linux/drivers/usb/host/xhci.c
<<
>>
Prefs
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30
  31#include "xhci.h"
  32
  33#define DRIVER_AUTHOR "Sarah Sharp"
  34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  35
  36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  37static int link_quirk;
  38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  40
  41/* TODO: copied from ehci-hcd.c - can this be refactored? */
  42/*
  43 * xhci_handshake - spin reading hc until handshake completes or fails
  44 * @ptr: address of hc register to be read
  45 * @mask: bits to look at in result of read
  46 * @done: value of those bits when handshake succeeds
  47 * @usec: timeout in microseconds
  48 *
  49 * Returns negative errno, or zero on success
  50 *
  51 * Success happens when the "mask" bits have the specified value (hardware
  52 * handshake done).  There are two failure modes:  "usec" have passed (major
  53 * hardware flakeout), or the register reads as all-ones (hardware removed).
  54 */
  55int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  56                      u32 mask, u32 done, int usec)
  57{
  58        u32     result;
  59
  60        do {
  61                result = xhci_readl(xhci, ptr);
  62                if (result == ~(u32)0)          /* card removed */
  63                        return -ENODEV;
  64                result &= mask;
  65                if (result == done)
  66                        return 0;
  67                udelay(1);
  68                usec--;
  69        } while (usec > 0);
  70        return -ETIMEDOUT;
  71}
  72
  73/*
  74 * Disable interrupts and begin the xHCI halting process.
  75 */
  76void xhci_quiesce(struct xhci_hcd *xhci)
  77{
  78        u32 halted;
  79        u32 cmd;
  80        u32 mask;
  81
  82        mask = ~(XHCI_IRQS);
  83        halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  84        if (!halted)
  85                mask &= ~CMD_RUN;
  86
  87        cmd = xhci_readl(xhci, &xhci->op_regs->command);
  88        cmd &= mask;
  89        xhci_writel(xhci, cmd, &xhci->op_regs->command);
  90}
  91
  92/*
  93 * Force HC into halt state.
  94 *
  95 * Disable any IRQs and clear the run/stop bit.
  96 * HC will complete any current and actively pipelined transactions, and
  97 * should halt within 16 ms of the run/stop bit being cleared.
  98 * Read HC Halted bit in the status register to see when the HC is finished.
  99 */
 100int xhci_halt(struct xhci_hcd *xhci)
 101{
 102        int ret;
 103        xhci_dbg(xhci, "// Halt the HC\n");
 104        xhci_quiesce(xhci);
 105
 106        ret = xhci_handshake(xhci, &xhci->op_regs->status,
 107                        STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 108        if (!ret) {
 109                xhci->xhc_state |= XHCI_STATE_HALTED;
 110                xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 111        } else
 112                xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 113                                XHCI_MAX_HALT_USEC);
 114        return ret;
 115}
 116
 117/*
 118 * Set the run bit and wait for the host to be running.
 119 */
 120static int xhci_start(struct xhci_hcd *xhci)
 121{
 122        u32 temp;
 123        int ret;
 124
 125        temp = xhci_readl(xhci, &xhci->op_regs->command);
 126        temp |= (CMD_RUN);
 127        xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 128                        temp);
 129        xhci_writel(xhci, temp, &xhci->op_regs->command);
 130
 131        /*
 132         * Wait for the HCHalted Status bit to be 0 to indicate the host is
 133         * running.
 134         */
 135        ret = xhci_handshake(xhci, &xhci->op_regs->status,
 136                        STS_HALT, 0, XHCI_MAX_HALT_USEC);
 137        if (ret == -ETIMEDOUT)
 138                xhci_err(xhci, "Host took too long to start, "
 139                                "waited %u microseconds.\n",
 140                                XHCI_MAX_HALT_USEC);
 141        if (!ret)
 142                xhci->xhc_state &= ~XHCI_STATE_HALTED;
 143        return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155        u32 command;
 156        u32 state;
 157        int ret, i;
 158
 159        state = xhci_readl(xhci, &xhci->op_regs->status);
 160        if ((state & STS_HALT) == 0) {
 161                xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 162                return 0;
 163        }
 164
 165        xhci_dbg(xhci, "// Reset the HC\n");
 166        command = xhci_readl(xhci, &xhci->op_regs->command);
 167        command |= CMD_RESET;
 168        xhci_writel(xhci, command, &xhci->op_regs->command);
 169
 170        ret = xhci_handshake(xhci, &xhci->op_regs->command,
 171                        CMD_RESET, 0, 10 * 1000 * 1000);
 172        if (ret)
 173                return ret;
 174
 175        xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 176        /*
 177         * xHCI cannot write to any doorbells or operational registers other
 178         * than status until the "Controller Not Ready" flag is cleared.
 179         */
 180        ret = xhci_handshake(xhci, &xhci->op_regs->status,
 181                        STS_CNR, 0, 10 * 1000 * 1000);
 182
 183        for (i = 0; i < 2; ++i) {
 184                xhci->bus_state[i].port_c_suspend = 0;
 185                xhci->bus_state[i].suspended_ports = 0;
 186                xhci->bus_state[i].resuming_ports = 0;
 187        }
 188
 189        return ret;
 190}
 191
 192#ifdef CONFIG_PCI
 193static int xhci_free_msi(struct xhci_hcd *xhci)
 194{
 195        int i;
 196
 197        if (!xhci->msix_entries)
 198                return -EINVAL;
 199
 200        for (i = 0; i < xhci->msix_count; i++)
 201                if (xhci->msix_entries[i].vector)
 202                        free_irq(xhci->msix_entries[i].vector,
 203                                        xhci_to_hcd(xhci));
 204        return 0;
 205}
 206
 207/*
 208 * Set up MSI
 209 */
 210static int xhci_setup_msi(struct xhci_hcd *xhci)
 211{
 212        int ret;
 213        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 214
 215        ret = pci_enable_msi(pdev);
 216        if (ret) {
 217                xhci_dbg(xhci, "failed to allocate MSI entry\n");
 218                return ret;
 219        }
 220
 221        ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 222                                0, "xhci_hcd", xhci_to_hcd(xhci));
 223        if (ret) {
 224                xhci_dbg(xhci, "disable MSI interrupt\n");
 225                pci_disable_msi(pdev);
 226        }
 227
 228        return ret;
 229}
 230
 231/*
 232 * Free IRQs
 233 * free all IRQs request
 234 */
 235static void xhci_free_irq(struct xhci_hcd *xhci)
 236{
 237        struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 238        int ret;
 239
 240        /* return if using legacy interrupt */
 241        if (xhci_to_hcd(xhci)->irq > 0)
 242                return;
 243
 244        ret = xhci_free_msi(xhci);
 245        if (!ret)
 246                return;
 247        if (pdev->irq > 0)
 248                free_irq(pdev->irq, xhci_to_hcd(xhci));
 249
 250        return;
 251}
 252
 253/*
 254 * Set up MSI-X
 255 */
 256static int xhci_setup_msix(struct xhci_hcd *xhci)
 257{
 258        int i, ret = 0;
 259        struct usb_hcd *hcd = xhci_to_hcd(xhci);
 260        struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 261
 262        /*
 263         * calculate number of msi-x vectors supported.
 264         * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 265         *   with max number of interrupters based on the xhci HCSPARAMS1.
 266         * - num_online_cpus: maximum msi-x vectors per CPUs core.
 267         *   Add additional 1 vector to ensure always available interrupt.
 268         */
 269        xhci->msix_count = min(num_online_cpus() + 1,
 270                                HCS_MAX_INTRS(xhci->hcs_params1));
 271
 272        xhci->msix_entries =
 273                kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 274                                GFP_KERNEL);
 275        if (!xhci->msix_entries) {
 276                xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 277                return -ENOMEM;
 278        }
 279
 280        for (i = 0; i < xhci->msix_count; i++) {
 281                xhci->msix_entries[i].entry = i;
 282                xhci->msix_entries[i].vector = 0;
 283        }
 284
 285        ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 286        if (ret) {
 287                xhci_dbg(xhci, "Failed to enable MSI-X\n");
 288                goto free_entries;
 289        }
 290
 291        for (i = 0; i < xhci->msix_count; i++) {
 292                ret = request_irq(xhci->msix_entries[i].vector,
 293                                (irq_handler_t)xhci_msi_irq,
 294                                0, "xhci_hcd", xhci_to_hcd(xhci));
 295                if (ret)
 296                        goto disable_msix;
 297        }
 298
 299        hcd->msix_enabled = 1;
 300        return ret;
 301
 302disable_msix:
 303        xhci_dbg(xhci, "disable MSI-X interrupt\n");
 304        xhci_free_irq(xhci);
 305        pci_disable_msix(pdev);
 306free_entries:
 307        kfree(xhci->msix_entries);
 308        xhci->msix_entries = NULL;
 309        return ret;
 310}
 311
 312/* Free any IRQs and disable MSI-X */
 313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 314{
 315        struct usb_hcd *hcd = xhci_to_hcd(xhci);
 316        struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 317
 318        xhci_free_irq(xhci);
 319
 320        if (xhci->msix_entries) {
 321                pci_disable_msix(pdev);
 322                kfree(xhci->msix_entries);
 323                xhci->msix_entries = NULL;
 324        } else {
 325                pci_disable_msi(pdev);
 326        }
 327
 328        hcd->msix_enabled = 0;
 329        return;
 330}
 331
 332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 333{
 334        int i;
 335
 336        if (xhci->msix_entries) {
 337                for (i = 0; i < xhci->msix_count; i++)
 338                        synchronize_irq(xhci->msix_entries[i].vector);
 339        }
 340}
 341
 342static int xhci_try_enable_msi(struct usb_hcd *hcd)
 343{
 344        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 345        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 346        int ret;
 347
 348        /*
 349         * Some Fresco Logic host controllers advertise MSI, but fail to
 350         * generate interrupts.  Don't even try to enable MSI.
 351         */
 352        if (xhci->quirks & XHCI_BROKEN_MSI)
 353                return 0;
 354
 355        /* unregister the legacy interrupt */
 356        if (hcd->irq)
 357                free_irq(hcd->irq, hcd);
 358        hcd->irq = 0;
 359
 360        ret = xhci_setup_msix(xhci);
 361        if (ret)
 362                /* fall back to msi*/
 363                ret = xhci_setup_msi(xhci);
 364
 365        if (!ret)
 366                /* hcd->irq is 0, we have MSI */
 367                return 0;
 368
 369        if (!pdev->irq) {
 370                xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 371                return -EINVAL;
 372        }
 373
 374        /* fall back to legacy interrupt*/
 375        ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 376                        hcd->irq_descr, hcd);
 377        if (ret) {
 378                xhci_err(xhci, "request interrupt %d failed\n",
 379                                pdev->irq);
 380                return ret;
 381        }
 382        hcd->irq = pdev->irq;
 383        return 0;
 384}
 385
 386#else
 387
 388static int xhci_try_enable_msi(struct usb_hcd *hcd)
 389{
 390        return 0;
 391}
 392
 393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 394{
 395}
 396
 397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 398{
 399}
 400
 401#endif
 402
 403static void compliance_mode_recovery(unsigned long arg)
 404{
 405        struct xhci_hcd *xhci;
 406        struct usb_hcd *hcd;
 407        u32 temp;
 408        int i;
 409
 410        xhci = (struct xhci_hcd *)arg;
 411
 412        for (i = 0; i < xhci->num_usb3_ports; i++) {
 413                temp = xhci_readl(xhci, xhci->usb3_ports[i]);
 414                if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 415                        /*
 416                         * Compliance Mode Detected. Letting USB Core
 417                         * handle the Warm Reset
 418                         */
 419                        xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
 420                                        i + 1);
 421                        xhci_dbg(xhci, "Attempting Recovery routine!\n");
 422                        hcd = xhci->shared_hcd;
 423
 424                        if (hcd->state == HC_STATE_SUSPENDED)
 425                                usb_hcd_resume_root_hub(hcd);
 426
 427                        usb_hcd_poll_rh_status(hcd);
 428                }
 429        }
 430
 431        if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 432                mod_timer(&xhci->comp_mode_recovery_timer,
 433                        jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 434}
 435
 436/*
 437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 438 * that causes ports behind that hardware to enter compliance mode sometimes.
 439 * The quirk creates a timer that polls every 2 seconds the link state of
 440 * each host controller's port and recovers it by issuing a Warm reset
 441 * if Compliance mode is detected, otherwise the port will become "dead" (no
 442 * device connections or disconnections will be detected anymore). Becasue no
 443 * status event is generated when entering compliance mode (per xhci spec),
 444 * this quirk is needed on systems that have the failing hardware installed.
 445 */
 446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 447{
 448        xhci->port_status_u0 = 0;
 449        init_timer(&xhci->comp_mode_recovery_timer);
 450
 451        xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 452        xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 453        xhci->comp_mode_recovery_timer.expires = jiffies +
 454                        msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 455
 456        set_timer_slack(&xhci->comp_mode_recovery_timer,
 457                        msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 458        add_timer(&xhci->comp_mode_recovery_timer);
 459        xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
 460}
 461
 462/*
 463 * This function identifies the systems that have installed the SN65LVPE502CP
 464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 465 * Systems:
 466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 467 */
 468static bool compliance_mode_recovery_timer_quirk_check(void)
 469{
 470        const char *dmi_product_name, *dmi_sys_vendor;
 471
 472        dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 473        dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 474        if (!dmi_product_name || !dmi_sys_vendor)
 475                return false;
 476
 477        if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 478                return false;
 479
 480        if (strstr(dmi_product_name, "Z420") ||
 481                        strstr(dmi_product_name, "Z620") ||
 482                        strstr(dmi_product_name, "Z820") ||
 483                        strstr(dmi_product_name, "Z1 Workstation"))
 484                return true;
 485
 486        return false;
 487}
 488
 489static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 490{
 491        return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 492}
 493
 494
 495/*
 496 * Initialize memory for HCD and xHC (one-time init).
 497 *
 498 * Program the PAGESIZE register, initialize the device context array, create
 499 * device contexts (?), set up a command ring segment (or two?), create event
 500 * ring (one for now).
 501 */
 502int xhci_init(struct usb_hcd *hcd)
 503{
 504        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 505        int retval = 0;
 506
 507        xhci_dbg(xhci, "xhci_init\n");
 508        spin_lock_init(&xhci->lock);
 509        if (xhci->hci_version == 0x95 && link_quirk) {
 510                xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 511                xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 512        } else {
 513                xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 514        }
 515        retval = xhci_mem_init(xhci, GFP_KERNEL);
 516        xhci_dbg(xhci, "Finished xhci_init\n");
 517
 518        /* Initializing Compliance Mode Recovery Data If Needed */
 519        if (compliance_mode_recovery_timer_quirk_check()) {
 520                xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 521                compliance_mode_recovery_timer_init(xhci);
 522        }
 523
 524        return retval;
 525}
 526
 527/*-------------------------------------------------------------------------*/
 528
 529
 530#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 531static void xhci_event_ring_work(unsigned long arg)
 532{
 533        unsigned long flags;
 534        int temp;
 535        u64 temp_64;
 536        struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 537        int i, j;
 538
 539        xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 540
 541        spin_lock_irqsave(&xhci->lock, flags);
 542        temp = xhci_readl(xhci, &xhci->op_regs->status);
 543        xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 544        if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 545                        (xhci->xhc_state & XHCI_STATE_HALTED)) {
 546                xhci_dbg(xhci, "HW died, polling stopped.\n");
 547                spin_unlock_irqrestore(&xhci->lock, flags);
 548                return;
 549        }
 550
 551        temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 552        xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 553        xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 554        xhci->error_bitmask = 0;
 555        xhci_dbg(xhci, "Event ring:\n");
 556        xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 557        xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 558        temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 559        temp_64 &= ~ERST_PTR_MASK;
 560        xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 561        xhci_dbg(xhci, "Command ring:\n");
 562        xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 563        xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 564        xhci_dbg_cmd_ptrs(xhci);
 565        for (i = 0; i < MAX_HC_SLOTS; ++i) {
 566                if (!xhci->devs[i])
 567                        continue;
 568                for (j = 0; j < 31; ++j) {
 569                        xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 570                }
 571        }
 572        spin_unlock_irqrestore(&xhci->lock, flags);
 573
 574        if (!xhci->zombie)
 575                mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 576        else
 577                xhci_dbg(xhci, "Quit polling the event ring.\n");
 578}
 579#endif
 580
 581static int xhci_run_finished(struct xhci_hcd *xhci)
 582{
 583        if (xhci_start(xhci)) {
 584                xhci_halt(xhci);
 585                return -ENODEV;
 586        }
 587        xhci->shared_hcd->state = HC_STATE_RUNNING;
 588        xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 589
 590        if (xhci->quirks & XHCI_NEC_HOST)
 591                xhci_ring_cmd_db(xhci);
 592
 593        xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 594        return 0;
 595}
 596
 597/*
 598 * Start the HC after it was halted.
 599 *
 600 * This function is called by the USB core when the HC driver is added.
 601 * Its opposite is xhci_stop().
 602 *
 603 * xhci_init() must be called once before this function can be called.
 604 * Reset the HC, enable device slot contexts, program DCBAAP, and
 605 * set command ring pointer and event ring pointer.
 606 *
 607 * Setup MSI-X vectors and enable interrupts.
 608 */
 609int xhci_run(struct usb_hcd *hcd)
 610{
 611        u32 temp;
 612        u64 temp_64;
 613        int ret;
 614        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 615
 616        /* Start the xHCI host controller running only after the USB 2.0 roothub
 617         * is setup.
