet later on.  So, we'll get the pointer to the
3255         *       next auxiliary queue entry now before we bump the
3256         *       producer index.
3257         */
3258
3259        p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3260
3261        /* Write the three PRH bytes immediately before the FC byte */
3262
3263        skb_push(skb,3);
3264        skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3265        skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3266        skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3267
3268        /*
3269         * Write the descriptor with buffer info and bump producer
3270         *
3271         * Note: Since we need to start DMA from the packet request
3272         *               header, we'll add 3 bytes to the DMA buffer length,
3273         *               and we'll determine the physical address of the
3274         *               buffer from the PRH, not skb->data.
3275         *
3276         * Assumptions:
3277         *               1. Packet starts with the frame control (FC) byte
3278         *                  at skb->data.
3279         *               2. The 4-byte CRC is not appended to the buffer or
3280         *                      included in the length.
3281         *               3. Packet length (skb->len) is from FC to end of
3282         *                      data, inclusive.
3283         *               4. The packet length does not exceed the maximum
3284         *                      FDDI LLC frame length of 4491 bytes.
3285         *               5. The entire packet is contained in a physically
3286         *                      contiguous, non-cached, locked memory space
3287         *                      comprised of a single buffer pointed to by
3288         *                      skb->data.
3289         *               6. The physical address of the start of packet
3290         *                      can be determined from the virtual address
3291         *                      by using pci_map_single() and is only 32-bits
3292         *                      wide.
3293         */
3294
3295        p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3296        p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3297                                                  skb->len, DMA_TO_DEVICE);
3298
3299        /*
3300         * Verify that descriptor is actually available
3301         *
3302         * Note: If descriptor isn't available, return 1 which tells
3303         *       the upper layer to requeue the packet for later
3304         *       transmission.
3305         *
3306         *       We need to ensure that the producer never reaches the
3307         *       completion, except to indicate that the queue is empty.
3308         */
3309
3310        if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3311        {
3312                skb_pull(skb,3);
3313                spin_unlock_irqrestore(&bp->lock, flags);
3314                return NETDEV_TX_BUSY;  /* requeue packet for later */
3315        }
3316
3317        /*
3318         * Save info for this packet for xmt done indication routine
3319         *
3320         * Normally, we'd save the producer index in the p_xmt_drv_descr
3321         * structure so that we'd have it handy when we complete this
3322         * packet later (in dfx_xmt_done).  However, since the current
3323         * transmit architecture guarantees a single fragment for the
3324         * entire packet, we can simply bump the completion index by
3325         * one (1) for each completed packet.
3326         *
3327         * Note: If this assumption changes and we're presented with
3328         *       an inconsistent number of transmit fragments for packet
3329         *       data, we'll need to modify this code to save the current
3330         *       transmit producer index.
3331         */
3332
3333        p_xmt_drv_descr->p_skb = skb;
3334
3335        /* Update Type 2 register */
3336
3337        bp->rcv_xmt_reg.index.xmt_prod = prod;
3338        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3339        spin_unlock_irqrestore(&bp->lock, flags);
3340        netif_wake_queue(dev);
3341        return NETDEV_TX_OK;    /* packet queued to adapter */
3342        }
3343
3344
3345/*
3346 * ================
3347 * = dfx_xmt_done =
3348 * ================
3349 *
3350 * Overview:
3351 *   Processes all frames that have been transmitted.
3352 *
3353 * Returns:
3354 *   None
3355 *
3356 * Arguments:
3357 *   bp - pointer to board information
3358 *
3359 * Functional Description:
3360 *   For all consumed transmit descriptors that have not
3361 *   yet been completed, we'll free the skb we were holding
3362 *   onto using dev_kfree_skb and bump the appropriate
3363 *   counters.
3364 *
3365 * Return Codes:
3366 *   None
3367 *
3368 * Assumptions:
3369 *   The Type 2 register is not updated in this routine.  It is
3370 *   assumed that it will be updated in the ISR when dfx_xmt_done
3371 *   returns.
