linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "print-tree.h"
  26#include "locking.h"
  27
  28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  29                      *root, struct btrfs_path *path, int level);
  30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  31                      *root, struct btrfs_key *ins_key,
  32                      struct btrfs_path *path, int data_size, int extend);
  33static int push_node_left(struct btrfs_trans_handle *trans,
  34                          struct btrfs_root *root, struct extent_buffer *dst,
  35                          struct extent_buffer *src, int empty);
  36static int balance_node_right(struct btrfs_trans_handle *trans,
  37                              struct btrfs_root *root,
  38                              struct extent_buffer *dst_buf,
  39                              struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  41                    struct btrfs_path *path, int level, int slot);
  42static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  43                                 struct extent_buffer *eb);
  44struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
  45                                          u32 blocksize, u64 parent_transid,
  46                                          u64 time_seq);
  47struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
  48                                                u64 bytenr, u32 blocksize,
  49                                                u64 time_seq);
  50
  51struct btrfs_path *btrfs_alloc_path(void)
  52{
  53        struct btrfs_path *path;
  54        path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  55        return path;
  56}
  57
  58/*
  59 * set all locked nodes in the path to blocking locks.  This should
  60 * be done before scheduling
  61 */
  62noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  63{
  64        int i;
  65        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  66                if (!p->nodes[i] || !p->locks[i])
  67                        continue;
  68                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  69                if (p->locks[i] == BTRFS_READ_LOCK)
  70                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  71                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  72                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  73        }
  74}
  75
  76/*
  77 * reset all the locked nodes in the patch to spinning locks.
  78 *
  79 * held is used to keep lockdep happy, when lockdep is enabled
  80 * we set held to a blocking lock before we go around and
  81 * retake all the spinlocks in the path.  You can safely use NULL
  82 * for held
  83 */
  84noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  85                                        struct extent_buffer *held, int held_rw)
  86{
  87        int i;
  88
  89#ifdef CONFIG_DEBUG_LOCK_ALLOC
  90        /* lockdep really cares that we take all of these spinlocks
  91         * in the right order.  If any of the locks in the path are not
  92         * currently blocking, it is going to complain.  So, make really
  93         * really sure by forcing the path to blocking before we clear
  94         * the path blocking.
  95         */
  96        if (held) {
  97                btrfs_set_lock_blocking_rw(held, held_rw);
  98                if (held_rw == BTRFS_WRITE_LOCK)
  99                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
 100                else if (held_rw == BTRFS_READ_LOCK)
 101                        held_rw = BTRFS_READ_LOCK_BLOCKING;
 102        }
 103        btrfs_set_path_blocking(p);
 104#endif
 105
 106        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
 107                if (p->nodes[i] && p->locks[i]) {
 108                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 109                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 110                                p->locks[i] = BTRFS_WRITE_LOCK;
 111                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 112                                p->locks[i] = BTRFS_READ_LOCK;
 113                }
 114        }
 115
 116#ifdef CONFIG_DEBUG_LOCK_ALLOC
 117        if (held)
 118                btrfs_clear_lock_blocking_rw(held, held_rw);
 119#endif
 120}
 121
 122/* this also releases the path */
 123void btrfs_free_path(struct btrfs_path *p)
 124{
 125        if (!p)
 126                return;
 127        btrfs_release_path(p);
 128        kmem_cache_free(btrfs_path_cachep, p);
 129}
 130
 131/*
 132 * path release drops references on the extent buffers in the path
 133 * and it drops any locks held by this path
 134 *
 135 * It is safe to call this on paths that no locks or extent buffers held.
 136 */
 137noinline void btrfs_release_path(struct btrfs_path *p)
 138{
 139        int i;
 140
 141        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 142                p->slots[i] = 0;
 143                if (!p->nodes[i])
 144                        continue;
 145                if (p->locks[i]) {
 146                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 147                        p->locks[i] = 0;
 148                }
 149                free_extent_buffer(p->nodes[i]);
 150                p->nodes[i] = NULL;
 151        }
 152}
 153
 154/*
 155 * safely gets a reference on the root node of a tree.  A lock
 156 * is not taken, so a concurrent writer may put a different node
 157 * at the root of the tree.  See btrfs_lock_root_node for the
 158 * looping required.
 159 *
 160 * The extent buffer returned by this has a reference taken, so
 161 * it won't disappear.  It may stop being the root of the tree
 162 * at any time because there are no locks held.
 163 */
 164struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 165{
 166        struct extent_buffer *eb;
 167
 168        while (1) {
 169                rcu_read_lock();
 170                eb = rcu_dereference(root->node);
 171
 172                /*
 173                 * RCU really hurts here, we could free up the root node because
 174                 * it was cow'ed but we may not get the new root node yet so do
 175                 * the inc_not_zero dance and if it doesn't work then
 176                 * synchronize_rcu and try again.
 177                 */
 178                if (atomic_inc_not_zero(&eb->refs)) {
 179                        rcu_read_unlock();
 180                        break;
 181                }
 182                rcu_read_unlock();
 183                synchronize_rcu();
 184        }
 185        return eb;
 186}
 187
 188/* loop around taking references on and locking the root node of the
 189 * tree until you end up with a lock on the root.  A locked buffer
 190 * is returned, with a reference held.
 191 */
 192struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 193{
 194        struct extent_buffer *eb;
 195
 196        while (1) {
 197                eb = btrfs_root_node(root);
 198                btrfs_tree_lock(eb);
 199                if (eb == root->node)
 200                        break;
 201                btrfs_tree_unlock(eb);
 202                free_extent_buffer(eb);
 203        }
 204        return eb;
 205}
 206
 207/* loop around taking references on and locking the root node of the
 208 * tree until you end up with a lock on the root.  A locked buffer
 209 * is returned, with a reference held.
 210 */
 211struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 212{
 213        struct extent_buffer *eb;
 214
 215        while (1) {
 216                eb = btrfs_root_node(root);
 217                btrfs_tree_read_lock(eb);
 218                if (eb == root->node)
 219                        break;
 220                btrfs_tree_read_unlock(eb);
 221                free_extent_buffer(eb);
 222        }
 223        return eb;
 224}
 225
 226/* cowonly root (everything not a reference counted cow subvolume), just get
 227 * put onto a simple dirty list.  transaction.c walks this to make sure they
 228 * get properly updated on disk.
 229 */
 230static void add_root_to_dirty_list(struct btrfs_root *root)
 231{
 232        spin_lock(&root->fs_info->trans_lock);
 233        if (root->track_dirty && list_empty(&root->dirty_list)) {
 234                list_add(&root->dirty_list,
 235                         &root->fs_info->dirty_cowonly_roots);
 236        }
 237        spin_unlock(&root->fs_info->trans_lock);
 238}
 239
 240/*
 241 * used by snapshot creation to make a copy of a root for a tree with
 242 * a given objectid.  The buffer with the new root node is returned in
 243 * cow_ret, and this func returns zero on success or a negative error code.
 244 */
 245int btrfs_copy_root(struct btrfs_trans_handle *trans,
 246                      struct btrfs_root *root,
 247                      struct extent_buffer *buf,
 248                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 249{
 250        struct extent_buffer *cow;
 251        int ret = 0;
 252        int level;
 253        struct btrfs_disk_key disk_key;
 254
 255        WARN_ON(root->ref_cows && trans->transid !=
 256                root->fs_info->running_transaction->transid);
 257        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 258
 259        level = btrfs_header_level(buf);
 260        if (level == 0)
 261                btrfs_item_key(buf, &disk_key, 0);
 262        else
 263                btrfs_node_key(buf, &disk_key, 0);
 264
 265        cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 266                                     new_root_objectid, &disk_key, level,
 267                                     buf->start, 0);
 268        if (IS_ERR(cow))
 269                return PTR_ERR(cow);
 270
 271        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 272        btrfs_set_header_bytenr(cow, cow->start);
 273        btrfs_set_header_generation(cow, trans->transid);
 274        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 275        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 276                                     BTRFS_HEADER_FLAG_RELOC);
 277        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 278                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 279        else
 280                btrfs_set_header_owner(cow, new_root_objectid);
 281
 282        write_extent_buffer(cow, root->fs_info->fsid,
 283                            (unsigned long)btrfs_header_fsid(cow),
 284                            BTRFS_FSID_SIZE);
 285
 286        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 287        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 288                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 289        else
 290                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 291
 292        if (ret)
 293                return ret;
 294
 295        btrfs_mark_buffer_dirty(cow);
 296        *cow_ret = cow;
 297        return 0;
 298}
 299
 300enum mod_log_op {
 301        MOD_LOG_KEY_REPLACE,
 302        MOD_LOG_KEY_ADD,
 303        MOD_LOG_KEY_REMOVE,
 304        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 305        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 306        MOD_LOG_MOVE_KEYS,
 307        MOD_LOG_ROOT_REPLACE,
 308};
 309
 310struct tree_mod_move {
 311        int dst_slot;
 312        int nr_items;
 313};
 314
 315struct tree_mod_root {
 316        u64 logical;
 317        u8 level;
 318};
 319
 320struct tree_mod_elem {
 321        struct rb_node node;
 322        u64 index;              /* shifted logical */
 323        u64 seq;
 324        enum mod_log_op op;
 325
 326        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 327        int slot;
 328
 329        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 330        u64 generation;
 331
 332        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 333        struct btrfs_disk_key key;
 334        u64 blockptr;
 335
 336        /* this is used for op == MOD_LOG_MOVE_KEYS */
 337        struct tree_mod_move move;
 338
 339        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 340        struct tree_mod_root old_root;
 341};
 342
 343static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 344{
 345        read_lock(&fs_info->tree_mod_log_lock);
 346}
 347
 348static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 349{
 350        read_unlock(&fs_info->tree_mod_log_lock);
 351}
 352
 353static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 354{
 355        write_lock(&fs_info->tree_mod_log_lock);
 356}
 357
 358static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 359{
 360        write_unlock(&fs_info->tree_mod_log_lock);
 361}
 362
 363/*
 364 * This adds a new blocker to the tree mod log's blocker list if the @elem
 365 * passed does not already have a sequence number set. So when a caller expects
 366 * to record tree modifications, it should ensure to set elem->seq to zero
 367 * before calling btrfs_get_tree_mod_seq.
 368 * Returns a fresh, unused tree log modification sequence number, even if no new
 369 * blocker was added.
 370 */
 371u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 372                           struct seq_list *elem)
 373{
 374        u64 seq;
 375
 376        tree_mod_log_write_lock(fs_info);
 377        spin_lock(&fs_info->tree_mod_seq_lock);
 378        if (!elem->seq) {
 379                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 380                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 381        }
 382        seq = btrfs_inc_tree_mod_seq(fs_info);
 383        spin_unlock(&fs_info->tree_mod_seq_lock);
 384        tree_mod_log_write_unlock(fs_info);
 385
 386        return seq;
 387}
 388
 389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 390                            struct seq_list *elem)
 391{
 392        struct rb_root *tm_root;
 393        struct rb_node *node;
 394        struct rb_node *next;
 395        struct seq_list *cur_elem;
 396        struct tree_mod_elem *tm;
 397        u64 min_seq = (u64)-1;
 398        u64 seq_putting = elem->seq;
 399
 400        if (!seq_putting)
 401                return;
 402
 403        spin_lock(&fs_info->tree_mod_seq_lock);
 404        list_del(&elem->list);
 405        elem->seq = 0;
 406
 407        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 408                if (cur_elem->seq < min_seq) {
 409                        if (seq_putting > cur_elem->seq) {
 410                                /*
 411                                 * blocker with lower sequence number exists, we
 412                                 * cannot remove anything from the log
 413                                 */
 414                                spin_unlock(&fs_info->tree_mod_seq_lock);
 415                                return;
 416                        }
 417                        min_seq = cur_elem->seq;
 418                }
 419        }
 420        spin_unlock(&fs_info->tree_mod_seq_lock);
 421
 422        /*
 423         * anything that's lower than the lowest existing (read: blocked)
 424         * sequence number can be removed from the tree.
 425         */
 426        tree_mod_log_write_lock(fs_info);
 427        tm_root = &fs_info->tree_mod_log;
 428        for (node = rb_first(tm_root); node; node = next) {
 429                next = rb_next(node);
 430                tm = container_of(node, struct tree_mod_elem, node);
 431                if (tm->seq > min_seq)
 432                        continue;
 433                rb_erase(node, tm_root);
 434                kfree(tm);
 435        }
 436        tree_mod_log_write_unlock(fs_info);
 437}
 438
 439/*
 440 * key order of the log:
 441 *       index -> sequence
 442 *
 443 * the index is the shifted logical of the *new* root node for root replace
 444 * operations, or the shifted logical of the affected block for all other
 445 * operations.
 446 */
 447static noinline int
 448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 449{
 450        struct rb_root *tm_root;
 451        struct rb_node **new;
 452        struct rb_node *parent = NULL;
 453        struct tree_mod_elem *cur;
 454
 455        BUG_ON(!tm || !tm->seq);
 456
 457        tm_root = &fs_info->tree_mod_log;
 458        new = &tm_root->rb_node;
 459        while (*new) {
 460                cur = container_of(*new, struct tree_mod_elem, node);
 461                parent = *new;
 462                if (cur->index < tm->index)
 463                        new = &((*new)->rb_left);
 464                else if (cur->index > tm->index)
 465                        new = &((*new)->rb_right);
 466                else if (cur->seq < tm->seq)
 467                        new = &((*new)->rb_left);
 468                else if (cur->seq > tm->seq)
 469                        new = &((*new)->rb_right);
 470                else {
 471                        kfree(tm);
 472                        return -EEXIST;
 473                }
 474        }
 475
 476        rb_link_node(&tm->node, parent, new);
 477        rb_insert_color(&tm->node, tm_root);
 478        return 0;
 479}
 480
 481/*
 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 484 * this until all tree mod log insertions are recorded in the rb tree and then
 485 * call tree_mod_log_write_unlock() to release.
 486 */
 487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 488                                    struct extent_buffer *eb) {
 489        smp_mb();
 490        if (list_empty(&(fs_info)->tree_mod_seq_list))
 491                return 1;
 492        if (eb && btrfs_header_level(eb) == 0)
 493                return 1;
 494
 495        tree_mod_log_write_lock(fs_info);
 496        if (list_empty(&fs_info->tree_mod_seq_list)) {
 497                /*
 498                 * someone emptied the list while we were waiting for the lock.
 499                 * we must not add to the list when no blocker exists.
 500                 */
 501                tree_mod_log_write_unlock(fs_info);
 502                return 1;
 503        }
 504
 505        return 0;
 506}
 507
 508/*
 509 * This allocates memory and gets a tree modification sequence number.
 510 *
 511 * Returns <0 on error.
 512 * Returns >0 (the added sequence number) on success.
 513 */
 514static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
 515                                 struct tree_mod_elem **tm_ret)
 516{
 517        struct tree_mod_elem *tm;
 518
 519        /*
 520         * once we switch from spin locks to something different, we should
 521         * honor the flags parameter here.
 522         */
 523        tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
 524        if (!tm)
 525                return -ENOMEM;
 526
 527        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 528        return tm->seq;
 529}
 530
 531static inline int
 532__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 533                          struct extent_buffer *eb, int slot,
 534                          enum mod_log_op op, gfp_t flags)
 535{
 536        int ret;
 537        struct tree_mod_elem *tm;
 538
 539        ret = tree_mod_alloc(fs_info, flags, &tm);
 540        if (ret < 0)
 541                return ret;
 542
 543        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 544        if (op != MOD_LOG_KEY_ADD) {
 545                btrfs_node_key(eb, &tm->key, slot);
 546                tm->blockptr = btrfs_node_blockptr(eb, slot);
 547        }
 548        tm->op = op;
 549        tm->slot = slot;
 550        tm->generation = btrfs_node_ptr_generation(eb, slot);
 551
 552        return __tree_mod_log_insert(fs_info, tm);
 553}
 554
 555static noinline int
 556tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
 557                             struct extent_buffer *eb, int slot,
 558                             enum mod_log_op op, gfp_t flags)
 559{
 560        int ret;
 561
 562        if (tree_mod_dont_log(fs_info, eb))
 563                return 0;
 564
 565        ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
 566
 567        tree_mod_log_write_unlock(fs_info);
 568        return ret;
 569}
 570
 571static noinline int
 572tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
 573                        int slot, enum mod_log_op op)
 574{
 575        return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
 576}
 577
 578static noinline int
 579tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
 580                             struct extent_buffer *eb, int slot,
 581                             enum mod_log_op op)
 582{
 583        return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
 584}
 585
 586static noinline int
 587tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 588                         struct extent_buffer *eb, int dst_slot, int src_slot,
 589                         int nr_items, gfp_t flags)
 590{
 591        struct tree_mod_elem *tm;
 592        int ret;
 593        int i;
 594
 595        if (tree_mod_dont_log(fs_info, eb))
 596                return 0;
 597
 598        /*
 599         * When we override something during the move, we log these removals.
 600         * This can only happen when we move towards the beginning of the
 601         * buffer, i.e. dst_slot < src_slot.
 602         */
 603        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 604                ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
 605                                              MOD_LOG_KEY_REMOVE_WHILE_MOVING);
 606                BUG_ON(ret < 0);
 607        }
 608
 609        ret = tree_mod_alloc(fs_info, flags, &tm);
 610        if (ret < 0)
 611                goto out;
 612
 613        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 614        tm->slot = src_slot;
 615        tm->move.dst_slot = dst_slot;
 616        tm->move.nr_items = nr_items;
 617        tm->op = MOD_LOG_MOVE_KEYS;
 618
 619        ret = __tree_mod_log_insert(fs_info, tm);
 620out:
 621        tree_mod_log_write_unlock(fs_info);
 622        return ret;
 623}
 624
 625static inline void
 626__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 627{
 628        int i;
 629        u32 nritems;
 630        int ret;
 631
 632        if (btrfs_header_level(eb) == 0)
 633                return;
 634
 635        nritems = btrfs_header_nritems(eb);
 636        for (i = nritems - 1; i >= 0; i--) {
 637                ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
 638                                              MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 639                BUG_ON(ret < 0);
 640        }
 641}
 642
 643static noinline int
 644tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 645                         struct extent_buffer *old_root,
 646                         struct extent_buffer *new_root, gfp_t flags)
 647{
 648        struct tree_mod_elem *tm;
 649        int ret;
 650
 651        if (tree_mod_dont_log(fs_info, NULL))
 652                return 0;
 653
 654        ret = tree_mod_alloc(fs_info, flags, &tm);
 655        if (ret < 0)
 656                goto out;
 657
 658        tm->index = new_root->start >> PAGE_CACHE_SHIFT;
 659        tm->old_root.logical = old_root->start;
 660        tm->old_root.level = btrfs_header_level(old_root);
 661        tm->generation = btrfs_header_generation(old_root);
 662        tm->op = MOD_LOG_ROOT_REPLACE;
 663
 664        ret = __tree_mod_log_insert(fs_info, tm);
 665out:
 666        tree_mod_log_write_unlock(fs_info);
 667        return ret;
 668}
 669
 670static struct tree_mod_elem *
 671__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 672                      int smallest)
 673{
 674        struct rb_root *tm_root;
 675        struct rb_node *node;
 676        struct tree_mod_elem *cur = NULL;
 677        struct tree_mod_elem *found = NULL;
 678        u64 index = start >> PAGE_CACHE_SHIFT;
 679
 680        tree_mod_log_read_lock(fs_info);
 681        tm_root = &fs_info->tree_mod_log;
 682        node = tm_root->rb_node;
 683        while (node) {
 684                cur = container_of(node, struct tree_mod_elem, node);
 685                if (cur->index < index) {
 686                        node = node->rb_left;
 687                } else if (cur->index > index) {
 688                        node = node->rb_right;
 689                } else if (cur->seq < min_seq) {
 690                        node = node->rb_left;
 691                } else if (!smallest) {
 692                        /* we want the node with the highest seq */
 693                        if (found)
 694                                BUG_ON(found->seq > cur->seq);
 695                        found = cur;
 696                        node = node->rb_left;
 697                } else if (cur->seq > min_seq) {
 698                        /* we want the node with the smallest seq */
 699                        if (found)
 700                                BUG_ON(found->seq < cur->seq);
 701                        found = cur;
 702                        node = node->rb_right;
 703                } else {
 704                        found = cur;
 705                        break;
 706                }
 707        }
 708        tree_mod_log_read_unlock(fs_info);
 709
 710        return found;
 711}
 712
 713/*
 714 * this returns the element from the log with the smallest time sequence
 715 * value that's in the log (the oldest log item). any element with a time
 716 * sequence lower than min_seq will be ignored.
 717 */
 718static struct tree_mod_elem *
 719tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 720                           u64 min_seq)
 721{
 722        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 723}
 724
 725/*
 726 * this returns the element from the log with the largest time sequence
 727 * value that's in the log (the most recent log item). any element with
 728 * a time sequence lower than min_seq will be ignored.
 729 */
 730static struct tree_mod_elem *
 731tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 732{
 733        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 734}
 735
 736static noinline void
 737tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 738                     struct extent_buffer *src, unsigned long dst_offset,
 739                     unsigned long src_offset, int nr_items)
 740{
 741        int ret;
 742        int i;
 743
 744        if (tree_mod_dont_log(fs_info, NULL))
 745                return;
 746
 747        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
 748                tree_mod_log_write_unlock(fs_info);
 749                return;
 750        }
 751
 752        for (i = 0; i < nr_items; i++) {
 753                ret = tree_mod_log_insert_key_locked(fs_info, src,
 754                                                     i + src_offset,
 755                                                     MOD_LOG_KEY_REMOVE);
 756                BUG_ON(ret < 0);
 757                ret = tree_mod_log_insert_key_locked(fs_info, dst,
 758                                                     i + dst_offset,
 759                                                     MOD_LOG_KEY_ADD);
 760                BUG_ON(ret < 0);
 761        }
 762
 763        tree_mod_log_write_unlock(fs_info);
 764}
 765
 766static inline void
 767tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 768                     int dst_offset, int src_offset, int nr_items)
 769{
 770        int ret;
 771        ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 772                                       nr_items, GFP_NOFS);
 773        BUG_ON(ret < 0);
 774}
 775
 776static noinline void
 777tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 778                          struct extent_buffer *eb, int slot, int atomic)
 779{
 780        int ret;
 781
 782        ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
 783                                           MOD_LOG_KEY_REPLACE,
 784                                           atomic ? GFP_ATOMIC : GFP_NOFS);
 785        BUG_ON(ret < 0);
 786}
 787
 788static noinline void
 789tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 790{
 791        if (tree_mod_dont_log(fs_info, eb))
 792                return;
 793
 794        __tree_mod_log_free_eb(fs_info, eb);
 795
 796        tree_mod_log_write_unlock(fs_info);
 797}
 798
 799static noinline void
 800tree_mod_log_set_root_pointer(struct btrfs_root *root,
 801                              struct extent_buffer *new_root_node)
 802{
 803        int ret;
 804        ret = tree_mod_log_insert_root(root->fs_info, root->node,
 805                                       new_root_node, GFP_NOFS);
 806        BUG_ON(ret < 0);
 807}
 808
 809/*
 810 * check if the tree block can be shared by multiple trees
 811 */
 812int btrfs_block_can_be_shared(struct btrfs_root *root,
 813                              struct extent_buffer *buf)
 814{
 815        /*
 816         * Tree blocks not in refernece counted trees and tree roots
 817         * are never shared. If a block was allocated after the last
 818         * snapshot and the block was not allocated by tree relocation,
 819         * we know the block is not shared.