 618         */
 619
 620        hcd->uses_new_polling = 1;
 621        if (!usb_hcd_is_primary_hcd(hcd))
 622                return xhci_run_finished(xhci);
 623
 624        xhci_dbg(xhci, "xhci_run\n");
 625
 626        ret = xhci_try_enable_msi(hcd);
 627        if (ret)
 628                return ret;
 629
 630#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 631        init_timer(&xhci->event_ring_timer);
 632        xhci->event_ring_timer.data = (unsigned long) xhci;
 633        xhci->event_ring_timer.function = xhci_event_ring_work;
 634        /* Poll the event ring */
 635        xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 636        xhci->zombie = 0;
 637        xhci_dbg(xhci, "Setting event ring polling timer\n");
 638        add_timer(&xhci->event_ring_timer);
 639#endif
 640
 641        xhci_dbg(xhci, "Command ring memory map follows:\n");
 642        xhci_debug_ring(xhci, xhci->cmd_ring);
 643        xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 644        xhci_dbg_cmd_ptrs(xhci);
 645
 646        xhci_dbg(xhci, "ERST memory map follows:\n");
 647        xhci_dbg_erst(xhci, &xhci->erst);
 648        xhci_dbg(xhci, "Event ring:\n");
 649        xhci_debug_ring(xhci, xhci->event_ring);
 650        xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 651        temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 652        temp_64 &= ~ERST_PTR_MASK;
 653        xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 654
 655        xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 656        temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 657        temp &= ~ER_IRQ_INTERVAL_MASK;
 658        temp |= (u32) 160;
 659        xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 660
 661        /* Set the HCD state before we enable the irqs */
 662        temp = xhci_readl(xhci, &xhci->op_regs->command);
 663        temp |= (CMD_EIE);
 664        xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 665                        temp);
 666        xhci_writel(xhci, temp, &xhci->op_regs->command);
 667
 668        temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 669        xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 670                        xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 671        xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 672                        &xhci->ir_set->irq_pending);
 673        xhci_print_ir_set(xhci, 0);
 674
 675        if (xhci->quirks & XHCI_NEC_HOST)
 676                xhci_queue_vendor_command(xhci, 0, 0, 0,
 677                                TRB_TYPE(TRB_NEC_GET_FW));
 678
 679        xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 680        return 0;
 681}
 682
 683static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 684{
 685        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 686
 687        spin_lock_irq(&xhci->lock);
 688        xhci_halt(xhci);
 689
 690        /* The shared_hcd is going to be deallocated shortly (the USB core only
 691         * calls this function when allocation fails in usb_add_hcd(), or
 692         * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 693         */
 694        xhci->shared_hcd = NULL;
 695        spin_unlock_irq(&xhci->lock);
 696}
 697
 698/*
 699 * Stop xHCI driver.
 700 *
 701 * This function is called by the USB core when the HC driver is removed.
 702 * Its opposite is xhci_run().
 703 *
 704 * Disable device contexts, disable IRQs, and quiesce the HC.
 705 * Reset the HC, finish any completed transactions, and cleanup memory.
 706 */
 707void xhci_stop(struct usb_hcd *hcd)
 708{
 709        u32 temp;
 710        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 711
 712        if (!usb_hcd_is_primary_hcd(hcd)) {
 713                xhci_only_stop_hcd(xhci->shared_hcd);
 714                return;
 715        }
 716
 717        spin_lock_irq(&xhci->lock);
 718        /* Make sure the xHC is halted for a USB3 roothub
 719         * (xhci_stop() could be called as part of failed init).
 720         */
 721        xhci_halt(xhci);
 722        xhci_reset(xhci);
 723        spin_unlock_irq(&xhci->lock);
 724
 725        xhci_cleanup_msix(xhci);
 726
 727#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 728        /* Tell the event ring poll function not to reschedule */
 729        xhci->zombie = 1;
 730        del_timer_sync(&xhci->event_ring_timer);
 731#endif
 732
 733        /* Deleting Compliance Mode Recovery Timer */
 734        if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 735                        (!(xhci_all_ports_seen_u0(xhci))))
 736                del_timer_sync(&xhci->comp_mode_recovery_timer);
 737
 738        if (xhci->quirks & XHCI_AMD_PLL_FIX)
 739                usb_amd_dev_put();
 740
 741        xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 742        temp = xhci_readl(xhci, &xhci->op_regs->status);
 743        xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 744        temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 745        xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 746                        &xhci->ir_set->irq_pending);
 747        xhci_print_ir_set(xhci, 0);
 748
 749        xhci_dbg(xhci, "cleaning up memory\n");
 750        xhci_mem_cleanup(xhci);
 751        xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 752                    xhci_readl(xhci, &xhci->op_regs->status));
 753}
 754
 755/*
 756 * Shutdown HC (not bus-specific)
 757 *
 758 * This is called when the machine is rebooting or halting.  We assume that the
 759 * machine will be powered off, and the HC's internal state will be reset.
 760 * Don't bother to free memory.
 761 *
 762 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 763 */
 764void xhci_shutdown(struct usb_hcd *hcd)
 765{
 766        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 767
 768        if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 769                usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 770
 771        spin_lock_irq(&xhci->lock);
 772        xhci_halt(xhci);
 773        spin_unlock_irq(&xhci->lock);
 774
 775        xhci_cleanup_msix(xhci);
 776
 777        xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 778                    xhci_readl(xhci, &xhci->op_regs->status));
 779}
 780
 781#ifdef CONFIG_PM
 782static void xhci_save_registers(struct xhci_hcd *xhci)
 783{
 784        xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 785        xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 786        xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 787        xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 788        xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 789        xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 790        xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 791        xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 792        xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 793}
 794
 795static void xhci_restore_registers(struct xhci_hcd *xhci)
 796{
 797        xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 798        xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 799        xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 800        xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 801        xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 802        xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 803        xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 804        xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 805        xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 806}
 807
 808static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 809{
 810        u64     val_64;
 811
 812        /* step 2: initialize command ring buffer */
 813        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 814        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 815                (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 816                                      xhci->cmd_ring->dequeue) &
 817                 (u64) ~CMD_RING_RSVD_BITS) |
 818                xhci->cmd_ring->cycle_state;
 819        xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 820                        (long unsigned long) val_64);
 821        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 822}
 823
 824/*
 825 * The whole command ring must be cleared to zero when we suspend the host.
 826 *
 827 * The host doesn't save the command ring pointer in the suspend well, so we
 828 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 829 * aligned, because of the reserved bits in the command ring dequeue pointer
 830 * register.  Therefore, we can't just set the dequeue pointer back in the
 831 * middle of the ring (TRBs are 16-byte aligned).
 832 */
 833static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 834{
 835        struct xhci_ring *ring;
 836        struct xhci_segment *seg;
 837
 838        ring = xhci->cmd_ring;
 839        seg = ring->deq_seg;
 840        do {
 841                memset(seg->trbs, 0,
 842                        sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 843                seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 844                        cpu_to_le32(~TRB_CYCLE);
 845                seg = seg->next;
 846        } while (seg != ring->deq_seg);
 847
 848        /* Reset the software enqueue and dequeue pointers */
 849        ring->deq_seg = ring->first_seg;
 850        ring->dequeue = ring->first_seg->trbs;
 851        ring->enq_seg = ring->deq_seg;
 852        ring->enqueue = ring->dequeue;
 853
 854        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 855        /*
 856         * Ring is now zeroed, so the HW should look for change of ownership
 857         * when the cycle bit is set to 1.
 858         */
 859        ring->cycle_state = 1;
 860
 861        /*
 862         * Reset the hardware dequeue pointer.
 863         * Yes, this will need to be re-written after resume, but we're paranoid
 864         * and want to make sure the hardware doesn't access bogus memory
 865         * because, say, the BIOS or an SMI started the host without changing
 866         * the command ring pointers.
 867         */
 868        xhci_set_cmd_ring_deq(xhci);
 869}
 870
 871/*
 872 * Stop HC (not bus-specific)
 873 *
 874 * This is called when the machine transition into S3/S4 mode.
 875 *
 876 */
 877int xhci_suspend(struct xhci_hcd *xhci)
 878{
 879        int                     rc = 0;
 880        struct usb_hcd          *hcd = xhci_to_hcd(xhci);
 881        u32                     command;
 882
 883        if (hcd->state != HC_STATE_SUSPENDED ||
 884                        xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 885                return -EINVAL;
 886
 887        /* Don't poll the roothubs on bus suspend. */
 888        xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 889        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 890        del_timer_sync(&hcd->rh_timer);
 891
 892        spin_lock_irq(&xhci->lock);
 893        clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 894        clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 895        /* step 1: stop endpoint */
 896        /* skipped assuming that port suspend has done */
 897
 898        /* step 2: clear Run/Stop bit */
 899        command = xhci_readl(xhci, &xhci->op_regs->command);
 900        command &= ~CMD_RUN;
 901        xhci_writel(xhci, command, &xhci->op_regs->command);
 902        if (xhci_handshake(xhci, &xhci->op_regs->status,
 903                      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
 904                xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 905                spin_unlock_irq(&xhci->lock);
 906                return -ETIMEDOUT;
 907        }
 908        xhci_clear_command_ring(xhci);
 909
 910        /* step 3: save registers */
 911        xhci_save_registers(xhci);
 912
 913        /* step 4: set CSS flag */
 914        command = xhci_readl(xhci, &xhci->op_regs->command);
 915        command |= CMD_CSS;
 916        xhci_writel(xhci, command, &xhci->op_regs->command);
 917        if (xhci_handshake(xhci, &xhci->op_regs->status,
 918                                STS_SAVE, 0, 10 * 1000)) {
 919                xhci_warn(xhci, "WARN: xHC save state timeout\n");
 920                spin_unlock_irq(&xhci->lock);
 921                return -ETIMEDOUT;
 922        }
 923        spin_unlock_irq(&xhci->lock);
 924
 925        /*
 926         * Deleting Compliance Mode Recovery Timer because the xHCI Host
 927         * is about to be suspended.
 928         */
 929        if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 930                        (!(xhci_all_ports_seen_u0(xhci)))) {
 931                del_timer_sync(&xhci->comp_mode_recovery_timer);
 932                xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
 933        }
 934
 935        /* step 5: remove core well power */
 936        /* synchronize irq when using MSI-X */
 937        xhci_msix_sync_irqs(xhci);
 938
 939        return rc;
 940}
 941
 942/*
 943 * start xHC (not bus-specific)
 944 *
 945 * This is called when the machine transition from S3/S4 mode.
 946 *
 947 */
 948int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 949{
 950        u32                     command, temp = 0;
 951        struct usb_hcd          *hcd = xhci_to_hcd(xhci);
 952        struct usb_hcd          *secondary_hcd;
 953        int                     retval = 0;
 954
 955        /* Wait a bit if either of the roothubs need to settle from the
 956         * transition into bus suspend.
 957         */
 958        if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 959                        time_before(jiffies,
 960                                xhci->bus_state[1].next_statechange))
 961                msleep(100);
 962
 963        set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 964        set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 965
 966        spin_lock_irq(&xhci->lock);
 967        if (xhci->quirks & XHCI_RESET_ON_RESUME)
 968                hibernated = true;
 969
 970        if (!hibernated) {
 971                /* step 1: restore register */
 972                xhci_restore_registers(xhci);
 973                /* step 2: initialize command ring buffer */
 974                xhci_set_cmd_ring_deq(xhci);
 975                /* step 3: restore state and start state*/
 976                /* step 3: set CRS flag */
 977                command = xhci_readl(xhci, &xhci->op_regs->command);
 978                command |= CMD_CRS;
 979                xhci_writel(xhci, command, &xhci->op_regs->command);
 980                if (xhci_handshake(xhci, &xhci->op_regs->status,
 981                              STS_RESTORE, 0, 10 * 1000)) {
 982                        xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 983                        spin_unlock_irq(&xhci->lock);
 984                        return -ETIMEDOUT;
 985                }
 986                temp = xhci_readl(xhci, &xhci->op_regs->status);
 987        }
 988
 989        /* If restore operation fails, re-initialize the HC during resume */
 990        if ((temp & STS_SRE) || hibernated) {
 991                /* Let the USB core know _both_ roothubs lost power. */
 992                usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 993                usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 994
 995                xhci_dbg(xhci, "Stop HCD\n");
 996                xhci_halt(xhci);
 997                xhci_reset(xhci);
 998                spin_unlock_irq(&xhci->lock);
 999                xhci_cleanup_msix(xhci);
1000
1001#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1002                /* Tell the event ring poll function not to reschedule */
1003                xhci->zombie = 1;
1004                del_timer_sync(&xhci->event_ring_timer);
1005#endif
1006
1007                xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1008                temp = xhci_readl(xhci, &xhci->op_regs->status);
1009                xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1010                temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1011                xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1012                                &xhci->ir_set->irq_pending);
1013                xhci_print_ir_set(xhci, 0);
1014
1015                xhci_dbg(xhci, "cleaning up memory\n");
1016                xhci_mem_cleanup(xhci);
1017                xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1018                            xhci_readl(xhci, &xhci->op_regs->status));
1019
1020                /* USB core calls the PCI reinit and start functions twice:
1021                 * first with the primary HCD, and then with the secondary HCD.
1022                 * If we don't do the same, the host will never be started.
1023                 */
1024                if (!usb_hcd_is_primary_hcd(hcd))
1025                        secondary_hcd = hcd;
1026                else
1027                        secondary_hcd = xhci->shared_hcd;
1028
1029                xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1030                retval = xhci_init(hcd->primary_hcd);
1031                if (retval)
1032                        return retval;
1033                xhci_dbg(xhci, "Start the primary HCD\n");
1034                retval = xhci_run(hcd->primary_hcd);
1035                if (!retval) {
1036                        xhci_dbg(xhci, "Start the secondary HCD\n");
1037                        retval = xhci_run(secondary_hcd);
1038                }
1039                hcd->state = HC_STATE_SUSPENDED;
1040                xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1041                goto done;
1042        }
1043
1044        /* step 4: set Run/Stop bit */
1045        command = xhci_readl(xhci, &xhci->op_regs->command);
1046        command |= CMD_RUN;
1047        xhci_writel(xhci, command, &xhci->op_regs->command);
1048        xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1049                  0, 250 * 1000);
1050
1051        /* step 5: walk topology and initialize portsc,
1052         * portpmsc and portli
1053         */
1054        /* this is done in bus_resume */
1055
1056        /* step 6: restart each of the previously
1057         * Running endpoints by ringing their doorbells
1058         */
1059
1060        spin_unlock_irq(&xhci->lock);
1061
1062 done:
1063        if (retval == 0) {
1064                usb_hcd_resume_root_hub(hcd);
1065                usb_hcd_resume_root_hub(xhci->shared_hcd);
1066        }
1067
1068        /*
1069         * If system is subject to the Quirk, Compliance Mode Timer needs to
1070         * be re-initialized Always after a system resume. Ports are subject
1071         * to suffer the Compliance Mode issue again. It doesn't matter if
1072         * ports have entered previously to U0 before system's suspension.
1073         */
1074        if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1075                compliance_mode_recovery_timer_init(xhci);
1076
1077        /* Re-enable port polling. */
1078        xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1079        set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1080        usb_hcd_poll_rh_status(hcd);
1081
1082        return retval;
1083}
1084#endif  /* CONFIG_PM */
1085
1086/*-------------------------------------------------------------------------*/
1087
1088/**
1089 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1090 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1091 * value to right shift 1 for the bitmask.
1092 *
1093 * Index  = (epnum * 2) + direction - 1,
1094 * where direction = 0 for OUT, 1 for IN.
1095 * For control endpoints, the IN index is used (OUT index is unused), so
1096 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1097 */
1098unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1099{
1100        unsigned int index;
1101        if (usb_endpoint_xfer_control(desc))
1102                index = (unsigned int) (usb_endpoint_num(desc)*2);
1103        else
1104                index = (unsigned int) (usb_endpoint_num(desc)*2) +
1105                        (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1106        return index;
1107}
1108
1109/* Find the flag for this endpoint (for use in the control context).  Use the
1110 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1111 * bit 1, etc.
1112 */
1113unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1114{
1115        return 1 << (xhci_get_endpoint_index(desc) + 1);
1116}
1117
1118/* Find the flag for this endpoint (for use in the control context).  Use the
1119 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1120 * bit 1, etc.
1121 */
1122unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1123{
1124        return 1 << (ep_index + 1);
1125}
1126
1127/* Compute the last valid endpoint context index.  Basically, this is the
1128 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1129 * we find the most significant bit set in the added contexts flags.
1130 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1131 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1132 */
1133unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1134{
1135        return fls(added_ctxs) - 1;
1136}
1137
1138/* Returns 1 if the arguments are OK;
1139 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1140 */
1141static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1142                struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1143                const char *func) {
1144        struct xhci_hcd *xhci;
1145        struct xhci_virt_device *virt_dev;
1146
1147        if (!hcd || (check_ep && !ep) || !udev) {
1148                printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1149                                func);
1150                return -EINVAL;
1151        }
1152        if (!udev->parent) {
1153                printk(KERN_DEBUG "xHCI %s called for root hub\n",
1154                                func);
1155                return 0;
1156        }
1157
1158        xhci = hcd_to_xhci(hcd);
1159        if (xhci->xhc_state & XHCI_STATE_HALTED)
1160                return -ENODEV;
1161
1162        if (check_virt_dev) {
1163                if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1164                        printk(KERN_DEBUG "xHCI %s called with unaddressed "
1165                                                "device\n", func);
1166                        return -EINVAL;
1167                }
1168
1169                virt_dev = xhci->devs[udev->slot_id];
1170                if (virt_dev->udev != udev) {
1171                        printk(KERN_DEBUG "xHCI %s called with udev and "
1172                                          "virt_dev does not match\n", func);
1173                        return -EINVAL;
1174                }
1175        }
1176
1177        return 1;
1178}
1179
1180static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1181                struct usb_device *udev, struct xhci_command *command,
1182                bool ctx_change, bool must_succeed);
1183
1184/*
1185 * Full speed devices may have a max packet size greater than 8 bytes, but the
1186 * USB core doesn't know that until it reads the first 8 bytes of the
1187 * descriptor.  If the usb_device's max packet size changes after that point,
1188 * we need to issue an evaluate context command and wait on it.
1189 */
1190static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1191                unsigned int ep_index, struct urb *urb)
1192{
1193        struct xhci_container_ctx *in_ctx;
1194        struct xhci_container_ctx *out_ctx;
1195        struct xhci_input_control_ctx *ctrl_ctx;
1196        struct xhci_ep_ctx *ep_ctx;
1197        int max_packet_size;
1198        int hw_max_packet_size;
1199        int ret = 0;
1200
1201        out_ctx = xhci->devs[slot_id]->out_ctx;
1202        ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1203        hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1204        max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1205        if (hw_max_packet_size != max_packet_size) {
1206                xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1207                xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1208                                max_packet_size);
1209                xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1210                                hw_max_packet_size);
1211                xhci_dbg(xhci, "Issuing evaluate context command.\n");
1212
1213                /* Set up the modified control endpoint 0 */
1214                xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1215                                xhci->devs[slot_id]->out_ctx, ep_index);
1216                in_ctx = xhci->devs[slot_id]->in_ctx;
1217                ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1218                ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1219                ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1220
1221                /* Set up the input context flags for the command */
1222                /* FIXME: This won't work if a non-default control endpoint
1223                 * changes max packet sizes.
1224                 */
1225                ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1226                ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1227                ctrl_ctx->drop_flags = 0;
1228
1229                xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1230                xhci_dbg_ctx(xhci, in_ctx, ep_index);
1231                xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1232                xhci_dbg_ctx(xhci, out_ctx, ep_index);
1233
1234                ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1235                                true, false);
1236
1237                /* Clean up the input context for later use by bandwidth
1238                 * functions.