3372 *
3373 * Side Effects:
3374 *   None
3375 */
3376
3377static int dfx_xmt_done(DFX_board_t *bp)
3378        {
3379        XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3380        PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3381        u8                      comp;                   /* local transmit completion index */
3382        int                     freed = 0;              /* buffers freed */
3383
3384        /* Service all consumed transmit frames */
3385
3386        p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3387        while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3388                {
3389                /* Get pointer to the transmit driver descriptor block information */
3390
3391                p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3392
3393                /* Increment transmit counters */
3394
3395                bp->xmt_total_frames++;
3396                bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3397
3398                /* Return skb to operating system */
3399                comp = bp->rcv_xmt_reg.index.xmt_comp;
3400                dma_unmap_single(bp->bus_dev,
3401                                 bp->descr_block_virt->xmt_data[comp].long_1,
3402                                 p_xmt_drv_descr->p_skb->len,
3403                                 DMA_TO_DEVICE);
3404                dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3405
3406                /*
3407                 * Move to start of next packet by updating completion index
3408                 *
3409                 * Here we assume that a transmit packet request is always
3410                 * serviced by posting one fragment.  We can therefore
3411                 * simplify the completion code by incrementing the
3412                 * completion index by one.  This code will need to be
3413                 * modified if this assumption changes.  See comments
3414                 * in dfx_xmt_queue_pkt for more details.
3415                 */
3416
3417                bp->rcv_xmt_reg.index.xmt_comp += 1;
3418                freed++;
3419                }
3420        return freed;
3421        }
3422
3423
3424/*
3425 * =================
3426 * = dfx_rcv_flush =
3427 * =================
3428 *
3429 * Overview:
3430 *   Remove all skb's in the receive ring.
3431 *
3432 * Returns:
3433 *   None
3434 *
3435 * Arguments:
3436 *   bp - pointer to board information
3437 *
3438 * Functional Description:
3439 *   Free's all the dynamically allocated skb's that are
3440 *   currently attached to the device receive ring. This
3441 *   function is typically only used when the device is
3442 *   initialized or reinitialized.
3443 *
3444 * Return Codes:
3445 *   None
3446 *
3447 * Side Effects:
3448 *   None
3449 */
3450#ifdef DYNAMIC_BUFFERS
3451static void dfx_rcv_flush( DFX_board_t *bp )
3452        {
3453        int i, j;
3454
3455        for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3456                for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3457                {
3458                        struct sk_buff *skb;
3459                        skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3460                        if (skb)
3461                                dev_kfree_skb(skb);
3462                        bp->p_rcv_buff_va[i+j] = NULL;
3463                }
3464
3465        }
3466#else
3467static inline void dfx_rcv_flush( DFX_board_t *bp )
3468{
3469}
3470#endif /* DYNAMIC_BUFFERS */
3471
3472/*
3473 * =================
3474 * = dfx_xmt_flush =
3475 * =================
3476 *
3477 * Overview:
3478 *   Processes all frames whether they've been transmitted
3479 *   or not.
3480 *
3481 * Returns:
3482 *   None
3483 *
3484 * Arguments:
3485 *   bp - pointer to board information
3486 *
3487 * Functional Description:
3488 *   For all produced transmit descriptors that have not
3489 *   yet been completed, we'll free the skb we were holding
3490 *   onto using dev_kfree_skb and bump the appropriate
3491 *   counters.  Of course, it's possible that some of
3492 *   these transmit requests actually did go out, but we
3493 *   won't make that distinction here.  Finally, we'll
3494 *   update the consumer index to match the producer.
3495 *
3496 * Return Codes:
3497 *   None
3498 *
3499 * Assumptions:
3500 *   This routine does NOT update the Type 2 register.  It
3501 *   is assumed that this routine is being called during a
3502 *   transmit flush interrupt, or a shutdown or close routine.