 820         */
 821        if (root->ref_cows &&
 822            buf != root->node && buf != root->commit_root &&
 823            (btrfs_header_generation(buf) <=
 824             btrfs_root_last_snapshot(&root->root_item) ||
 825             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 826                return 1;
 827#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 828        if (root->ref_cows &&
 829            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 830                return 1;
 831#endif
 832        return 0;
 833}
 834
 835static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 836                                       struct btrfs_root *root,
 837                                       struct extent_buffer *buf,
 838                                       struct extent_buffer *cow,
 839                                       int *last_ref)
 840{
 841        u64 refs;
 842        u64 owner;
 843        u64 flags;
 844        u64 new_flags = 0;
 845        int ret;
 846
 847        /*
 848         * Backrefs update rules:
 849         *
 850         * Always use full backrefs for extent pointers in tree block
 851         * allocated by tree relocation.
 852         *
 853         * If a shared tree block is no longer referenced by its owner
 854         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 855         * use full backrefs for extent pointers in tree block.
 856         *
 857         * If a tree block is been relocating
 858         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 859         * use full backrefs for extent pointers in tree block.
 860         * The reason for this is some operations (such as drop tree)
 861         * are only allowed for blocks use full backrefs.
 862         */
 863
 864        if (btrfs_block_can_be_shared(root, buf)) {
 865                ret = btrfs_lookup_extent_info(trans, root, buf->start,
 866                                               buf->len, &refs, &flags);
 867                if (ret)
 868                        return ret;
 869                if (refs == 0) {
 870                        ret = -EROFS;
 871                        btrfs_std_error(root->fs_info, ret);
 872                        return ret;
 873                }
 874        } else {
 875                refs = 1;
 876                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 877                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 878                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 879                else
 880                        flags = 0;
 881        }
 882
 883        owner = btrfs_header_owner(buf);
 884        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 885               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 886
 887        if (refs > 1) {
 888                if ((owner == root->root_key.objectid ||
 889                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 890                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 891                        ret = btrfs_inc_ref(trans, root, buf, 1, 1);
 892                        BUG_ON(ret); /* -ENOMEM */
 893
 894                        if (root->root_key.objectid ==
 895                            BTRFS_TREE_RELOC_OBJECTID) {
 896                                ret = btrfs_dec_ref(trans, root, buf, 0, 1);
 897                                BUG_ON(ret); /* -ENOMEM */
 898                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 899                                BUG_ON(ret); /* -ENOMEM */
 900                        }
 901                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 902                } else {
 903
 904                        if (root->root_key.objectid ==
 905                            BTRFS_TREE_RELOC_OBJECTID)
 906                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 907                        else
 908                                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 909                        BUG_ON(ret); /* -ENOMEM */
 910                }
 911                if (new_flags != 0) {
 912                        ret = btrfs_set_disk_extent_flags(trans, root,
 913                                                          buf->start,
 914                                                          buf->len,
 915                                                          new_flags, 0);
 916                        if (ret)
 917                                return ret;
 918                }
 919        } else {
 920                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 921                        if (root->root_key.objectid ==
 922                            BTRFS_TREE_RELOC_OBJECTID)
 923                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 924                        else
 925                                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 926                        BUG_ON(ret); /* -ENOMEM */
 927                        ret = btrfs_dec_ref(trans, root, buf, 1, 1);
 928                        BUG_ON(ret); /* -ENOMEM */
 929                }
 930                tree_mod_log_free_eb(root->fs_info, buf);
 931                clean_tree_block(trans, root, buf);
 932                *last_ref = 1;
 933        }
 934        return 0;
 935}
 936
 937/*
 938 * does the dirty work in cow of a single block.  The parent block (if
 939 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 940 * dirty and returned locked.  If you modify the block it needs to be marked
 941 * dirty again.
 942 *
 943 * search_start -- an allocation hint for the new block
 944 *
 945 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 946 * bytes the allocator should try to find free next to the block it returns.
 947 * This is just a hint and may be ignored by the allocator.
 948 */
 949static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 950                             struct btrfs_root *root,
 951                             struct extent_buffer *buf,
 952                             struct extent_buffer *parent, int parent_slot,
 953                             struct extent_buffer **cow_ret,
 954                             u64 search_start, u64 empty_size)
 955{
 956        struct btrfs_disk_key disk_key;
 957        struct extent_buffer *cow;
 958        int level, ret;
 959        int last_ref = 0;
 960        int unlock_orig = 0;
 961        u64 parent_start;
 962
 963        if (*cow_ret == buf)
 964                unlock_orig = 1;
 965
 966        btrfs_assert_tree_locked(buf);
 967
 968        WARN_ON(root->ref_cows && trans->transid !=
 969                root->fs_info->running_transaction->transid);
 970        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 971
 972        level = btrfs_header_level(buf);
 973
 974        if (level == 0)
 975                btrfs_item_key(buf, &disk_key, 0);
 976        else
 977                btrfs_node_key(buf, &disk_key, 0);
 978
 979        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
 980                if (parent)
 981                        parent_start = parent->start;
 982                else
 983                        parent_start = 0;
 984        } else
 985                parent_start = 0;
 986
 987        cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
 988                                     root->root_key.objectid, &disk_key,
 989                                     level, search_start, empty_size);
 990        if (IS_ERR(cow))
 991                return PTR_ERR(cow);
 992
 993        /* cow is set to blocking by btrfs_init_new_buffer */
 994
 995        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 996        btrfs_set_header_bytenr(cow, cow->start);
 997        btrfs_set_header_generation(cow, trans->transid);
 998        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 999        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000                                     BTRFS_HEADER_FLAG_RELOC);
1001        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003        else
1004                btrfs_set_header_owner(cow, root->root_key.objectid);
1005
1006        write_extent_buffer(cow, root->fs_info->fsid,
1007                            (unsigned long)btrfs_header_fsid(cow),
1008                            BTRFS_FSID_SIZE);
1009
1010        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1011        if (ret) {
1012                btrfs_abort_transaction(trans, root, ret);
1013                return ret;
1014        }
1015
1016        if (root->ref_cows)
1017                btrfs_reloc_cow_block(trans, root, buf, cow);
1018
1019        if (buf == root->node) {
1020                WARN_ON(parent && parent != buf);
1021                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023                        parent_start = buf->start;
1024                else
1025                        parent_start = 0;
1026
1027                extent_buffer_get(cow);
1028                tree_mod_log_set_root_pointer(root, cow);
1029                rcu_assign_pointer(root->node, cow);
1030
1031                btrfs_free_tree_block(trans, root, buf, parent_start,
1032                                      last_ref);
1033                free_extent_buffer(buf);
1034                add_root_to_dirty_list(root);
1035        } else {
1036                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037                        parent_start = parent->start;
1038                else
1039                        parent_start = 0;
1040
1041                WARN_ON(trans->transid != btrfs_header_generation(parent));
1042                tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043                                        MOD_LOG_KEY_REPLACE);
1044                btrfs_set_node_blockptr(parent, parent_slot,
1045                                        cow->start);
1046                btrfs_set_node_ptr_generation(parent, parent_slot,
1047                                              trans->transid);
1048                btrfs_mark_buffer_dirty(parent);
1049                btrfs_free_tree_block(trans, root, buf, parent_start,
1050                                      last_ref);
1051        }
1052        if (unlock_orig)
1053                btrfs_tree_unlock(buf);
1054        free_extent_buffer_stale(buf);
1055        btrfs_mark_buffer_dirty(cow);
1056        *cow_ret = cow;
1057        return 0;
1058}
1059
1060/*
1061 * returns the logical address of the oldest predecessor of the given root.
1062 * entries older than time_seq are ignored.
1063 */
1064static struct tree_mod_elem *
1065__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066                           struct btrfs_root *root, u64 time_seq)
1067{
1068        struct tree_mod_elem *tm;
1069        struct tree_mod_elem *found = NULL;
1070        u64 root_logical = root->node->start;
1071        int looped = 0;
1072
1073        if (!time_seq)
1074                return 0;
1075
1076        /*
1077         * the very last operation that's logged for a root is the replacement
1078         * operation (if it is replaced at all). this has the index of the *new*
1079         * root, making it the very first operation that's logged for this root.
1080         */
1081        while (1) {
1082                tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083                                                time_seq);
1084                if (!looped && !tm)
1085                        return 0;
1086                /*
1087                 * if there are no tree operation for the oldest root, we simply
1088                 * return it. this should only happen if that (old) root is at
1089                 * level 0.
1090                 */
1091                if (!tm)
1092                        break;
1093
1094                /*
1095                 * if there's an operation that's not a root replacement, we
1096                 * found the oldest version of our root. normally, we'll find a
1097                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1098                 */
1099                if (tm->op != MOD_LOG_ROOT_REPLACE)
1100                        break;
1101
1102                found = tm;
1103                root_logical = tm->old_root.logical;
1104                BUG_ON(root_logical == root->node->start);
1105                looped = 1;
1106        }
1107
1108        /* if there's no old root to return, return what we found instead */
1109        if (!found)
1110                found = tm;
1111
1112        return found;
1113}
1114
1115/*
1116 * tm is a pointer to the first operation to rewind within eb. then, all
1117 * previous operations will be rewinded (until we reach something older than
1118 * time_seq).
1119 */
1120static void
1121__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122                      struct tree_mod_elem *first_tm)
1123{
1124        u32 n;
1125        struct rb_node *next;
1126        struct tree_mod_elem *tm = first_tm;
1127        unsigned long o_dst;
1128        unsigned long o_src;
1129        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1130
1131        n = btrfs_header_nritems(eb);
1132        while (tm && tm->seq >= time_seq) {
1133                /*
1134                 * all the operations are recorded with the operator used for
1135                 * the modification. as we're going backwards, we do the
1136                 * opposite of each operation here.
1137                 */
1138                switch (tm->op) {
1139                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140                        BUG_ON(tm->slot < n);
1141                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1142                case MOD_LOG_KEY_REMOVE:
1143                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1144                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1145                        btrfs_set_node_ptr_generation(eb, tm->slot,
1146                                                      tm->generation);
1147                        n++;
1148                        break;
1149                case MOD_LOG_KEY_REPLACE:
1150                        BUG_ON(tm->slot >= n);
1151                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1152                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1153                        btrfs_set_node_ptr_generation(eb, tm->slot,
1154                                                      tm->generation);
1155                        break;
1156                case MOD_LOG_KEY_ADD:
1157                        /* if a move operation is needed it's in the log */
1158                        n--;
1159                        break;
1160                case MOD_LOG_MOVE_KEYS:
1161                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1162                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1163                        memmove_extent_buffer(eb, o_dst, o_src,
1164                                              tm->move.nr_items * p_size);
1165                        break;
1166                case MOD_LOG_ROOT_REPLACE:
1167                        /*
1168                         * this operation is special. for roots, this must be
1169                         * handled explicitly before rewinding.
1170                         * for non-roots, this operation may exist if the node
1171                         * was a root: root A -> child B; then A gets empty and
1172                         * B is promoted to the new root. in the mod log, we'll
1173                         * have a root-replace operation for B, a tree block
1174                         * that is no root. we simply ignore that operation.
1175                         */
1176                        break;
1177                }
1178                next = rb_next(&tm->node);
1179                if (!next)
1180                        break;
1181                tm = container_of(next, struct tree_mod_elem, node);
1182                if (tm->index != first_tm->index)
1183                        break;
1184        }
1185        btrfs_set_header_nritems(eb, n);
1186}
1187
1188static struct extent_buffer *
1189tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1190                    u64 time_seq)
1191{
1192        struct extent_buffer *eb_rewin;
1193        struct tree_mod_elem *tm;
1194
1195        if (!time_seq)
1196                return eb;
1197
1198        if (btrfs_header_level(eb) == 0)
1199                return eb;
1200
1201        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1202        if (!tm)
1203                return eb;
1204
1205        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1206                BUG_ON(tm->slot != 0);
1207                eb_rewin = alloc_dummy_extent_buffer(eb->start,
1208                                                fs_info->tree_root->nodesize);
1209                BUG_ON(!eb_rewin);
1210                btrfs_set_header_bytenr(eb_rewin, eb->start);
1211                btrfs_set_header_backref_rev(eb_rewin,
1212                                             btrfs_header_backref_rev(eb));
1213                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1214                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1215        } else {
1216                eb_rewin = btrfs_clone_extent_buffer(eb);
1217                BUG_ON(!eb_rewin);
1218        }
1219
1220        extent_buffer_get(eb_rewin);
1221        free_extent_buffer(eb);
1222
1223        __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1224        WARN_ON(btrfs_header_nritems(eb_rewin) >
1225                BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1226
1227        return eb_rewin;
1228}
1229
1230/*
1231 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1232 * value. If there are no changes, the current root->root_node is returned. If
1233 * anything changed in between, there's a fresh buffer allocated on which the
1234 * rewind operations are done. In any case, the returned buffer is read locked.
1235 * Returns NULL on error (with no locks held).
1236 */
1237static inline struct extent_buffer *
1238get_old_root(struct btrfs_root *root, u64 time_seq)
1239{
1240        struct tree_mod_elem *tm;
1241        struct extent_buffer *eb;
1242        struct extent_buffer *old;
1243        struct tree_mod_root *old_root = NULL;
1244        u64 old_generation = 0;
1245        u64 logical;
1246        u32 blocksize;
1247
1248        eb = btrfs_read_lock_root_node(root);
1249        tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1250        if (!tm)
1251                return root->node;
1252
1253        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1254                old_root = &tm->old_root;
1255                old_generation = tm->generation;
1256                logical = old_root->logical;
1257        } else {
1258                logical = root->node->start;
1259        }
1260
1261        tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1262        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1263                btrfs_tree_read_unlock(root->node);
1264                free_extent_buffer(root->node);
1265                blocksize = btrfs_level_size(root, old_root->level);
1266                old = read_tree_block(root, logical, blocksize, 0);
1267                if (!old) {
1268                        pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1269                                logical);
1270                        WARN_ON(1);
1271                } else {
1272                        eb = btrfs_clone_extent_buffer(old);
1273                        free_extent_buffer(old);
1274                }
1275        } else if (old_root) {
1276                btrfs_tree_read_unlock(root->node);
1277                free_extent_buffer(root->node);
1278                eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1279        } else {
1280                eb = btrfs_clone_extent_buffer(root->node);
1281                btrfs_tree_read_unlock(root->node);
1282                free_extent_buffer(root->node);
1283        }
1284
1285        if (!eb)
1286                return NULL;
1287        extent_buffer_get(eb);
1288        btrfs_tree_read_lock(eb);
1289        if (old_root) {
1290                btrfs_set_header_bytenr(eb, eb->start);
1291                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1292                btrfs_set_header_owner(eb, root->root_key.objectid);
1293                btrfs_set_header_level(eb, old_root->level);
1294                btrfs_set_header_generation(eb, old_generation);
1295        }
1296        if (tm)
1297                __tree_mod_log_rewind(eb, time_seq, tm);
1298        else
1299                WARN_ON(btrfs_header_level(eb) != 0);
1300        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1301
1302        return eb;
1303}
1304
1305int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1306{
1307        struct tree_mod_elem *tm;
1308        int level;
1309
1310        tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1311        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1312                level = tm->old_root.level;
1313        } else {
1314                rcu_read_lock();
1315                level = btrfs_header_level(root->node);
1316                rcu_read_unlock();
1317        }
1318
1319        return level;
1320}
1321
1322static inline int should_cow_block(struct btrfs_trans_handle *trans,
1323                                   struct btrfs_root *root,
1324                                   struct extent_buffer *buf)
1325{
1326        /* ensure we can see the force_cow */
1327        smp_rmb();
1328
1329        /*
1330         * We do not need to cow a block if
1331         * 1) this block is not created or changed in this transaction;
1332         * 2) this block does not belong to TREE_RELOC tree;
1333         * 3) the root is not forced COW.
1334         *
1335         * What is forced COW:
1336         *    when we create snapshot during commiting the transaction,
1337         *    after we've finished coping src root, we must COW the shared
1338         *    block to ensure the metadata consistency.
1339         */
1340        if (btrfs_header_generation(buf) == trans->transid &&
1341            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1342            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1343              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1344            !root->force_cow)
1345                return 0;
1346        return 1;
1347}
1348
1349/*
1350 * cows a single block, see __btrfs_cow_block for the real work.
1351 * This version of it has extra checks so that a block isn't cow'd more than
1352 * once per transaction, as long as it hasn't been written yet
1353 */
1354noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1355                    struct btrfs_root *root, struct extent_buffer *buf,
1356                    struct extent_buffer *parent, int parent_slot,
1357                    struct extent_buffer **cow_ret)
1358{
1359        u64 search_start;
1360        int ret;
1361
1362        if (trans->transaction != root->fs_info->running_transaction)
1363                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1364                       (unsigned long long)trans->transid,
1365                       (unsigned long long)
1366                       root->fs_info->running_transaction->transid);
1367
1368        if (trans->transid != root->fs_info->generation)
1369                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1370                       (unsigned long long)trans->transid,
1371                       (unsigned long long)root->fs_info->generation);
1372
1373        if (!should_cow_block(trans, root, buf)) {
1374                *cow_ret = buf;
1375                return 0;
1376        }
1377
1378        search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1379
1380        if (parent)
1381                btrfs_set_lock_blocking(parent);
1382        btrfs_set_lock_blocking(buf);
1383
1384        ret = __btrfs_cow_block(trans, root, buf, parent,
1385                                 parent_slot, cow_ret, search_start, 0);
1386
1387        trace_btrfs_cow_block(root, buf, *cow_ret);
1388
1389        return ret;
1390}
1391
1392/*
1393 * helper function for defrag to decide if two blocks pointed to by a
1394 * node are actually close by
1395 */
1396static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1397{
1398        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1399                return 1;
1400        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1401                return 1;
1402        return 0;
1403}
1404
1405/*
1406 * compare two keys in a memcmp fashion
1407 */
1408static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1409{
1410        struct btrfs_key k1;
1411
1412        btrfs_disk_key_to_cpu(&k1, disk);
1413
1414        return btrfs_comp_cpu_keys(&k1, k2);
1415}
1416
1417/*
1418 * same as comp_keys only with two btrfs_key's
1419 */
1420int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1421{
1422        if (k1->objectid > k2->objectid)
1423                return 1;
1424        if (k1->objectid < k2->objectid)
1425                return -1;
1426        if (k1->type > k2->type)
1427                return 1;
1428        if (k1->type < k2->type)
1429                return -1;
1430        if (k1->offset > k2->offset)
1431                return 1;
1432        if (k1->offset < k2->offset)
1433                return -1;
1434        return 0;
1435}
1436
1437/*
1438 * this is used by the defrag code to go through all the
1439 * leaves pointed to by a node and reallocate them so that
1440 * disk order is close to key order
1441 */
1442int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1443                       struct btrfs_root *root, struct extent_buffer *parent,
1444                       int start_slot, int cache_only, u64 *last_ret,
1445                       struct btrfs_key *progress)
1446{
1447        struct extent_buffer *cur;
1448        u64 blocknr;
1449        u64 gen;
1450        u64 search_start = *last_ret;
1451        u64 last_block = 0;
1452        u64 other;
1453        u32 parent_nritems;
1454        int end_slot;
1455        int i;
1456        int err = 0;
1457        int parent_level;
1458        int uptodate;
1459        u32 blocksize;
1460        int progress_passed = 0;
1461        struct btrfs_disk_key disk_key;
1462
1463        parent_level = btrfs_header_level(parent);
1464        if (cache_only && parent_level != 1)
1465                return 0;
1466
1467        WARN_ON(trans->transaction != root->fs_info->running_transaction);
1468        WARN_ON(trans->transid != root->fs_info->generation);
1469
1470        parent_nritems = btrfs_header_nritems(parent);
1471        blocksize = btrfs_level_size(root, parent_level - 1);
1472        end_slot = parent_nritems;
1473
1474        if (parent_nritems == 1)
1475                return 0;
1476
1477        btrfs_set_lock_blocking(parent);
1478
1479        for (i = start_slot; i < end_slot; i++) {
1480                int close = 1;
1481
1482                btrfs_node_key(parent, &disk_key, i);
1483                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1484                        continue;
1485
1486                progress_passed = 1;
1487                blocknr = btrfs_node_blockptr(parent, i);
1488                gen = btrfs_node_ptr_generation(parent, i);
1489                if (last_block == 0)
1490                        last_block = blocknr;
1491
1492                if (i > 0) {
1493                        other = btrfs_node_blockptr(parent, i - 1);
1494                        close = close_blocks(blocknr, other, blocksize);
1495                }
1496                if (!close && i < end_slot - 2) {
1497                        other = btrfs_node_blockptr(parent, i + 1);
1498                        close = close_blocks(blocknr, other, blocksize);
1499                }
1500                if (close) {
1501                        last_block = blocknr;
1502                        continue;
1503                }
1504
1505                cur = btrfs_find_tree_block(root, blocknr, blocksize);
1506                if (cur)
1507                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1508                else
1509                        uptodate = 0;
1510                if (!cur || !uptodate) {
1511                        if (cache_only) {
1512                                free_extent_buffer(cur);
1513                                continue;
1514                        }
1515                        if (!cur) {
1516                                cur = read_tree_block(root, blocknr,
1517                                                         blocksize, gen);
1518                                if (!cur)
1519                                        return -EIO;
1520                        } else if (!uptodate) {
1521                                err = btrfs_read_buffer(cur, gen);
1522                                if (err) {
1523                                        free_extent_buffer(cur);
1524                                        return err;
1525                                }
1526                        }
1527                }
1528                if (search_start == 0)
1529                        search_start = last_block;
1530
1531                btrfs_tree_lock(cur);
1532                btrfs_set_lock_blocking(cur);
1533                err = __btrfs_cow_block(trans, root, cur, parent, i,
1534                                        &cur, search_start,
1535                                        min(16 * blocksize,
1536                                            (end_slot - i) * blocksize));
1537                if (err) {
1538                        btrfs_tree_unlock(cur);
1539                        free_extent_buffer(cur);
1540                        break;
1541                }
1542                search_start = cur->start;
1543                last_block = cur->start;
1544                *last_ret = search_start;
1545                btrfs_tree_unlock(cur);
1546                free_extent_buffer(cur);
1547        }
1548        return err;
1549}
1550
1551/*
1552 * The leaf data grows from end-to-front in the node.