1239                 */
1240                ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1241        }
1242        return ret;
1243}
1244
1245/*
1246 * non-error returns are a promise to giveback() the urb later
1247 * we drop ownership so next owner (or urb unlink) can get it
1248 */
1249int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1250{
1251        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1252        struct xhci_td *buffer;
1253        unsigned long flags;
1254        int ret = 0;
1255        unsigned int slot_id, ep_index;
1256        struct urb_priv *urb_priv;
1257        int size, i;
1258
1259        if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1260                                        true, true, __func__) <= 0)
1261                return -EINVAL;
1262
1263        slot_id = urb->dev->slot_id;
1264        ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1265
1266        if (!HCD_HW_ACCESSIBLE(hcd)) {
1267                if (!in_interrupt())
1268                        xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1269                ret = -ESHUTDOWN;
1270                goto exit;
1271        }
1272
1273        if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1274                size = urb->number_of_packets;
1275        else
1276                size = 1;
1277
1278        urb_priv = kzalloc(sizeof(struct urb_priv) +
1279                                  size * sizeof(struct xhci_td *), mem_flags);
1280        if (!urb_priv)
1281                return -ENOMEM;
1282
1283        buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1284        if (!buffer) {
1285                kfree(urb_priv);
1286                return -ENOMEM;
1287        }
1288
1289        for (i = 0; i < size; i++) {
1290                urb_priv->td[i] = buffer;
1291                buffer++;
1292        }
1293
1294        urb_priv->length = size;
1295        urb_priv->td_cnt = 0;
1296        urb->hcpriv = urb_priv;
1297
1298        if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1299                /* Check to see if the max packet size for the default control
1300                 * endpoint changed during FS device enumeration
1301                 */
1302                if (urb->dev->speed == USB_SPEED_FULL) {
1303                        ret = xhci_check_maxpacket(xhci, slot_id,
1304                                        ep_index, urb);
1305                        if (ret < 0) {
1306                                xhci_urb_free_priv(xhci, urb_priv);
1307                                urb->hcpriv = NULL;
1308                                return ret;
1309                        }
1310                }
1311
1312                /* We have a spinlock and interrupts disabled, so we must pass
1313                 * atomic context to this function, which may allocate memory.
1314                 */
1315                spin_lock_irqsave(&xhci->lock, flags);
1316                if (xhci->xhc_state & XHCI_STATE_DYING)
1317                        goto dying;
1318                ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1319                                slot_id, ep_index);
1320                if (ret)
1321                        goto free_priv;
1322                spin_unlock_irqrestore(&xhci->lock, flags);
1323        } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1324                spin_lock_irqsave(&xhci->lock, flags);
1325                if (xhci->xhc_state & XHCI_STATE_DYING)
1326                        goto dying;
1327                if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1328                                EP_GETTING_STREAMS) {
1329                        xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1330                                        "is transitioning to using streams.\n");
1331                        ret = -EINVAL;
1332                } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1333                                EP_GETTING_NO_STREAMS) {
1334                        xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1335                                        "is transitioning to "
1336                                        "not having streams.\n");
1337                        ret = -EINVAL;
1338                } else {
1339                        ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1340                                        slot_id, ep_index);
1341                }
1342                if (ret)
1343                        goto free_priv;
1344                spin_unlock_irqrestore(&xhci->lock, flags);
1345        } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1346                spin_lock_irqsave(&xhci->lock, flags);
1347                if (xhci->xhc_state & XHCI_STATE_DYING)
1348                        goto dying;
1349                ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1350                                slot_id, ep_index);
1351                if (ret)
1352                        goto free_priv;
1353                spin_unlock_irqrestore(&xhci->lock, flags);
1354        } else {
1355                spin_lock_irqsave(&xhci->lock, flags);
1356                if (xhci->xhc_state & XHCI_STATE_DYING)
1357                        goto dying;
1358                ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1359                                slot_id, ep_index);
1360                if (ret)
1361                        goto free_priv;
1362                spin_unlock_irqrestore(&xhci->lock, flags);
1363        }
1364exit:
1365        return ret;
1366dying:
1367        xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1368                        "non-responsive xHCI host.\n",
1369                        urb->ep->desc.bEndpointAddress, urb);
1370        ret = -ESHUTDOWN;
1371free_priv:
1372        xhci_urb_free_priv(xhci, urb_priv);
1373        urb->hcpriv = NULL;
1374        spin_unlock_irqrestore(&xhci->lock, flags);
1375        return ret;
1376}
1377
1378/* Get the right ring for the given URB.
1379 * If the endpoint supports streams, boundary check the URB's stream ID.
1380 * If the endpoint doesn't support streams, return the singular endpoint ring.
1381 */
1382static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1383                struct urb *urb)
1384{
1385        unsigned int slot_id;
1386        unsigned int ep_index;
1387        unsigned int stream_id;
1388        struct xhci_virt_ep *ep;
1389
1390        slot_id = urb->dev->slot_id;
1391        ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1392        stream_id = urb->stream_id;
1393        ep = &xhci->devs[slot_id]->eps[ep_index];
1394        /* Common case: no streams */
1395        if (!(ep->ep_state & EP_HAS_STREAMS))
1396                return ep->ring;
1397
1398        if (stream_id == 0) {
1399                xhci_warn(xhci,
1400                                "WARN: Slot ID %u, ep index %u has streams, "
1401                                "but URB has no stream ID.\n",
1402                                slot_id, ep_index);
1403                return NULL;
1404        }
1405
1406        if (stream_id < ep->stream_info->num_streams)
1407                return ep->stream_info->stream_rings[stream_id];
1408
1409        xhci_warn(xhci,
1410                        "WARN: Slot ID %u, ep index %u has "
1411                        "stream IDs 1 to %u allocated, "
1412                        "but stream ID %u is requested.\n",
1413                        slot_id, ep_index,
1414                        ep->stream_info->num_streams - 1,
1415                        stream_id);
1416        return NULL;
1417}
1418
1419/*
1420 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1421 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1422 * should pick up where it left off in the TD, unless a Set Transfer Ring
1423 * Dequeue Pointer is issued.
1424 *
1425 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1426 * the ring.  Since the ring is a contiguous structure, they can't be physically
1427 * removed.  Instead, there are two options:
1428 *
1429 *  1) If the HC is in the middle of processing the URB to be canceled, we
1430 *     simply move the ring's dequeue pointer past those TRBs using the Set
1431 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1432 *     when drivers timeout on the last submitted URB and attempt to cancel.
1433 *
1434 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1435 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1436 *     HC will need to invalidate the any TRBs it has cached after the stop
1437 *     endpoint command, as noted in the xHCI 0.95 errata.
1438 *
1439 *  3) The TD may have completed by the time the Stop Endpoint Command
1440 *     completes, so software needs to handle that case too.
1441 *
1442 * This function should protect against the TD enqueueing code ringing the
1443 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1444 * It also needs to account for multiple cancellations on happening at the same
1445 * time for the same endpoint.
1446 *
1447 * Note that this function can be called in any context, or so says
1448 * usb_hcd_unlink_urb()
1449 */
1450int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1451{
1452        unsigned long flags;
1453        int ret, i;
1454        u32 temp;
1455        struct xhci_hcd *xhci;
1456        struct urb_priv *urb_priv;
1457        struct xhci_td *td;
1458        unsigned int ep_index;
1459        struct xhci_ring *ep_ring;
1460        struct xhci_virt_ep *ep;
1461
1462        xhci = hcd_to_xhci(hcd);
1463        spin_lock_irqsave(&xhci->lock, flags);
1464        /* Make sure the URB hasn't completed or been unlinked already */
1465        ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1466        if (ret || !urb->hcpriv)
1467                goto done;
1468        temp = xhci_readl(xhci, &xhci->op_regs->status);
1469        if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1470                xhci_dbg(xhci, "HW died, freeing TD.\n");
1471                urb_priv = urb->hcpriv;
1472                for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1473                        td = urb_priv->td[i];
1474                        if (!list_empty(&td->td_list))
1475                                list_del_init(&td->td_list);
1476                        if (!list_empty(&td->cancelled_td_list))
1477                                list_del_init(&td->cancelled_td_list);
1478                }
1479
1480                usb_hcd_unlink_urb_from_ep(hcd, urb);
1481                spin_unlock_irqrestore(&xhci->lock, flags);
1482                usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1483                xhci_urb_free_priv(xhci, urb_priv);
1484                return ret;
1485        }
1486        if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1487                        (xhci->xhc_state & XHCI_STATE_HALTED)) {
1488                xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1489                                "non-responsive xHCI host.\n",
1490                                urb->ep->desc.bEndpointAddress, urb);
1491                /* Let the stop endpoint command watchdog timer (which set this
1492                 * state) finish cleaning up the endpoint TD lists.  We must
1493                 * have caught it in the middle of dropping a lock and giving
1494                 * back an URB.
1495                 */
1496                goto done;
1497        }
1498
1499        ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1500        ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1501        ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1502        if (!ep_ring) {
1503                ret = -EINVAL;
1504                goto done;
1505        }
1506
1507        urb_priv = urb->hcpriv;
1508        i = urb_priv->td_cnt;
1509        if (i < urb_priv->length)
1510                xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1511                                "starting at offset 0x%llx\n",
1512                                urb, urb->dev->devpath,
1513                                urb->ep->desc.bEndpointAddress,
1514                                (unsigned long long) xhci_trb_virt_to_dma(
1515                                        urb_priv->td[i]->start_seg,
1516                                        urb_priv->td[i]->first_trb));
1517
1518        for (; i < urb_priv->length; i++) {
1519                td = urb_priv->td[i];
1520                list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1521        }
1522
1523        /* Queue a stop endpoint command, but only if this is
1524         * the first cancellation to be handled.
1525         */
1526        if (!(ep->ep_state & EP_HALT_PENDING)) {
1527                ep->ep_state |= EP_HALT_PENDING;
1528                ep->stop_cmds_pending++;
1529                ep->stop_cmd_timer.expires = jiffies +
1530                        XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1531                add_timer(&ep->stop_cmd_timer);
1532                xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1533                xhci_ring_cmd_db(xhci);
1534        }
1535done:
1536        spin_unlock_irqrestore(&xhci->lock, flags);
1537        return ret;
1538}
1539
1540/* Drop an endpoint from a new bandwidth configuration for this device.
1541 * Only one call to this function is allowed per endpoint before
1542 * check_bandwidth() or reset_bandwidth() must be called.
1543 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1544 * add the endpoint to the schedule with possibly new parameters denoted by a
1545 * different endpoint descriptor in usb_host_endpoint.
1546 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1547 * not allowed.
1548 *
1549 * The USB core will not allow URBs to be queued to an endpoint that is being
1550 * disabled, so there's no need for mutual exclusion to protect
1551 * the xhci->devs[slot_id] structure.
1552 */
1553int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1554                struct usb_host_endpoint *ep)
1555{
1556        struct xhci_hcd *xhci;
1557        struct xhci_container_ctx *in_ctx, *out_ctx;
1558        struct xhci_input_control_ctx *ctrl_ctx;
1559        struct xhci_slot_ctx *slot_ctx;
1560        unsigned int last_ctx;
1561        unsigned int ep_index;
1562        struct xhci_ep_ctx *ep_ctx;
1563        u32 drop_flag;
1564        u32 new_add_flags, new_drop_flags, new_slot_info;
1565        int ret;
1566
1567        ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1568        if (ret <= 0)
1569                return ret;
1570        xhci = hcd_to_xhci(hcd);
1571        if (xhci->xhc_state & XHCI_STATE_DYING)
1572                return -ENODEV;
1573
1574        xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1575        drop_flag = xhci_get_endpoint_flag(&ep->desc);
1576        if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1577                xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1578                                __func__, drop_flag);
1579                return 0;
1580        }
1581
1582        in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1583        out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1584        ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1585        ep_index = xhci_get_endpoint_index(&ep->desc);
1586        ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587        /* If the HC already knows the endpoint is disabled,
1588         * or the HCD has noted it is disabled, ignore this request
1589         */
1590        if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1591             cpu_to_le32(EP_STATE_DISABLED)) ||
1592            le32_to_cpu(ctrl_ctx->drop_flags) &
1593            xhci_get_endpoint_flag(&ep->desc)) {
1594                xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1595                                __func__, ep);
1596                return 0;
1597        }
1598
1599        ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1600        new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1601
1602        ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1603        new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1604
1605        last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1606        slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1607        /* Update the last valid endpoint context, if we deleted the last one */
1608        if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1609            LAST_CTX(last_ctx)) {
1610                slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1611                slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1612        }
1613        new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1614
1615        xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1616
1617        xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1618                        (unsigned int) ep->desc.bEndpointAddress,
1619                        udev->slot_id,
1620                        (unsigned int) new_drop_flags,
1621                        (unsigned int) new_add_flags,
1622                        (unsigned int) new_slot_info);
1623        return 0;
1624}
1625
1626/* Add an endpoint to a new possible bandwidth configuration for this device.
1627 * Only one call to this function is allowed per endpoint before
1628 * check_bandwidth() or reset_bandwidth() must be called.
1629 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1630 * add the endpoint to the schedule with possibly new parameters denoted by a
1631 * different endpoint descriptor in usb_host_endpoint.
1632 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1633 * not allowed.
1634 *
1635 * The USB core will not allow URBs to be queued to an endpoint until the
1636 * configuration or alt setting is installed in the device, so there's no need
1637 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1638 */
1639int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1640                struct usb_host_endpoint *ep)
1641{
1642        struct xhci_hcd *xhci;
1643        struct xhci_container_ctx *in_ctx, *out_ctx;
1644        unsigned int ep_index;
1645        struct xhci_slot_ctx *slot_ctx;
1646        struct xhci_input_control_ctx *ctrl_ctx;
1647        u32 added_ctxs;
1648        unsigned int last_ctx;
1649        u32 new_add_flags, new_drop_flags, new_slot_info;
1650        struct xhci_virt_device *virt_dev;
1651        int ret = 0;
1652
1653        ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1654        if (ret <= 0) {
1655                /* So we won't queue a reset ep command for a root hub */
1656                ep->hcpriv = NULL;
1657                return ret;
1658        }
1659        xhci = hcd_to_xhci(hcd);
1660        if (xhci->xhc_state & XHCI_STATE_DYING)
1661                return -ENODEV;
1662
1663        added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1664        last_ctx = xhci_last_valid_endpoint(added_ctxs);
1665        if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1666                /* FIXME when we have to issue an evaluate endpoint command to
1667                 * deal with ep0 max packet size changing once we get the
1668                 * descriptors
1669                 */
1670                xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1671                                __func__, added_ctxs);
1672                return 0;
1673        }
1674
1675        virt_dev = xhci->devs[udev->slot_id];
1676        in_ctx = virt_dev->in_ctx;
1677        out_ctx = virt_dev->out_ctx;
1678        ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1679        ep_index = xhci_get_endpoint_index(&ep->desc);
1680
1681        /* If this endpoint is already in use, and the upper layers are trying
1682         * to add it again without dropping it, reject the addition.
1683         */
1684        if (virt_dev->eps[ep_index].ring &&
1685                        !(le32_to_cpu(ctrl_ctx->drop_flags) &
1686                                xhci_get_endpoint_flag(&ep->desc))) {
1687                xhci_warn(xhci, "Trying to add endpoint 0x%x "
1688                                "without dropping it.\n",
1689                                (unsigned int) ep->desc.bEndpointAddress);
1690                return -EINVAL;
1691        }
1692
1693        /* If the HCD has already noted the endpoint is enabled,
1694         * ignore this request.
1695         */
1696        if (le32_to_cpu(ctrl_ctx->add_flags) &
1697            xhci_get_endpoint_flag(&ep->desc)) {
1698                xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1699                                __func__, ep);
1700                return 0;
1701        }
1702
1703        /*
1704         * Configuration and alternate setting changes must be done in
1705         * process context, not interrupt context (or so documenation
1706         * for usb_set_interface() and usb_set_configuration() claim).
1707         */
1708        if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1709                dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1710                                __func__, ep->desc.bEndpointAddress);
1711                return -ENOMEM;
1712        }
1713
1714        ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1715        new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1716
1717        /* If xhci_endpoint_disable() was called for this endpoint, but the
1718         * xHC hasn't been notified yet through the check_bandwidth() call,
1719         * this re-adds a new state for the endpoint from the new endpoint
1720         * descriptors.  We must drop and re-add this endpoint, so we leave the
1721         * drop flags alone.
1722         */
1723        new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1724
1725        slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1726        /* Update the last valid endpoint context, if we just added one past */
1727        if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1728            LAST_CTX(last_ctx)) {
1729                slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1730                slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1731        }
1732        new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1733
1734        /* Store the usb_device pointer for later use */
1735        ep->hcpriv = udev;
1736
1737        xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1738                        (unsigned int) ep->desc.bEndpointAddress,
1739                        udev->slot_id,
1740                        (unsigned int) new_drop_flags,
1741                        (unsigned int) new_add_flags,
1742                        (unsigned int) new_slot_info);
1743        return 0;
1744}
1745
1746static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1747{
1748        struct xhci_input_control_ctx *ctrl_ctx;
1749        struct xhci_ep_ctx *ep_ctx;
1750        struct xhci_slot_ctx *slot_ctx;
1751        int i;
1752
1753        /* When a device's add flag and drop flag are zero, any subsequent
1754         * configure endpoint command will leave that endpoint's state
1755         * untouched.  Make sure we don't leave any old state in the input
1756         * endpoint contexts.