3503 *
3504 * Side Effects:
3505 *   None
3506 */
3507
3508static void dfx_xmt_flush( DFX_board_t *bp )
3509        {
3510        u32                     prod_cons;              /* rcv/xmt consumer block longword */
3511        XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3512        u8                      comp;                   /* local transmit completion index */
3513
3514        /* Flush all outstanding transmit frames */
3515
3516        while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3517                {
3518                /* Get pointer to the transmit driver descriptor block information */
3519
3520                p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3521
3522                /* Return skb to operating system */
3523                comp = bp->rcv_xmt_reg.index.xmt_comp;
3524                dma_unmap_single(bp->bus_dev,
3525                                 bp->descr_block_virt->xmt_data[comp].long_1,
3526                                 p_xmt_drv_descr->p_skb->len,
3527                                 DMA_TO_DEVICE);
3528                dev_kfree_skb(p_xmt_drv_descr->p_skb);
3529
3530                /* Increment transmit error counter */
3531
3532                bp->xmt_discards++;
3533
3534                /*
3535                 * Move to start of next packet by updating completion index
3536                 *
3537                 * Here we assume that a transmit packet request is always
3538                 * serviced by posting one fragment.  We can therefore
3539                 * simplify the completion code by incrementing the
3540                 * completion index by one.  This code will need to be
3541                 * modified if this assumption changes.  See comments
3542                 * in dfx_xmt_queue_pkt for more details.
3543                 */
3544
3545                bp->rcv_xmt_reg.index.xmt_comp += 1;
3546                }
3547
3548        /* Update the transmit consumer index in the consumer block */
3549
3550        prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3551        prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3552        bp->cons_block_virt->xmt_rcv_data = prod_cons;
3553        }
3554
3555/*
3556 * ==================
3557 * = dfx_unregister =
3558 * ==================
3559 *
3560 * Overview:
3561 *   Shuts down an FDDI controller
3562 *
3563 * Returns:
3564 *   Condition code
3565 *
3566 * Arguments:
3567 *   bdev - pointer to device information
3568 *
3569 * Functional Description:
3570 *
3571 * Return Codes:
3572 *   None
3573 *
3574 * Assumptions:
3575 *   It compiles so it should work :-( (PCI cards do :-)
3576 *
3577 * Side Effects:
3578 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3579 *   freed.
3580 */
3581static void dfx_unregister(struct device *bdev)
3582{
3583        struct net_device *dev = dev_get_drvdata(bdev);
3584        DFX_board_t *bp = netdev_priv(dev);
3585        int dfx_bus_pci = DFX_BUS_PCI(bdev);
3586        int dfx_bus_tc = DFX_BUS_TC(bdev);
3587        int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3588        resource_size_t bar_start = 0;          /* pointer to port */
3589        resource_size_t bar_len = 0;            /* resource length */
3590        int             alloc_size;             /* total buffer size used */
3591
3592        unregister_netdev(dev);
3593
3594        alloc_size = sizeof(PI_DESCR_BLOCK) +
3595                     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3596#ifndef DYNAMIC_BUFFERS
3597                     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3598#endif
3599                     sizeof(PI_CONSUMER_BLOCK) +
3600                     (PI_ALIGN_K_DESC_BLK - 1);
3601        if (bp->kmalloced)
3602                dma_free_coherent(bdev, alloc_size,
3603                                  bp->kmalloced, bp->kmalloced_dma);
3604
3605        dfx_bus_uninit(dev);
3606
3607        dfx_get_bars(bdev, &bar_start, &bar_len);
3608        if (dfx_use_mmio) {