1553 * this returns the address of the start of the last item,
1554 * which is the stop of the leaf data stack
1555 */
1556static inline unsigned int leaf_data_end(struct btrfs_root *root,
1557                                         struct extent_buffer *leaf)
1558{
1559        u32 nr = btrfs_header_nritems(leaf);
1560        if (nr == 0)
1561                return BTRFS_LEAF_DATA_SIZE(root);
1562        return btrfs_item_offset_nr(leaf, nr - 1);
1563}
1564
1565
1566/*
1567 * search for key in the extent_buffer.  The items start at offset p,
1568 * and they are item_size apart.  There are 'max' items in p.
1569 *
1570 * the slot in the array is returned via slot, and it points to
1571 * the place where you would insert key if it is not found in
1572 * the array.
1573 *
1574 * slot may point to max if the key is bigger than all of the keys
1575 */
1576static noinline int generic_bin_search(struct extent_buffer *eb,
1577                                       unsigned long p,
1578                                       int item_size, struct btrfs_key *key,
1579                                       int max, int *slot)
1580{
1581        int low = 0;
1582        int high = max;
1583        int mid;
1584        int ret;
1585        struct btrfs_disk_key *tmp = NULL;
1586        struct btrfs_disk_key unaligned;
1587        unsigned long offset;
1588        char *kaddr = NULL;
1589        unsigned long map_start = 0;
1590        unsigned long map_len = 0;
1591        int err;
1592
1593        while (low < high) {
1594                mid = (low + high) / 2;
1595                offset = p + mid * item_size;
1596
1597                if (!kaddr || offset < map_start ||
1598                    (offset + sizeof(struct btrfs_disk_key)) >
1599                    map_start + map_len) {
1600
1601                        err = map_private_extent_buffer(eb, offset,
1602                                                sizeof(struct btrfs_disk_key),
1603                                                &kaddr, &map_start, &map_len);
1604
1605                        if (!err) {
1606                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1607                                                        map_start);
1608                        } else {
1609                                read_extent_buffer(eb, &unaligned,
1610                                                   offset, sizeof(unaligned));
1611                                tmp = &unaligned;
1612                        }
1613
1614                } else {
1615                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1616                                                        map_start);
1617                }
1618                ret = comp_keys(tmp, key);
1619
1620                if (ret < 0)
1621                        low = mid + 1;
1622                else if (ret > 0)
1623                        high = mid;
1624                else {
1625                        *slot = mid;
1626                        return 0;
1627                }
1628        }
1629        *slot = low;
1630        return 1;
1631}
1632
1633/*
1634 * simple bin_search frontend that does the right thing for
1635 * leaves vs nodes
1636 */
1637static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1638                      int level, int *slot)
1639{
1640        if (level == 0)
1641                return generic_bin_search(eb,
1642                                          offsetof(struct btrfs_leaf, items),
1643                                          sizeof(struct btrfs_item),
1644                                          key, btrfs_header_nritems(eb),
1645                                          slot);
1646        else
1647                return generic_bin_search(eb,
1648                                          offsetof(struct btrfs_node, ptrs),
1649                                          sizeof(struct btrfs_key_ptr),
1650                                          key, btrfs_header_nritems(eb),
1651                                          slot);
1652}
1653
1654int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655                     int level, int *slot)
1656{
1657        return bin_search(eb, key, level, slot);
1658}
1659
1660static void root_add_used(struct btrfs_root *root, u32 size)
1661{
1662        spin_lock(&root->accounting_lock);
1663        btrfs_set_root_used(&root->root_item,
1664                            btrfs_root_used(&root->root_item) + size);
1665        spin_unlock(&root->accounting_lock);
1666}
1667
1668static void root_sub_used(struct btrfs_root *root, u32 size)
1669{
1670        spin_lock(&root->accounting_lock);
1671        btrfs_set_root_used(&root->root_item,
1672                            btrfs_root_used(&root->root_item) - size);
1673        spin_unlock(&root->accounting_lock);
1674}
1675
1676/* given a node and slot number, this reads the blocks it points to.  The
1677 * extent buffer is returned with a reference taken (but unlocked).
1678 * NULL is returned on error.
1679 */
1680static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1681                                   struct extent_buffer *parent, int slot)
1682{
1683        int level = btrfs_header_level(parent);
1684        if (slot < 0)
1685                return NULL;
1686        if (slot >= btrfs_header_nritems(parent))
1687                return NULL;
1688
1689        BUG_ON(level == 0);
1690
1691        return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1692                       btrfs_level_size(root, level - 1),
1693                       btrfs_node_ptr_generation(parent, slot));
1694}
1695
1696/*
1697 * node level balancing, used to make sure nodes are in proper order for
1698 * item deletion.  We balance from the top down, so we have to make sure
1699 * that a deletion won't leave an node completely empty later on.
1700 */
1701static noinline int balance_level(struct btrfs_trans_handle *trans,
1702                         struct btrfs_root *root,
1703                         struct btrfs_path *path, int level)
1704{
1705        struct extent_buffer *right = NULL;
1706        struct extent_buffer *mid;
1707        struct extent_buffer *left = NULL;
1708        struct extent_buffer *parent = NULL;
1709        int ret = 0;
1710        int wret;
1711        int pslot;
1712        int orig_slot = path->slots[level];
1713        u64 orig_ptr;
1714
1715        if (level == 0)
1716                return 0;
1717
1718        mid = path->nodes[level];
1719
1720        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1721                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1722        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1723
1724        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1725
1726        if (level < BTRFS_MAX_LEVEL - 1) {
1727                parent = path->nodes[level + 1];
1728                pslot = path->slots[level + 1];
1729        }
1730
1731        /*
1732         * deal with the case where there is only one pointer in the root
1733         * by promoting the node below to a root
1734         */
1735        if (!parent) {
1736                struct extent_buffer *child;
1737
1738                if (btrfs_header_nritems(mid) != 1)
1739                        return 0;
1740
1741                /* promote the child to a root */
1742                child = read_node_slot(root, mid, 0);
1743                if (!child) {
1744                        ret = -EROFS;
1745                        btrfs_std_error(root->fs_info, ret);
1746                        goto enospc;
1747                }
1748
1749                btrfs_tree_lock(child);
1750                btrfs_set_lock_blocking(child);
1751                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1752                if (ret) {
1753                        btrfs_tree_unlock(child);
1754                        free_extent_buffer(child);
1755                        goto enospc;
1756                }
1757
1758                tree_mod_log_free_eb(root->fs_info, root->node);
1759                tree_mod_log_set_root_pointer(root, child);
1760                rcu_assign_pointer(root->node, child);
1761
1762                add_root_to_dirty_list(root);
1763                btrfs_tree_unlock(child);
1764
1765                path->locks[level] = 0;
1766                path->nodes[level] = NULL;
1767                clean_tree_block(trans, root, mid);
1768                btrfs_tree_unlock(mid);
1769                /* once for the path */
1770                free_extent_buffer(mid);
1771
1772                root_sub_used(root, mid->len);
1773                btrfs_free_tree_block(trans, root, mid, 0, 1);
1774                /* once for the root ptr */
1775                free_extent_buffer_stale(mid);
1776                return 0;
1777        }
1778        if (btrfs_header_nritems(mid) >
1779            BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1780                return 0;
1781
1782        left = read_node_slot(root, parent, pslot - 1);
1783        if (left) {
1784                btrfs_tree_lock(left);
1785                btrfs_set_lock_blocking(left);
1786                wret = btrfs_cow_block(trans, root, left,
1787                                       parent, pslot - 1, &left);
1788                if (wret) {
1789                        ret = wret;
1790                        goto enospc;
1791                }
1792        }
1793        right = read_node_slot(root, parent, pslot + 1);
1794        if (right) {
1795                btrfs_tree_lock(right);
1796                btrfs_set_lock_blocking(right);
1797                wret = btrfs_cow_block(trans, root, right,
1798                                       parent, pslot + 1, &right);
1799                if (wret) {
1800                        ret = wret;
1801                        goto enospc;
1802                }
1803        }
1804
1805        /* first, try to make some room in the middle buffer */
1806        if (left) {
1807                orig_slot += btrfs_header_nritems(left);
1808                wret = push_node_left(trans, root, left, mid, 1);
1809                if (wret < 0)
1810                        ret = wret;
1811        }
1812
1813        /*
1814         * then try to empty the right most buffer into the middle
1815         */
1816        if (right) {
1817                wret = push_node_left(trans, root, mid, right, 1);
1818                if (wret < 0 && wret != -ENOSPC)
1819                        ret = wret;
1820                if (btrfs_header_nritems(right) == 0) {
1821                        clean_tree_block(trans, root, right);
1822                        btrfs_tree_unlock(right);
1823                        del_ptr(trans, root, path, level + 1, pslot + 1);
1824                        root_sub_used(root, right->len);
1825                        btrfs_free_tree_block(trans, root, right, 0, 1);
1826                        free_extent_buffer_stale(right);
1827                        right = NULL;
1828                } else {
1829                        struct btrfs_disk_key right_key;
1830                        btrfs_node_key(right, &right_key, 0);
1831                        tree_mod_log_set_node_key(root->fs_info, parent,
1832                                                  pslot + 1, 0);
1833                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1834                        btrfs_mark_buffer_dirty(parent);
1835                }
1836        }
1837        if (btrfs_header_nritems(mid) == 1) {
1838                /*
1839                 * we're not allowed to leave a node with one item in the
1840                 * tree during a delete.  A deletion from lower in the tree
1841                 * could try to delete the only pointer in this node.
1842                 * So, pull some keys from the left.
1843                 * There has to be a left pointer at this point because
1844                 * otherwise we would have pulled some pointers from the
1845                 * right
1846                 */
1847                if (!left) {
1848                        ret = -EROFS;
1849                        btrfs_std_error(root->fs_info, ret);
1850                        goto enospc;
1851                }
1852                wret = balance_node_right(trans, root, mid, left);
1853                if (wret < 0) {
1854                        ret = wret;
1855                        goto enospc;
1856                }
1857                if (wret == 1) {
1858                        wret = push_node_left(trans, root, left, mid, 1);
1859                        if (wret < 0)
1860                                ret = wret;
1861                }
1862                BUG_ON(wret == 1);
1863        }
1864        if (btrfs_header_nritems(mid) == 0) {
1865                clean_tree_block(trans, root, mid);
1866                btrfs_tree_unlock(mid);
1867                del_ptr(trans, root, path, level + 1, pslot);
1868                root_sub_used(root, mid->len);
1869                btrfs_free_tree_block(trans, root, mid, 0, 1);
1870                free_extent_buffer_stale(mid);
1871                mid = NULL;
1872        } else {
1873                /* update the parent key to reflect our changes */
1874                struct btrfs_disk_key mid_key;
1875                btrfs_node_key(mid, &mid_key, 0);
1876                tree_mod_log_set_node_key(root->fs_info, parent,
1877                                          pslot, 0);
1878                btrfs_set_node_key(parent, &mid_key, pslot);
1879                btrfs_mark_buffer_dirty(parent);
1880        }
1881
1882        /* update the path */
1883        if (left) {
1884                if (btrfs_header_nritems(left) > orig_slot) {
1885                        extent_buffer_get(left);
1886                        /* left was locked after cow */
1887                        path->nodes[level] = left;
1888                        path->slots[level + 1] -= 1;
1889                        path->slots[level] = orig_slot;
1890                        if (mid) {
1891                                btrfs_tree_unlock(mid);
1892                                free_extent_buffer(mid);
1893                        }
1894                } else {
1895                        orig_slot -= btrfs_header_nritems(left);
1896                        path->slots[level] = orig_slot;
1897                }
1898        }
1899        /* double check we haven't messed things up */
1900        if (orig_ptr !=
1901            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1902                BUG();
1903enospc:
1904        if (right) {
1905                btrfs_tree_unlock(right);
1906                free_extent_buffer(right);
1907        }
1908        if (left) {
1909                if (path->nodes[level] != left)
1910                        btrfs_tree_unlock(left);
1911                free_extent_buffer(left);
1912        }
1913        return ret;
1914}
1915
1916/* Node balancing for insertion.  Here we only split or push nodes around
1917 * when they are completely full.  This is also done top down, so we
1918 * have to be pessimistic.
1919 */
1920static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1921                                          struct btrfs_root *root,
1922                                          struct btrfs_path *path, int level)
1923{
1924        struct extent_buffer *right = NULL;
1925        struct extent_buffer *mid;
1926        struct extent_buffer *left = NULL;
1927        struct extent_buffer *parent = NULL;
1928        int ret = 0;
1929        int wret;
1930        int pslot;
1931        int orig_slot = path->slots[level];
1932
1933        if (level == 0)
1934                return 1;
1935
1936        mid = path->nodes[level];
1937        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1938
1939        if (level < BTRFS_MAX_LEVEL - 1) {
1940                parent = path->nodes[level + 1];
1941                pslot = path->slots[level + 1];
1942        }
1943
1944        if (!parent)
1945                return 1;
1946
1947        left = read_node_slot(root, parent, pslot - 1);
1948
1949        /* first, try to make some room in the middle buffer */
1950        if (left) {
1951                u32 left_nr;
1952
1953                btrfs_tree_lock(left);
1954                btrfs_set_lock_blocking(left);
1955
1956                left_nr = btrfs_header_nritems(left);
1957                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1958                        wret = 1;
1959                } else {
1960                        ret = btrfs_cow_block(trans, root, left, parent,
1961                                              pslot - 1, &left);
1962                        if (ret)
1963                                wret = 1;
1964                        else {
1965                                wret = push_node_left(trans, root,
1966                                                      left, mid, 0);
1967                        }
1968                }
1969                if (wret < 0)
1970                        ret = wret;
1971                if (wret == 0) {
1972                        struct btrfs_disk_key disk_key;
1973                        orig_slot += left_nr;
1974                        btrfs_node_key(mid, &disk_key, 0);
1975                        tree_mod_log_set_node_key(root->fs_info, parent,
1976                                                  pslot, 0);
1977                        btrfs_set_node_key(parent, &disk_key, pslot);
1978                        btrfs_mark_buffer_dirty(parent);
1979                        if (btrfs_header_nritems(left) > orig_slot) {
1980                                path->nodes[level] = left;
1981                                path->slots[level + 1] -= 1;
1982                                path->slots[level] = orig_slot;
1983                                btrfs_tree_unlock(mid);
1984                                free_extent_buffer(mid);
1985                        } else {
1986                                orig_slot -=
1987                                        btrfs_header_nritems(left);
1988                                path->slots[level] = orig_slot;
1989                                btrfs_tree_unlock(left);
1990                                free_extent_buffer(left);
1991                        }
1992                        return 0;
1993                }
1994                btrfs_tree_unlock(left);
1995                free_extent_buffer(left);
1996        }
1997        right = read_node_slot(root, parent, pslot + 1);
1998
1999        /*
2000         * then try to empty the right most buffer into the middle
2001         */
2002        if (right) {
2003                u32 right_nr;
2004
2005                btrfs_tree_lock(right);
2006                btrfs_set_lock_blocking(right);
2007
2008                right_nr = btrfs_header_nritems(right);
2009                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2010                        wret = 1;
2011                } else {
2012                        ret = btrfs_cow_block(trans, root, right,
2013                                              parent, pslot + 1,
2014                                              &right);
2015                        if (ret)
2016                                wret = 1;
2017                        else {
2018                                wret = balance_node_right(trans, root,
2019                                                          right, mid);
2020                        }
2021                }
2022                if (wret < 0)
2023                        ret = wret;
2024                if (wret == 0) {
2025                        struct btrfs_disk_key disk_key;
2026
2027                        btrfs_node_key(right, &disk_key, 0);
2028                        tree_mod_log_set_node_key(root->fs_info, parent,
2029                                                  pslot + 1, 0);
2030                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2031                        btrfs_mark_buffer_dirty(parent);
2032
2033                        if (btrfs_header_nritems(mid) <= orig_slot) {
2034                                path->nodes[level] = right;
2035                                path->slots[level + 1] += 1;
2036                                path->slots[level] = orig_slot -
2037                                        btrfs_header_nritems(mid);
2038                                btrfs_tree_unlock(mid);
2039                                free_extent_buffer(mid);
2040                        } else {
2041                                btrfs_tree_unlock(right);
2042                                free_extent_buffer(right);
2043                        }
2044                        return 0;
2045                }
2046                btrfs_tree_unlock(right);
2047                free_extent_buffer(right);
2048        }
2049        return 1;
2050}
2051
2052/*
2053 * readahead one full node of leaves, finding things that are close
2054 * to the block in 'slot', and triggering ra on them.
2055 */
2056static void reada_for_search(struct btrfs_root *root,
2057                             struct btrfs_path *path,
2058                             int level, int slot, u64 objectid)
2059{
2060        struct extent_buffer *node;
2061        struct btrfs_disk_key disk_key;
2062        u32 nritems;
2063        u64 search;
2064        u64 target;
2065        u64 nread = 0;
2066        u64 gen;
2067        int direction = path->reada;
2068        struct extent_buffer *eb;
2069        u32 nr;
2070        u32 blocksize;
2071        u32 nscan = 0;
2072
2073        if (level != 1)
2074                return;
2075
2076        if (!path->nodes[level])
2077                return;
2078
2079        node = path->nodes[level];
2080
2081        search = btrfs_node_blockptr(node, slot);
2082        blocksize = btrfs_level_size(root, level - 1);
2083        eb = btrfs_find_tree_block(root, search, blocksize);
2084        if (eb) {
2085                free_extent_buffer(eb);
2086                return;
2087        }
2088
2089        target = search;
2090
2091        nritems = btrfs_header_nritems(node);
2092        nr = slot;
2093
2094        while (1) {
2095                if (direction < 0) {
2096                        if (nr == 0)
2097                                break;
2098                        nr--;
2099                } else if (direction > 0) {
2100                        nr++;
2101                        if (nr >= nritems)
2102                                break;
2103                }
2104                if (path->reada < 0 && objectid) {
2105                        btrfs_node_key(node, &disk_key, nr);
2106                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2107                                break;
2108                }
2109                search = btrfs_node_blockptr(node, nr);
2110                if ((search <= target && target - search <= 65536) ||
2111                    (search > target && search - target <= 65536)) {
2112                        gen = btrfs_node_ptr_generation(node, nr);
2113                        readahead_tree_block(root, search, blocksize, gen);
2114                        nread += blocksize;
2115                }
2116                nscan++;
2117                if ((nread > 65536 || nscan > 32))
2118                        break;
2119        }
2120}
2121
2122/*
2123 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2124 * cache
2125 */
2126static noinline int reada_for_balance(struct btrfs_root *root,
2127                                      struct btrfs_path *path, int level)
2128{
2129        int slot;
2130        int nritems;
2131        struct extent_buffer *parent;
2132        struct extent_buffer *eb;
2133        u64 gen;
2134        u64 block1 = 0;
2135        u64 block2 = 0;
2136        int ret = 0;
2137        int blocksize;
2138
2139        parent = path->nodes[level + 1];
2140        if (!parent)
2141                return 0;
2142
2143        nritems = btrfs_header_nritems(parent);
2144        slot = path->slots[level + 1];
2145        blocksize = btrfs_level_size(root, level);
2146
2147        if (slot > 0) {
2148                block1 = btrfs_node_blockptr(parent, slot - 1);
2149                gen = btrfs_node_ptr_generation(parent, slot - 1);
2150                eb = btrfs_find_tree_block(root, block1, blocksize);
2151                /*
2152                 * if we get -eagain from btrfs_buffer_uptodate, we
2153                 * don't want to return eagain here.  That will loop
2154                 * forever
2155                 */
2156                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2157                        block1 = 0;
2158                free_extent_buffer(eb);
2159        }
2160        if (slot + 1 < nritems) {
2161                block2 = btrfs_node_blockptr(parent, slot + 1);
2162                gen = btrfs_node_ptr_generation(parent, slot + 1);
2163                eb = btrfs_find_tree_block(root, block2, blocksize);
2164                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2165                        block2 = 0;
2166                free_extent_buffer(eb);
2167        }
2168        if (block1 || block2) {
2169                ret = -EAGAIN;
2170
2171                /* release the whole path */
2172                btrfs_release_path(path);
2173
2174                /* read the blocks */
2175                if (block1)
2176                        readahead_tree_block(root, block1, blocksize, 0);
2177                if (block2)
2178                        readahead_tree_block(root, block2, blocksize, 0);
2179
2180                if (block1) {
2181                        eb = read_tree_block(root, block1, blocksize, 0);
2182                        free_extent_buffer(eb);
2183                }
2184                if (block2) {
2185                        eb = read_tree_block(root, block2, blocksize, 0);
2186                        free_extent_buffer(eb);
2187                }
2188        }
2189        return ret;
2190}
2191
2192
2193/*
2194 * when we walk down the tree, it is usually safe to unlock the higher layers
2195 * in the tree.  The exceptions are when our path goes through slot 0, because
2196 * operations on the tree might require changing key pointers higher up in the
2197 * tree.
2198 *
2199 * callers might also have set path->keep_locks, which tells this code to keep
2200 * the lock if the path points to the last slot in the block.  This is part of
2201 * walking through the tree, and selecting the next slot in the higher block.
2202 *
2203 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2204 * if lowest_unlock is 1, level 0 won't be unlocked
2205 */
2206static noinline void unlock_up(struct btrfs_path *path, int level,
2207                               int lowest_unlock, int min_write_lock_level,
2208                               int *write_lock_level)
2209{
2210        int i;
2211        int skip_level = level;
2212        int no_skips = 0;
2213        struct extent_buffer *t;
2214
2215        if (path->really_keep_locks)
2216                return;
2217
2218        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2219                if (!path->nodes[i])
2220                        break;
2221                if (!path->locks[i])
2222                        break;
2223                if (!no_skips && path->slots[i] == 0) {
2224                        skip_level = i + 1;
2225                        continue;
2226                }
2227                if (!no_skips && path->keep_locks) {
2228                        u32 nritems;
2229                        t = path->nodes[i];
2230                        nritems = btrfs_header_nritems(t);
2231                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2232                                skip_level = i + 1;
2233                                continue;
2234                        }
2235                }
2236                if (skip_level < i && i >= lowest_unlock)
2237                        no_skips = 1;
2238
2239                t = path->nodes[i];
2240                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2241                        btrfs_tree_unlock_rw(t, path->locks[i]);
2242                        path->locks[i] = 0;
2243                        if (write_lock_level &&
2244                            i > min_write_lock_level &&
2245                            i <= *write_lock_level) {
2246                                *write_lock_level = i - 1;
2247                        }
2248                }
2249        }
2250}
2251
2252/*
2253 * This releases any locks held in the path starting at level and
2254 * going all the way up to the root.
2255 *
2256 * btrfs_search_slot will keep the lock held on higher nodes in a few
2257 * corner cases, such as COW of the block at slot zero in the node.  This
2258 * ignores those rules, and it should only be called when there are no
2259 * more updates to be done higher up in the tree.