1757         */
1758        ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1759        ctrl_ctx->drop_flags = 0;
1760        ctrl_ctx->add_flags = 0;
1761        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1762        slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1763        /* Endpoint 0 is always valid */
1764        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1765        for (i = 1; i < 31; ++i) {
1766                ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1767                ep_ctx->ep_info = 0;
1768                ep_ctx->ep_info2 = 0;
1769                ep_ctx->deq = 0;
1770                ep_ctx->tx_info = 0;
1771        }
1772}
1773
1774static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1775                struct usb_device *udev, u32 *cmd_status)
1776{
1777        int ret;
1778
1779        switch (*cmd_status) {
1780        case COMP_ENOMEM:
1781                dev_warn(&udev->dev, "Not enough host controller resources "
1782                                "for new device state.\n");
1783                ret = -ENOMEM;
1784                /* FIXME: can we allocate more resources for the HC? */
1785                break;
1786        case COMP_BW_ERR:
1787        case COMP_2ND_BW_ERR:
1788                dev_warn(&udev->dev, "Not enough bandwidth "
1789                                "for new device state.\n");
1790                ret = -ENOSPC;
1791                /* FIXME: can we go back to the old state? */
1792                break;
1793        case COMP_TRB_ERR:
1794                /* the HCD set up something wrong */
1795                dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1796                                "add flag = 1, "
1797                                "and endpoint is not disabled.\n");
1798                ret = -EINVAL;
1799                break;
1800        case COMP_DEV_ERR:
1801                dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1802                                "configure command.\n");
1803                ret = -ENODEV;
1804                break;
1805        case COMP_SUCCESS:
1806                dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1807                ret = 0;
1808                break;
1809        default:
1810                xhci_err(xhci, "ERROR: unexpected command completion "
1811                                "code 0x%x.\n", *cmd_status);
1812                ret = -EINVAL;
1813                break;
1814        }
1815        return ret;
1816}
1817
1818static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1819                struct usb_device *udev, u32 *cmd_status)
1820{
1821        int ret;
1822        struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1823
1824        switch (*cmd_status) {
1825        case COMP_EINVAL:
1826                dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1827                                "context command.\n");
1828                ret = -EINVAL;
1829                break;
1830        case COMP_EBADSLT:
1831                dev_warn(&udev->dev, "WARN: slot not enabled for"
1832                                "evaluate context command.\n");
1833                ret = -EINVAL;
1834                break;
1835        case COMP_CTX_STATE:
1836                dev_warn(&udev->dev, "WARN: invalid context state for "
1837                                "evaluate context command.\n");
1838                xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1839                ret = -EINVAL;
1840                break;
1841        case COMP_DEV_ERR:
1842                dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1843                                "context command.\n");
1844                ret = -ENODEV;
1845                break;
1846        case COMP_MEL_ERR:
1847                /* Max Exit Latency too large error */
1848                dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1849                ret = -EINVAL;
1850                break;
1851        case COMP_SUCCESS:
1852                dev_dbg(&udev->dev, "Successful evaluate context command\n");
1853                ret = 0;
1854                break;
1855        default:
1856                xhci_err(xhci, "ERROR: unexpected command completion "
1857                                "code 0x%x.\n", *cmd_status);
1858                ret = -EINVAL;
1859                break;
1860        }
1861        return ret;
1862}
1863
1864static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1865                struct xhci_container_ctx *in_ctx)
1866{
1867        struct xhci_input_control_ctx *ctrl_ctx;
1868        u32 valid_add_flags;
1869        u32 valid_drop_flags;
1870
1871        ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1872        /* Ignore the slot flag (bit 0), and the default control endpoint flag
1873         * (bit 1).  The default control endpoint is added during the Address
1874         * Device command and is never removed until the slot is disabled.
1875         */
1876        valid_add_flags = ctrl_ctx->add_flags >> 2;
1877        valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1878
1879        /* Use hweight32 to count the number of ones in the add flags, or
1880         * number of endpoints added.  Don't count endpoints that are changed
1881         * (both added and dropped).
1882         */
1883        return hweight32(valid_add_flags) -
1884                hweight32(valid_add_flags & valid_drop_flags);
1885}
1886
1887static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1888                struct xhci_container_ctx *in_ctx)
1889{
1890        struct xhci_input_control_ctx *ctrl_ctx;
1891        u32 valid_add_flags;
1892        u32 valid_drop_flags;
1893
1894        ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1895        valid_add_flags = ctrl_ctx->add_flags >> 2;
1896        valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1897
1898        return hweight32(valid_drop_flags) -
1899                hweight32(valid_add_flags & valid_drop_flags);
1900}
1901
1902/*
1903 * We need to reserve the new number of endpoints before the configure endpoint
1904 * command completes.  We can't subtract the dropped endpoints from the number
1905 * of active endpoints until the command completes because we can oversubscribe
1906 * the host in this case:
1907 *
1908 *  - the first configure endpoint command drops more endpoints than it adds
1909 *  - a second configure endpoint command that adds more endpoints is queued
1910 *  - the first configure endpoint command fails, so the config is unchanged
1911 *  - the second command may succeed, even though there isn't enough resources
1912 *
1913 * Must be called with xhci->lock held.
1914 */
1915static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1916                struct xhci_container_ctx *in_ctx)
1917{
1918        u32 added_eps;
1919
1920        added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1921        if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1922                xhci_dbg(xhci, "Not enough ep ctxs: "
1923                                "%u active, need to add %u, limit is %u.\n",
1924                                xhci->num_active_eps, added_eps,
1925                                xhci->limit_active_eps);
1926                return -ENOMEM;
1927        }
1928        xhci->num_active_eps += added_eps;
1929        xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1930                        xhci->num_active_eps);
1931        return 0;
1932}
1933
1934/*
1935 * The configure endpoint was failed by the xHC for some other reason, so we
1936 * need to revert the resources that failed configuration would have used.
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940static void xhci_free_host_resources(struct xhci_hcd *xhci,
1941                struct xhci_container_ctx *in_ctx)
1942{
1943        u32 num_failed_eps;
1944
1945        num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1946        xhci->num_active_eps -= num_failed_eps;
1947        xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1948                        num_failed_eps,
1949                        xhci->num_active_eps);
1950}
1951
1952/*
1953 * Now that the command has completed, clean up the active endpoint count by
1954 * subtracting out the endpoints that were dropped (but not changed).
1955 *
1956 * Must be called with xhci->lock held.
1957 */
1958static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1959                struct xhci_container_ctx *in_ctx)
1960{
1961        u32 num_dropped_eps;
1962
1963        num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1964        xhci->num_active_eps -= num_dropped_eps;
1965        if (num_dropped_eps)
1966                xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1967                                num_dropped_eps,
1968                                xhci->num_active_eps);
1969}
1970
1971static unsigned int xhci_get_block_size(struct usb_device *udev)
1972{
1973        switch (udev->speed) {
1974        case USB_SPEED_LOW:
1975        case USB_SPEED_FULL:
1976                return FS_BLOCK;
1977        case USB_SPEED_HIGH:
1978                return HS_BLOCK;
1979        case USB_SPEED_SUPER:
1980                return SS_BLOCK;
1981        case USB_SPEED_UNKNOWN:
1982        case USB_SPEED_WIRELESS:
1983        default:
1984                /* Should never happen */
1985                return 1;
1986        }
1987}
1988
1989static unsigned int
1990xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1991{
1992        if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1993                return LS_OVERHEAD;
1994        if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1995                return FS_OVERHEAD;
1996        return HS_OVERHEAD;
1997}
1998
1999/* If we are changing a LS/FS device under a HS hub,
2000 * make sure (if we are activating a new TT) that the HS bus has enough
2001 * bandwidth for this new TT.
2002 */
2003static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2004                struct xhci_virt_device *virt_dev,
2005                int old_active_eps)
2006{
2007        struct xhci_interval_bw_table *bw_table;
2008        struct xhci_tt_bw_info *tt_info;
2009
2010        /* Find the bandwidth table for the root port this TT is attached to. */
2011        bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2012        tt_info = virt_dev->tt_info;
2013        /* If this TT already had active endpoints, the bandwidth for this TT
2014         * has already been added.  Removing all periodic endpoints (and thus
2015         * making the TT enactive) will only decrease the bandwidth used.
2016         */
2017        if (old_active_eps)
2018                return 0;
2019        if (old_active_eps == 0 && tt_info->active_eps != 0) {
2020                if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2021                        return -ENOMEM;
2022                return 0;
2023        }
2024        /* Not sure why we would have no new active endpoints...
2025         *
2026         * Maybe because of an Evaluate Context change for a hub update or a
2027         * control endpoint 0 max packet size change?
2028         * FIXME: skip the bandwidth calculation in that case.
2029         */
2030        return 0;
2031}
2032
2033static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2034                struct xhci_virt_device *virt_dev)
2035{
2036        unsigned int bw_reserved;
2037
2038        bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2039        if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2040                return -ENOMEM;
2041
2042        bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2043        if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2044                return -ENOMEM;
2045
2046        return 0;
2047}
2048
2049/*
2050 * This algorithm is a very conservative estimate of the worst-case scheduling
2051 * scenario for any one interval.  The hardware dynamically schedules the
2052 * packets, so we can't tell which microframe could be the limiting factor in
2053 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2054 *
2055 * Obviously, we can't solve an NP complete problem to find the minimum worst
2056 * case scenario.  Instead, we come up with an estimate that is no less than
2057 * the worst case bandwidth used for any one microframe, but may be an
2058 * over-estimate.
2059 *
2060 * We walk the requirements for each endpoint by interval, starting with the
2061 * smallest interval, and place packets in the schedule where there is only one
2062 * possible way to schedule packets for that interval.  In order to simplify
2063 * this algorithm, we record the largest max packet size for each interval, and
2064 * assume all packets will be that size.
2065 *
2066 * For interval 0, we obviously must schedule all packets for each interval.
2067 * The bandwidth for interval 0 is just the amount of data to be transmitted
2068 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2069 * the number of packets).
2070 *
2071 * For interval 1, we have two possible microframes to schedule those packets
2072 * in.  For this algorithm, if we can schedule the same number of packets for
2073 * each possible scheduling opportunity (each microframe), we will do so.  The
2074 * remaining number of packets will be saved to be transmitted in the gaps in
2075 * the next interval's scheduling sequence.
2076 *
2077 * As we move those remaining packets to be scheduled with interval 2 packets,
2078 * we have to double the number of remaining packets to transmit.  This is
2079 * because the intervals are actually powers of 2, and we would be transmitting
2080 * the previous interval's packets twice in this interval.  We also have to be
2081 * sure that when we look at the largest max packet size for this interval, we
2082 * also look at the largest max packet size for the remaining packets and take
2083 * the greater of the two.
2084 *
2085 * The algorithm continues to evenly distribute packets in each scheduling
2086 * opportunity, and push the remaining packets out, until we get to the last
2087 * interval.  Then those packets and their associated overhead are just added
2088 * to the bandwidth used.
2089 */
2090static int xhci_check_bw_table(struct xhci_hcd *xhci,
2091                struct xhci_virt_device *virt_dev,
2092                int old_active_eps)
2093{
2094        unsigned int bw_reserved;
2095        unsigned int max_bandwidth;
2096        unsigned int bw_used;
2097        unsigned int block_size;
2098        struct xhci_interval_bw_table *bw_table;
2099        unsigned int packet_size = 0;
2100        unsigned int overhead = 0;
2101        unsigned int packets_transmitted = 0;
2102        unsigned int packets_remaining = 0;
2103        unsigned int i;
2104
2105        if (virt_dev->udev->speed == USB_SPEED_SUPER)
2106                return xhci_check_ss_bw(xhci, virt_dev);
2107
2108        if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2109                max_bandwidth = HS_BW_LIMIT;
2110                /* Convert percent of bus BW reserved to blocks reserved */
2111                bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2112        } else {
2113                max_bandwidth = FS_BW_LIMIT;
2114                bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2115        }
2116
2117        bw_table = virt_dev->bw_table;
2118        /* We need to translate the max packet size and max ESIT payloads into
2119         * the units the hardware uses.
2120         */
2121        block_size = xhci_get_block_size(virt_dev->udev);
2122
2123        /* If we are manipulating a LS/FS device under a HS hub, double check
2124         * that the HS bus has enough bandwidth if we are activing a new TT.
2125         */
2126        if (virt_dev->tt_info) {
2127                xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2128                                virt_dev->real_port);
2129                if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2130                        xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2131                                        "newly activated TT.\n");
2132                        return -ENOMEM;
2133                }
2134                xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2135                                virt_dev->tt_info->slot_id,
2136                                virt_dev->tt_info->ttport);
2137        } else {
2138                xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2139                                virt_dev->real_port);
2140        }
2141
2142        /* Add in how much bandwidth will be used for interval zero, or the
2143         * rounded max ESIT payload + number of packets * largest overhead.
2144         */
2145        bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2146                bw_table->interval_bw[0].num_packets *
2147                xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2148
2149        for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2150                unsigned int bw_added;
2151                unsigned int largest_mps;
2152                unsigned int interval_overhead;
2153
2154                /*
2155                 * How many packets could we transmit in this interval?
2156                 * If packets didn't fit in the previous interval, we will need
2157                 * to transmit that many packets twice within this interval.
2158                 */
2159                packets_remaining = 2 * packets_remaining +
2160                        bw_table->interval_bw[i].num_packets;
2161
2162                /* Find the largest max packet size of this or the previous
2163                 * interval.
2164                 */
2165                if (list_empty(&bw_table->interval_bw[i].endpoints))
2166                        largest_mps = 0;
2167                else {
2168                        struct xhci_virt_ep *virt_ep;
2169                        struct list_head *ep_entry;
2170
2171                        ep_entry = bw_table->interval_bw[i].endpoints.next;
2172                        virt_ep = list_entry(ep_entry,
2173                                        struct xhci_virt_ep, bw_endpoint_list);
2174                        /* Convert to blocks, rounding up */
2175                        largest_mps = DIV_ROUND_UP(
2176                                        virt_ep->bw_info.max_packet_size,
2177                                        block_size);
2178                }
2179                if (largest_mps > packet_size)
2180                        packet_size = largest_mps;
2181
2182                /* Use the larger overhead of this or the previous interval. */
2183                interval_overhead = xhci_get_largest_overhead(
2184                                &bw_table->interval_bw[i]);
2185                if (interval_overhead > overhead)
2186                        overhead = interval_overhead;
2187
2188                /* How many packets can we evenly distribute across
2189                 * (1 << (i + 1)) possible scheduling opportunities?
2190                 */
2191                packets_transmitted = packets_remaining >> (i + 1);
2192
2193                /* Add in the bandwidth used for those scheduled packets */
2194                bw_added = packets_transmitted * (overhead + packet_size);
2195
2196                /* How many packets do we have remaining to transmit? */
2197                packets_remaining = packets_remaining % (1 << (i + 1));
2198
2199                /* What largest max packet size should those packets have? */
2200                /* If we've transmitted all packets, don't carry over the
2201                 * largest packet size.
2202                 */
2203                if (packets_remaining == 0) {
2204                        packet_size = 0;
2205                        overhead = 0;
2206                } else if (packets_transmitted > 0) {
2207                        /* Otherwise if we do have remaining packets, and we've
2208                         * scheduled some packets in this interval, take the
2209                         * largest max packet size from endpoints with this
2210                         * interval.
2211                         */
2212                        packet_size = largest_mps;
2213                        overhead = interval_overhead;
2214                }
2215                /* Otherwise carry over packet_size and overhead from the last
2216                 * time we had a remainder.
2217                 */
2218                bw_used += bw_added;
2219                if (bw_used > max_bandwidth) {
2220                        xhci_warn(xhci, "Not enough bandwidth. "
2221                                        "Proposed: %u, Max: %u\n",
2222                                bw_used, max_bandwidth);
2223                        return -ENOMEM;
2224                }
2225        }
2226        /*
2227         * Ok, we know we have some packets left over after even-handedly
2228         * scheduling interval 15.  We don't know which microframes they will
2229         * fit into, so we over-schedule and say they will be scheduled every
2230         * microframe.
2231         */
2232        if (packets_remaining > 0)
2233                bw_used += overhead + packet_size;
2234
2235        if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2236                unsigned int port_index = virt_dev->real_port - 1;
2237
2238                /* OK, we're manipulating a HS device attached to a
2239                 * root port bandwidth domain.  Include the number of active TTs
2240                 * in the bandwidth used.
2241                 */
2242                bw_used += TT_HS_OVERHEAD *
2243                        xhci->rh_bw[port_index].num_active_tts;
2244        }
2245
2246        xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2247                "Available: %u " "percent\n",
2248                bw_used, max_bandwidth, bw_reserved,
2249                (max_bandwidth - bw_used - bw_reserved) * 100 /
2250                max_bandwidth);
2251
2252        bw_used += bw_reserved;
2253        if (bw_used > max_bandwidth) {
2254                xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2255                                bw_used, max_bandwidth);
2256                return -ENOMEM;
2257        }
2258
2259        bw_table->bw_used = bw_used;
2260        return 0;
2261}
2262
2263static bool xhci_is_async_ep(unsigned int ep_type)
2264{
2265        return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2266                                        ep_type != ISOC_IN_EP &&
2267                                        ep_type != INT_IN_EP);
2268}
2269
2270static bool xhci_is_sync_in_ep(unsigned int ep_type)
2271{
2272        return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2273}
2274
2275static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2276{
2277        unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2278
2279        if (ep_bw->ep_interval == 0)
2280                return SS_OVERHEAD_BURST +
2281                        (ep_bw->mult * ep_bw->num_packets *
2282                                        (SS_OVERHEAD + mps));
2283        return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2284                                (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2285                                1 << ep_bw->ep_interval);
2286
2287}
2288
2289void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2290                struct xhci_bw_info *ep_bw,
2291                struct xhci_interval_bw_table *bw_table,
2292                struct usb_device *udev,
2293                struct xhci_virt_ep *virt_ep,
2294                struct xhci_tt_bw_info *tt_info)
2295{
2296        struct xhci_interval_bw *interval_bw;
2297        int normalized_interval;
2298
2299        if (xhci_is_async_ep(ep_bw->type))
2300                return;
2301
2302        if (udev->speed == USB_SPEED_SUPER) {
2303                if (xhci_is_sync_in_ep(ep_bw->type))
2304                        xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2305                                xhci_get_ss_bw_consumed(ep_bw);
2306                else
2307                        xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2308                                xhci_get_ss_bw_consumed(ep_bw);
2309                return;
2310        }
2311
2312        /* SuperSpeed endpoints never get added to intervals in the table, so
2313         * this check is only valid for HS/FS/LS devices.
2314         */
2315        if (list_empty(&virt_ep->bw_endpoint_list))
2316                return;
2317        /* For LS/FS devices, we need to translate the interval expressed in
2318         * microframes to frames.
2319         */
2320        if (udev->speed == USB_SPEED_HIGH)
2321                normalized_interval = ep_bw->ep_interval;
2322        else
2323                normalized_interval = ep_bw->ep_interval - 3;
2324
2325        if (normalized_interval == 0)
2326                bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2327        interval_bw = &bw_table->interval_bw[normalized_interval];
2328        interval_bw->num_packets -= ep_bw->num_packets;
2329        switch (udev->speed) {
2330        case USB_SPEED_LOW:
2331                interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2332                break;
2333        case USB_SPEED_FULL:
2334                interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2335                break;
2336        case USB_SPEED_HIGH:
2337                interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2338                break;
2339        case USB_SPEED_SUPER:
2340        case USB_SPEED_UNKNOWN:
2341        case USB_SPEED_WIRELESS:
2342                /* Should never happen because only LS/FS/HS endpoints will get
2343                 * added to the endpoint list.
2344                 */
2345                return;
2346        }
2347        if (tt_info)
2348                tt_info->active_eps -= 1;
2349        list_del_init(&virt_ep->bw_endpoint_list);
2350}
2351
2352static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2353                struct xhci_bw_info *ep_bw,
2354                struct xhci_interval_bw_table *bw_table,
2355                struct usb_device *udev,
2356                struct xhci_virt_ep *virt_ep,
2357                struct xhci_tt_bw_info *tt_info)
2358{
2359        struct xhci_interval_bw *interval_bw;
2360        struct xhci_virt_ep *smaller_ep;
2361        int normalized_interval;
2362
2363        if (xhci_is_async_ep(ep_bw->type))
2364                return;
2365
2366        if (udev->speed == USB_SPEED_SUPER) {
2367                if (xhci_is_sync_in_ep(ep_bw->type))
2368                        xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2369                                xhci_get_ss_bw_consumed(ep_bw);
2370                else
2371                        xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2372                                xhci_get_ss_bw_consumed(ep_bw);
2373                return;
2374        }
2375
2376        /* For LS/FS devices, we need to translate the interval expressed in
2377         * microframes to frames.