3609                iounmap(bp->base.mem);
3610                release_mem_region(bar_start, bar_len);
3611        } else
3612                release_region(bar_start, bar_len);
3613
3614        if (dfx_bus_pci)
3615                pci_disable_device(to_pci_dev(bdev));
3616
3617        free_netdev(dev);
3618}
3619
3620
3621static int __maybe_unused dfx_dev_register(struct device *);
3622static int __maybe_unused dfx_dev_unregister(struct device *);
3623
3624#ifdef CONFIG_PCI
3625static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3626static void dfx_pci_unregister(struct pci_dev *);
3627
3628static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
3629        { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3630        { }
3631};
3632MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3633
3634static struct pci_driver dfx_pci_driver = {
3635        .name           = "defxx",
3636        .id_table       = dfx_pci_table,
3637        .probe          = dfx_pci_register,
3638        .remove         = dfx_pci_unregister,
3639};
3640
3641static int dfx_pci_register(struct pci_dev *pdev,
3642                            const struct pci_device_id *ent)
3643{
3644        return dfx_register(&pdev->dev);
3645}
3646
3647static void dfx_pci_unregister(struct pci_dev *pdev)
3648{
3649        dfx_unregister(&pdev->dev);
3650}
3651#endif /* CONFIG_PCI */
3652
3653#ifdef CONFIG_EISA
3654static struct eisa_device_id dfx_eisa_table[] = {
3655        { "DEC3001", DEFEA_PROD_ID_1 },
3656        { "DEC3002", DEFEA_PROD_ID_2 },
3657        { "DEC3003", DEFEA_PROD_ID_3 },
3658        { "DEC3004", DEFEA_PROD_ID_4 },
3659        { }
3660};
3661MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3662
3663static struct eisa_driver dfx_eisa_driver = {
3664        .id_table       = dfx_eisa_table,
3665        .driver         = {
3666                .name   = "defxx",
3667                .bus    = &eisa_bus_type,
3668                .probe  = dfx_dev_register,
3669                .remove = dfx_dev_unregister,
3670        },
3671};
3672#endif /* CONFIG_EISA */
3673
3674#ifdef CONFIG_TC
3675static struct tc_device_id const dfx_tc_table[] = {
3676        { "DEC     ", "PMAF-FA " },
3677        { "DEC     ", "PMAF-FD " },
3678        { "DEC     ", "PMAF-FS " },
3679        { "DEC     ", "PMAF-FU " },
3680        { }
3681};
3682MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3683
3684static struct tc_driver dfx_tc_driver = {
3685        .id_table       = dfx_tc_table,
3686        .driver         = {
3687                .name   = "defxx",
3688                .bus    = &tc_bus_type,
3689                .probe  = dfx_dev_register,
3690                .remove = dfx_dev_unregister,
3691        },
3692};
3693#endif /* CONFIG_TC */
3694
3695static int __maybe_unused dfx_dev_register(struct device *dev)
3696{
3697        int status;
3698
3699        status = dfx_register(dev);
3700        if (!status)
3701                get_device(dev);
3702        return status;
3703}
3704
3705static int __maybe_unused dfx_dev_unregister(struct device *dev)
3706{
3707        put_device(dev);
3708        dfx_unregister(dev);
3709        return 0;
3710}
3711
3712
3713static int dfx_init(void)
3714{
3715        int status;
3716
3717        status = pci_register_driver(&dfx_pci_driver);
3718        if (!status)
3719                status = eisa_driver_register(&dfx_eisa_driver);
3720        if (!status)
3721                status = tc_register_driver(&dfx_tc_driver);
3722        return status;
3723}
3724
3725static void dfx_cleanup(void)
3726{
3727        tc_unregister_driver(&dfx_tc_driver);
3728        eisa_driver_unregister(&dfx_eisa_driver);
3729        pci_unregister_driver(&dfx_pci_driver);
3730}
3731
3732module_init(dfx_init);
3733module_exit(dfx_cleanup);
3734MODULE_AUTHOR("Lawrence V. Stefani");
3735MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3736                   DRV_VERSION " " DRV_RELDATE);
3737MODULE_LICENSE("GPL");
3738