2260 */
2261noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2262{
2263        int i;
2264
2265        if (path->keep_locks || path->really_keep_locks)
2266                return;
2267
2268        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2269                if (!path->nodes[i])
2270                        continue;
2271                if (!path->locks[i])
2272                        continue;
2273                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2274                path->locks[i] = 0;
2275        }
2276}
2277
2278/*
2279 * helper function for btrfs_search_slot.  The goal is to find a block
2280 * in cache without setting the path to blocking.  If we find the block
2281 * we return zero and the path is unchanged.
2282 *
2283 * If we can't find the block, we set the path blocking and do some
2284 * reada.  -EAGAIN is returned and the search must be repeated.
2285 */
2286static int
2287read_block_for_search(struct btrfs_trans_handle *trans,
2288                       struct btrfs_root *root, struct btrfs_path *p,
2289                       struct extent_buffer **eb_ret, int level, int slot,
2290                       struct btrfs_key *key, u64 time_seq)
2291{
2292        u64 blocknr;
2293        u64 gen;
2294        u32 blocksize;
2295        struct extent_buffer *b = *eb_ret;
2296        struct extent_buffer *tmp;
2297        int ret;
2298
2299        blocknr = btrfs_node_blockptr(b, slot);
2300        gen = btrfs_node_ptr_generation(b, slot);
2301        blocksize = btrfs_level_size(root, level - 1);
2302
2303        tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2304        if (tmp) {
2305                /* first we do an atomic uptodate check */
2306                if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2307                        if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2308                                /*
2309                                 * we found an up to date block without
2310                                 * sleeping, return
2311                                 * right away
2312                                 */
2313                                *eb_ret = tmp;
2314                                return 0;
2315                        }
2316                        /* the pages were up to date, but we failed
2317                         * the generation number check.  Do a full
2318                         * read for the generation number that is correct.
2319                         * We must do this without dropping locks so
2320                         * we can trust our generation number
2321                         */
2322                        free_extent_buffer(tmp);
2323                        btrfs_set_path_blocking(p);
2324
2325                        /* now we're allowed to do a blocking uptodate check */
2326                        tmp = read_tree_block(root, blocknr, blocksize, gen);
2327                        if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2328                                *eb_ret = tmp;
2329                                return 0;
2330                        }
2331                        free_extent_buffer(tmp);
2332                        btrfs_release_path(p);
2333                        return -EIO;
2334                }
2335        }
2336
2337        /*
2338         * reduce lock contention at high levels
2339         * of the btree by dropping locks before
2340         * we read.  Don't release the lock on the current
2341         * level because we need to walk this node to figure
2342         * out which blocks to read.
2343         */
2344        btrfs_unlock_up_safe(p, level + 1);
2345        btrfs_set_path_blocking(p);
2346
2347        free_extent_buffer(tmp);
2348        if (p->reada)
2349                reada_for_search(root, p, level, slot, key->objectid);
2350
2351        btrfs_release_path(p);
2352
2353        ret = -EAGAIN;
2354        tmp = read_tree_block(root, blocknr, blocksize, 0);
2355        if (tmp) {
2356                /*
2357                 * If the read above didn't mark this buffer up to date,
2358                 * it will never end up being up to date.  Set ret to EIO now
2359                 * and give up so that our caller doesn't loop forever
2360                 * on our EAGAINs.
2361                 */
2362                if (!btrfs_buffer_uptodate(tmp, 0, 0))
2363                        ret = -EIO;
2364                free_extent_buffer(tmp);
2365        }
2366        return ret;
2367}
2368
2369/*
2370 * helper function for btrfs_search_slot.  This does all of the checks
2371 * for node-level blocks and does any balancing required based on
2372 * the ins_len.
2373 *
2374 * If no extra work was required, zero is returned.  If we had to
2375 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2376 * start over
2377 */
2378static int
2379setup_nodes_for_search(struct btrfs_trans_handle *trans,
2380                       struct btrfs_root *root, struct btrfs_path *p,
2381                       struct extent_buffer *b, int level, int ins_len,
2382                       int *write_lock_level)
2383{
2384        int ret;
2385        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2386            BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2387                int sret;
2388
2389                if (*write_lock_level < level + 1) {
2390                        *write_lock_level = level + 1;
2391                        btrfs_release_path(p);
2392                        goto again;
2393                }
2394
2395                sret = reada_for_balance(root, p, level);
2396                if (sret)
2397                        goto again;
2398
2399                btrfs_set_path_blocking(p);
2400                sret = split_node(trans, root, p, level);
2401                btrfs_clear_path_blocking(p, NULL, 0);
2402
2403                BUG_ON(sret > 0);
2404                if (sret) {
2405                        ret = sret;
2406                        goto done;
2407                }
2408                b = p->nodes[level];
2409        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2410                   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2411                int sret;
2412
2413                if (*write_lock_level < level + 1) {
2414                        *write_lock_level = level + 1;
2415                        btrfs_release_path(p);
2416                        goto again;
2417                }
2418
2419                sret = reada_for_balance(root, p, level);
2420                if (sret)
2421                        goto again;
2422
2423                btrfs_set_path_blocking(p);
2424                sret = balance_level(trans, root, p, level);
2425                btrfs_clear_path_blocking(p, NULL, 0);
2426
2427                if (sret) {
2428                        ret = sret;
2429                        goto done;
2430                }
2431                b = p->nodes[level];
2432                if (!b) {
2433                        btrfs_release_path(p);
2434                        goto again;
2435                }
2436                BUG_ON(btrfs_header_nritems(b) == 1);
2437        }
2438        return 0;
2439
2440again:
2441        ret = -EAGAIN;
2442done:
2443        return ret;
2444}
2445
2446/*
2447 * look for key in the tree.  path is filled in with nodes along the way
2448 * if key is found, we return zero and you can find the item in the leaf
2449 * level of the path (level 0)
2450 *
2451 * If the key isn't found, the path points to the slot where it should
2452 * be inserted, and 1 is returned.  If there are other errors during the
2453 * search a negative error number is returned.
2454 *
2455 * if ins_len > 0, nodes and leaves will be split as we walk down the
2456 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2457 * possible)
2458 */
2459int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2460                      *root, struct btrfs_key *key, struct btrfs_path *p, int
2461                      ins_len, int cow)
2462{
2463        struct extent_buffer *b;
2464        int slot;
2465        int ret;
2466        int err;
2467        int level;
2468        int lowest_unlock = 1;
2469        int root_lock;
2470        /* everything at write_lock_level or lower must be write locked */
2471        int write_lock_level = 0;
2472        u8 lowest_level = 0;
2473        int min_write_lock_level;
2474
2475        lowest_level = p->lowest_level;
2476        WARN_ON(lowest_level && ins_len > 0);
2477        WARN_ON(p->nodes[0] != NULL);
2478
2479        if (ins_len < 0) {
2480                lowest_unlock = 2;
2481
2482                /* when we are removing items, we might have to go up to level
2483                 * two as we update tree pointers  Make sure we keep write
2484                 * for those levels as well
2485                 */
2486                write_lock_level = 2;
2487        } else if (ins_len > 0) {
2488                /*
2489                 * for inserting items, make sure we have a write lock on
2490                 * level 1 so we can update keys
2491                 */
2492                write_lock_level = 1;
2493        }
2494
2495        if (!cow)
2496                write_lock_level = -1;
2497
2498        if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2499                write_lock_level = BTRFS_MAX_LEVEL;
2500
2501        min_write_lock_level = write_lock_level;
2502
2503again:
2504        /*
2505         * we try very hard to do read locks on the root
2506         */
2507        root_lock = BTRFS_READ_LOCK;
2508        level = 0;
2509        if (p->search_commit_root) {
2510                /*
2511                 * the commit roots are read only
2512                 * so we always do read locks
2513                 */
2514                b = root->commit_root;
2515                extent_buffer_get(b);
2516                level = btrfs_header_level(b);
2517                if (!p->skip_locking)
2518                        btrfs_tree_read_lock(b);
2519        } else {
2520                if (p->skip_locking) {
2521                        b = btrfs_root_node(root);
2522                        level = btrfs_header_level(b);
2523                } else {
2524                        /* we don't know the level of the root node
2525                         * until we actually have it read locked
2526                         */
2527                        b = btrfs_read_lock_root_node(root);
2528                        level = btrfs_header_level(b);
2529                        if (level <= write_lock_level) {
2530                                /* whoops, must trade for write lock */
2531                                btrfs_tree_read_unlock(b);
2532                                free_extent_buffer(b);
2533                                b = btrfs_lock_root_node(root);
2534                                root_lock = BTRFS_WRITE_LOCK;
2535
2536                                /* the level might have changed, check again */
2537                                level = btrfs_header_level(b);
2538                        }
2539                }
2540        }
2541        p->nodes[level] = b;
2542        if (!p->skip_locking)
2543                p->locks[level] = root_lock;
2544
2545        while (b) {
2546                level = btrfs_header_level(b);
2547
2548                /*
2549                 * setup the path here so we can release it under lock
2550                 * contention with the cow code
2551                 */
2552                if (cow) {
2553                        /*
2554                         * if we don't really need to cow this block
2555                         * then we don't want to set the path blocking,
2556                         * so we test it here
2557                         */
2558                        if (!should_cow_block(trans, root, b))
2559                                goto cow_done;
2560
2561                        btrfs_set_path_blocking(p);
2562
2563                        /*
2564                         * must have write locks on this node and the
2565                         * parent
2566                         */
2567                        if (level > write_lock_level ||
2568                            (level + 1 > write_lock_level &&
2569                            level + 1 < BTRFS_MAX_LEVEL &&
2570                            p->nodes[level + 1])) {
2571                                write_lock_level = level + 1;
2572                                btrfs_release_path(p);
2573                                goto again;
2574                        }
2575
2576                        err = btrfs_cow_block(trans, root, b,
2577                                              p->nodes[level + 1],
2578                                              p->slots[level + 1], &b);
2579                        if (err) {
2580                                ret = err;
2581                                goto done;
2582                        }
2583                }
2584cow_done:
2585                BUG_ON(!cow && ins_len);
2586
2587                p->nodes[level] = b;
2588                btrfs_clear_path_blocking(p, NULL, 0);
2589
2590                /*
2591                 * we have a lock on b and as long as we aren't changing
2592                 * the tree, there is no way to for the items in b to change.
2593                 * It is safe to drop the lock on our parent before we
2594                 * go through the expensive btree search on b.
2595                 *
2596                 * If cow is true, then we might be changing slot zero,
2597                 * which may require changing the parent.  So, we can't
2598                 * drop the lock until after we know which slot we're
2599                 * operating on.
2600                 */
2601                if (!cow)
2602                        btrfs_unlock_up_safe(p, level + 1);
2603
2604                ret = bin_search(b, key, level, &slot);
2605
2606                if (level != 0) {
2607                        int dec = 0;
2608                        if (ret && slot > 0) {
2609                                dec = 1;
2610                                slot -= 1;
2611                        }
2612                        p->slots[level] = slot;
2613                        err = setup_nodes_for_search(trans, root, p, b, level,
2614                                             ins_len, &write_lock_level);
2615                        if (err == -EAGAIN)
2616                                goto again;
2617                        if (err) {
2618                                ret = err;
2619                                goto done;
2620                        }
2621                        b = p->nodes[level];
2622                        slot = p->slots[level];
2623
2624                        /*
2625                         * slot 0 is special, if we change the key
2626                         * we have to update the parent pointer
2627                         * which means we must have a write lock
2628                         * on the parent
2629                         */
2630                        if (slot == 0 && cow &&
2631                            write_lock_level < level + 1) {
2632                                write_lock_level = level + 1;
2633                                btrfs_release_path(p);
2634                                goto again;
2635                        }
2636
2637                        unlock_up(p, level, lowest_unlock,
2638                                  min_write_lock_level, &write_lock_level);
2639
2640                        if (level == lowest_level) {
2641                                if (dec)
2642                                        p->slots[level]++;
2643                                goto done;
2644                        }
2645
2646                        err = read_block_for_search(trans, root, p,
2647                                                    &b, level, slot, key, 0);
2648                        if (err == -EAGAIN)
2649                                goto again;
2650                        if (err) {
2651                                ret = err;
2652                                goto done;
2653                        }
2654
2655                        if (!p->skip_locking) {
2656                                level = btrfs_header_level(b);
2657                                if (level <= write_lock_level) {
2658                                        err = btrfs_try_tree_write_lock(b);
2659                                        if (!err) {
2660                                                btrfs_set_path_blocking(p);
2661                                                btrfs_tree_lock(b);
2662                                                btrfs_clear_path_blocking(p, b,
2663                                                                  BTRFS_WRITE_LOCK);
2664                                        }
2665                                        p->locks[level] = BTRFS_WRITE_LOCK;
2666                                } else {
2667                                        err = btrfs_try_tree_read_lock(b);
2668                                        if (!err) {
2669                                                btrfs_set_path_blocking(p);
2670                                                btrfs_tree_read_lock(b);
2671                                                btrfs_clear_path_blocking(p, b,
2672                                                                  BTRFS_READ_LOCK);
2673                                        }
2674                                        p->locks[level] = BTRFS_READ_LOCK;
2675                                }
2676                                p->nodes[level] = b;
2677                        }
2678                } else {
2679                        p->slots[level] = slot;
2680                        if (ins_len > 0 &&
2681                            btrfs_leaf_free_space(root, b) < ins_len) {
2682                                if (write_lock_level < 1) {
2683                                        write_lock_level = 1;
2684                                        btrfs_release_path(p);
2685                                        goto again;
2686                                }
2687
2688                                btrfs_set_path_blocking(p);
2689                                err = split_leaf(trans, root, key,
2690                                                 p, ins_len, ret == 0);
2691                                btrfs_clear_path_blocking(p, NULL, 0);
2692
2693                                BUG_ON(err > 0);
2694                                if (err) {
2695                                        ret = err;
2696                                        goto done;
2697                                }
2698                        }
2699                        if (!p->search_for_split)
2700                                unlock_up(p, level, lowest_unlock,
2701                                          min_write_lock_level, &write_lock_level);
2702                        goto done;
2703                }
2704        }
2705        ret = 1;
2706done:
2707        /*
2708         * we don't really know what they plan on doing with the path
2709         * from here on, so for now just mark it as blocking
2710         */
2711        if (!p->leave_spinning)
2712                btrfs_set_path_blocking(p);
2713        if (ret < 0)
2714                btrfs_release_path(p);
2715        return ret;
2716}
2717
2718/*
2719 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2720 * current state of the tree together with the operations recorded in the tree
2721 * modification log to search for the key in a previous version of this tree, as
2722 * denoted by the time_seq parameter.
2723 *
2724 * Naturally, there is no support for insert, delete or cow operations.
2725 *
2726 * The resulting path and return value will be set up as if we called
2727 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2728 */
2729int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2730                          struct btrfs_path *p, u64 time_seq)
2731{
2732        struct extent_buffer *b;
2733        int slot;
2734        int ret;
2735        int err;
2736        int level;
2737        int lowest_unlock = 1;
2738        u8 lowest_level = 0;
2739
2740        lowest_level = p->lowest_level;
2741        WARN_ON(p->nodes[0] != NULL);
2742
2743        if (p->search_commit_root) {
2744                BUG_ON(time_seq);
2745                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2746        }
2747
2748again:
2749        b = get_old_root(root, time_seq);
2750        level = btrfs_header_level(b);
2751        p->locks[level] = BTRFS_READ_LOCK;
2752
2753        while (b) {
2754                level = btrfs_header_level(b);
2755                p->nodes[level] = b;
2756                btrfs_clear_path_blocking(p, NULL, 0);
2757
2758                /*
2759                 * we have a lock on b and as long as we aren't changing
2760                 * the tree, there is no way to for the items in b to change.
2761                 * It is safe to drop the lock on our parent before we
2762                 * go through the expensive btree search on b.
2763                 */
2764                btrfs_unlock_up_safe(p, level + 1);
2765
2766                ret = bin_search(b, key, level, &slot);
2767
2768                if (level != 0) {
2769                        int dec = 0;
2770                        if (ret && slot > 0) {
2771                                dec = 1;
2772                                slot -= 1;
2773                        }
2774                        p->slots[level] = slot;
2775                        unlock_up(p, level, lowest_unlock, 0, NULL);
2776
2777                        if (level == lowest_level) {
2778                                if (dec)
2779                                        p->slots[level]++;
2780                                goto done;
2781                        }
2782
2783                        err = read_block_for_search(NULL, root, p, &b, level,
2784                                                    slot, key, time_seq);
2785                        if (err == -EAGAIN)
2786                                goto again;
2787                        if (err) {
2788                                ret = err;
2789                                goto done;
2790                        }
2791
2792                        level = btrfs_header_level(b);
2793                        err = btrfs_try_tree_read_lock(b);
2794                        if (!err) {
2795                                btrfs_set_path_blocking(p);
2796                                btrfs_tree_read_lock(b);
2797                                btrfs_clear_path_blocking(p, b,
2798                                                          BTRFS_READ_LOCK);
2799                        }
2800                        p->locks[level] = BTRFS_READ_LOCK;
2801                        p->nodes[level] = b;
2802                        b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2803                        if (b != p->nodes[level]) {
2804                                btrfs_tree_unlock_rw(p->nodes[level],
2805                                                     p->locks[level]);
2806                                p->locks[level] = 0;
2807                                p->nodes[level] = b;
2808                        }
2809                } else {
2810                        p->slots[level] = slot;
2811                        unlock_up(p, level, lowest_unlock, 0, NULL);
2812                        goto done;
2813                }
2814        }
2815        ret = 1;
2816done:
2817        if (!p->leave_spinning)
2818                btrfs_set_path_blocking(p);
2819        if (ret < 0)
2820                btrfs_release_path(p);
2821
2822        return ret;
2823}
2824
2825/*
2826 * helper to use instead of search slot if no exact match is needed but
2827 * instead the next or previous item should be returned.
2828 * When find_higher is true, the next higher item is returned, the next lower
2829 * otherwise.
2830 * When return_any and find_higher are both true, and no higher item is found,
2831 * return the next lower instead.
2832 * When return_any is true and find_higher is false, and no lower item is found,
2833 * return the next higher instead.
2834 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2835 * < 0 on error
2836 */
2837int btrfs_search_slot_for_read(struct btrfs_root *root,
2838                               struct btrfs_key *key, struct btrfs_path *p,
2839                               int find_higher, int return_any)
2840{
2841        int ret;
2842        struct extent_buffer *leaf;
2843
2844again:
2845        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2846        if (ret <= 0)
2847                return ret;
2848        /*
2849         * a return value of 1 means the path is at the position where the
2850         * item should be inserted. Normally this is the next bigger item,
2851         * but in case the previous item is the last in a leaf, path points
2852         * to the first free slot in the previous leaf, i.e. at an invalid
2853         * item.
2854         */
2855        leaf = p->nodes[0];
2856
2857        if (find_higher) {
2858                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2859                        ret = btrfs_next_leaf(root, p);
2860                        if (ret <= 0)
2861                                return ret;
2862                        if (!return_any)
2863                                return 1;
2864                        /*
2865                         * no higher item found, return the next
2866                         * lower instead
2867                         */
2868                        return_any = 0;
2869                        find_higher = 0;
2870                        btrfs_release_path(p);
2871                        goto again;
2872                }
2873        } else {
2874                if (p->slots[0] == 0) {
2875                        ret = btrfs_prev_leaf(root, p);
2876                        if (ret < 0)
2877                                return ret;
2878                        if (!ret) {
2879                                p->slots[0] = btrfs_header_nritems(leaf) - 1;
2880                                return 0;
2881                        }
2882                        if (!return_any)
2883                                return 1;
2884                        /*
2885                         * no lower item found, return the next
2886                         * higher instead
2887                         */
2888                        return_any = 0;
2889                        find_higher = 1;
2890                        btrfs_release_path(p);
2891                        goto again;
2892                } else {
2893                        --p->slots[0];
2894                }
2895        }
2896        return 0;
2897}
2898
2899/*
2900 * adjust the pointers going up the tree, starting at level
2901 * making sure the right key of each node is points to 'key'.
2902 * This is used after shifting pointers to the left, so it stops
2903 * fixing up pointers when a given leaf/node is not in slot 0 of the
2904 * higher levels
2905 *
2906 */
2907static void fixup_low_keys(struct btrfs_trans_handle *trans,
2908                           struct btrfs_root *root, struct btrfs_path *path,
2909                           struct btrfs_disk_key *key, int level)
2910{
2911        int i;
2912        struct extent_buffer *t;
2913
2914        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2915                int tslot = path->slots[i];
2916                if (!path->nodes[i])
2917                        break;
2918                t = path->nodes[i];
2919                tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2920                btrfs_set_node_key(t, key, tslot);
2921                btrfs_mark_buffer_dirty(path->nodes[i]);
2922                if (tslot != 0)
2923                        break;
2924        }
2925}
2926
2927/*
2928 * update item key.
2929 *
2930 * This function isn't completely safe. It's the caller's responsibility
2931 * that the new key won't break the order
2932 */
2933void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2934                             struct btrfs_root *root, struct btrfs_path *path,
2935                             struct btrfs_key *new_key)
2936{
2937        struct btrfs_disk_key disk_key;
2938        struct extent_buffer *eb;
2939        int slot;
2940
2941        eb = path->nodes[0];
2942        slot = path->slots[0];
2943        if (slot > 0) {
2944                btrfs_item_key(eb, &disk_key, slot - 1);
2945                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2946        }
2947        if (slot < btrfs_header_nritems(eb) - 1) {
2948                btrfs_item_key(eb, &disk_key, slot + 1);
2949                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2950        }
2951
2952        btrfs_cpu_key_to_disk(&disk_key, new_key);
2953        btrfs_set_item_key(eb, &disk_key, slot);
2954        btrfs_mark_buffer_dirty(eb);
2955        if (slot == 0)
2956                fixup_low_keys(trans, root, path, &disk_key, 1);
2957}
2958
2959/*
2960 * try to push data from one node into the next node left in the
2961 * tree.
2962 *
2963 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2964 * error, and > 0 if there was no room in the left hand block.