2378         */
2379        if (udev->speed == USB_SPEED_HIGH)
2380                normalized_interval = ep_bw->ep_interval;
2381        else
2382                normalized_interval = ep_bw->ep_interval - 3;
2383
2384        if (normalized_interval == 0)
2385                bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2386        interval_bw = &bw_table->interval_bw[normalized_interval];
2387        interval_bw->num_packets += ep_bw->num_packets;
2388        switch (udev->speed) {
2389        case USB_SPEED_LOW:
2390                interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2391                break;
2392        case USB_SPEED_FULL:
2393                interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2394                break;
2395        case USB_SPEED_HIGH:
2396                interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2397                break;
2398        case USB_SPEED_SUPER:
2399        case USB_SPEED_UNKNOWN:
2400        case USB_SPEED_WIRELESS:
2401                /* Should never happen because only LS/FS/HS endpoints will get
2402                 * added to the endpoint list.
2403                 */
2404                return;
2405        }
2406
2407        if (tt_info)
2408                tt_info->active_eps += 1;
2409        /* Insert the endpoint into the list, largest max packet size first. */
2410        list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2411                        bw_endpoint_list) {
2412                if (ep_bw->max_packet_size >=
2413                                smaller_ep->bw_info.max_packet_size) {
2414                        /* Add the new ep before the smaller endpoint */
2415                        list_add_tail(&virt_ep->bw_endpoint_list,
2416                                        &smaller_ep->bw_endpoint_list);
2417                        return;
2418                }
2419        }
2420        /* Add the new endpoint at the end of the list. */
2421        list_add_tail(&virt_ep->bw_endpoint_list,
2422                        &interval_bw->endpoints);
2423}
2424
2425void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2426                struct xhci_virt_device *virt_dev,
2427                int old_active_eps)
2428{
2429        struct xhci_root_port_bw_info *rh_bw_info;
2430        if (!virt_dev->tt_info)
2431                return;
2432
2433        rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2434        if (old_active_eps == 0 &&
2435                                virt_dev->tt_info->active_eps != 0) {
2436                rh_bw_info->num_active_tts += 1;
2437                rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2438        } else if (old_active_eps != 0 &&
2439                                virt_dev->tt_info->active_eps == 0) {
2440                rh_bw_info->num_active_tts -= 1;
2441                rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2442        }
2443}
2444
2445static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2446                struct xhci_virt_device *virt_dev,
2447                struct xhci_container_ctx *in_ctx)
2448{
2449        struct xhci_bw_info ep_bw_info[31];
2450        int i;
2451        struct xhci_input_control_ctx *ctrl_ctx;
2452        int old_active_eps = 0;
2453
2454        if (virt_dev->tt_info)
2455                old_active_eps = virt_dev->tt_info->active_eps;
2456
2457        ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2458
2459        for (i = 0; i < 31; i++) {
2460                if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2461                        continue;
2462
2463                /* Make a copy of the BW info in case we need to revert this */
2464                memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2465                                sizeof(ep_bw_info[i]));
2466                /* Drop the endpoint from the interval table if the endpoint is
2467                 * being dropped or changed.
2468                 */
2469                if (EP_IS_DROPPED(ctrl_ctx, i))
2470                        xhci_drop_ep_from_interval_table(xhci,
2471                                        &virt_dev->eps[i].bw_info,
2472                                        virt_dev->bw_table,
2473                                        virt_dev->udev,
2474                                        &virt_dev->eps[i],
2475                                        virt_dev->tt_info);
2476        }
2477        /* Overwrite the information stored in the endpoints' bw_info */
2478        xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2479        for (i = 0; i < 31; i++) {
2480                /* Add any changed or added endpoints to the interval table */
2481                if (EP_IS_ADDED(ctrl_ctx, i))
2482                        xhci_add_ep_to_interval_table(xhci,
2483                                        &virt_dev->eps[i].bw_info,
2484                                        virt_dev->bw_table,
2485                                        virt_dev->udev,
2486                                        &virt_dev->eps[i],
2487                                        virt_dev->tt_info);
2488        }
2489
2490        if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2491                /* Ok, this fits in the bandwidth we have.
2492                 * Update the number of active TTs.
2493                 */
2494                xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2495                return 0;
2496        }
2497
2498        /* We don't have enough bandwidth for this, revert the stored info. */
2499        for (i = 0; i < 31; i++) {
2500                if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2501                        continue;
2502
2503                /* Drop the new copies of any added or changed endpoints from
2504                 * the interval table.
2505                 */
2506                if (EP_IS_ADDED(ctrl_ctx, i)) {
2507                        xhci_drop_ep_from_interval_table(xhci,
2508                                        &virt_dev->eps[i].bw_info,
2509                                        virt_dev->bw_table,
2510                                        virt_dev->udev,
2511                                        &virt_dev->eps[i],
2512                                        virt_dev->tt_info);
2513                }
2514                /* Revert the endpoint back to its old information */
2515                memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2516                                sizeof(ep_bw_info[i]));
2517                /* Add any changed or dropped endpoints back into the table */
2518                if (EP_IS_DROPPED(ctrl_ctx, i))
2519                        xhci_add_ep_to_interval_table(xhci,
2520                                        &virt_dev->eps[i].bw_info,
2521                                        virt_dev->bw_table,
2522                                        virt_dev->udev,
2523                                        &virt_dev->eps[i],
2524                                        virt_dev->tt_info);
2525        }
2526        return -ENOMEM;
2527}
2528
2529
2530/* Issue a configure endpoint command or evaluate context command
2531 * and wait for it to finish.
2532 */
2533static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2534                struct usb_device *udev,
2535                struct xhci_command *command,
2536                bool ctx_change, bool must_succeed)
2537{
2538        int ret;
2539        int timeleft;
2540        unsigned long flags;
2541        struct xhci_container_ctx *in_ctx;
2542        struct completion *cmd_completion;
2543        u32 *cmd_status;
2544        struct xhci_virt_device *virt_dev;
2545        union xhci_trb *cmd_trb;
2546
2547        spin_lock_irqsave(&xhci->lock, flags);
2548        virt_dev = xhci->devs[udev->slot_id];
2549
2550        if (command)
2551                in_ctx = command->in_ctx;
2552        else
2553                in_ctx = virt_dev->in_ctx;
2554
2555        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2556                        xhci_reserve_host_resources(xhci, in_ctx)) {
2557                spin_unlock_irqrestore(&xhci->lock, flags);
2558                xhci_warn(xhci, "Not enough host resources, "
2559                                "active endpoint contexts = %u\n",
2560                                xhci->num_active_eps);
2561                return -ENOMEM;
2562        }
2563        if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2564                        xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2565                if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2566                        xhci_free_host_resources(xhci, in_ctx);
2567                spin_unlock_irqrestore(&xhci->lock, flags);
2568                xhci_warn(xhci, "Not enough bandwidth\n");
2569                return -ENOMEM;
2570        }
2571
2572        if (command) {
2573                cmd_completion = command->completion;
2574                cmd_status = &command->status;
2575                command->command_trb = xhci->cmd_ring->enqueue;
2576
2577                /* Enqueue pointer can be left pointing to the link TRB,
2578                 * we must handle that
2579                 */
2580                if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2581                        command->command_trb =
2582                                xhci->cmd_ring->enq_seg->next->trbs;
2583
2584                list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2585        } else {
2586                cmd_completion = &virt_dev->cmd_completion;
2587                cmd_status = &virt_dev->cmd_status;
2588        }
2589        init_completion(cmd_completion);
2590
2591        cmd_trb = xhci->cmd_ring->dequeue;
2592        if (!ctx_change)
2593                ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2594                                udev->slot_id, must_succeed);
2595        else
2596                ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2597                                udev->slot_id, must_succeed);
2598        if (ret < 0) {
2599                if (command)
2600                        list_del(&command->cmd_list);
2601                if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2602                        xhci_free_host_resources(xhci, in_ctx);
2603                spin_unlock_irqrestore(&xhci->lock, flags);
2604                xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2605                return -ENOMEM;
2606        }
2607        xhci_ring_cmd_db(xhci);
2608        spin_unlock_irqrestore(&xhci->lock, flags);
2609
2610        /* Wait for the configure endpoint command to complete */
2611        timeleft = wait_for_completion_interruptible_timeout(
2612                        cmd_completion,
2613                        XHCI_CMD_DEFAULT_TIMEOUT);
2614        if (timeleft <= 0) {
2615                xhci_warn(xhci, "%s while waiting for %s command\n",
2616                                timeleft == 0 ? "Timeout" : "Signal",
2617                                ctx_change == 0 ?
2618                                        "configure endpoint" :
2619                                        "evaluate context");
2620                /* cancel the configure endpoint command */
2621                ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2622                if (ret < 0)
2623                        return ret;
2624                return -ETIME;
2625        }
2626
2627        if (!ctx_change)
2628                ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2629        else
2630                ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2631
2632        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2633                spin_lock_irqsave(&xhci->lock, flags);
2634                /* If the command failed, remove the reserved resources.
2635                 * Otherwise, clean up the estimate to include dropped eps.
2636                 */
2637                if (ret)
2638                        xhci_free_host_resources(xhci, in_ctx);
2639                else
2640                        xhci_finish_resource_reservation(xhci, in_ctx);
2641                spin_unlock_irqrestore(&xhci->lock, flags);
2642        }
2643        return ret;
2644}
2645
2646/* Called after one or more calls to xhci_add_endpoint() or
2647 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2648 * to call xhci_reset_bandwidth().
2649 *
2650 * Since we are in the middle of changing either configuration or
2651 * installing a new alt setting, the USB core won't allow URBs to be
2652 * enqueued for any endpoint on the old config or interface.  Nothing
2653 * else should be touching the xhci->devs[slot_id] structure, so we
2654 * don't need to take the xhci->lock for manipulating that.
2655 */
2656int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2657{
2658        int i;
2659        int ret = 0;
2660        struct xhci_hcd *xhci;
2661        struct xhci_virt_device *virt_dev;
2662        struct xhci_input_control_ctx *ctrl_ctx;
2663        struct xhci_slot_ctx *slot_ctx;
2664
2665        ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2666        if (ret <= 0)
2667                return ret;
2668        xhci = hcd_to_xhci(hcd);
2669        if (xhci->xhc_state & XHCI_STATE_DYING)
2670                return -ENODEV;
2671
2672        xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2673        virt_dev = xhci->devs[udev->slot_id];
2674
2675        /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2676        ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2677        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2678        ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2679        ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2680
2681        /* Don't issue the command if there's no endpoints to update. */
2682        if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2683                        ctrl_ctx->drop_flags == 0)
2684                return 0;
2685
2686        xhci_dbg(xhci, "New Input Control Context:\n");
2687        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2688        xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2689                     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2690
2691        ret = xhci_configure_endpoint(xhci, udev, NULL,
2692                        false, false);
2693        if (ret) {
2694                /* Callee should call reset_bandwidth() */
2695                return ret;
2696        }
2697
2698        xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2699        xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2700                     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2701
2702        /* Free any rings that were dropped, but not changed. */
2703        for (i = 1; i < 31; ++i) {
2704                if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2705                    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2706                        xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2707        }
2708        xhci_zero_in_ctx(xhci, virt_dev);
2709        /*
2710         * Install any rings for completely new endpoints or changed endpoints,
2711         * and free or cache any old rings from changed endpoints.
2712         */
2713        for (i = 1; i < 31; ++i) {
2714                if (!virt_dev->eps[i].new_ring)
2715                        continue;
2716                /* Only cache or free the old ring if it exists.
2717                 * It may not if this is the first add of an endpoint.
2718                 */
2719                if (virt_dev->eps[i].ring) {
2720                        xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2721                }
2722                virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2723                virt_dev->eps[i].new_ring = NULL;
2724        }
2725
2726        return ret;
2727}
2728
2729void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2730{
2731        struct xhci_hcd *xhci;
2732        struct xhci_virt_device *virt_dev;
2733        int i, ret;
2734
2735        ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2736        if (ret <= 0)
2737                return;
2738        xhci = hcd_to_xhci(hcd);
2739
2740        xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2741        virt_dev = xhci->devs[udev->slot_id];
2742        /* Free any rings allocated for added endpoints */
2743        for (i = 0; i < 31; ++i) {
2744                if (virt_dev->eps[i].new_ring) {
2745                        xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2746                        virt_dev->eps[i].new_ring = NULL;
2747                }
2748        }
2749        xhci_zero_in_ctx(xhci, virt_dev);
2750}
2751
2752static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2753                struct xhci_container_ctx *in_ctx,
2754                struct xhci_container_ctx *out_ctx,
2755                u32 add_flags, u32 drop_flags)
2756{
2757        struct xhci_input_control_ctx *ctrl_ctx;
2758        ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2759        ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2760        ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2761        xhci_slot_copy(xhci, in_ctx, out_ctx);
2762        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2763
2764        xhci_dbg(xhci, "Input Context:\n");
2765        xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2766}
2767
2768static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2769                unsigned int slot_id, unsigned int ep_index,
2770                struct xhci_dequeue_state *deq_state)
2771{
2772        struct xhci_container_ctx *in_ctx;
2773        struct xhci_ep_ctx *ep_ctx;
2774        u32 added_ctxs;
2775        dma_addr_t addr;
2776
2777        xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2778                        xhci->devs[slot_id]->out_ctx, ep_index);
2779        in_ctx = xhci->devs[slot_id]->in_ctx;
2780        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2781        addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2782                        deq_state->new_deq_ptr);
2783        if (addr == 0) {
2784                xhci_warn(xhci, "WARN Cannot submit config ep after "
2785                                "reset ep command\n");
2786                xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2787                                deq_state->new_deq_seg,
2788                                deq_state->new_deq_ptr);
2789                return;
2790        }
2791        ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2792
2793        added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2794        xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2795                        xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2796}
2797
2798void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2799                struct usb_device *udev, unsigned int ep_index)
2800{
2801        struct xhci_dequeue_state deq_state;
2802        struct xhci_virt_ep *ep;
2803
2804        xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2805        ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2806        /* We need to move the HW's dequeue pointer past this TD,
2807         * or it will attempt to resend it on the next doorbell ring.
2808         */
2809        xhci_find_new_dequeue_state(xhci, udev->slot_id,
2810                        ep_index, ep->stopped_stream, ep->stopped_td,
2811                        &deq_state);
2812
2813        /* HW with the reset endpoint quirk will use the saved dequeue state to
2814         * issue a configure endpoint command later.
2815         */
2816        if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2817                xhci_dbg(xhci, "Queueing new dequeue state\n");
2818                xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2819                                ep_index, ep->stopped_stream, &deq_state);
2820        } else {
2821                /* Better hope no one uses the input context between now and the
2822                 * reset endpoint completion!
2823                 * XXX: No idea how this hardware will react when stream rings
2824                 * are enabled.
2825                 */
2826                xhci_dbg(xhci, "Setting up input context for "
2827                                "configure endpoint command\n");
2828                xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2829                                ep_index, &deq_state);
2830        }
2831}
2832
2833/* Deal with stalled endpoints.  The core should have sent the control message
2834 * to clear the halt condition.  However, we need to make the xHCI hardware
2835 * reset its sequence number, since a device will expect a sequence number of
2836 * zero after the halt condition is cleared.
2837 * Context: in_interrupt
2838 */
2839void xhci_endpoint_reset(struct usb_hcd *hcd,
2840                struct usb_host_endpoint *ep)
2841{
2842        struct xhci_hcd *xhci;
2843        struct usb_device *udev;
2844        unsigned int ep_index;
2845        unsigned long flags;
2846        int ret;
2847        struct xhci_virt_ep *virt_ep;
2848
2849        xhci = hcd_to_xhci(hcd);
2850        udev = (struct usb_device *) ep->hcpriv;
2851        /* Called with a root hub endpoint (or an endpoint that wasn't added
2852         * with xhci_add_endpoint()
2853         */
2854        if (!ep->hcpriv)
2855                return;
2856        ep_index = xhci_get_endpoint_index(&ep->desc);
2857        virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2858        if (!virt_ep->stopped_td) {
2859                xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2860                                ep->desc.bEndpointAddress);
2861                return;
2862        }
2863        if (usb_endpoint_xfer_control(&ep->desc)) {
2864                xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2865                return;
2866        }
2867
2868        xhci_dbg(xhci, "Queueing reset endpoint command\n");
2869        spin_lock_irqsave(&xhci->lock, flags);
2870        ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2871        /*
2872         * Can't change the ring dequeue pointer until it's transitioned to the
2873         * stopped state, which is only upon a successful reset endpoint
2874         * command.  Better hope that last command worked!
2875         */
2876        if (!ret) {
2877                xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2878                kfree(virt_ep->stopped_td);
2879                xhci_ring_cmd_db(xhci);
2880        }
2881        virt_ep->stopped_td = NULL;
2882        virt_ep->stopped_trb = NULL;
2883        virt_ep->stopped_stream = 0;
2884        spin_unlock_irqrestore(&xhci->lock, flags);
2885
2886        if (ret)
2887                xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2888}
2889
2890static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2891                struct usb_device *udev, struct usb_host_endpoint *ep,
2892                unsigned int slot_id)
2893{
2894        int ret;
2895        unsigned int ep_index;
2896        unsigned int ep_state;
2897
2898        if (!ep)
2899                return -EINVAL;
2900        ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2901        if (ret <= 0)
2902                return -EINVAL;
2903        if (ep->ss_ep_comp.bmAttributes == 0) {
2904                xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2905                                " descriptor for ep 0x%x does not support streams\n",
2906                                ep->desc.bEndpointAddress);
2907                return -EINVAL;
2908        }
2909
2910        ep_index = xhci_get_endpoint_index(&ep->desc);
2911        ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2912        if (ep_state & EP_HAS_STREAMS ||
2913                        ep_state & EP_GETTING_STREAMS) {
2914                xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2915                                "already has streams set up.\n",
2916                                ep->desc.bEndpointAddress);
2917                xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2918                                "dynamic stream context array reallocation.\n");
2919                return -EINVAL;
2920        }
2921        if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2922                xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2923                                "endpoint 0x%x; URBs are pending.\n",
2924                                ep->desc.bEndpointAddress);
2925                return -EINVAL;
2926        }
2927        return 0;
2928}
2929
2930static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2931                unsigned int *num_streams, unsigned int *num_stream_ctxs)
2932{
2933        unsigned int max_streams;
2934
2935        /* The stream context array size must be a power of two */
2936        *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2937        /*
2938         * Find out how many primary stream array entries the host controller
2939         * supports.  Later we may use secondary stream arrays (similar to 2nd
2940         * level page entries), but that's an optional feature for xHCI host
2941         * controllers. xHCs must support at least 4 stream IDs.
2942         */
2943        max_streams = HCC_MAX_PSA(xhci->hcc_params);
2944        if (*num_stream_ctxs > max_streams) {
2945                xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2946                                max_streams);
2947                *num_stream_ctxs = max_streams;
2948                *num_streams = max_streams;
2949        }
2950}
2951
2952/* Returns an error code if one of the endpoint already has streams.
2953 * This does not change any data structures, it only checks and gathers
2954 * information.
2955 */
2956static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2957                struct usb_device *udev,
2958                struct usb_host_endpoint **eps, unsigned int num_eps,
2959                unsigned int *num_streams, u32 *changed_ep_bitmask)
2960{
2961        unsigned int max_streams;
2962        unsigned int endpoint_flag;
2963        int i;
2964        int ret;
2965
2966        for (i = 0; i < num_eps; i++) {
2967                ret = xhci_check_streams_endpoint(xhci, udev,
2968                                eps[i], udev->slot_id);
2969                if (ret < 0)
2970                        return ret;
2971
2972                max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2973                if (max_streams < (*num_streams - 1)) {
2974                        xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2975                                        eps[i]->desc.bEndpointAddress,
2976                                        max_streams);
2977                        *num_streams = max_streams+1;
2978                }
2979
2980                endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2981                if (*changed_ep_bitmask & endpoint_flag)
2982                        return -EINVAL;
2983                *changed_ep_bitmask |= endpoint_flag;
2984        }
2985        return 0;
2986}
2987
2988static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2989                struct usb_device *udev,
2990                struct usb_host_endpoint **eps, unsigned int num_eps)
2991{
2992        u32 changed_ep_bitmask = 0;
2993        unsigned int slot_id;
2994        unsigned int ep_index;
2995        unsigned int ep_state;
2996        int i;
2997
2998        slot_id = udev->slot_id;
2999        if (!xhci->devs[slot_id])
3000                return 0;
3001
3002        for (i = 0; i < num_eps; i++) {
3003                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3004                ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3005                /* Are streams already being freed for the endpoint? */
3006                if (ep_state & EP_GETTING_NO_STREAMS) {
3007                        xhci_warn(xhci, "WARN Can't disable streams for "
3008                                        "endpoint 0x%x\n, "
3009                                        "streams are being disabled already.",
3010                                        eps[i]->desc.bEndpointAddress);
3011                        return 0;
3012                }
3013                /* Are there actually any streams to free? */
3014                if (!(ep_state & EP_HAS_STREAMS) &&
3015                                !(ep_state & EP_GETTING_STREAMS)) {
3016                        xhci_warn(xhci, "WARN Can't disable streams for "
3017                                        "endpoint 0x%x\n, "
3018                                        "streams are already disabled!",
3019                                        eps[i]->desc.bEndpointAddress);
3020                        xhci_warn(xhci, "WARN xhci_free_streams() called "
3021                                        "with non-streams endpoint\n");
3022                        return 0;
3023                }
3024                changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3025        }
3026        return changed_ep_bitmask;
3027}
3028
3029/*
3030 * The USB device drivers use this function (though the HCD interface in USB
3031 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3032 * coordinate mass storage command queueing across multiple endpoints (basically
3033 * a stream ID == a task ID).
3034 *
3035 * Setting up streams involves allocating the same size stream context array
3036 * for each endpoint and issuing a configure endpoint command for all endpoints.
3037 *
3038 * Don't allow the call to succeed if one endpoint only supports one stream
3039 * (which means it doesn't support streams at all).
3040 *
3041 * Drivers may get less stream IDs than they asked for, if the host controller
3042 * hardware or endpoints claim they can't support the number of requested
3043 * stream IDs.
3044 */
3045int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3046                struct usb_host_endpoint **eps, unsigned int num_eps,
3047                unsigned int num_streams, gfp_t mem_flags)
3048{
3049        int i, ret;
3050        struct xhci_hcd *xhci;
3051        struct xhci_virt_device *vdev;
3052        struct xhci_command *config_cmd;
3053        unsigned int ep_index;
3054        unsigned int num_stream_ctxs;
3055        unsigned long flags;
3056        u32 changed_ep_bitmask = 0;
3057
3058        if (!eps)
3059                return -EINVAL;
3060
3061        /* Add one to the number of streams requested to account for
3062         * stream 0 that is reserved for xHCI usage.
3063         */
3064        num_streams += 1;
3065        xhci = hcd_to_xhci(hcd);
3066        xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3067                        num_streams);
3068
3069        config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3070        if (!config_cmd) {
3071                xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3072                return -ENOMEM;
3073        }
3074
3075        /* Check to make sure all endpoints are not already configured for
3076         * streams.  While we're at it, find the maximum number of streams that
3077         * all the endpoints will support and check for duplicate endpoints.
3078         */
3079        spin_lock_irqsave(&xhci->lock, flags);
3080        ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3081                        num_eps, &num_streams, &changed_ep_bitmask);
3082        if (ret < 0) {
3083                xhci_free_command(xhci, config_cmd);
3084                spin_unlock_irqrestore(&xhci->lock, flags);
3085                return ret;
3086        }
3087        if (num_streams <= 1) {
3088                xhci_warn(xhci, "WARN: endpoints can't handle "
3089                                "more than one stream.\n");
3090                xhci_free_command(xhci, config_cmd);
3091                spin_unlock_irqrestore(&xhci->lock, flags);
3092                return -EINVAL;
3093        }
3094        vdev = xhci->devs[udev->slot_id];
3095        /* Mark each endpoint as being in transition, so
3096         * xhci_urb_enqueue() will reject all URBs.
3097         */
3098        for (i = 0; i < num_eps; i++) {
3099                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3100                vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3101        }
3102        spin_unlock_irqrestore(&xhci->lock, flags);
3103
3104        /* Setup internal data structures and allocate HW data structures for
3105         * streams (but don't install the HW structures in the input context
3106         * until we're sure all memory allocation succeeded).
3107         */
3108        xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3109        xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3110                        num_stream_ctxs, num_streams);
3111
3112        for (i = 0; i < num_eps; i++) {
3113                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3114                vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3115                                num_stream_ctxs,
3116                                num_streams, mem_flags);
3117                if (!vdev->eps[ep_index].stream_info)
3118                        goto cleanup;
3119                /* Set maxPstreams in endpoint context and update deq ptr to
3120                 * point to stream context array. FIXME
3121                 */
3122        }
3123
3124        /* Set up the input context for a configure endpoint command. */
3125        for (i = 0; i < num_eps; i++) {
3126                struct xhci_ep_ctx *ep_ctx;
3127
3128                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129                ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3130
3131                xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3132                                vdev->out_ctx, ep_index);
3133                xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3134                                vdev->eps[ep_index].stream_info);
3135        }
3136        /* Tell the HW to drop its old copy of the endpoint context info
3137         * and add the updated copy from the input context.
3138         */
3139        xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3140                        vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3141
3142        /* Issue and wait for the configure endpoint command */
3143        ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3144                        false, false);
3145
3146        /* xHC rejected the configure endpoint command for some reason, so we
3147         * leave the old ring intact and free our internal streams data
3148         * structure.
3149         */
3150        if (ret < 0)
3151                goto cleanup;
3152
3153        spin_lock_irqsave(&xhci->lock, flags);
3154        for (i = 0; i < num_eps; i++) {
3155                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3156                vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3157                xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3158                         udev->slot_id, ep_index);
3159                vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3160        }
3161        xhci_free_command(xhci, config_cmd);
3162        spin_unlock_irqrestore(&xhci->lock, flags);
3163
3164        /* Subtract 1 for stream 0, which drivers can't use */
3165        return num_streams - 1;
3166
3167cleanup:
3168        /* If it didn't work, free the streams! */
3169        for (i = 0; i < num_eps; i++) {
3170                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3171                xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3172                vdev->eps[ep_index].stream_info = NULL;
3173                /* FIXME Unset maxPstreams in endpoint context and
3174                 * update deq ptr to point to normal string ring.
3175                 */
3176                vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3177                vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3178                xhci_endpoint_zero(xhci, vdev, eps[i]);
3179        }
3180        xhci_free_command(xhci, config_cmd);
3181        return -ENOMEM;
3182}
3183
3184/* Transition the endpoint from using streams to being a "normal" endpoint
3185 * without streams.
3186 *
3187 * Modify the endpoint context state, submit a configure endpoint command,
3188 * and free all endpoint rings for streams if that completes successfully.
3189 */
3190int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3191                struct usb_host_endpoint **eps, unsigned int num_eps,
3192                gfp_t mem_flags)
3193{
3194        int i, ret;
3195        struct xhci_hcd *xhci;
3196        struct xhci_virt_device *vdev;
3197        struct xhci_command *command;
3198        unsigned int ep_index;
3199        unsigned long flags;
3200        u32 changed_ep_bitmask;
3201
3202        xhci = hcd_to_xhci(hcd);
3203        vdev = xhci->devs[udev->slot_id];
3204
3205        /* Set up a configure endpoint command to remove the streams rings */
3206        spin_lock_irqsave(&xhci->lock, flags);
3207        changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3208                        udev, eps, num_eps);
3209        if (changed_ep_bitmask == 0) {
3210                spin_unlock_irqrestore(&xhci->lock, flags);
3211                return -EINVAL;
3212        }
3213
3214        /* Use the xhci_command structure from the first endpoint.  We may have
3215         * allocated too many, but the driver may call xhci_free_streams() for
3216         * each endpoint it grouped into one call to xhci_alloc_streams().
3217         */
3218        ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3219        command = vdev->eps[ep_index].stream_info->free_streams_command;
3220        for (i = 0; i < num_eps; i++) {
3221                struct xhci_ep_ctx *ep_ctx;
3222
3223                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3224                ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3225                xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3226                        EP_GETTING_NO_STREAMS;
3227
3228                xhci_endpoint_copy(xhci, command->in_ctx,
3229                                vdev->out_ctx, ep_index);
3230                xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3231                                &vdev->eps[ep_index]);
3232        }
3233        xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3234                        vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3235        spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237        /* Issue and wait for the configure endpoint command,
3238         * which must succeed.
3239         */
3240        ret = xhci_configure_endpoint(xhci, udev, command,
3241                        false, true);
3242
3243        /* xHC rejected the configure endpoint command for some reason, so we
3244         * leave the streams rings intact.
3245         */
3246        if (ret < 0)
3247                return ret;
3248
3249        spin_lock_irqsave(&xhci->lock, flags);
3250        for (i = 0; i < num_eps; i++) {
3251                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3252                xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3253                vdev->eps[ep_index].stream_info = NULL;
3254                /* FIXME Unset maxPstreams in endpoint context and
3255                 * update deq ptr to point to normal string ring.
3256                 */
3257                vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3258                vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3259        }
3260        spin_unlock_irqrestore(&xhci->lock, flags);
3261
3262        return 0;
3263}
3264
3265/*
3266 * Deletes endpoint resources for endpoints that were active before a Reset
3267 * Device command, or a Disable Slot command.  The Reset Device command leaves
3268 * the control endpoint intact, whereas the Disable Slot command deletes it.
3269 *
3270 * Must be called with xhci->lock held.
3271 */
3272void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3273        struct xhci_virt_device *virt_dev, bool drop_control_ep)
3274{
3275        int i;
3276        unsigned int num_dropped_eps = 0;
3277        unsigned int drop_flags = 0;
3278
3279        for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3280                if (virt_dev->eps[i].ring) {
3281                        drop_flags |= 1 << i;
3282                        num_dropped_eps++;
3283                }
3284        }
3285        xhci->num_active_eps -= num_dropped_eps;
3286        if (num_dropped_eps)
3287                xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3288                                "%u now active.\n",
3289                                num_dropped_eps, drop_flags,
3290                                xhci->num_active_eps);
3291}
3292
3293/*
3294 * This submits a Reset Device Command, which will set the device state to 0,
3295 * set the device address to 0, and disable all the endpoints except the default
3296 * control endpoint.  The USB core should come back and call
3297 * xhci_address_device(), and then re-set up the configuration.  If this is
3298 * called because of a usb_reset_and_verify_device(), then the old alternate
3299 * settings will be re-installed through the normal bandwidth allocation
3300 * functions.
3301 *
3302 * Wait for the Reset Device command to finish.  Remove all structures
3303 * associated with the endpoints that were disabled.  Clear the input device
3304 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3305 *
3306 * If the virt_dev to be reset does not exist or does not match the udev,
3307 * it means the device is lost, possibly due to the xHC restore error and
3308 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3309 * re-allocate the device.
3310 */
3311int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3312{
3313        int ret, i;
3314        unsigned long flags;
3315        struct xhci_hcd *xhci;
3316        unsigned int slot_id;
3317        struct xhci_virt_device *virt_dev;
3318        struct xhci_command *reset_device_cmd;
3319        int timeleft;
3320        int last_freed_endpoint;
3321        struct xhci_slot_ctx *slot_ctx;
3322        int old_active_eps = 0;
3323
3324        ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3325        if (ret <= 0)
3326                return ret;
3327        xhci = hcd_to_xhci(hcd);
3328        slot_id = udev->slot_id;
3329        virt_dev = xhci->devs[slot_id];
3330        if (!virt_dev) {
3331                xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3332                                "not exist. Re-allocate the device\n", slot_id);
3333                ret = xhci_alloc_dev(hcd, udev);
3334                if (ret == 1)
3335                        return 0;
3336                else
3337                        return -EINVAL;
3338        }
3339
3340        if (virt_dev->udev != udev) {
3341                /* If the virt_dev and the udev does not match, this virt_dev
3342                 * may belong to another udev.
3343                 * Re-allocate the device.
3344                 */
3345                xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3346                                "not match the udev. Re-allocate the device\n",
3347                                slot_id);
3348                ret = xhci_alloc_dev(hcd, udev);
3349                if (ret == 1)
3350                        return 0;
3351                else
3352                        return -EINVAL;
3353        }
3354
3355        /* If device is not setup, there is no point in resetting it */
3356        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3357        if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3358                                                SLOT_STATE_DISABLED)
3359                return 0;
3360
3361        xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3362        /* Allocate the command structure that holds the struct completion.
3363         * Assume we're in process context, since the normal device reset
3364         * process has to wait for the device anyway.  Storage devices are
3365         * reset as part of error handling, so use GFP_NOIO instead of
3366         * GFP_KERNEL.
3367         */
3368        reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3369        if (!reset_device_cmd) {
3370                xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3371                return -ENOMEM;
3372        }
3373
3374        /* Attempt to submit the Reset Device command to the command ring */
3375        spin_lock_irqsave(&xhci->lock, flags);
3376        reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3377
3378        /* Enqueue pointer can be left pointing to the link TRB,
3379         * we must handle that
3380         */
3381        if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3382                reset_device_cmd->command_trb =
3383                        xhci->cmd_ring->enq_seg->next->trbs;
3384
3385        list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3386        ret = xhci_queue_reset_device(xhci, slot_id);
3387        if (ret) {
3388                xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3389                list_del(&reset_device_cmd->cmd_list);
3390                spin_unlock_irqrestore(&xhci->lock, flags);
3391                goto command_cleanup;
3392        }
3393        xhci_ring_cmd_db(xhci);
3394        spin_unlock_irqrestore(&xhci->lock, flags);
3395
3396        /* Wait for the Reset Device command to finish */
3397        timeleft = wait_for_completion_interruptible_timeout(
3398                        reset_device_cmd->completion,
3399                        USB_CTRL_SET_TIMEOUT);
3400        if (timeleft <= 0) {
3401                xhci_warn(xhci, "%s while waiting for reset device command\n",
3402                                timeleft == 0 ? "Timeout" : "Signal");
3403                spin_lock_irqsave(&xhci->lock, flags);
3404                /* The timeout might have raced with the event ring handler, so
3405                 * only delete from the list if the item isn't poisoned.
3406                 */
3407                if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3408                        list_del(&reset_device_cmd->cmd_list);
3409                spin_unlock_irqrestore(&xhci->lock, flags);
3410                ret = -ETIME;
3411                goto command_cleanup;
3412        }
3413
3414        /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3415         * unless we tried to reset a slot ID that wasn't enabled,
3416         * or the device wasn't in the addressed or configured state.
3417         */
3418        ret = reset_device_cmd->status;
3419        switch (ret) {
3420        case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3421        case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3422                xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3423                                slot_id,
3424                                xhci_get_slot_state(xhci, virt_dev->out_ctx));
3425                xhci_info(xhci, "Not freeing device rings.\n");
3426                /* Don't treat this as an error.  May change my mind later. */
3427                ret = 0;
3428                goto command_cleanup;
3429        case COMP_SUCCESS:
3430                xhci_dbg(xhci, "Successful reset device command.\n");
3431                break;
3432        default:
3433                if (xhci_is_vendor_info_code(xhci, ret))
3434                        break;
3435                xhci_warn(xhci, "Unknown completion code %u for "
3436                                "reset device command.\n", ret);
3437                ret = -EINVAL;
3438                goto command_cleanup;
3439        }
3440
3441        /* Free up host controller endpoint resources */
3442        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3443                spin_lock_irqsave(&xhci->lock, flags);
3444                /* Don't delete the default control endpoint resources */
3445                xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3446                spin_unlock_irqrestore(&xhci->lock, flags);
3447        }
3448
3449        /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3450        last_freed_endpoint = 1;
3451        for (i = 1; i < 31; ++i) {
3452                struct xhci_virt_ep *ep = &virt_dev->eps[i];
3453
3454                if (ep->ep_state & EP_HAS_STREAMS) {
3455                        xhci_free_stream_info(xhci, ep->stream_info);
3456                        ep->stream_info = NULL;
3457                        ep->ep_state &= ~EP_HAS_STREAMS;
3458                }
3459
3460                if (ep->ring) {
3461                        xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3462                        last_freed_endpoint = i;
3463                }
3464                if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3465                        xhci_drop_ep_from_interval_table(xhci,
3466                                        &virt_dev->eps[i].bw_info,
3467                                        virt_dev->bw_table,
3468                                        udev,
3469                                        &virt_dev->eps[i],
3470                                        virt_dev->tt_info);
3471                xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3472        }
3473        /* If necessary, update the number of active TTs on this root port */
3474        xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3475
3476        xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3477        xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3478        ret = 0;
3479
3480command_cleanup:
3481        xhci_free_command(xhci, reset_device_cmd);
3482        return ret;
3483}
3484
3485/*
3486 * At this point, the struct usb_device is about to go away, the device has
3487 * disconnected, and all traffic has been stopped and the endpoints have been
3488 * disabled.  Free any HC data structures associated with that device.
3489 */
3490void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3491{
3492        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3493        struct xhci_virt_device *virt_dev;
3494        unsigned long flags;
3495        u32 state;
3496        int i, ret;
3497
3498        ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3499        /* If the host is halted due to driver unload, we still need to free the
3500         * device.