2965 */
2966static int push_node_left(struct btrfs_trans_handle *trans,
2967                          struct btrfs_root *root, struct extent_buffer *dst,
2968                          struct extent_buffer *src, int empty)
2969{
2970        int push_items = 0;
2971        int src_nritems;
2972        int dst_nritems;
2973        int ret = 0;
2974
2975        src_nritems = btrfs_header_nritems(src);
2976        dst_nritems = btrfs_header_nritems(dst);
2977        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2978        WARN_ON(btrfs_header_generation(src) != trans->transid);
2979        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2980
2981        if (!empty && src_nritems <= 8)
2982                return 1;
2983
2984        if (push_items <= 0)
2985                return 1;
2986
2987        if (empty) {
2988                push_items = min(src_nritems, push_items);
2989                if (push_items < src_nritems) {
2990                        /* leave at least 8 pointers in the node if
2991                         * we aren't going to empty it
2992                         */
2993                        if (src_nritems - push_items < 8) {
2994                                if (push_items <= 8)
2995                                        return 1;
2996                                push_items -= 8;
2997                        }
2998                }
2999        } else
3000                push_items = min(src_nritems - 8, push_items);
3001
3002        tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3003                             push_items);
3004        copy_extent_buffer(dst, src,
3005                           btrfs_node_key_ptr_offset(dst_nritems),
3006                           btrfs_node_key_ptr_offset(0),
3007                           push_items * sizeof(struct btrfs_key_ptr));
3008
3009        if (push_items < src_nritems) {
3010                /*
3011                 * don't call tree_mod_log_eb_move here, key removal was already
3012                 * fully logged by tree_mod_log_eb_copy above.
3013                 */
3014                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3015                                      btrfs_node_key_ptr_offset(push_items),
3016                                      (src_nritems - push_items) *
3017                                      sizeof(struct btrfs_key_ptr));
3018        }
3019        btrfs_set_header_nritems(src, src_nritems - push_items);
3020        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3021        btrfs_mark_buffer_dirty(src);
3022        btrfs_mark_buffer_dirty(dst);
3023
3024        return ret;
3025}
3026
3027/*
3028 * try to push data from one node into the next node right in the
3029 * tree.
3030 *
3031 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3032 * error, and > 0 if there was no room in the right hand block.
3033 *
3034 * this will  only push up to 1/2 the contents of the left node over
3035 */
3036static int balance_node_right(struct btrfs_trans_handle *trans,
3037                              struct btrfs_root *root,
3038                              struct extent_buffer *dst,
3039                              struct extent_buffer *src)
3040{
3041        int push_items = 0;
3042        int max_push;
3043        int src_nritems;
3044        int dst_nritems;
3045        int ret = 0;
3046
3047        WARN_ON(btrfs_header_generation(src) != trans->transid);
3048        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3049
3050        src_nritems = btrfs_header_nritems(src);
3051        dst_nritems = btrfs_header_nritems(dst);
3052        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3053        if (push_items <= 0)
3054                return 1;
3055
3056        if (src_nritems < 4)
3057                return 1;
3058
3059        max_push = src_nritems / 2 + 1;
3060        /* don't try to empty the node */
3061        if (max_push >= src_nritems)
3062                return 1;
3063
3064        if (max_push < push_items)
3065                push_items = max_push;
3066
3067        tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3068        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3069                                      btrfs_node_key_ptr_offset(0),
3070                                      (dst_nritems) *
3071                                      sizeof(struct btrfs_key_ptr));
3072
3073        tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3074                             src_nritems - push_items, push_items);
3075        copy_extent_buffer(dst, src,
3076                           btrfs_node_key_ptr_offset(0),
3077                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3078                           push_items * sizeof(struct btrfs_key_ptr));
3079
3080        btrfs_set_header_nritems(src, src_nritems - push_items);
3081        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3082
3083        btrfs_mark_buffer_dirty(src);
3084        btrfs_mark_buffer_dirty(dst);
3085
3086        return ret;
3087}
3088
3089/*
3090 * helper function to insert a new root level in the tree.
3091 * A new node is allocated, and a single item is inserted to
3092 * point to the existing root
3093 *
3094 * returns zero on success or < 0 on failure.
3095 */
3096static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3097                           struct btrfs_root *root,
3098                           struct btrfs_path *path, int level)
3099{
3100        u64 lower_gen;
3101        struct extent_buffer *lower;
3102        struct extent_buffer *c;
3103        struct extent_buffer *old;
3104        struct btrfs_disk_key lower_key;
3105
3106        BUG_ON(path->nodes[level]);
3107        BUG_ON(path->nodes[level-1] != root->node);
3108
3109        lower = path->nodes[level-1];
3110        if (level == 1)
3111                btrfs_item_key(lower, &lower_key, 0);
3112        else
3113                btrfs_node_key(lower, &lower_key, 0);
3114
3115        c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3116                                   root->root_key.objectid, &lower_key,
3117                                   level, root->node->start, 0);
3118        if (IS_ERR(c))
3119                return PTR_ERR(c);
3120
3121        root_add_used(root, root->nodesize);
3122
3123        memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3124        btrfs_set_header_nritems(c, 1);
3125        btrfs_set_header_level(c, level);
3126        btrfs_set_header_bytenr(c, c->start);
3127        btrfs_set_header_generation(c, trans->transid);
3128        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3129        btrfs_set_header_owner(c, root->root_key.objectid);
3130
3131        write_extent_buffer(c, root->fs_info->fsid,
3132                            (unsigned long)btrfs_header_fsid(c),
3133                            BTRFS_FSID_SIZE);
3134
3135        write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3136                            (unsigned long)btrfs_header_chunk_tree_uuid(c),
3137                            BTRFS_UUID_SIZE);
3138
3139        btrfs_set_node_key(c, &lower_key, 0);
3140        btrfs_set_node_blockptr(c, 0, lower->start);
3141        lower_gen = btrfs_header_generation(lower);
3142        WARN_ON(lower_gen != trans->transid);
3143
3144        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3145
3146        btrfs_mark_buffer_dirty(c);
3147
3148        old = root->node;
3149        tree_mod_log_set_root_pointer(root, c);
3150        rcu_assign_pointer(root->node, c);
3151
3152        /* the super has an extra ref to root->node */
3153        free_extent_buffer(old);
3154
3155        add_root_to_dirty_list(root);
3156        extent_buffer_get(c);
3157        path->nodes[level] = c;
3158        path->locks[level] = BTRFS_WRITE_LOCK;
3159        path->slots[level] = 0;
3160        return 0;
3161}
3162
3163/*
3164 * worker function to insert a single pointer in a node.
3165 * the node should have enough room for the pointer already
3166 *
3167 * slot and level indicate where you want the key to go, and
3168 * blocknr is the block the key points to.
3169 */
3170static void insert_ptr(struct btrfs_trans_handle *trans,
3171                       struct btrfs_root *root, struct btrfs_path *path,
3172                       struct btrfs_disk_key *key, u64 bytenr,
3173                       int slot, int level)
3174{
3175        struct extent_buffer *lower;
3176        int nritems;
3177        int ret;
3178
3179        BUG_ON(!path->nodes[level]);
3180        btrfs_assert_tree_locked(path->nodes[level]);
3181        lower = path->nodes[level];
3182        nritems = btrfs_header_nritems(lower);
3183        BUG_ON(slot > nritems);
3184        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3185        if (slot != nritems) {
3186                if (level)
3187                        tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3188                                             slot, nritems - slot);
3189                memmove_extent_buffer(lower,
3190                              btrfs_node_key_ptr_offset(slot + 1),
3191                              btrfs_node_key_ptr_offset(slot),
3192                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3193        }
3194        if (level) {
3195                ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3196                                              MOD_LOG_KEY_ADD);
3197                BUG_ON(ret < 0);
3198        }
3199        btrfs_set_node_key(lower, key, slot);
3200        btrfs_set_node_blockptr(lower, slot, bytenr);
3201        WARN_ON(trans->transid == 0);
3202        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3203        btrfs_set_header_nritems(lower, nritems + 1);
3204        btrfs_mark_buffer_dirty(lower);
3205}
3206
3207/*
3208 * split the node at the specified level in path in two.
3209 * The path is corrected to point to the appropriate node after the split
3210 *
3211 * Before splitting this tries to make some room in the node by pushing
3212 * left and right, if either one works, it returns right away.
3213 *
3214 * returns 0 on success and < 0 on failure
3215 */
3216static noinline int split_node(struct btrfs_trans_handle *trans,
3217                               struct btrfs_root *root,
3218                               struct btrfs_path *path, int level)
3219{
3220        struct extent_buffer *c;
3221        struct extent_buffer *split;
3222        struct btrfs_disk_key disk_key;
3223        int mid;
3224        int ret;
3225        u32 c_nritems;
3226
3227        c = path->nodes[level];
3228        WARN_ON(btrfs_header_generation(c) != trans->transid);
3229        if (c == root->node) {
3230                /* trying to split the root, lets make a new one */
3231                ret = insert_new_root(trans, root, path, level + 1);
3232                if (ret)
3233                        return ret;
3234        } else {
3235                ret = push_nodes_for_insert(trans, root, path, level);
3236                c = path->nodes[level];
3237                if (!ret && btrfs_header_nritems(c) <
3238                    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3239                        return 0;
3240                if (ret < 0)
3241                        return ret;
3242        }
3243
3244        c_nritems = btrfs_header_nritems(c);
3245        mid = (c_nritems + 1) / 2;
3246        btrfs_node_key(c, &disk_key, mid);
3247
3248        split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3249                                        root->root_key.objectid,
3250                                        &disk_key, level, c->start, 0);
3251        if (IS_ERR(split))
3252                return PTR_ERR(split);
3253
3254        root_add_used(root, root->nodesize);
3255
3256        memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3257        btrfs_set_header_level(split, btrfs_header_level(c));
3258        btrfs_set_header_bytenr(split, split->start);
3259        btrfs_set_header_generation(split, trans->transid);
3260        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3261        btrfs_set_header_owner(split, root->root_key.objectid);
3262        write_extent_buffer(split, root->fs_info->fsid,
3263                            (unsigned long)btrfs_header_fsid(split),
3264                            BTRFS_FSID_SIZE);
3265        write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3266                            (unsigned long)btrfs_header_chunk_tree_uuid(split),
3267                            BTRFS_UUID_SIZE);
3268
3269        tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3270        copy_extent_buffer(split, c,
3271                           btrfs_node_key_ptr_offset(0),
3272                           btrfs_node_key_ptr_offset(mid),
3273                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3274        btrfs_set_header_nritems(split, c_nritems - mid);
3275        btrfs_set_header_nritems(c, mid);
3276        ret = 0;
3277
3278        btrfs_mark_buffer_dirty(c);
3279        btrfs_mark_buffer_dirty(split);
3280
3281        insert_ptr(trans, root, path, &disk_key, split->start,
3282                   path->slots[level + 1] + 1, level + 1);
3283
3284        if (path->slots[level] >= mid) {
3285                path->slots[level] -= mid;
3286                btrfs_tree_unlock(c);
3287                free_extent_buffer(c);
3288                path->nodes[level] = split;
3289                path->slots[level + 1] += 1;
3290        } else {
3291                btrfs_tree_unlock(split);
3292                free_extent_buffer(split);
3293        }
3294        return ret;
3295}
3296
3297/*
3298 * how many bytes are required to store the items in a leaf.  start
3299 * and nr indicate which items in the leaf to check.  This totals up the
3300 * space used both by the item structs and the item data
3301 */
3302static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3303{
3304        struct btrfs_item *start_item;
3305        struct btrfs_item *end_item;
3306        struct btrfs_map_token token;
3307        int data_len;
3308        int nritems = btrfs_header_nritems(l);
3309        int end = min(nritems, start + nr) - 1;
3310
3311        if (!nr)
3312                return 0;
3313        btrfs_init_map_token(&token);
3314        start_item = btrfs_item_nr(l, start);
3315        end_item = btrfs_item_nr(l, end);
3316        data_len = btrfs_token_item_offset(l, start_item, &token) +
3317                btrfs_token_item_size(l, start_item, &token);
3318        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3319        data_len += sizeof(struct btrfs_item) * nr;
3320        WARN_ON(data_len < 0);
3321        return data_len;
3322}
3323
3324/*
3325 * The space between the end of the leaf items and
3326 * the start of the leaf data.  IOW, how much room
3327 * the leaf has left for both items and data
3328 */
3329noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3330                                   struct extent_buffer *leaf)
3331{
3332        int nritems = btrfs_header_nritems(leaf);
3333        int ret;
3334        ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3335        if (ret < 0) {
3336                printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3337                       "used %d nritems %d\n",
3338                       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3339                       leaf_space_used(leaf, 0, nritems), nritems);
3340        }
3341        return ret;
3342}
3343
3344/*
3345 * min slot controls the lowest index we're willing to push to the
3346 * right.  We'll push up to and including min_slot, but no lower
3347 */
3348static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3349                                      struct btrfs_root *root,
3350                                      struct btrfs_path *path,
3351                                      int data_size, int empty,
3352                                      struct extent_buffer *right,
3353                                      int free_space, u32 left_nritems,
3354                                      u32 min_slot)
3355{
3356        struct extent_buffer *left = path->nodes[0];
3357        struct extent_buffer *upper = path->nodes[1];
3358        struct btrfs_map_token token;
3359        struct btrfs_disk_key disk_key;
3360        int slot;
3361        u32 i;
3362        int push_space = 0;
3363        int push_items = 0;
3364        struct btrfs_item *item;
3365        u32 nr;
3366        u32 right_nritems;
3367        u32 data_end;
3368        u32 this_item_size;
3369
3370        btrfs_init_map_token(&token);
3371
3372        if (empty)
3373                nr = 0;
3374        else
3375                nr = max_t(u32, 1, min_slot);
3376
3377        if (path->slots[0] >= left_nritems)
3378                push_space += data_size;
3379
3380        slot = path->slots[1];
3381        i = left_nritems - 1;
3382        while (i >= nr) {
3383                item = btrfs_item_nr(left, i);
3384
3385                if (!empty && push_items > 0) {
3386                        if (path->slots[0] > i)
3387                                break;
3388                        if (path->slots[0] == i) {
3389                                int space = btrfs_leaf_free_space(root, left);
3390                                if (space + push_space * 2 > free_space)
3391                                        break;
3392                        }
3393                }
3394
3395                if (path->slots[0] == i)
3396                        push_space += data_size;
3397
3398                this_item_size = btrfs_item_size(left, item);
3399                if (this_item_size + sizeof(*item) + push_space > free_space)
3400                        break;
3401
3402                push_items++;
3403                push_space += this_item_size + sizeof(*item);
3404                if (i == 0)
3405                        break;
3406                i--;
3407        }
3408
3409        if (push_items == 0)
3410                goto out_unlock;
3411
3412        WARN_ON(!empty && push_items == left_nritems);
3413
3414        /* push left to right */
3415        right_nritems = btrfs_header_nritems(right);
3416
3417        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3418        push_space -= leaf_data_end(root, left);
3419
3420        /* make room in the right data area */
3421        data_end = leaf_data_end(root, right);
3422        memmove_extent_buffer(right,
3423                              btrfs_leaf_data(right) + data_end - push_space,
3424                              btrfs_leaf_data(right) + data_end,
3425                              BTRFS_LEAF_DATA_SIZE(root) - data_end);
3426
3427        /* copy from the left data area */
3428        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3429                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3430                     btrfs_leaf_data(left) + leaf_data_end(root, left),
3431                     push_space);
3432
3433        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3434                              btrfs_item_nr_offset(0),
3435                              right_nritems * sizeof(struct btrfs_item));
3436
3437        /* copy the items from left to right */
3438        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3439                   btrfs_item_nr_offset(left_nritems - push_items),
3440                   push_items * sizeof(struct btrfs_item));
3441
3442        /* update the item pointers */
3443        right_nritems += push_items;
3444        btrfs_set_header_nritems(right, right_nritems);
3445        push_space = BTRFS_LEAF_DATA_SIZE(root);
3446        for (i = 0; i < right_nritems; i++) {
3447                item = btrfs_item_nr(right, i);
3448                push_space -= btrfs_token_item_size(right, item, &token);
3449                btrfs_set_token_item_offset(right, item, push_space, &token);
3450        }
3451
3452        left_nritems -= push_items;
3453        btrfs_set_header_nritems(left, left_nritems);
3454
3455        if (left_nritems)
3456                btrfs_mark_buffer_dirty(left);
3457        else
3458                clean_tree_block(trans, root, left);
3459
3460        btrfs_mark_buffer_dirty(right);
3461
3462        btrfs_item_key(right, &disk_key, 0);
3463        btrfs_set_node_key(upper, &disk_key, slot + 1);
3464        btrfs_mark_buffer_dirty(upper);
3465
3466        /* then fixup the leaf pointer in the path */
3467        if (path->slots[0] >= left_nritems) {
3468                path->slots[0] -= left_nritems;
3469                if (btrfs_header_nritems(path->nodes[0]) == 0)
3470                        clean_tree_block(trans, root, path->nodes[0]);
3471                btrfs_tree_unlock(path->nodes[0]);
3472                free_extent_buffer(path->nodes[0]);
3473                path->nodes[0] = right;
3474                path->slots[1] += 1;
3475        } else {
3476                btrfs_tree_unlock(right);
3477                free_extent_buffer(right);
3478        }
3479        return 0;
3480
3481out_unlock:
3482        btrfs_tree_unlock(right);
3483        free_extent_buffer(right);
3484        return 1;
3485}
3486
3487/*
3488 * push some data in the path leaf to the right, trying to free up at
3489 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3490 *
3491 * returns 1 if the push failed because the other node didn't have enough
3492 * room, 0 if everything worked out and < 0 if there were major errors.
3493 *
3494 * this will push starting from min_slot to the end of the leaf.  It won't
3495 * push any slot lower than min_slot
3496 */
3497static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3498                           *root, struct btrfs_path *path,
3499                           int min_data_size, int data_size,
3500                           int empty, u32 min_slot)
3501{
3502        struct extent_buffer *left = path->nodes[0];
3503        struct extent_buffer *right;
3504        struct extent_buffer *upper;
3505        int slot;
3506        int free_space;
3507        u32 left_nritems;
3508        int ret;
3509
3510        if (!path->nodes[1])
3511                return 1;
3512
3513        slot = path->slots[1];
3514        upper = path->nodes[1];
3515        if (slot >= btrfs_header_nritems(upper) - 1)
3516                return 1;
3517
3518        btrfs_assert_tree_locked(path->nodes[1]);
3519
3520        right = read_node_slot(root, upper, slot + 1);
3521        if (right == NULL)
3522                return 1;
3523
3524        btrfs_tree_lock(right);
3525        btrfs_set_lock_blocking(right);
3526
3527        free_space = btrfs_leaf_free_space(root, right);
3528        if (free_space < data_size)
3529                goto out_unlock;
3530
3531        /* cow and double check */
3532        ret = btrfs_cow_block(trans, root, right, upper,
3533                              slot + 1, &right);
3534        if (ret)
3535                goto out_unlock;
3536
3537        free_space = btrfs_leaf_free_space(root, right);
3538        if (free_space < data_size)
3539                goto out_unlock;
3540
3541        left_nritems = btrfs_header_nritems(left);
3542        if (left_nritems == 0)
3543                goto out_unlock;
3544
3545        return __push_leaf_right(trans, root, path, min_data_size, empty,
3546                                right, free_space, left_nritems, min_slot);
3547out_unlock:
3548        btrfs_tree_unlock(right);
3549        free_extent_buffer(right);
3550        return 1;
3551}
3552
3553/*
3554 * push some data in the path leaf to the left, trying to free up at
3555 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3556 *
3557 * max_slot can put a limit on how far into the leaf we'll push items.  The
3558 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3559 * items
3560 */
3561static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3562                                     struct btrfs_root *root,
3563                                     struct btrfs_path *path, int data_size,
3564                                     int empty, struct extent_buffer *left,
3565                                     int free_space, u32 right_nritems,
3566                                     u32 max_slot)
3567{
3568        struct btrfs_disk_key disk_key;
3569        struct extent_buffer *right = path->nodes[0];
3570        int i;
3571        int push_space = 0;
3572        int push_items = 0;
3573        struct btrfs_item *item;
3574        u32 old_left_nritems;
3575        u32 nr;
3576        int ret = 0;
3577        u32 this_item_size;
3578        u32 old_left_item_size;
3579        struct btrfs_map_token token;
3580
3581        btrfs_init_map_token(&token);
3582
3583        if (empty)
3584                nr = min(right_nritems, max_slot);
3585        else
3586                nr = min(right_nritems - 1, max_slot);
3587
3588        for (i = 0; i < nr; i++) {
3589                item = btrfs_item_nr(right, i);
3590
3591                if (!empty && push_items > 0) {
3592                        if (path->slots[0] < i)
3593                                break;
3594                        if (path->slots[0] == i) {
3595                                int space = btrfs_leaf_free_space(root, right);
3596                                if (space + push_space * 2 > free_space)
3597                                        break;
3598                        }
3599                }
3600
3601                if (path->slots[0] == i)
3602                        push_space += data_size;
3603
3604                this_item_size = btrfs_item_size(right, item);
3605                if (this_item_size + sizeof(*item) + push_space > free_space)
3606                        break;
3607
3608                push_items++;
3609                push_space += this_item_size + sizeof(*item);
3610        }
3611
3612        if (push_items == 0) {
3613                ret = 1;
3614                goto out;
3615        }
3616        if (!empty && push_items == btrfs_header_nritems(right))
3617                WARN_ON(1);
3618
3619        /* push data from right to left */
3620        copy_extent_buffer(left, right,
3621                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3622                           btrfs_item_nr_offset(0),
3623                           push_items * sizeof(struct btrfs_item));
3624
3625        push_space = BTRFS_LEAF_DATA_SIZE(root) -
3626                     btrfs_item_offset_nr(right, push_items - 1);
3627
3628        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3629                     leaf_data_end(root, left) - push_space,
3630                     btrfs_leaf_data(right) +
3631                     btrfs_item_offset_nr(right, push_items - 1),
3632                     push_space);
3633        old_left_nritems = btrfs_header_nritems(left);
3634        BUG_ON(old_left_nritems <= 0);
3635
3636        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3637        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3638                u32 ioff;
3639
3640                item = btrfs_item_nr(left, i);
3641
3642                ioff = btrfs_token_item_offset(left, item, &token);
3643                btrfs_set_token_item_offset(left, item,
3644                      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3645                      &token);
3646        }
3647        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3648
3649        /* fixup right node */
3650        if (push_items > right_nritems)
3651                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3652                       right_nritems);
3653
3654        if (push_items < right_nritems) {
3655                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3656                                                  leaf_data_end(root, right);
3657                memmove_extent_buffer(right, btrfs_leaf_data(right) +
3658                                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3659                                      btrfs_leaf_data(right) +
3660                                      leaf_data_end(root, right), push_space);
3661
3662                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3663                              btrfs_item_nr_offset(push_items),
3664                             (btrfs_header_nritems(right) - push_items) *
3665                             sizeof(struct btrfs_item));
3666        }
3667        right_nritems -= push_items;
3668        btrfs_set_header_nritems(right, right_nritems);
3669        push_space = BTRFS_LEAF_DATA_SIZE(root);
3670        for (i = 0; i < right_nritems; i++) {
3671                item = btrfs_item_nr(right, i);
3672
3673                push_space = push_space - btrfs_token_item_size(right,
3674                                                                item, &token);
3675                btrfs_set_token_item_offset(right, item, push_space, &token);
3676        }
3677
3678        btrfs_mark_buffer_dirty(left);
3679        if (right_nritems)
3680                btrfs_mark_buffer_dirty(right);
3681        else
3682                clean_tree_block(trans, root, right);
3683
3684        btrfs_item_key(right, &disk_key, 0);
3685        fixup_low_keys(trans, root, path, &disk_key, 1);
3686
3687        /* then fixup the leaf pointer in the path */
3688        if (path->slots[0] < push_items) {
3689                path->slots[0] += old_left_nritems;
3690                btrfs_tree_unlock(path->nodes[0]);
3691                free_extent_buffer(path->nodes[0]);
3692                path->nodes[0] = left;
3693                path->slots[1] -= 1;
3694        } else {
3695                btrfs_tree_unlock(left);
3696                free_extent_buffer(left);
3697                path->slots[0] -= push_items;
3698        }
3699        BUG_ON(path->slots[0] < 0);
3700        return ret;
3701out:
3702        btrfs_tree_unlock(left);
3703        free_extent_buffer(left);
3704        return ret;
3705}
3706
3707/*
3708 * push some data in the path leaf to the left, trying to free up at
3709 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3710 *
3711 * max_slot can put a limit on how far into the leaf we'll push items.  The
3712 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3713 * items
3714 */
3715static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3716                          *root, struct btrfs_path *path, int min_data_size,
3717                          int data_size, int empty, u32 max_slot)
3718{
3719        struct extent_buffer *right = path->nodes[0];
3720        struct extent_buffer *left;
3721        int slot;
3722        int free_space;
3723        u32 right_nritems;
3724        int ret = 0;
3725
3726        slot = path->slots[1];
3727        if (slot == 0)
3728                return 1;
3729        if (!path->nodes[1])
3730                return 1;
3731
3732        right_nritems = btrfs_header_nritems(right);
3733        if (right_nritems == 0)
3734                return 1;
3735
3736        btrfs_assert_tree_locked(path->nodes[1]);
3737
3738        left = read_node_slot(root, path->nodes[1], slot - 1);
3739        if (left == NULL)
3740                return 1;
3741
3742        btrfs_tree_lock(left);
3743        btrfs_set_lock_blocking(left);
3744
3745        free_space = btrfs_leaf_free_space(root, left);
3746        if (free_space < data_size) {
3747                ret = 1;
3748                goto out;
3749        }
3750
3751        /* cow and double check */
3752        ret = btrfs_cow_block(trans, root, left,
3753                              path->nodes[1], slot - 1, &left);
3754        if (ret) {
3755                /* we hit -ENOSPC, but it isn't fatal here */
3756                if (ret == -ENOSPC)
3757                        ret = 1;
3758                goto out;
3759        }
3760
3761        free_space = btrfs_leaf_free_space(root, left);
3762        if (free_space < data_size) {
3763                ret = 1;
3764                goto out;
3765        }
3766
3767        return __push_leaf_left(trans, root, path, min_data_size,
3768                               empty, left, free_space, right_nritems,
3769                               max_slot);
3770out:
3771        btrfs_tree_unlock(left);
3772        free_extent_buffer(left);
3773        return ret;
3774}
3775
3776/*
3777 * split the path's leaf in two, making sure there is at least data_size
3778 * available for the resulting leaf level of the path.