3501         */
3502        if (ret <= 0 && ret != -ENODEV)
3503                return;
3504
3505        virt_dev = xhci->devs[udev->slot_id];
3506
3507        /* Stop any wayward timer functions (which may grab the lock) */
3508        for (i = 0; i < 31; ++i) {
3509                virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3510                del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3511        }
3512
3513        if (udev->usb2_hw_lpm_enabled) {
3514                xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3515                udev->usb2_hw_lpm_enabled = 0;
3516        }
3517
3518        spin_lock_irqsave(&xhci->lock, flags);
3519        /* Don't disable the slot if the host controller is dead. */
3520        state = xhci_readl(xhci, &xhci->op_regs->status);
3521        if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3522                        (xhci->xhc_state & XHCI_STATE_HALTED)) {
3523                xhci_free_virt_device(xhci, udev->slot_id);
3524                spin_unlock_irqrestore(&xhci->lock, flags);
3525                return;
3526        }
3527
3528        if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3529                spin_unlock_irqrestore(&xhci->lock, flags);
3530                xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531                return;
3532        }
3533        xhci_ring_cmd_db(xhci);
3534        spin_unlock_irqrestore(&xhci->lock, flags);
3535        /*
3536         * Event command completion handler will free any data structures
3537         * associated with the slot.  XXX Can free sleep?
3538         */
3539}
3540
3541/*
3542 * Checks if we have enough host controller resources for the default control
3543 * endpoint.
3544 *
3545 * Must be called with xhci->lock held.
3546 */
3547static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3548{
3549        if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3550                xhci_dbg(xhci, "Not enough ep ctxs: "
3551                                "%u active, need to add 1, limit is %u.\n",
3552                                xhci->num_active_eps, xhci->limit_active_eps);
3553                return -ENOMEM;
3554        }
3555        xhci->num_active_eps += 1;
3556        xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3557                        xhci->num_active_eps);
3558        return 0;
3559}
3560
3561
3562/*
3563 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3564 * timed out, or allocating memory failed.  Returns 1 on success.
3565 */
3566int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3567{
3568        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3569        unsigned long flags;
3570        int timeleft;
3571        int ret;
3572        union xhci_trb *cmd_trb;
3573
3574        spin_lock_irqsave(&xhci->lock, flags);
3575        cmd_trb = xhci->cmd_ring->dequeue;
3576        ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3577        if (ret) {
3578                spin_unlock_irqrestore(&xhci->lock, flags);
3579                xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3580                return 0;
3581        }
3582        xhci_ring_cmd_db(xhci);
3583        spin_unlock_irqrestore(&xhci->lock, flags);
3584
3585        /* XXX: how much time for xHC slot assignment? */
3586        timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3587                        XHCI_CMD_DEFAULT_TIMEOUT);
3588        if (timeleft <= 0) {
3589                xhci_warn(xhci, "%s while waiting for a slot\n",
3590                                timeleft == 0 ? "Timeout" : "Signal");
3591                /* cancel the enable slot request */
3592                return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3593        }
3594
3595        if (!xhci->slot_id) {
3596                xhci_err(xhci, "Error while assigning device slot ID\n");
3597                return 0;
3598        }
3599
3600        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3601                spin_lock_irqsave(&xhci->lock, flags);
3602                ret = xhci_reserve_host_control_ep_resources(xhci);
3603                if (ret) {
3604                        spin_unlock_irqrestore(&xhci->lock, flags);
3605                        xhci_warn(xhci, "Not enough host resources, "
3606                                        "active endpoint contexts = %u\n",
3607                                        xhci->num_active_eps);
3608                        goto disable_slot;
3609                }
3610                spin_unlock_irqrestore(&xhci->lock, flags);
3611        }
3612        /* Use GFP_NOIO, since this function can be called from
3613         * xhci_discover_or_reset_device(), which may be called as part of
3614         * mass storage driver error handling.
3615         */
3616        if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3617                xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3618                goto disable_slot;
3619        }
3620        udev->slot_id = xhci->slot_id;
3621        /* Is this a LS or FS device under a HS hub? */
3622        /* Hub or peripherial? */
3623        return 1;
3624
3625disable_slot:
3626        /* Disable slot, if we can do it without mem alloc */
3627        spin_lock_irqsave(&xhci->lock, flags);
3628        if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3629                xhci_ring_cmd_db(xhci);
3630        spin_unlock_irqrestore(&xhci->lock, flags);
3631        return 0;
3632}
3633
3634/*
3635 * Issue an Address Device command (which will issue a SetAddress request to
3636 * the device).
3637 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3638 * we should only issue and wait on one address command at the same time.
3639 *
3640 * We add one to the device address issued by the hardware because the USB core
3641 * uses address 1 for the root hubs (even though they're not really devices).
3642 */
3643int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3644{
3645        unsigned long flags;
3646        int timeleft;
3647        struct xhci_virt_device *virt_dev;
3648        int ret = 0;
3649        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3650        struct xhci_slot_ctx *slot_ctx;
3651        struct xhci_input_control_ctx *ctrl_ctx;
3652        u64 temp_64;
3653        union xhci_trb *cmd_trb;
3654
3655        if (!udev->slot_id) {
3656                xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3657                return -EINVAL;
3658        }
3659
3660        virt_dev = xhci->devs[udev->slot_id];
3661
3662        if (WARN_ON(!virt_dev)) {
3663                /*
3664                 * In plug/unplug torture test with an NEC controller,
3665                 * a zero-dereference was observed once due to virt_dev = 0.
3666                 * Print useful debug rather than crash if it is observed again!
3667                 */
3668                xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3669                        udev->slot_id);
3670                return -EINVAL;
3671        }
3672
3673        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3674        /*
3675         * If this is the first Set Address since device plug-in or
3676         * virt_device realloaction after a resume with an xHCI power loss,
3677         * then set up the slot context.
3678         */
3679        if (!slot_ctx->dev_info)
3680                xhci_setup_addressable_virt_dev(xhci, udev);
3681        /* Otherwise, update the control endpoint ring enqueue pointer. */
3682        else
3683                xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3684        ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3685        ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3686        ctrl_ctx->drop_flags = 0;
3687
3688        xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3689        xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3690
3691        spin_lock_irqsave(&xhci->lock, flags);
3692        cmd_trb = xhci->cmd_ring->dequeue;
3693        ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3694                                        udev->slot_id);
3695        if (ret) {
3696                spin_unlock_irqrestore(&xhci->lock, flags);
3697                xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3698                return ret;
3699        }
3700        xhci_ring_cmd_db(xhci);
3701        spin_unlock_irqrestore(&xhci->lock, flags);
3702
3703        /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3704        timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3705                        XHCI_CMD_DEFAULT_TIMEOUT);
3706        /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3707         * the SetAddress() "recovery interval" required by USB and aborting the
3708         * command on a timeout.
3709         */
3710        if (timeleft <= 0) {
3711                xhci_warn(xhci, "%s while waiting for address device command\n",
3712                                timeleft == 0 ? "Timeout" : "Signal");
3713                /* cancel the address device command */
3714                ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3715                if (ret < 0)
3716                        return ret;
3717                return -ETIME;
3718        }
3719
3720        switch (virt_dev->cmd_status) {
3721        case COMP_CTX_STATE:
3722        case COMP_EBADSLT:
3723                xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3724                                udev->slot_id);
3725                ret = -EINVAL;
3726                break;
3727        case COMP_TX_ERR:
3728                dev_warn(&udev->dev, "Device not responding to set address.\n");
3729                ret = -EPROTO;
3730                break;
3731        case COMP_DEV_ERR:
3732                dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3733                                "device command.\n");
3734                ret = -ENODEV;
3735                break;
3736        case COMP_SUCCESS:
3737                xhci_dbg(xhci, "Successful Address Device command\n");
3738                break;
3739        default:
3740                xhci_err(xhci, "ERROR: unexpected command completion "
3741                                "code 0x%x.\n", virt_dev->cmd_status);
3742                xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3743                xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3744                ret = -EINVAL;
3745                break;
3746        }
3747        if (ret) {
3748                return ret;
3749        }
3750        temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3751        xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3752        xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3753                 udev->slot_id,
3754                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3755                 (unsigned long long)
3756                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3757        xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3758                        (unsigned long long)virt_dev->out_ctx->dma);
3759        xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3760        xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3761        xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3762        xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3763        /*
3764         * USB core uses address 1 for the roothubs, so we add one to the
3765         * address given back to us by the HC.
3766         */
3767        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3768        /* Use kernel assigned address for devices; store xHC assigned
3769         * address locally. */
3770        virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3771                + 1;
3772        /* Zero the input context control for later use */
3773        ctrl_ctx->add_flags = 0;
3774        ctrl_ctx->drop_flags = 0;
3775
3776        xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3777
3778        return 0;
3779}
3780
3781#ifdef CONFIG_USB_SUSPEND
3782
3783/* BESL to HIRD Encoding array for USB2 LPM */
3784static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3785        3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3786
3787/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3788static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3789                                        struct usb_device *udev)
3790{
3791        int u2del, besl, besl_host;
3792        int besl_device = 0;
3793        u32 field;
3794
3795        u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3796        field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3797
3798        if (field & USB_BESL_SUPPORT) {
3799                for (besl_host = 0; besl_host < 16; besl_host++) {
3800                        if (xhci_besl_encoding[besl_host] >= u2del)
3801                                break;
3802                }
3803                /* Use baseline BESL value as default */
3804                if (field & USB_BESL_BASELINE_VALID)
3805                        besl_device = USB_GET_BESL_BASELINE(field);
3806                else if (field & USB_BESL_DEEP_VALID)
3807                        besl_device = USB_GET_BESL_DEEP(field);
3808        } else {
3809                if (u2del <= 50)
3810                        besl_host = 0;
3811                else
3812                        besl_host = (u2del - 51) / 75 + 1;
3813        }
3814
3815        besl = besl_host + besl_device;
3816        if (besl > 15)
3817                besl = 15;
3818
3819        return besl;
3820}
3821
3822static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3823                                        struct usb_device *udev)
3824{
3825        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3826        struct dev_info *dev_info;
3827        __le32 __iomem  **port_array;
3828        __le32 __iomem  *addr, *pm_addr;
3829        u32             temp, dev_id;
3830        unsigned int    port_num;
3831        unsigned long   flags;
3832        int             hird;
3833        int             ret;
3834
3835        if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3836                        !udev->lpm_capable)
3837                return -EINVAL;
3838
3839        /* we only support lpm for non-hub device connected to root hub yet */
3840        if (!udev->parent || udev->parent->parent ||
3841                        udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3842                return -EINVAL;
3843
3844        spin_lock_irqsave(&xhci->lock, flags);
3845
3846        /* Look for devices in lpm_failed_devs list */
3847        dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3848                        le16_to_cpu(udev->descriptor.idProduct);
3849        list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3850                if (dev_info->dev_id == dev_id) {
3851                        ret = -EINVAL;
3852                        goto finish;
3853                }
3854        }
3855
3856        port_array = xhci->usb2_ports;
3857        port_num = udev->portnum - 1;
3858
3859        if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3860                xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3861                ret = -EINVAL;
3862                goto finish;
3863        }
3864
3865        /*
3866         * Test USB 2.0 software LPM.
3867         * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3868         * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3869         * in the June 2011 errata release.
3870         */
3871        xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3872        /*
3873         * Set L1 Device Slot and HIRD/BESL.
3874         * Check device's USB 2.0 extension descriptor to determine whether
3875         * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3876         */
3877        pm_addr = port_array[port_num] + 1;
3878        hird = xhci_calculate_hird_besl(xhci, udev);
3879        temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3880        xhci_writel(xhci, temp, pm_addr);
3881
3882        /* Set port link state to U2(L1) */
3883        addr = port_array[port_num];
3884        xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3885
3886        /* wait for ACK */
3887        spin_unlock_irqrestore(&xhci->lock, flags);
3888        msleep(10);
3889        spin_lock_irqsave(&xhci->lock, flags);
3890
3891        /* Check L1 Status */
3892        ret = xhci_handshake(xhci, pm_addr,
3893                        PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3894        if (ret != -ETIMEDOUT) {
3895                /* enter L1 successfully */
3896                temp = xhci_readl(xhci, addr);
3897                xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3898                                port_num, temp);
3899                ret = 0;
3900        } else {
3901                temp = xhci_readl(xhci, pm_addr);
3902                xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3903                                port_num, temp & PORT_L1S_MASK);
3904                ret = -EINVAL;
3905        }
3906
3907        /* Resume the port */
3908        xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3909
3910        spin_unlock_irqrestore(&xhci->lock, flags);
3911        msleep(10);
3912        spin_lock_irqsave(&xhci->lock, flags);
3913
3914        /* Clear PLC */
3915        xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3916
3917        /* Check PORTSC to make sure the device is in the right state */
3918        if (!ret) {
3919                temp = xhci_readl(xhci, addr);
3920                xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3921                if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3922                                (temp & PORT_PLS_MASK) != XDEV_U0) {
3923                        xhci_dbg(xhci, "port L1 resume fail\n");
3924                        ret = -EINVAL;
3925                }
3926        }
3927
3928        if (ret) {
3929                /* Insert dev to lpm_failed_devs list */
3930                xhci_warn(xhci, "device LPM test failed, may disconnect and "
3931                                "re-enumerate\n");
3932                dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3933                if (!dev_info) {
3934                        ret = -ENOMEM;
3935                        goto finish;
3936                }
3937                dev_info->dev_id = dev_id;
3938                INIT_LIST_HEAD(&dev_info->list);
3939                list_add(&dev_info->list, &xhci->lpm_failed_devs);
3940        } else {
3941                xhci_ring_device(xhci, udev->slot_id);
3942        }
3943
3944finish:
3945        spin_unlock_irqrestore(&xhci->lock, flags);
3946        return ret;
3947}
3948
3949int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3950                        struct usb_device *udev, int enable)
3951{
3952        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3953        __le32 __iomem  **port_array;
3954        __le32 __iomem  *pm_addr;
3955        u32             temp;
3956        unsigned int    port_num;
3957        unsigned long   flags;
3958        int             hird;
3959
3960        if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3961                        !udev->lpm_capable)
3962                return -EPERM;
3963
3964        if (!udev->parent || udev->parent->parent ||
3965                        udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3966                return -EPERM;
3967
3968        if (udev->usb2_hw_lpm_capable != 1)
3969                return -EPERM;
3970
3971        spin_lock_irqsave(&xhci->lock, flags);
3972
3973        port_array = xhci->usb2_ports;
3974        port_num = udev->portnum - 1;
3975        pm_addr = port_array[port_num] + 1;
3976        temp = xhci_readl(xhci, pm_addr);
3977
3978        xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3979                        enable ? "enable" : "disable", port_num);
3980
3981        hird = xhci_calculate_hird_besl(xhci, udev);
3982
3983        if (enable) {
3984                temp &= ~PORT_HIRD_MASK;
3985                temp |= PORT_HIRD(hird) | PORT_RWE;
3986                xhci_writel(xhci, temp, pm_addr);
3987                temp = xhci_readl(xhci, pm_addr);
3988                temp |= PORT_HLE;
3989                xhci_writel(xhci, temp, pm_addr);
3990        } else {
3991                temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3992                xhci_writel(xhci, temp, pm_addr);
3993        }
3994
3995        spin_unlock_irqrestore(&xhci->lock, flags);
3996        return 0;
3997}
3998
3999int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4000{
4001        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4002        int             ret;
4003
4004        ret = xhci_usb2_software_lpm_test(hcd, udev);
4005        if (!ret) {
4006                xhci_dbg(xhci, "software LPM test succeed\n");
4007                if (xhci->hw_lpm_support == 1) {
4008                        udev->usb2_hw_lpm_capable = 1;
4009                        ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4010                        if (!ret)
4011                                udev->usb2_hw_lpm_enabled = 1;
4012                }
4013        }
4014
4015        return 0;
4016}
4017
4018#else
4019
4020int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4021                                struct usb_device *udev, int enable)
4022{
4023        return 0;
4024}
4025
4026int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4027{
4028        return 0;
4029}
4030
4031#endif /* CONFIG_USB_SUSPEND */
4032
4033/*---------------------- USB 3.0 Link PM functions ------------------------*/
4034
4035#ifdef CONFIG_PM
4036/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4037static unsigned long long xhci_service_interval_to_ns(
4038                struct usb_endpoint_descriptor *desc)
4039{
4040        return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4041}
4042
4043static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4044                enum usb3_link_state state)
4045{
4046        unsigned long long sel;
4047        unsigned long long pel;
4048        unsigned int max_sel_pel;
4049        char *state_name;
4050
4051        switch (state) {
4052        case USB3_LPM_U1:
4053                /* Convert SEL and PEL stored in nanoseconds to microseconds */
4054                sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4055                pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4056                max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4057                state_name = "U1";
4058                break;
4059        case USB3_LPM_U2:
4060                sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4061                pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4062                max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4063                state_name = "U2";
4064                break;
4065        default:
4066                dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4067                                __func__);
4068                return USB3_LPM_DISABLED;
4069        }
4070
4071        if (sel <= max_sel_pel && pel <= max_sel_pel)
4072                return USB3_LPM_DEVICE_INITIATED;
4073
4074        if (sel > max_sel_pel)
4075                dev_dbg(&udev->dev, "Device-initiated %s disabled "
4076                                "due to long SEL %llu ms\n",
4077                                state_name, sel);
4078        else
4079                dev_dbg(&udev->dev, "Device-initiated %s disabled "
4080                                "due to long PEL %llu\n ms",
4081                                state_name, pel);
4082        return USB3_LPM_DISABLED;
4083}
4084
4085/* Returns the hub-encoded U1 timeout value.
4086 * The U1 timeout should be the maximum of the following values:
4087 *  - For control endpoints, U1 system exit latency (SEL) * 3
4088 *  - For bulk endpoints, U1 SEL * 5
4089 *  - For interrupt endpoints:
4090 *    - Notification EPs, U1 SEL * 3
4091 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4092 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4093 */
4094static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4095                struct usb_endpoint_descriptor *desc)
4096{
4097        unsigned long long timeout_ns;
4098        int ep_type;
4099        int intr_type;
4100
4101        ep_type = usb_endpoint_type(desc);
4102        switch (ep_type) {
4103        case USB_ENDPOINT_XFER_CONTROL:
4104                timeout_ns = udev->u1_params.sel * 3;
4105                break;
4106        case USB_ENDPOINT_XFER_BULK:
4107                timeout_ns = udev->u1_params.sel * 5;
4108                break;
4109        case USB_ENDPOINT_XFER_INT:
4110                intr_type = usb_endpoint_interrupt_type(desc);
4111                if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4112                        timeout_ns = udev->u1_params.sel * 3;
4113                        break;
4114                }
4115                /* Otherwise the calculation is the same as isoc eps */
4116        case USB_ENDPOINT_XFER_ISOC:
4117                timeout_ns = xhci_service_interval_to_ns(desc);
4118                timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4119                if (timeout_ns < udev->u1_params.sel * 2)
4120                        timeout_ns = udev->u1_params.sel * 2;
4121                break;
4122        default:
4123                return 0;
4124        }
4125
4126        /* The U1 timeout is encoded in 1us intervals. */
4127        timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4128        /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4129        if (timeout_ns == USB3_LPM_DISABLED)
4130                timeout_ns++;
4131
4132        /* If the necessary timeout value is bigger than what we can set in the
4133         * USB 3.0 hub, we have to disable hub-initiated U1.
4134         */
4135        if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4136                return timeout_ns;
4137        dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4138                        "due to long timeout %llu ms\n", timeout_ns);
4139        return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4140}
4141
4142/* Returns the hub-encoded U2 timeout value.
4143 * The U2 timeout should be the maximum of:
4144 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4145 *  - largest bInterval of any active periodic endpoint (to avoid going
4146 *    into lower power link states between intervals).
4147 *  - the U2 Exit Latency of the device
4148 */
4149static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4150                struct usb_endpoint_descriptor *desc)
4151{
4152        unsigned long long timeout_ns;
4153        unsigned long long u2_del_ns;
4154
4155        timeout_ns = 10 * 1000 * 1000;
4156
4157        if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4158                        (xhci_service_interval_to_ns(desc) > timeout_ns))
4159                timeout_ns = xhci_service_interval_to_ns(desc);
4160
4161        u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4162        if (u2_del_ns > timeout_ns)
4163                timeout_ns = u2_del_ns;
4164
4165        /* The U2 timeout is encoded in 256us intervals */
4166        timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4167        /* If the necessary timeout value is bigger than what we can set in the
4168         * USB 3.0 hub, we have to disable hub-initiated U2.
4169         */
4170        if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4171                return timeout_ns;
4172        dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4173                        "due to long timeout %llu ms\n", timeout_ns);
4174        return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4175}
4176
4177static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4178                struct usb_device *udev,
4179                struct usb_endpoint_descriptor *desc,
4180                enum usb3_link_state state,
4181                u16 *timeout)
4182{
4183        if (state == USB3_LPM_U1) {
4184                if (xhci->quirks & XHCI_INTEL_HOST)
4185                        return xhci_calculate_intel_u1_timeout(udev, desc);
4186        } else {
4187                if (xhci->quirks & XHCI_INTEL_HOST)
4188                        return xhci_calculate_intel_u2_timeout(udev, desc);
4189        }
4190
4191        return USB3_LPM_DISABLED;
4192}
4193
4194static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4195                struct usb_device *udev,
4196                struct usb_endpoint_descriptor *desc,
4197                enum usb3_link_state state,
4198                u16 *timeout)
4199{
4200        u16 alt_timeout;
4201
4202        alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4203                desc, state, timeout);
4204
4205        /* If we found we can't enable hub-initiated LPM, or
4206         * the U1 or U2 exit latency was too high to allow
4207         * device-initiated LPM as well, just stop searching.
4208         */
4209        if (alt_timeout == USB3_LPM_DISABLED ||
4210                        alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4211                *timeout = alt_timeout;
4212                return -E2BIG;
4213        }
4214        if (alt_timeout > *timeout)
4215                *timeout = alt_timeout;
4216        return 0;
4217}
4218
4219static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4220                struct usb_device *udev,
4221                struct usb_host_interface *alt,
4222                enum usb3_link_state state,
4223                u16 *timeout)
4224{
4225        int j;
4226
4227        for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4228                if (xhci_update_timeout_for_endpoint(xhci, udev,
4229                                        &alt->endpoint[j].desc, state, timeout))
4230                        return -E2BIG;
4231                continue;
4232        }
4233        return 0;
4234}
4235
4236static int xhci_check_intel_tier_policy(struct usb_device *udev,
4237                enum usb3_link_state state)
4238{
4239        struct usb_device *parent;
4240        unsigned int num_hubs;
4241
4242        if (state == USB3_LPM_U2)
4243                return 0;
4244
4245        /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4246        for (parent = udev->parent, num_hubs = 0; parent->parent;
4247                        parent = parent->parent)
4248                num_hubs++;
4249
4250        if (num_hubs < 2)
4251                return 0;
4252
4253        dev_dbg(&udev->dev, "Disabling U1 link state for device"
4254                        " below second-tier hub.\n");
4255        dev_dbg(&udev->dev, "Plug device into first-tier hub "
4256                        "to decrease power consumption.\n");
4257        return -E2BIG;
4258}
4259
4260static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4261                struct usb_device *udev,
4262                enum usb3_link_state state)
4263{
4264        if (xhci->quirks & XHCI_INTEL_HOST)
4265                return xhci_check_intel_tier_policy(udev, state);
4266        return -EINVAL;
4267}
4268
4269/* Returns the U1 or U2 timeout that should be enabled.
4270 * If the tier check or timeout setting functions return with a non-zero exit
4271 * code, that means the timeout value has been finalized and we shouldn't look
4272 * at any more endpoints.
4273 */
4274static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4275                        struct usb_device *udev, enum usb3_link_state state)
4276{
4277        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4278        struct usb_host_config *config;
4279        char *state_name;
4280        int i;
4281        u16 timeout = USB3_LPM_DISABLED;
4282
4283        if (state == USB3_LPM_U1)
4284                state_name = "U1";
4285        else if (state == USB3_LPM_U2)
4286                state_name = "U2";
4287        else {
4288                dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4289                                state);
4290                return timeout;
4291        }
4292
4293        if (xhci_check_tier_policy(xhci, udev, state) < 0)
4294                return timeout;
4295
4296        /* Gather some information about the currently installed configuration
4297         * and alternate interface settings.
4298         */
4299        if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4300                        state, &timeout))
4301                return timeout;
4302
4303        config = udev->actconfig;
4304        if (!config)
4305                return timeout;
4306
4307        for (i = 0; i < USB_MAXINTERFACES; i++) {
4308                struct usb_driver *driver;
4309                struct usb_interface *intf = config->interface[i];
4310
4311                if (!intf)
4312                        continue;
4313
4314                /* Check if any currently bound drivers want hub-initiated LPM
4315                 * disabled.
4316                 */
4317                if (intf->dev.driver) {
4318                        driver = to_usb_driver(intf->dev.driver);
4319                        if (driver && driver->disable_hub_initiated_lpm) {
4320                                dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4321                                                "at request of driver %s\n",
4322                                                state_name, driver->name);
4323                                return xhci_get_timeout_no_hub_lpm(udev, state);
4324                        }
4325                }
4326
4327                /* Not sure how this could happen... */
4328                if (!intf->cur_altsetting)
4329                        continue;
4330
4331                if (xhci_update_timeout_for_interface(xhci, udev,
4332                                        intf->cur_altsetting,
4333                                        state, &timeout))
4334                        return timeout;
4335        }
4336        return timeout;
4337}
4338
4339/*
4340 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4341 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4342 */
4343static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4344                        struct usb_device *udev, u16 max_exit_latency)
4345{
4346        struct xhci_virt_device *virt_dev;
4347        struct xhci_command *command;
4348        struct xhci_input_control_ctx *ctrl_ctx;
4349        struct xhci_slot_ctx *slot_ctx;
4350        unsigned long flags;
4351        int ret;
4352
4353        spin_lock_irqsave(&xhci->lock, flags);
4354        if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4355                spin_unlock_irqrestore(&xhci->lock, flags);
4356                return 0;
4357        }
4358
4359        /* Attempt to issue an Evaluate Context command to change the MEL. */
4360        virt_dev = xhci->devs[udev->slot_id];
4361        command = xhci->lpm_command;
4362        xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4363        spin_unlock_irqrestore(&xhci->lock, flags);
4364
4365        ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4366        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4367        slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4368        slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4369        slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4370
4371        xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4372        xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4373        xhci_dbg_ctx(xhci, command->in_ctx, 0);
4374
4375        /* Issue and wait for the evaluate context command. */
4376        ret = xhci_configure_endpoint(xhci, udev, command,
4377                        true, true);
4378        xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4379        xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4380
4381        if (!ret) {
4382                spin_lock_irqsave(&xhci->lock, flags);
4383                virt_dev->current_mel = max_exit_latency;
4384                spin_unlock_irqrestore(&xhci->lock, flags);
4385        }
4386        return ret;
4387}
4388
4389static int calculate_max_exit_latency(struct usb_device *udev,
4390                enum usb3_link_state state_changed,
4391                u16 hub_encoded_timeout)
4392{
4393        unsigned long long u1_mel_us = 0;
4394        unsigned long long u2_mel_us = 0;
4395        unsigned long long mel_us = 0;
4396        bool disabling_u1;
4397        bool disabling_u2;
4398        bool enabling_u1;
4399        bool enabling_u2;
4400
4401        disabling_u1 = (state_changed == USB3_LPM_U1 &&
4402                        hub_encoded_timeout == USB3_LPM_DISABLED);
4403        disabling_u2 = (state_changed == USB3_LPM_U2 &&
4404                        hub_encoded_timeout == USB3_LPM_DISABLED);
4405
4406        enabling_u1 = (state_changed == USB3_LPM_U1 &&
4407                        hub_encoded_timeout != USB3_LPM_DISABLED);
4408        enabling_u2 = (state_changed == USB3_LPM_U2 &&
4409                        hub_encoded_timeout != USB3_LPM_DISABLED);
4410
4411        /* If U1 was already enabled and we're not disabling it,
4412         * or we're going to enable U1, account for the U1 max exit latency.
4413         */
4414        if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4415                        enabling_u1)
4416                u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4417        if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4418                        enabling_u2)
4419                u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4420
4421        if (u1_mel_us > u2_mel_us)
4422                mel_us = u1_mel_us;
4423        else
4424                mel_us = u2_mel_us;
4425        /* xHCI host controller max exit latency field is only 16 bits wide. */
4426        if (mel_us > MAX_EXIT) {
4427                dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4428                                "is too big.\n", mel_us);
4429                return -E2BIG;
4430        }
4431        return mel_us;
4432}
4433
4434/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4435int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4436                        struct usb_device *udev, enum usb3_link_state state)
4437{
4438        struct xhci_hcd *xhci;
4439        u16 hub_encoded_timeout;
4440        int mel;
4441        int ret;
4442
4443        xhci = hcd_to_xhci(hcd);
4444        /* The LPM timeout values are pretty host-controller specific, so don't
4445         * enable hub-initiated timeouts unless the vendor has provided
4446         * information about their timeout algorithm.
4447         */
4448        if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4449                        !xhci->devs[udev->slot_id])
4450                return USB3_LPM_DISABLED;
4451
4452        hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4453        mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4454        if (mel < 0) {
4455                /* Max Exit Latency is too big, disable LPM. */
4456                hub_encoded_timeout = USB3_LPM_DISABLED;
4457                mel = 0;
4458        }
4459
4460        ret = xhci_change_max_exit_latency(xhci, udev, mel);
4461        if (ret)
4462                return ret;
4463        return hub_encoded_timeout;
4464}
4465
4466int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4467                        struct usb_device *udev, enum usb3_link_state state)
4468{
4469        struct xhci_hcd *xhci;
4470        u16 mel;
4471        int ret;
4472
4473        xhci = hcd_to_xhci(hcd);
4474        if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4475                        !xhci->devs[udev->slot_id])
4476                return 0;
4477
4478        mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4479        ret = xhci_change_max_exit_latency(xhci, udev, mel);
4480        if (ret)
4481                return ret;
4482        return 0;
4483}
4484#else /* CONFIG_PM */
4485
4486int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4487                        struct usb_device *udev, enum usb3_link_state state)
4488{
4489        return USB3_LPM_DISABLED;
4490}
4491
4492int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4493                        struct usb_device *udev, enum usb3_link_state state)
4494{
4495        return 0;
4496}
4497#endif  /* CONFIG_PM */
4498
4499/*-------------------------------------------------------------------------*/
4500
4501/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4502 * internal data structures for the device.
4503 */
4504int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4505                        struct usb_tt *tt, gfp_t mem_flags)
4506{
4507        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4508        struct xhci_virt_device *vdev;
4509        struct xhci_command *config_cmd;
4510        struct xhci_input_control_ctx *ctrl_ctx;
4511        struct xhci_slot_ctx *slot_ctx;
4512        unsigned long flags;
4513        unsigned think_time;
4514        int ret;
4515
4516        /* Ignore root hubs */
4517        if (!hdev->parent)
4518                return 0;
4519
4520        vdev = xhci->devs[hdev->slot_id];
4521        if (!vdev) {
4522                xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4523                return -EINVAL;
4524        }
4525        config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4526        if (!config_cmd) {
4527                xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4528                return -ENOMEM;
4529        }
4530
4531        spin_lock_irqsave(&xhci->lock, flags);
4532        if (hdev->speed == USB_SPEED_HIGH &&
4533                        xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4534                xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4535                xhci_free_command(xhci, config_cmd);
4536                spin_unlock_irqrestore(&xhci->lock, flags);
4537                return -ENOMEM;
4538        }
4539
4540        xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4541        ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4542        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4543        slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4544        slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4545        if (tt->multi)
4546                slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4547        if (xhci->hci_version > 0x95) {
4548                xhci_dbg(xhci, "xHCI version %x needs hub "
4549                                "TT think time and number of ports\n",
4550                                (unsigned int) xhci->hci_version);
4551                slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4552                /* Set TT think time - convert from ns to FS bit times.
4553                 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4554                 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4555                 *
4556                 * xHCI 1.0: this field shall be 0 if the device is not a
4557                 * High-spped hub.
4558                 */
4559                think_time = tt->think_time;
4560                if (think_time != 0)
4561                        think_time = (think_time / 666) - 1;
4562                if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4563                        slot_ctx->tt_info |=
4564                                cpu_to_le32(TT_THINK_TIME(think_time));
4565        } else {
4566                xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4567                                "TT think time or number of ports\n",
4568                                (unsigned int) xhci->hci_version);
4569        }
4570        slot_ctx->dev_state = 0;
4571        spin_unlock_irqrestore(&xhci->lock, flags);
4572
4573        xhci_dbg(xhci, "Set up %s for hub device.\n",
4574                        (xhci->hci_version > 0x95) ?
4575                        "configure endpoint" : "evaluate context");
4576        xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4577        xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4578
4579        /* Issue and wait for the configure endpoint or
4580         * evaluate context command.
4581         */
4582        if (xhci->hci_version > 0x95)
4583                ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4584                                false, false);
4585        else
4586                ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4587                                true, false);
4588
4589        xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4590        xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4591
4592        xhci_free_command(xhci, config_cmd);
4593        return ret;
4594}
4595
4596int xhci_get_frame(struct usb_hcd *hcd)
4597{
4598        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4599        /* EHCI mods by the periodic size.  Why? */
4600        return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4601}
4602
4603int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4604{
4605        struct xhci_hcd         *xhci;
4606        struct device           *dev = hcd->self.controller;
4607        int                     retval;
4608        u32                     temp;
4609
4610        /* Accept arbitrarily long scatter-gather lists */
4611        hcd->self.sg_tablesize = ~0;
4612        /* XHCI controllers don't stop the ep queue on short packets :| */
4613        hcd->self.no_stop_on_short = 1;
4614
4615        if (usb_hcd_is_primary_hcd(hcd)) {
4616                xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4617                if (!xhci)
4618                        return -ENOMEM;
4619                *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4620                xhci->main_hcd = hcd;
4621                /* Mark the first roothub as being USB 2.0.
4622                 * The xHCI driver will register the USB 3.0 roothub.
4623                 */
4624                hcd->speed = HCD_USB2;
4625                hcd->self.root_hub->speed = USB_SPEED_HIGH;
4626                /*
4627                 * USB 2.0 roothub under xHCI has an integrated TT,
4628                 * (rate matching hub) as opposed to having an OHCI/UHCI
4629                 * companion controller.
4630                 */
4631                hcd->has_tt = 1;
4632        } else {
4633                /* xHCI private pointer was set in xhci_pci_probe for the second
4634                 * registered roothub.
4635                 */
4636                xhci = hcd_to_xhci(hcd);
4637                temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4638                if (HCC_64BIT_ADDR(temp)) {
4639                        xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4640                        dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4641                } else {
4642                        dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4643                }
4644                return 0;
4645        }
4646
4647        xhci->cap_regs = hcd->regs;
4648        xhci->op_regs = hcd->regs +
4649                HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4650        xhci->run_regs = hcd->regs +
4651                (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4652        /* Cache read-only capability registers */
4653        xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4654        xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4655        xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4656        xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4657        xhci->hci_version = HC_VERSION(xhci->hcc_params);
4658        xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4659        xhci_print_registers(xhci);
4660
4661        get_quirks(dev, xhci);
4662
4663        /* Make sure the HC is halted. */
4664        retval = xhci_halt(xhci);
4665        if (retval)
4666                goto error;
4667
4668        xhci_dbg(xhci, "Resetting HCD\n");
4669        /* Reset the internal HC memory state and registers. */
4670        retval = xhci_reset(xhci);
4671        if (retval)
4672                goto error;
4673        xhci_dbg(xhci, "Reset complete\n");
4674
4675        temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4676        if (HCC_64BIT_ADDR(temp)) {
4677                xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4678                dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4679        } else {
4680                dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4681        }
4682
4683        xhci_dbg(xhci, "Calling HCD init\n");
4684        /* Initialize HCD and host controller data structures. */
4685        retval = xhci_init(hcd);
4686        if (retval)
4687                goto error;
4688        xhci_dbg(xhci, "Called HCD init\n");
4689        return 0;
4690error:
4691        kfree(xhci);
4692        return retval;
4693}
4694
4695MODULE_DESCRIPTION(DRIVER_DESC);
4696MODULE_AUTHOR(DRIVER_AUTHOR);
4697MODULE_LICENSE("GPL");
4698
4699static int __init xhci_hcd_init(void)
4700{
4701        int retval;
4702
4703        retval = xhci_register_pci();
4704        if (retval < 0) {
4705                printk(KERN_DEBUG "Problem registering PCI driver.");
4706                return retval;
4707        }
4708        retval = xhci_register_plat();
4709        if (retval < 0) {
4710                printk(KERN_DEBUG "Problem registering platform driver.");
4711                goto unreg_pci;
4712        }
4713        /*
4714         * Check the compiler generated sizes of structures that must be laid
4715         * out in specific ways for hardware access.
4716         */
4717        BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4718        BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4719        BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4720        /* xhci_device_control has eight fields, and also
4721         * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4722         */
4723        BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4724        BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4725        BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4726        BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4727        BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4728        /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4729        BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4730        return 0;
4731unreg_pci:
4732        xhci_unregister_pci();
4733        return retval;
4734}
4735module_init(xhci_hcd_init);
4736
4737static void __exit xhci_hcd_cleanup(void)
4738{
4739        xhci_unregister_pci();
4740        xhci_unregister_plat();
4741}
4742module_exit(xhci_hcd_cleanup);
4743