3779 */
3780static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3781                                    struct btrfs_root *root,
3782                                    struct btrfs_path *path,
3783                                    struct extent_buffer *l,
3784                                    struct extent_buffer *right,
3785                                    int slot, int mid, int nritems)
3786{
3787        int data_copy_size;
3788        int rt_data_off;
3789        int i;
3790        struct btrfs_disk_key disk_key;
3791        struct btrfs_map_token token;
3792
3793        btrfs_init_map_token(&token);
3794
3795        nritems = nritems - mid;
3796        btrfs_set_header_nritems(right, nritems);
3797        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3798
3799        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3800                           btrfs_item_nr_offset(mid),
3801                           nritems * sizeof(struct btrfs_item));
3802
3803        copy_extent_buffer(right, l,
3804                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3805                     data_copy_size, btrfs_leaf_data(l) +
3806                     leaf_data_end(root, l), data_copy_size);
3807
3808        rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3809                      btrfs_item_end_nr(l, mid);
3810
3811        for (i = 0; i < nritems; i++) {
3812                struct btrfs_item *item = btrfs_item_nr(right, i);
3813                u32 ioff;
3814
3815                ioff = btrfs_token_item_offset(right, item, &token);
3816                btrfs_set_token_item_offset(right, item,
3817                                            ioff + rt_data_off, &token);
3818        }
3819
3820        btrfs_set_header_nritems(l, mid);
3821        btrfs_item_key(right, &disk_key, 0);
3822        insert_ptr(trans, root, path, &disk_key, right->start,
3823                   path->slots[1] + 1, 1);
3824
3825        btrfs_mark_buffer_dirty(right);
3826        btrfs_mark_buffer_dirty(l);
3827        BUG_ON(path->slots[0] != slot);
3828
3829        if (mid <= slot) {
3830                btrfs_tree_unlock(path->nodes[0]);
3831                free_extent_buffer(path->nodes[0]);
3832                path->nodes[0] = right;
3833                path->slots[0] -= mid;
3834                path->slots[1] += 1;
3835        } else {
3836                btrfs_tree_unlock(right);
3837                free_extent_buffer(right);
3838        }
3839
3840        BUG_ON(path->slots[0] < 0);
3841}
3842
3843/*
3844 * double splits happen when we need to insert a big item in the middle
3845 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3846 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3847 *          A                 B                 C
3848 *
3849 * We avoid this by trying to push the items on either side of our target
3850 * into the adjacent leaves.  If all goes well we can avoid the double split
3851 * completely.
3852 */
3853static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3854                                          struct btrfs_root *root,
3855                                          struct btrfs_path *path,
3856                                          int data_size)
3857{
3858        int ret;
3859        int progress = 0;
3860        int slot;
3861        u32 nritems;
3862
3863        slot = path->slots[0];
3864
3865        /*
3866         * try to push all the items after our slot into the
3867         * right leaf
3868         */
3869        ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3870        if (ret < 0)
3871                return ret;
3872
3873        if (ret == 0)
3874                progress++;
3875
3876        nritems = btrfs_header_nritems(path->nodes[0]);
3877        /*
3878         * our goal is to get our slot at the start or end of a leaf.  If
3879         * we've done so we're done
3880         */
3881        if (path->slots[0] == 0 || path->slots[0] == nritems)
3882                return 0;
3883
3884        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3885                return 0;
3886
3887        /* try to push all the items before our slot into the next leaf */
3888        slot = path->slots[0];
3889        ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3890        if (ret < 0)
3891                return ret;
3892
3893        if (ret == 0)
3894                progress++;
3895
3896        if (progress)
3897                return 0;
3898        return 1;
3899}
3900
3901/*
3902 * split the path's leaf in two, making sure there is at least data_size
3903 * available for the resulting leaf level of the path.
3904 *
3905 * returns 0 if all went well and < 0 on failure.
3906 */
3907static noinline int split_leaf(struct btrfs_trans_handle *trans,
3908                               struct btrfs_root *root,
3909                               struct btrfs_key *ins_key,
3910                               struct btrfs_path *path, int data_size,
3911                               int extend)
3912{
3913        struct btrfs_disk_key disk_key;
3914        struct extent_buffer *l;
3915        u32 nritems;
3916        int mid;
3917        int slot;
3918        struct extent_buffer *right;
3919        int ret = 0;
3920        int wret;
3921        int split;
3922        int num_doubles = 0;
3923        int tried_avoid_double = 0;
3924
3925        l = path->nodes[0];
3926        slot = path->slots[0];
3927        if (extend && data_size + btrfs_item_size_nr(l, slot) +
3928            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3929                return -EOVERFLOW;
3930
3931        /* first try to make some room by pushing left and right */
3932        if (data_size) {
3933                wret = push_leaf_right(trans, root, path, data_size,
3934                                       data_size, 0, 0);
3935                if (wret < 0)
3936                        return wret;
3937                if (wret) {
3938                        wret = push_leaf_left(trans, root, path, data_size,
3939                                              data_size, 0, (u32)-1);
3940                        if (wret < 0)
3941                                return wret;
3942                }
3943                l = path->nodes[0];
3944
3945                /* did the pushes work? */
3946                if (btrfs_leaf_free_space(root, l) >= data_size)
3947                        return 0;
3948        }
3949
3950        if (!path->nodes[1]) {
3951                ret = insert_new_root(trans, root, path, 1);
3952                if (ret)
3953                        return ret;
3954        }
3955again:
3956        split = 1;
3957        l = path->nodes[0];
3958        slot = path->slots[0];
3959        nritems = btrfs_header_nritems(l);
3960        mid = (nritems + 1) / 2;
3961
3962        if (mid <= slot) {
3963                if (nritems == 1 ||
3964                    leaf_space_used(l, mid, nritems - mid) + data_size >
3965                        BTRFS_LEAF_DATA_SIZE(root)) {
3966                        if (slot >= nritems) {
3967                                split = 0;
3968                        } else {
3969                                mid = slot;
3970                                if (mid != nritems &&
3971                                    leaf_space_used(l, mid, nritems - mid) +
3972                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3973                                        if (data_size && !tried_avoid_double)
3974                                                goto push_for_double;
3975                                        split = 2;
3976                                }
3977                        }
3978                }
3979        } else {
3980                if (leaf_space_used(l, 0, mid) + data_size >
3981                        BTRFS_LEAF_DATA_SIZE(root)) {
3982                        if (!extend && data_size && slot == 0) {
3983                                split = 0;
3984                        } else if ((extend || !data_size) && slot == 0) {
3985                                mid = 1;
3986                        } else {
3987                                mid = slot;
3988                                if (mid != nritems &&
3989                                    leaf_space_used(l, mid, nritems - mid) +
3990                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3991                                        if (data_size && !tried_avoid_double)
3992                                                goto push_for_double;
3993                                        split = 2 ;
3994                                }
3995                        }
3996                }
3997        }
3998
3999        if (split == 0)
4000                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4001        else
4002                btrfs_item_key(l, &disk_key, mid);
4003
4004        right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4005                                        root->root_key.objectid,
4006                                        &disk_key, 0, l->start, 0);
4007        if (IS_ERR(right))
4008                return PTR_ERR(right);
4009
4010        root_add_used(root, root->leafsize);
4011
4012        memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4013        btrfs_set_header_bytenr(right, right->start);
4014        btrfs_set_header_generation(right, trans->transid);
4015        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4016        btrfs_set_header_owner(right, root->root_key.objectid);
4017        btrfs_set_header_level(right, 0);
4018        write_extent_buffer(right, root->fs_info->fsid,
4019                            (unsigned long)btrfs_header_fsid(right),
4020                            BTRFS_FSID_SIZE);
4021
4022        write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4023                            (unsigned long)btrfs_header_chunk_tree_uuid(right),
4024                            BTRFS_UUID_SIZE);
4025
4026        if (split == 0) {
4027                if (mid <= slot) {
4028                        btrfs_set_header_nritems(right, 0);
4029                        insert_ptr(trans, root, path, &disk_key, right->start,
4030                                   path->slots[1] + 1, 1);
4031                        btrfs_tree_unlock(path->nodes[0]);
4032                        free_extent_buffer(path->nodes[0]);
4033                        path->nodes[0] = right;
4034                        path->slots[0] = 0;
4035                        path->slots[1] += 1;
4036                } else {
4037                        btrfs_set_header_nritems(right, 0);
4038                        insert_ptr(trans, root, path, &disk_key, right->start,
4039                                          path->slots[1], 1);
4040                        btrfs_tree_unlock(path->nodes[0]);
4041                        free_extent_buffer(path->nodes[0]);
4042                        path->nodes[0] = right;
4043                        path->slots[0] = 0;
4044                        if (path->slots[1] == 0)
4045                                fixup_low_keys(trans, root, path,
4046                                               &disk_key, 1);
4047                }
4048                btrfs_mark_buffer_dirty(right);
4049                return ret;
4050        }
4051
4052        copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4053
4054        if (split == 2) {
4055                BUG_ON(num_doubles != 0);
4056                num_doubles++;
4057                goto again;
4058        }
4059
4060        return 0;
4061
4062push_for_double:
4063        push_for_double_split(trans, root, path, data_size);
4064        tried_avoid_double = 1;
4065        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4066                return 0;
4067        goto again;
4068}
4069
4070static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4071                                         struct btrfs_root *root,
4072                                         struct btrfs_path *path, int ins_len)
4073{
4074        struct btrfs_key key;
4075        struct extent_buffer *leaf;
4076        struct btrfs_file_extent_item *fi;
4077        u64 extent_len = 0;
4078        u32 item_size;
4079        int ret;
4080
4081        leaf = path->nodes[0];
4082        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4083
4084        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4085               key.type != BTRFS_EXTENT_CSUM_KEY);
4086
4087        if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4088                return 0;
4089
4090        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4091        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4092                fi = btrfs_item_ptr(leaf, path->slots[0],
4093                                    struct btrfs_file_extent_item);
4094                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4095        }
4096        btrfs_release_path(path);
4097
4098        path->keep_locks = 1;
4099        path->search_for_split = 1;
4100        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4101        path->search_for_split = 0;
4102        if (ret < 0)
4103                goto err;
4104
4105        ret = -EAGAIN;
4106        leaf = path->nodes[0];
4107        /* if our item isn't there or got smaller, return now */
4108        if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4109                goto err;
4110
4111        /* the leaf has  changed, it now has room.  return now */
4112        if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4113                goto err;
4114
4115        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4116                fi = btrfs_item_ptr(leaf, path->slots[0],
4117                                    struct btrfs_file_extent_item);
4118                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4119                        goto err;
4120        }
4121
4122        btrfs_set_path_blocking(path);
4123        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4124        if (ret)
4125                goto err;
4126
4127        path->keep_locks = 0;
4128        btrfs_unlock_up_safe(path, 1);
4129        return 0;
4130err:
4131        path->keep_locks = 0;
4132        return ret;
4133}
4134
4135static noinline int split_item(struct btrfs_trans_handle *trans,
4136                               struct btrfs_root *root,
4137                               struct btrfs_path *path,
4138                               struct btrfs_key *new_key,
4139                               unsigned long split_offset)
4140{
4141        struct extent_buffer *leaf;
4142        struct btrfs_item *item;
4143        struct btrfs_item *new_item;
4144        int slot;
4145        char *buf;
4146        u32 nritems;
4147        u32 item_size;
4148        u32 orig_offset;
4149        struct btrfs_disk_key disk_key;
4150
4151        leaf = path->nodes[0];
4152        BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4153
4154        btrfs_set_path_blocking(path);
4155
4156        item = btrfs_item_nr(leaf, path->slots[0]);
4157        orig_offset = btrfs_item_offset(leaf, item);
4158        item_size = btrfs_item_size(leaf, item);
4159
4160        buf = kmalloc(item_size, GFP_NOFS);
4161        if (!buf)
4162                return -ENOMEM;
4163
4164        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4165                            path->slots[0]), item_size);
4166
4167        slot = path->slots[0] + 1;
4168        nritems = btrfs_header_nritems(leaf);
4169        if (slot != nritems) {
4170                /* shift the items */
4171                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4172                                btrfs_item_nr_offset(slot),
4173                                (nritems - slot) * sizeof(struct btrfs_item));
4174        }
4175
4176        btrfs_cpu_key_to_disk(&disk_key, new_key);
4177        btrfs_set_item_key(leaf, &disk_key, slot);
4178
4179        new_item = btrfs_item_nr(leaf, slot);
4180
4181        btrfs_set_item_offset(leaf, new_item, orig_offset);
4182        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4183
4184        btrfs_set_item_offset(leaf, item,
4185                              orig_offset + item_size - split_offset);
4186        btrfs_set_item_size(leaf, item, split_offset);
4187
4188        btrfs_set_header_nritems(leaf, nritems + 1);
4189
4190        /* write the data for the start of the original item */
4191        write_extent_buffer(leaf, buf,
4192                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4193                            split_offset);
4194
4195        /* write the data for the new item */
4196        write_extent_buffer(leaf, buf + split_offset,
4197                            btrfs_item_ptr_offset(leaf, slot),
4198                            item_size - split_offset);
4199        btrfs_mark_buffer_dirty(leaf);
4200
4201        BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4202        kfree(buf);
4203        return 0;
4204}
4205
4206/*
4207 * This function splits a single item into two items,
4208 * giving 'new_key' to the new item and splitting the
4209 * old one at split_offset (from the start of the item).
4210 *
4211 * The path may be released by this operation.  After
4212 * the split, the path is pointing to the old item.  The
4213 * new item is going to be in the same node as the old one.
4214 *
4215 * Note, the item being split must be smaller enough to live alone on
4216 * a tree block with room for one extra struct btrfs_item
4217 *
4218 * This allows us to split the item in place, keeping a lock on the
4219 * leaf the entire time.
4220 */
4221int btrfs_split_item(struct btrfs_trans_handle *trans,
4222                     struct btrfs_root *root,
4223                     struct btrfs_path *path,
4224                     struct btrfs_key *new_key,
4225                     unsigned long split_offset)
4226{
4227        int ret;
4228        ret = setup_leaf_for_split(trans, root, path,
4229                                   sizeof(struct btrfs_item));
4230        if (ret)
4231                return ret;
4232
4233        ret = split_item(trans, root, path, new_key, split_offset);
4234        return ret;
4235}
4236
4237/*
4238 * This function duplicate a item, giving 'new_key' to the new item.
4239 * It guarantees both items live in the same tree leaf and the new item
4240 * is contiguous with the original item.
4241 *
4242 * This allows us to split file extent in place, keeping a lock on the
4243 * leaf the entire time.
4244 */
4245int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4246                         struct btrfs_root *root,
4247                         struct btrfs_path *path,
4248                         struct btrfs_key *new_key)
4249{
4250        struct extent_buffer *leaf;
4251        int ret;
4252        u32 item_size;
4253
4254        leaf = path->nodes[0];
4255        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4256        ret = setup_leaf_for_split(trans, root, path,
4257                                   item_size + sizeof(struct btrfs_item));
4258        if (ret)
4259                return ret;
4260
4261        path->slots[0]++;
4262        setup_items_for_insert(trans, root, path, new_key, &item_size,
4263                               item_size, item_size +
4264                               sizeof(struct btrfs_item), 1);
4265        leaf = path->nodes[0];
4266        memcpy_extent_buffer(leaf,
4267                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4268                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4269                             item_size);
4270        return 0;
4271}
4272
4273/*
4274 * make the item pointed to by the path smaller.  new_size indicates
4275 * how small to make it, and from_end tells us if we just chop bytes
4276 * off the end of the item or if we shift the item to chop bytes off
4277 * the front.
4278 */
4279void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4280                         struct btrfs_root *root,
4281                         struct btrfs_path *path,
4282                         u32 new_size, int from_end)
4283{
4284        int slot;
4285        struct extent_buffer *leaf;
4286        struct btrfs_item *item;
4287        u32 nritems;
4288        unsigned int data_end;
4289        unsigned int old_data_start;
4290        unsigned int old_size;
4291        unsigned int size_diff;
4292        int i;
4293        struct btrfs_map_token token;
4294
4295        btrfs_init_map_token(&token);
4296
4297        leaf = path->nodes[0];
4298        slot = path->slots[0];
4299
4300        old_size = btrfs_item_size_nr(leaf, slot);
4301        if (old_size == new_size)
4302                return;
4303
4304        nritems = btrfs_header_nritems(leaf);
4305        data_end = leaf_data_end(root, leaf);
4306
4307        old_data_start = btrfs_item_offset_nr(leaf, slot);
4308
4309        size_diff = old_size - new_size;
4310
4311        BUG_ON(slot < 0);
4312        BUG_ON(slot >= nritems);
4313
4314        /*
4315         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4316         */
4317        /* first correct the data pointers */
4318        for (i = slot; i < nritems; i++) {
4319                u32 ioff;
4320                item = btrfs_item_nr(leaf, i);
4321
4322                ioff = btrfs_token_item_offset(leaf, item, &token);
4323                btrfs_set_token_item_offset(leaf, item,
4324                                            ioff + size_diff, &token);
4325        }
4326
4327        /* shift the data */
4328        if (from_end) {
4329                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4330                              data_end + size_diff, btrfs_leaf_data(leaf) +
4331                              data_end, old_data_start + new_size - data_end);
4332        } else {
4333                struct btrfs_disk_key disk_key;
4334                u64 offset;
4335
4336                btrfs_item_key(leaf, &disk_key, slot);
4337
4338                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4339                        unsigned long ptr;
4340                        struct btrfs_file_extent_item *fi;
4341
4342                        fi = btrfs_item_ptr(leaf, slot,
4343                                            struct btrfs_file_extent_item);
4344                        fi = (struct btrfs_file_extent_item *)(
4345                             (unsigned long)fi - size_diff);
4346
4347                        if (btrfs_file_extent_type(leaf, fi) ==
4348                            BTRFS_FILE_EXTENT_INLINE) {
4349                                ptr = btrfs_item_ptr_offset(leaf, slot);
4350                                memmove_extent_buffer(leaf, ptr,
4351                                      (unsigned long)fi,
4352                                      offsetof(struct btrfs_file_extent_item,
4353                                                 disk_bytenr));
4354                        }
4355                }
4356
4357                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4358                              data_end + size_diff, btrfs_leaf_data(leaf) +
4359                              data_end, old_data_start - data_end);
4360
4361                offset = btrfs_disk_key_offset(&disk_key);
4362                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4363                btrfs_set_item_key(leaf, &disk_key, slot);
4364                if (slot == 0)
4365                        fixup_low_keys(trans, root, path, &disk_key, 1);
4366        }
4367
4368        item = btrfs_item_nr(leaf, slot);
4369        btrfs_set_item_size(leaf, item, new_size);
4370        btrfs_mark_buffer_dirty(leaf);
4371
4372        if (btrfs_leaf_free_space(root, leaf) < 0) {
4373                btrfs_print_leaf(root, leaf);
4374                BUG();
4375        }
4376}
4377
4378/*
4379 * make the item pointed to by the path bigger, data_size is the new size.
4380 */
4381void btrfs_extend_item(struct btrfs_trans_handle *trans,
4382                       struct btrfs_root *root, struct btrfs_path *path,
4383                       u32 data_size)
4384{
4385        int slot;
4386        struct extent_buffer *leaf;
4387        struct btrfs_item *item;
4388        u32 nritems;
4389        unsigned int data_end;
4390        unsigned int old_data;
4391        unsigned int old_size;
4392        int i;
4393        struct btrfs_map_token token;
4394
4395        btrfs_init_map_token(&token);
4396
4397        leaf = path->nodes[0];
4398
4399        nritems = btrfs_header_nritems(leaf);
4400        data_end = leaf_data_end(root, leaf);
4401
4402        if (btrfs_leaf_free_space(root, leaf) < data_size) {
4403                btrfs_print_leaf(root, leaf);
4404                BUG();
4405        }
4406        slot = path->slots[0];
4407        old_data = btrfs_item_end_nr(leaf, slot);
4408
4409        BUG_ON(slot < 0);
4410        if (slot >= nritems) {
4411                btrfs_print_leaf(root, leaf);
4412                printk(KERN_CRIT "slot %d too large, nritems %d\n",
4413                       slot, nritems);
4414                BUG_ON(1);
4415        }
4416
4417        /*
4418         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4419         */
4420        /* first correct the data pointers */
4421        for (i = slot; i < nritems; i++) {
4422                u32 ioff;
4423                item = btrfs_item_nr(leaf, i);
4424
4425                ioff = btrfs_token_item_offset(leaf, item, &token);
4426                btrfs_set_token_item_offset(leaf, item,
4427                                            ioff - data_size, &token);
4428        }
4429
4430        /* shift the data */
4431        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4432                      data_end - data_size, btrfs_leaf_data(leaf) +
4433                      data_end, old_data - data_end);
4434
4435        data_end = old_data;
4436        old_size = btrfs_item_size_nr(leaf, slot);
4437        item = btrfs_item_nr(leaf, slot);
4438        btrfs_set_item_size(leaf, item, old_size + data_size);
4439        btrfs_mark_buffer_dirty(leaf);
4440
4441        if (btrfs_leaf_free_space(root, leaf) < 0) {
4442                btrfs_print_leaf(root, leaf);
4443                BUG();
4444        }
4445}
4446
4447/*
4448 * this is a helper for btrfs_insert_empty_items, the main goal here is
4449 * to save stack depth by doing the bulk of the work in a function
4450 * that doesn't call btrfs_search_slot
4451 */
4452void setup_items_for_insert(struct btrfs_trans_handle *trans,
4453                            struct btrfs_root *root, struct btrfs_path *path,
4454                            struct btrfs_key *cpu_key, u32 *data_size,
4455                            u32 total_data, u32 total_size, int nr)
4456{
4457        struct btrfs_item *item;
4458        int i;
4459        u32 nritems;
4460        unsigned int data_end;
4461        struct btrfs_disk_key disk_key;
4462        struct extent_buffer *leaf;
4463        int slot;
4464        struct btrfs_map_token token;
4465
4466        btrfs_init_map_token(&token);
4467
4468        leaf = path->nodes[0];
4469        slot = path->slots[0];
4470
4471        nritems = btrfs_header_nritems(leaf);
4472        data_end = leaf_data_end(root, leaf);
4473
4474        if (btrfs_leaf_free_space(root, leaf) < total_size) {
4475                btrfs_print_leaf(root, leaf);
4476                printk(KERN_CRIT "not enough freespace need %u have %d\n",
4477                       total_size, btrfs_leaf_free_space(root, leaf));
4478                BUG();
4479        }
4480
4481        if (slot != nritems) {
4482                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4483
4484                if (old_data < data_end) {
4485                        btrfs_print_leaf(root, leaf);
4486                        printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4487                               slot, old_data, data_end);
4488                        BUG_ON(1);
4489                }
4490                /*
4491                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4492                 */
4493                /* first correct the data pointers */
4494                for (i = slot; i < nritems; i++) {
4495                        u32 ioff;
4496
4497                        item = btrfs_item_nr(leaf, i);
4498                        ioff = btrfs_token_item_offset(leaf, item, &token);
4499                        btrfs_set_token_item_offset(leaf, item,
4500                                                    ioff - total_data, &token);
4501                }
4502                /* shift the items */
4503                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4504                              btrfs_item_nr_offset(slot),
4505                              (nritems - slot) * sizeof(struct btrfs_item));
4506
4507                /* shift the data */
4508                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4509                              data_end - total_data, btrfs_leaf_data(leaf) +
4510                              data_end, old_data - data_end);
4511                data_end = old_data;
4512        }
4513
4514        /* setup the item for the new data */
4515        for (i = 0; i < nr; i++) {
4516                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4517                btrfs_set_item_key(leaf, &disk_key, slot + i);
4518                item = btrfs_item_nr(leaf, slot + i);
4519                btrfs_set_token_item_offset(leaf, item,
4520                                            data_end - data_size[i], &token);
4521                data_end -= data_size[i];
4522                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4523        }
4524
4525        btrfs_set_header_nritems(leaf, nritems + nr);
4526
4527        if (slot == 0) {
4528                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4529                fixup_low_keys(trans, root, path, &disk_key, 1);
4530        }
4531        btrfs_unlock_up_safe(path, 1);
4532        btrfs_mark_buffer_dirty(leaf);
4533
4534        if (btrfs_leaf_free_space(root, leaf) < 0) {
4535                btrfs_print_leaf(root, leaf);
4536                BUG();
4537        }
4538}
4539
4540/*
4541 * Given a key and some data, insert items into the tree.
4542 * This does all the path init required, making room in the tree if needed.
4543 */
4544int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4545                            struct btrfs_root *root,
4546                            struct btrfs_path *path,
4547                            struct btrfs_key *cpu_key, u32 *data_size,
4548                            int nr)
4549{
4550        int ret = 0;
4551        int slot;
4552        int i;
4553        u32 total_size = 0;
4554        u32 total_data = 0;
4555
4556        for (i = 0; i < nr; i++)
4557                total_data += data_size[i];
4558
4559        total_size = total_data + (nr * sizeof(struct btrfs_item));
4560        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4561        if (ret == 0)
4562                return -EEXIST;
4563        if (ret < 0)
4564                return ret;
4565
4566        slot = path->slots[0];
4567        BUG_ON(slot < 0);
4568
4569        setup_items_for_insert(trans, root, path, cpu_key, data_size,
4570                               total_data, total_size, nr);
4571        return 0;
4572}
4573
4574/*
4575 * Given a key and some data, insert an item into the tree.
4576 * This does all the path init required, making room in the tree if needed.
4577 */
4578int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4579                      *root, struct btrfs_key *cpu_key, void *data, u32
4580                      data_size)
4581{
4582        int ret = 0;
4583        struct btrfs_path *path;
4584        struct extent_buffer *leaf;
4585        unsigned long ptr;
4586
4587        path = btrfs_alloc_path();
4588        if (!path)
4589                return -ENOMEM;
4590        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4591        if (!ret) {
4592                leaf = path->nodes[0];
4593                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4594                write_extent_buffer(leaf, data, ptr, data_size);
4595                btrfs_mark_buffer_dirty(leaf);
4596        }
4597        btrfs_free_path(path);
4598        return ret;
4599}
4600
4601/*
4602 * delete the pointer from a given node.
4603 *
4604 * the tree should have been previously balanced so the deletion does not
4605 * empty a node.
4606 */
4607static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4608                    struct btrfs_path *path, int level, int slot)
4609{
4610        struct extent_buffer *parent = path->nodes[level];
4611        u32 nritems;
4612        int ret;
4613
4614        nritems = btrfs_header_nritems(parent);
4615        if (slot != nritems - 1) {
4616                if (level)
4617                        tree_mod_log_eb_move(root->fs_info, parent, slot,
4618                                             slot + 1, nritems - slot - 1);
4619                memmove_extent_buffer(parent,
4620                              btrfs_node_key_ptr_offset(slot),
4621                              btrfs_node_key_ptr_offset(slot + 1),
4622                              sizeof(struct btrfs_key_ptr) *
4623                              (nritems - slot - 1));
4624        } else if (level) {
4625                ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4626                                              MOD_LOG_KEY_REMOVE);
4627                BUG_ON(ret < 0);
4628        }
4629
4630        nritems--;
4631        btrfs_set_header_nritems(parent, nritems);
4632        if (nritems == 0 && parent == root->node) {
4633                BUG_ON(btrfs_header_level(root->node) != 1);
4634                /* just turn the root into a leaf and break */
4635                btrfs_set_header_level(root->node, 0);
4636        } else if (slot == 0) {
4637                struct btrfs_disk_key disk_key;
4638
4639                btrfs_node_key(parent, &disk_key, 0);
4640                fixup_low_keys(trans, root, path, &disk_key, level + 1);
4641        }
4642        btrfs_mark_buffer_dirty(parent);
4643}
4644
4645/*
4646 * a helper function to delete the leaf pointed to by path->slots[1] and
4647 * path->nodes[1].
4648 *
4649 * This deletes the pointer in path->nodes[1] and frees the leaf
4650 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4651 *
4652 * The path must have already been setup for deleting the leaf, including
4653 * all the proper balancing.  path->nodes[1] must be locked.
4654 */
4655static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4656                                    struct btrfs_root *root,
4657                                    struct btrfs_path *path,
4658                                    struct extent_buffer *leaf)
4659{
4660        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4661        del_ptr(trans, root, path, 1, path->slots[1]);
4662
4663        /*
4664         * btrfs_free_extent is expensive, we want to make sure we
4665         * aren't holding any locks when we call it
4666         */
4667        btrfs_unlock_up_safe(path, 0);
4668
4669        root_sub_used(root, leaf->len);
4670
4671        extent_buffer_get(leaf);
4672        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4673        free_extent_buffer_stale(leaf);
4674}
4675/*
4676 * delete the item at the leaf level in path.  If that empties
4677 * the leaf, remove it from the tree
4678 */
4679int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4680                    struct btrfs_path *path, int slot, int nr)
4681{
4682        struct extent_buffer *leaf;
4683        struct btrfs_item *item;
4684        int last_off;
4685        int dsize = 0;
4686        int ret = 0;
4687        int wret;
4688        int i;
4689        u32 nritems;
4690        struct btrfs_map_token token;
4691
4692        btrfs_init_map_token(&token);
4693
4694        leaf = path->nodes[0];
4695        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4696
4697        for (i = 0; i < nr; i++)
4698                dsize += btrfs_item_size_nr(leaf, slot + i);
4699
4700        nritems = btrfs_header_nritems(leaf);
4701
4702        if (slot + nr != nritems) {
4703                int data_end = leaf_data_end(root, leaf);
4704
4705                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4706                              data_end + dsize,
4707                              btrfs_leaf_data(leaf) + data_end,
4708                              last_off - data_end);
4709
4710                for (i = slot + nr; i < nritems; i++) {
4711                        u32 ioff;
4712
4713                        item = btrfs_item_nr(leaf, i);
4714                        ioff = btrfs_token_item_offset(leaf, item, &token);
4715                        btrfs_set_token_item_offset(leaf, item,
4716                                                    ioff + dsize, &token);
4717                }
4718
4719                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4720                              btrfs_item_nr_offset(slot + nr),
4721                              sizeof(struct btrfs_item) *
4722                              (nritems - slot - nr));
4723        }
4724        btrfs_set_header_nritems(leaf, nritems - nr);
4725        nritems -= nr;
4726
4727        /* delete the leaf if we've emptied it */
4728        if (nritems == 0) {
4729                if (leaf == root->node) {
4730                        btrfs_set_header_level(leaf, 0);
4731                } else {
4732                        btrfs_set_path_blocking(path);
4733                        clean_tree_block(trans, root, leaf);
4734                        btrfs_del_leaf(trans, root, path, leaf);
4735                }
4736        } else {
4737                int used = leaf_space_used(leaf, 0, nritems);
4738                if (slot == 0) {
4739                        struct btrfs_disk_key disk_key;
4740
4741                        btrfs_item_key(leaf, &disk_key, 0);
4742                        fixup_low_keys(trans, root, path, &disk_key, 1);
4743                }
4744
4745                /* delete the leaf if it is mostly empty */
4746                if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4747                        /* push_leaf_left fixes the path.
4748                         * make sure the path still points to our leaf
4749                         * for possible call to del_ptr below
4750                         */
4751                        slot = path->slots[1];
4752                        extent_buffer_get(leaf);
4753
4754                        btrfs_set_path_blocking(path);
4755                        wret = push_leaf_left(trans, root, path, 1, 1,
4756                                              1, (u32)-1);
4757                        if (wret < 0 && wret != -ENOSPC)
4758                                ret = wret;
4759
4760                        if (path->nodes[0] == leaf &&
4761                            btrfs_header_nritems(leaf)) {
4762                                wret = push_leaf_right(trans, root, path, 1,
4763                                                       1, 1, 0);
4764                                if (wret < 0 && wret != -ENOSPC)
4765                                        ret = wret;
4766                        }
4767
4768                        if (btrfs_header_nritems(leaf) == 0) {
4769                                path->slots[1] = slot;
4770                                btrfs_del_leaf(trans, root, path, leaf);
4771                                free_extent_buffer(leaf);
4772                                ret = 0;
4773                        } else {
4774                                /* if we're still in the path, make sure
4775                                 * we're dirty.  Otherwise, one of the
4776                                 * push_leaf functions must have already
4777                                 * dirtied this buffer
4778                                 */
4779                                if (path->nodes[0] == leaf)
4780                                        btrfs_mark_buffer_dirty(leaf);
4781                                free_extent_buffer(leaf);
4782                        }
4783                } else {
4784                        btrfs_mark_buffer_dirty(leaf);
4785                }
4786        }
4787        return ret;
4788}
4789
4790/*
4791 * search the tree again to find a leaf with lesser keys
4792 * returns 0 if it found something or 1 if there are no lesser leaves.
4793 * returns < 0 on io errors.
4794 *
4795 * This may release the path, and so you may lose any locks held at the
4796 * time you call it.
4797 */
4798int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4799{
4800        struct btrfs_key key;
4801        struct btrfs_disk_key found_key;
4802        int ret;
4803
4804        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4805
4806        if (key.offset > 0)
4807                key.offset--;
4808        else if (key.type > 0)
4809                key.type--;
4810        else if (key.objectid > 0)
4811                key.objectid--;
4812        else
4813                return 1;
4814
4815        btrfs_release_path(path);
4816        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4817        if (ret < 0)
4818                return ret;
4819        btrfs_item_key(path->nodes[0], &found_key, 0);
4820        ret = comp_keys(&found_key, &key);
4821        if (ret < 0)
4822                return 0;
4823        return 1;
4824}
4825
4826/*
4827 * A helper function to walk down the tree starting at min_key, and looking
4828 * for nodes or leaves that are either in cache or have a minimum
4829 * transaction id.  This is used by the btree defrag code, and tree logging
4830 *
4831 * This does not cow, but it does stuff the starting key it finds back
4832 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4833 * key and get a writable path.
4834 *
4835 * This does lock as it descends, and path->keep_locks should be set
4836 * to 1 by the caller.
4837 *
4838 * This honors path->lowest_level to prevent descent past a given level
4839 * of the tree.
4840 *
4841 * min_trans indicates the oldest transaction that you are interested
4842 * in walking through.  Any nodes or leaves older than min_trans are
4843 * skipped over (without reading them).
4844 *
4845 * returns zero if something useful was found, < 0 on error and 1 if there
4846 * was nothing in the tree that matched the search criteria.
4847 */
4848int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4849                         struct btrfs_key *max_key,
4850                         struct btrfs_path *path, int cache_only,
4851                         u64 min_trans)
4852{
4853        struct extent_buffer *cur;
4854        struct btrfs_key found_key;
4855        int slot;
4856        int sret;
4857        u32 nritems;
4858        int level;
4859        int ret = 1;
4860
4861        WARN_ON(!path->keep_locks);
4862again:
4863        cur = btrfs_read_lock_root_node(root);
4864        level = btrfs_header_level(cur);
4865        WARN_ON(path->nodes[level]);
4866        path->nodes[level] = cur;
4867        path->locks[level] = BTRFS_READ_LOCK;
4868
4869        if (btrfs_header_generation(cur) < min_trans) {
4870                ret = 1;
4871                goto out;
4872        }
4873        while (1) {
4874                nritems = btrfs_header_nritems(cur);
4875                level = btrfs_header_level(cur);
4876                sret = bin_search(cur, min_key, level, &slot);
4877
4878                /* at the lowest level, we're done, setup the path and exit */
4879                if (level == path->lowest_level) {
4880                        if (slot >= nritems)
4881                                goto find_next_key;
4882                        ret = 0;
4883                        path->slots[level] = slot;
4884                        btrfs_item_key_to_cpu(cur, &found_key, slot);
4885                        goto out;
4886                }
4887                if (sret && slot > 0)
4888                        slot--;
4889                /*
4890                 * check this node pointer against the cache_only and
4891                 * min_trans parameters.  If it isn't in cache or is too
4892                 * old, skip to the next one.
4893                 */
4894                while (slot < nritems) {
4895                        u64 blockptr;
4896                        u64 gen;
4897                        struct extent_buffer *tmp;
4898                        struct btrfs_disk_key disk_key;
4899
4900                        blockptr = btrfs_node_blockptr(cur, slot);
4901                        gen = btrfs_node_ptr_generation(cur, slot);
4902                        if (gen < min_trans) {
4903                                slot++;
4904                                continue;
4905                        }
4906                        if (!cache_only)
4907                                break;
4908
4909                        if (max_key) {
4910                                btrfs_node_key(cur, &disk_key, slot);
4911                                if (comp_keys(&disk_key, max_key) >= 0) {
4912                                        ret = 1;
4913                                        goto out;
4914                                }
4915                        }
4916
4917                        tmp = btrfs_find_tree_block(root, blockptr,
4918                                            btrfs_level_size(root, level - 1));
4919
4920                        if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4921                                free_extent_buffer(tmp);
4922                                break;
4923                        }
4924                        if (tmp)
4925                                free_extent_buffer(tmp);
4926                        slot++;
4927                }
4928find_next_key:
4929                /*
4930                 * we didn't find a candidate key in this node, walk forward
4931                 * and find another one
4932                 */
4933                if (slot >= nritems) {
4934                        path->slots[level] = slot;
4935                        btrfs_set_path_blocking(path);
4936                        sret = btrfs_find_next_key(root, path, min_key, level,
4937                                                  cache_only, min_trans);
4938                        if (sret == 0) {
4939                                btrfs_release_path(path);
4940                                goto again;
4941                        } else {
4942                                goto out;
4943                        }
4944                }
4945                /* save our key for returning back */
4946                btrfs_node_key_to_cpu(cur, &found_key, slot);
4947                path->slots[level] = slot;
4948                if (level == path->lowest_level) {
4949                        ret = 0;
4950                        unlock_up(path, level, 1, 0, NULL);
4951                        goto out;
4952                }
4953                btrfs_set_path_blocking(path);
4954                cur = read_node_slot(root, cur, slot);
4955                BUG_ON(!cur); /* -ENOMEM */
4956
4957                btrfs_tree_read_lock(cur);
4958
4959                path->locks[level - 1] = BTRFS_READ_LOCK;
4960                path->nodes[level - 1] = cur;
4961                unlock_up(path, level, 1, 0, NULL);
4962                btrfs_clear_path_blocking(path, NULL, 0);
4963        }
4964out:
4965        if (ret == 0)
4966                memcpy(min_key, &found_key, sizeof(found_key));
4967        btrfs_set_path_blocking(path);
4968        return ret;
4969}
4970
4971static void tree_move_down(struct btrfs_root *root,
4972                           struct btrfs_path *path,
4973                           int *level, int root_level)
4974{
4975        BUG_ON(*level == 0);
4976        path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4977                                        path->slots[*level]);
4978        path->slots[*level - 1] = 0;
4979        (*level)--;
4980}
4981
4982static int tree_move_next_or_upnext(struct btrfs_root *root,
4983                                    struct btrfs_path *path,
4984                                    int *level, int root_level)
4985{
4986        int ret = 0;
4987        int nritems;
4988        nritems = btrfs_header_nritems(path->nodes[*level]);
4989
4990        path->slots[*level]++;
4991
4992        while (path->slots[*level] >= nritems) {
4993                if (*level == root_level)
4994                        return -1;
4995
4996                /* move upnext */
4997                path->slots[*level] = 0;
4998                free_extent_buffer(path->nodes[*level]);
4999                path->nodes[*level] = NULL;
5000                (*level)++;
5001                path->slots[*level]++;
5002
5003                nritems = btrfs_header_nritems(path->nodes[*level]);
5004                ret = 1;
5005        }
5006        return ret;
5007}
5008
5009/*
5010 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5011 * or down.
5012 */
5013static int tree_advance(struct btrfs_root *root,
5014                        struct btrfs_path *path,
5015                        int *level, int root_level,
5016                        int allow_down,
5017                        struct btrfs_key *key)
5018{
5019        int ret;
5020
5021        if (*level == 0 || !allow_down) {
5022                ret = tree_move_next_or_upnext(root, path, level, root_level);
5023        } else {
5024                tree_move_down(root, path, level, root_level);
5025                ret = 0;
5026        }
5027        if (ret >= 0) {
5028                if (*level == 0)
5029                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5030                                        path->slots[*level]);
5031                else
5032                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5033                                        path->slots[*level]);
5034        }
5035        return ret;
5036}
5037
5038static int tree_compare_item(struct btrfs_root *left_root,
5039                             struct btrfs_path *left_path,
5040                             struct btrfs_path *right_path,
5041                             char *tmp_buf)
5042{
5043        int cmp;
5044        int len1, len2;
5045        unsigned long off1, off2;
5046
5047        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5048        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5049        if (len1 != len2)
5050                return 1;
5051
5052        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5053        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5054                                right_path->slots[0]);
5055
5056        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5057
5058        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5059        if (cmp)
5060                return 1;
5061        return 0;
5062}
5063
5064#define ADVANCE 1
5065#define ADVANCE_ONLY_NEXT -1
5066
5067/*
5068 * This function compares two trees and calls the provided callback for
5069 * every changed/new/deleted item it finds.
5070 * If shared tree blocks are encountered, whole subtrees are skipped, making
5071 * the compare pretty fast on snapshotted subvolumes.
5072 *
5073 * This currently works on commit roots only. As commit roots are read only,
5074 * we don't do any locking. The commit roots are protected with transactions.
5075 * Transactions are ended and rejoined when a commit is tried in between.
5076 *
5077 * This function checks for modifications done to the trees while comparing.
5078 * If it detects a change, it aborts immediately.
5079 */
5080int btrfs_compare_trees(struct btrfs_root *left_root,
5081                        struct btrfs_root *right_root,
5082                        btrfs_changed_cb_t changed_cb, void *ctx)
5083{
5084        int ret;
5085        int cmp;
5086        struct btrfs_trans_handle *trans = NULL;
5087        struct btrfs_path *left_path = NULL;
5088        struct btrfs_path *right_path = NULL;
5089        struct btrfs_key left_key;
5090        struct btrfs_key right_key;
5091        char *tmp_buf = NULL;
5092        int left_root_level;
5093        int right_root_level;
5094        int left_level;
5095        int right_level;
5096        int left_end_reached;
5097        int right_end_reached;
5098        int advance_left;
5099        int advance_right;
5100        u64 left_blockptr;
5101        u64 right_blockptr;
5102        u64 left_start_ctransid;
5103        u64 right_start_ctransid;
5104        u64 ctransid;
5105
5106        left_path = btrfs_alloc_path();
5107        if (!left_path) {
5108                ret = -ENOMEM;
5109                goto out;
5110        }
5111        right_path = btrfs_alloc_path();
5112        if (!right_path) {
5113                ret = -ENOMEM;
5114                goto out;
5115        }
5116
5117        tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5118        if (!tmp_buf) {
5119                ret = -ENOMEM;
5120                goto out;
5121        }
5122
5123        left_path->search_commit_root = 1;
5124        left_path->skip_locking = 1;
5125        right_path->search_commit_root = 1;
5126        right_path->skip_locking = 1;
5127
5128        spin_lock(&left_root->root_item_lock);
5129        left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5130        spin_unlock(&left_root->root_item_lock);
5131
5132        spin_lock(&right_root->root_item_lock);
5133        right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5134        spin_unlock(&right_root->root_item_lock);
5135
5136        trans = btrfs_join_transaction(left_root);
5137        if (IS_ERR(trans)) {
5138                ret = PTR_ERR(trans);
5139                trans = NULL;
5140                goto out;
5141        }
5142
5143        /*
5144         * Strategy: Go to the first items of both trees. Then do
5145         *
5146         * If both trees are at level 0
5147         *   Compare keys of current items
5148         *     If left < right treat left item as new, advance left tree
5149         *       and repeat
5150         *     If left > right treat right item as deleted, advance right tree
5151         *       and repeat
5152         *     If left == right do deep compare of items, treat as changed if
5153         *       needed, advance both trees and repeat
5154         * If both trees are at the same level but not at level 0
5155         *   Compare keys of current nodes/leafs
5156         *     If left < right advance left tree and repeat
5157         *     If left > right advance right tree and repeat
5158         *     If left == right compare blockptrs of the next nodes/leafs
5159         *       If they match advance both trees but stay at the same level
5160         *         and repeat
5161         *       If they don't match advance both trees while allowing to go
5162         *         deeper and repeat
5163         * If tree levels are different
5164         *   Advance the tree that needs it and repeat
5165         *
5166         * Advancing a tree means:
5167         *   If we are at level 0, try to go to the next slot. If that's not
5168         *   possible, go one level up and repeat. Stop when we found a level
5169         *   where we could go to the next slot. We may at this point be on a
5170         *   node or a leaf.
5171         *
5172         *   If we are not at level 0 and not on shared tree blocks, go one
5173         *   level deeper.
5174         *
5175         *   If we are not at level 0 and on shared tree blocks, go one slot to
5176         *   the right if possible or go up and right.
5177         */
5178
5179        left_level = btrfs_header_level(left_root->commit_root);
5180        left_root_level = left_level;
5181        left_path->nodes[left_level] = left_root->commit_root;
5182        extent_buffer_get(left_path->nodes[left_level]);
5183
5184        right_level = btrfs_header_level(right_root->commit_root);
5185        right_root_level = right_level;
5186        right_path->nodes[right_level] = right_root->commit_root;
5187        extent_buffer_get(right_path->nodes[right_level]);
5188
5189        if (left_level == 0)
5190                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5191                                &left_key, left_path->slots[left_level]);
5192        else
5193                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5194                                &left_key, left_path->slots[left_level]);
5195        if (right_level == 0)
5196                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5197                                &right_key, right_path->slots[right_level]);
5198        else
5199                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5200                                &right_key, right_path->slots[right_level]);
5201
5202        left_end_reached = right_end_reached = 0;
5203        advance_left = advance_right = 0;
5204
5205        while (1) {
5206                /*
5207                 * We need to make sure the transaction does not get committed
5208                 * while we do anything on commit roots. This means, we need to
5209                 * join and leave transactions for every item that we process.
5210                 */
5211                if (trans && btrfs_should_end_transaction(trans, left_root)) {
5212                        btrfs_release_path(left_path);
5213                        btrfs_release_path(right_path);
5214
5215                        ret = btrfs_end_transaction(trans, left_root);
5216                        trans = NULL;
5217                        if (ret < 0)
5218                                goto out;
5219                }
5220                /* now rejoin the transaction */
5221                if (!trans) {
5222                        trans = btrfs_join_transaction(left_root);
5223                        if (IS_ERR(trans)) {
5224                                ret = PTR_ERR(trans);
5225                                trans = NULL;
5226                                goto out;
5227                        }
5228
5229                        spin_lock(&left_root->root_item_lock);
5230                        ctransid = btrfs_root_ctransid(&left_root->root_item);
5231                        spin_unlock(&left_root->root_item_lock);
5232                        if (ctransid != left_start_ctransid)
5233                                left_start_ctransid = 0;
5234
5235                        spin_lock(&right_root->root_item_lock);
5236                        ctransid = btrfs_root_ctransid(&right_root->root_item);
5237                        spin_unlock(&right_root->root_item_lock);
5238                        if (ctransid != right_start_ctransid)
5239                                right_start_ctransid = 0;
5240
5241                        if (!left_start_ctransid || !right_start_ctransid) {
5242                                WARN(1, KERN_WARNING
5243                                        "btrfs: btrfs_compare_tree detected "
5244                                        "a change in one of the trees while "
5245                                        "iterating. This is probably a "
5246                                        "bug.\n");
5247                                ret = -EIO;
5248                                goto out;
5249                        }
5250
5251                        /*
5252                         * the commit root may have changed, so start again
5253                         * where we stopped
5254                         */
5255                        left_path->lowest_level = left_level;
5256                        right_path->lowest_level = right_level;
5257                        ret = btrfs_search_slot(NULL, left_root,
5258                                        &left_key, left_path, 0, 0);
5259                        if (ret < 0)
5260                                goto out;
5261                        ret = btrfs_search_slot(NULL, right_root,
5262                                        &right_key, right_path, 0, 0);
5263                        if (ret < 0)
5264                                goto out;
5265                }
5266
5267                if (advance_left && !left_end_reached) {
5268                        ret = tree_advance(left_root, left_path, &left_level,
5269                                        left_root_level,
5270                                        advance_left != ADVANCE_ONLY_NEXT,
5271                                        &left_key);
5272                        if (ret < 0)
5273                                left_end_reached = ADVANCE;
5274                        advance_left = 0;
5275                }
5276                if (advance_right && !right_end_reached) {
5277                        ret = tree_advance(right_root, right_path, &right_level,
5278                                        right_root_level,
5279                                        advance_right != ADVANCE_ONLY_NEXT,
5280                                        &right_key);
5281                        if (ret < 0)
5282                                right_end_reached = ADVANCE;
5283                        advance_right = 0;
5284                }
5285
5286                if (left_end_reached && right_end_reached) {
5287                        ret = 0;
5288                        goto out;
5289                } else if (left_end_reached) {
5290                        if (right_level == 0) {
5291                                ret = changed_cb(left_root, right_root,
5292                                                left_path, right_path,
5293                                                &right_key,
5294                                                BTRFS_COMPARE_TREE_DELETED,
5295                                                ctx);
5296                                if (ret < 0)
5297                                        goto out;
5298                        }
5299                        advance_right = ADVANCE;
5300                        continue;
5301                } else if (right_end_reached) {
5302                        if (left_level == 0) {
5303                                ret = changed_cb(left_root, right_root,
5304                                                left_path, right_path,
5305                                                &left_key,
5306                                                BTRFS_COMPARE_TREE_NEW,
5307                                                ctx);
5308                                if (ret < 0)
5309                                        goto out;
5310                        }
5311                        advance_left = ADVANCE;
5312                        continue;
5313                }
5314
5315                if (left_level == 0 && right_level == 0) {
5316                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5317                        if (cmp < 0) {
5318                                ret = changed_cb(left_root, right_root,
5319                                                left_path, right_path,
5320                                                &left_key,
5321                                                BTRFS_COMPARE_TREE_NEW,
5322                                                ctx);
5323                                if (ret < 0)
5324                                        goto out;
5325                                advance_left = ADVANCE;
5326                        } else if (cmp > 0) {
5327                                ret = changed_cb(left_root, right_root,
5328                                                left_path, right_path,
5329                                                &right_key,
5330                                                BTRFS_COMPARE_TREE_DELETED,
5331                                                ctx);
5332                                if (ret < 0)
5333                                        goto out;
5334                                advance_right = ADVANCE;
5335                        } else {
5336                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5337                                ret = tree_compare_item(left_root, left_path,
5338                                                right_path, tmp_buf);
5339                                if (ret) {
5340                                        WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5341                                        ret = changed_cb(left_root, right_root,
5342                                                left_path, right_path,
5343                                                &left_key,
5344                                                BTRFS_COMPARE_TREE_CHANGED,
5345                                                ctx);
5346                                        if (ret < 0)
5347                                                goto out;
5348                                }
5349                                advance_left = ADVANCE;
5350                                advance_right = ADVANCE;
5351                        }
5352                } else if (left_level == right_level) {
5353                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5354                        if (cmp < 0) {
5355                                advance_left = ADVANCE;
5356                        } else if (cmp > 0) {
5357                                advance_right = ADVANCE;
5358                        } else {
5359                                left_blockptr = btrfs_node_blockptr(
5360                                                left_path->nodes[left_level],
5361                                                left_path->slots[left_level]);
5362                                right_blockptr = btrfs_node_blockptr(
5363                                                right_path->nodes[right_level],
5364                                                right_path->slots[right_level]);
5365                                if (left_blockptr == right_blockptr) {
5366                                        /*
5367                                         * As we're on a shared block, don't
5368                                         * allow to go deeper.
5369                                         */
5370                                        advance_left = ADVANCE_ONLY_NEXT;
5371                                        advance_right = ADVANCE_ONLY_NEXT;
5372                                } else {
5373                                        advance_left = ADVANCE;
5374                                        advance_right = ADVANCE;
5375                                }
5376                        }
5377                } else if (left_level < right_level) {
5378                        advance_right = ADVANCE;
5379                } else {
5380                        advance_left = ADVANCE;
5381                }
5382        }
5383
5384out:
5385        btrfs_free_path(left_path);
5386        btrfs_free_path(right_path);
5387        kfree(tmp_buf);
5388
5389        if (trans) {
5390                if (!ret)
5391                        ret = btrfs_end_transaction(trans, left_root);
5392                else
5393                        btrfs_end_transaction(trans, left_root);
5394        }
5395
5396        return ret;
5397}
5398
5399/*
5400 * this is similar to btrfs_next_leaf, but does not try to preserve
5401 * and fixup the path.  It looks for and returns the next key in the
5402 * tree based on the current path and the cache_only and min_trans
5403 * parameters.
5404 *
5405 * 0 is returned if another key is found, < 0 if there are any errors
5406 * and 1 is returned if there are no higher keys in the tree
5407 *
5408 * path->keep_locks should be set to 1 on the search made before
5409 * calling this function.
5410 */
5411int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5412                        struct btrfs_key *key, int level,
5413                        int cache_only, u64 min_trans)
5414{
5415        int slot;
5416        struct extent_buffer *c;
5417
5418        WARN_ON(!path->keep_locks);
5419        while (level < BTRFS_MAX_LEVEL) {
5420                if (!path->nodes[level])
5421                        return 1;
5422
5423                slot = path->slots[level] + 1;
5424                c = path->nodes[level];
5425next:
5426                if (slot >= btrfs_header_nritems(c)) {
5427                        int ret;
5428                        int orig_lowest;
5429                        struct btrfs_key cur_key;
5430                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5431                            !path->nodes[level + 1])
5432                                return 1;
5433
5434                        if (path->locks[level + 1]) {
5435                                level++;
5436                                continue;
5437                        }
5438
5439                        slot = btrfs_header_nritems(c) - 1;
5440                        if (level == 0)
5441                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5442                        else
5443                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5444
5445                        orig_lowest = path->lowest_level;
5446                        btrfs_release_path(path);
5447                        path->lowest_level = level;
5448                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5449                                                0, 0);
5450                        path->lowest_level = orig_lowest;
5451                        if (ret < 0)
5452                                return ret;
5453
5454                        c = path->nodes[level];
5455                        slot = path->slots[level];
5456                        if (ret == 0)
5457                                slot++;
5458                        goto next;
5459                }
5460
5461                if (level == 0)
5462                        btrfs_item_key_to_cpu(c, key, slot);
5463                else {
5464                        u64 blockptr = btrfs_node_blockptr(c, slot);
5465                        u64 gen = btrfs_node_ptr_generation(c, slot);
5466
5467                        if (cache_only) {
5468                                struct extent_buffer *cur;
5469                                cur = btrfs_find_tree_block(root, blockptr,
5470                                            btrfs_level_size(root, level - 1));
5471                                if (!cur ||
5472                                    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5473                                        slot++;
5474                                        if (cur)
5475                                                free_extent_buffer(cur);
5476                                        goto next;
5477                                }
5478                                free_extent_buffer(cur);
5479                        }
5480                        if (gen < min_trans) {
5481                                slot++;
5482                                goto next;
5483                        }
5484                        btrfs_node_key_to_cpu(c, key, slot);
5485                }
5486                return 0;
5487        }
5488        return 1;
5489}
5490
5491/*
5492 * search the tree again to find a leaf with greater keys
5493 * returns 0 if it found something or 1 if there are no greater leaves.
5494 * returns < 0 on io errors.
5495 */
5496int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5497{
5498        return btrfs_next_old_leaf(root, path, 0);
5499}
5500
5501/* Release the path up to but not including the given level */
5502static void btrfs_release_level(struct btrfs_path *path, int level)
5503{
5504        int i;
5505
5506        for (i = 0; i < level; i++) {
5507                path->slots[i] = 0;
5508                if (!path->nodes[i])
5509                        continue;
5510                if (path->locks[i]) {
5511                        btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5512                        path->locks[i] = 0;
5513                }
5514                free_extent_buffer(path->nodes[i]);
5515                path->nodes[i] = NULL;
5516        }
5517}
5518
5519/*
5520 * This function assumes 2 things
5521 *
5522 * 1) You are using path->keep_locks
5523 * 2) You are not inserting items.
5524 *
5525 * If either of these are not true do not use this function. If you need a next
5526 * leaf with either of these not being true then this function can be easily
5527 * adapted to do that, but at the moment these are the limitations.
5528 */
5529int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5530                          struct btrfs_root *root, struct btrfs_path *path,
5531                          int del)
5532{
5533        struct extent_buffer *b;
5534        struct btrfs_key key;
5535        u32 nritems;
5536        int level = 1;
5537        int slot;
5538        int ret = 1;
5539        int write_lock_level = BTRFS_MAX_LEVEL;
5540        int ins_len = del ? -1 : 0;
5541
5542        WARN_ON(!(path->keep_locks || path->really_keep_locks));
5543
5544        nritems = btrfs_header_nritems(path->nodes[0]);
5545        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5546
5547        while (path->nodes[level]) {
5548                nritems = btrfs_header_nritems(path->nodes[level]);
5549                if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5550search:
5551                        btrfs_release_path(path);
5552                        ret = btrfs_search_slot(trans, root, &key, path,
5553                                                ins_len, 1);
5554                        if (ret < 0)
5555                                goto out;
5556                        level = 1;
5557                        continue;
5558                }
5559
5560                if (path->slots[level] >= nritems - 1) {
5561                        level++;
5562                        continue;
5563                }
5564
5565                btrfs_release_level(path, level);
5566                break;
5567        }
5568
5569        if (!path->nodes[level]) {
5570                ret = 1;
5571                goto out;
5572        }
5573
5574        path->slots[level]++;
5575        b = path->nodes[level];
5576
5577        while (b) {
5578                level = btrfs_header_level(b);
5579
5580                if (!should_cow_block(trans, root, b))
5581                        goto cow_done;
5582
5583                btrfs_set_path_blocking(path);
5584                ret = btrfs_cow_block(trans, root, b,
5585                                      path->nodes[level + 1],
5586                                      path->slots[level + 1], &b);
5587                if (ret)
5588                        goto out;
5589cow_done:
5590                path->nodes[level] = b;
5591                btrfs_clear_path_blocking(path, NULL, 0);
5592                if (level != 0) {
5593                        ret = setup_nodes_for_search(trans, root, path, b,
5594                                                     level, ins_len,
5595                                                     &write_lock_level);
5596                        if (ret == -EAGAIN)
5597                                goto search;
5598                        if (ret)
5599                                goto out;
5600
5601                        b = path->nodes[level];
5602                        slot = path->slots[level];
5603
5604                        ret = read_block_for_search(trans, root, path,
5605                                                    &b, level, slot, &key, 0);
5606                        if (ret == -EAGAIN)
5607                                goto search;
5608                        if (ret)
5609                                goto out;
5610                        level = btrfs_header_level(b);
5611                        if (!btrfs_try_tree_write_lock(b)) {
5612                                btrfs_set_path_blocking(path);
5613                                btrfs_tree_lock(b);
5614                                btrfs_clear_path_blocking(path, b,
5615                                                          BTRFS_WRITE_LOCK);
5616                        }
5617                        path->locks[level] = BTRFS_WRITE_LOCK;
5618                        path->nodes[level] = b;
5619                        path->slots[level] = 0;
5620                } else {
5621                        path->slots[level] = 0;
5622                        ret = 0;
5623                        break;
5624                }
5625        }
5626
5627out:
5628        if (ret)
5629                btrfs_release_path(path);
5630
5631        return ret;
5632}
5633
5634int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5635                        u64 time_seq)
5636{
5637        int slot;
5638        int level;
5639        struct extent_buffer *c;
5640        struct extent_buffer *next;
5641        struct btrfs_key key;
5642        u32 nritems;
5643        int ret;
5644        int old_spinning = path->leave_spinning;
5645        int next_rw_lock = 0;
5646
5647        nritems = btrfs_header_nritems(path->nodes[0]);
5648        if (nritems == 0)
5649                return 1;
5650
5651        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5652again:
5653        level = 1;
5654        next = NULL;
5655        next_rw_lock = 0;
5656        btrfs_release_path(path);
5657
5658        path->keep_locks = 1;
5659        path->leave_spinning = 1;
5660
5661        if (time_seq)
5662                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5663        else
5664                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5665        path->keep_locks = 0;
5666
5667        if (ret < 0)
5668                return ret;
5669
5670        nritems = btrfs_header_nritems(path->nodes[0]);
5671        /*
5672         * by releasing the path above we dropped all our locks.  A balance
5673         * could have added more items next to the key that used to be
5674         * at the very end of the block.  So, check again here and
5675         * advance the path if there are now more items available.
5676         */
5677        if (nritems > 0 && path->slots[0] < nritems - 1) {
5678                if (ret == 0)
5679                        path->slots[0]++;
5680                ret = 0;
5681                goto done;
5682        }
5683
5684        while (level < BTRFS_MAX_LEVEL) {
5685                if (!path->nodes[level]) {
5686                        ret = 1;
5687                        goto done;
5688                }
5689
5690                slot = path->slots[level] + 1;
5691                c = path->nodes[level];
5692                if (slot >= btrfs_header_nritems(c)) {
5693                        level++;
5694                        if (level == BTRFS_MAX_LEVEL) {
5695                                ret = 1;
5696                                goto done;
5697                        }
5698                        continue;
5699                }
5700
5701                if (next) {
5702                        btrfs_tree_unlock_rw(next, next_rw_lock);
5703                        free_extent_buffer(next);
5704                }
5705
5706                next = c;
5707                next_rw_lock = path->locks[level];
5708                ret = read_block_for_search(NULL, root, path, &next, level,
5709                                            slot, &key, 0);
5710                if (ret == -EAGAIN)
5711                        goto again;
5712
5713                if (ret < 0) {
5714                        btrfs_release_path(path);
5715                        goto done;
5716                }
5717
5718                if (!path->skip_locking) {
5719                        ret = btrfs_try_tree_read_lock(next);
5720                        if (!ret && time_seq) {
5721                                /*
5722                                 * If we don't get the lock, we may be racing
5723                                 * with push_leaf_left, holding that lock while
5724                                 * itself waiting for the leaf we've currently
5725                                 * locked. To solve this situation, we give up
5726                                 * on our lock and cycle.
5727                                 */
5728                                free_extent_buffer(next);
5729                                btrfs_release_path(path);
5730                                cond_resched();
5731                                goto again;
5732                        }
5733                        if (!ret) {
5734                                btrfs_set_path_blocking(path);
5735                                btrfs_tree_read_lock(next);
5736                                btrfs_clear_path_blocking(path, next,
5737                                                          BTRFS_READ_LOCK);
5738                        }
5739                        next_rw_lock = BTRFS_READ_LOCK;
5740                }
5741                break;
5742        }
5743        path->slots[level] = slot;
5744        while (1) {
5745                level--;
5746                c = path->nodes[level];
5747                if (path->locks[level])
5748                        btrfs_tree_unlock_rw(c, path->locks[level]);
5749
5750                free_extent_buffer(c);
5751                path->nodes[level] = next;
5752                path->slots[level] = 0;
5753                if (!path->skip_locking)
5754                        path->locks[level] = next_rw_lock;
5755                if (!level)
5756                        break;
5757
5758                ret = read_block_for_search(NULL, root, path, &next, level,
5759                                            0, &key, 0);
5760                if (ret == -EAGAIN)
5761                        goto again;
5762
5763                if (ret < 0) {
5764                        btrfs_release_path(path);
5765                        goto done;
5766                }
5767
5768                if (!path->skip_locking) {
5769                        ret = btrfs_try_tree_read_lock(next);
5770                        if (!ret) {
5771                                btrfs_set_path_blocking(path);
5772                                btrfs_tree_read_lock(next);
5773                                btrfs_clear_path_blocking(path, next,
5774                                                          BTRFS_READ_LOCK);
5775                        }
5776                        next_rw_lock = BTRFS_READ_LOCK;
5777                }
5778        }
5779        ret = 0;
5780done:
5781        unlock_up(path, 0, 1, 0, NULL);
5782        path->leave_spinning = old_spinning;
5783        if (!old_spinning)
5784                btrfs_set_path_blocking(path);
5785
5786        return ret;
5787}
5788
5789/*
5790 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5791 * searching until it gets past min_objectid or finds an item of 'type'
5792 *
5793 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5794 */
5795int btrfs_previous_item(struct btrfs_root *root,
5796                        struct btrfs_path *path, u64 min_objectid,
5797                        int type)
5798{
5799        struct btrfs_key found_key;
5800        struct extent_buffer *leaf;
5801        u32 nritems;
5802        int ret;
5803
5804        while (1) {
5805                if (path->slots[0] == 0) {
5806                        btrfs_set_path_blocking(path);
5807                        ret = btrfs_prev_leaf(root, path);
5808                        if (ret != 0)
5809                                return ret;
5810                } else {
5811                        path->slots[0]--;
5812                }
5813                leaf = path->nodes[0];
5814                nritems = btrfs_header_nritems(leaf);
5815                if (nritems == 0)
5816                        return 1;
5817                if (path->slots[0] == nritems)
5818                        path->slots[0]--;
5819
5820                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5821                if (found_key.objectid < min_objectid)
5822                        break;
5823                if (found_key.type == type)
5824                        return 0;
5825                if (found_key.objectid == min_objectid &&
5826                    found_key.type < type)
5827                        break;
5828        }
5829        return 1;
5830}
5831