linux/fs/ext4/page-io.c
<<
>>
Prefs
   1/*
   2 * linux/fs/ext4/page-io.c
   3 *
   4 * This contains the new page_io functions for ext4
   5 *
   6 * Written by Theodore Ts'o, 2010.
   7 */
   8
   9#include <linux/fs.h>
  10#include <linux/time.h>
  11#include <linux/jbd2.h>
  12#include <linux/highuid.h>
  13#include <linux/pagemap.h>
  14#include <linux/quotaops.h>
  15#include <linux/string.h>
  16#include <linux/buffer_head.h>
  17#include <linux/writeback.h>
  18#include <linux/pagevec.h>
  19#include <linux/mpage.h>
  20#include <linux/namei.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23#include <linux/workqueue.h>
  24#include <linux/kernel.h>
  25#include <linux/slab.h>
  26
  27#include "ext4_jbd2.h"
  28#include "xattr.h"
  29#include "acl.h"
  30
  31static struct kmem_cache *io_page_cachep, *io_end_cachep;
  32
  33int __init ext4_init_pageio(void)
  34{
  35        io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
  36        if (io_page_cachep == NULL)
  37                return -ENOMEM;
  38        io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
  39        if (io_end_cachep == NULL) {
  40                kmem_cache_destroy(io_page_cachep);
  41                return -ENOMEM;
  42        }
  43        return 0;
  44}
  45
  46void ext4_exit_pageio(void)
  47{
  48        kmem_cache_destroy(io_end_cachep);
  49        kmem_cache_destroy(io_page_cachep);
  50}
  51
  52void ext4_ioend_wait(struct inode *inode)
  53{
  54        wait_queue_head_t *wq = ext4_ioend_wq(inode);
  55
  56        wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
  57}
  58
  59static void put_io_page(struct ext4_io_page *io_page)
  60{
  61        if (atomic_dec_and_test(&io_page->p_count)) {
  62                end_page_writeback(io_page->p_page);
  63                put_page(io_page->p_page);
  64                kmem_cache_free(io_page_cachep, io_page);
  65        }
  66}
  67
  68void ext4_free_io_end(ext4_io_end_t *io)
  69{
  70        int i;
  71
  72        BUG_ON(!io);
  73        BUG_ON(!list_empty(&io->list));
  74        BUG_ON(io->flag & EXT4_IO_END_UNWRITTEN);
  75
  76        if (io->page)
  77                put_page(io->page);
  78        for (i = 0; i < io->num_io_pages; i++)
  79                put_io_page(io->pages[i]);
  80        io->num_io_pages = 0;
  81        if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
  82                wake_up_all(ext4_ioend_wq(io->inode));
  83        kmem_cache_free(io_end_cachep, io);
  84}
  85
  86/* check a range of space and convert unwritten extents to written. */
  87static int ext4_end_io(ext4_io_end_t *io)
  88{
  89        struct inode *inode = io->inode;
  90        loff_t offset = io->offset;
  91        ssize_t size = io->size;
  92        int ret = 0;
  93
  94        ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
  95                   "list->prev 0x%p\n",
  96                   io, inode->i_ino, io->list.next, io->list.prev);
  97
  98        ret = ext4_convert_unwritten_extents(inode, offset, size);
  99        if (ret < 0) {
 100                ext4_msg(inode->i_sb, KERN_EMERG,
 101                         "failed to convert unwritten extents to written "
 102                         "extents -- potential data loss!  "
 103                         "(inode %lu, offset %llu, size %zd, error %d)",
 104                         inode->i_ino, offset, size, ret);
 105        }
 106        if (io->iocb)
 107                aio_complete(io->iocb, io->result, 0);
 108
 109        if (io->flag & EXT4_IO_END_DIRECT)
 110                inode_dio_done(inode);
 111        /* Wake up anyone waiting on unwritten extent conversion */
 112        if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
 113                wake_up_all(ext4_ioend_wq(inode));
 114        return ret;
 115}
 116
 117static void dump_completed_IO(struct inode *inode)
 118{
 119#ifdef  EXT4FS_DEBUG
 120        struct list_head *cur, *before, *after;
 121        ext4_io_end_t *io, *io0, *io1;
 122        unsigned long flags;
 123
 124        if (list_empty(&EXT4_I(inode)->i_completed_io_list)) {
 125                ext4_debug("inode %lu completed_io list is empty\n",
 126                           inode->i_ino);
 127                return;
 128        }
 129
 130        ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino);
 131        list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) {
 132                cur = &io->list;
 133                before = cur->prev;
 134                io0 = container_of(before, ext4_io_end_t, list);
 135                after = cur->next;
 136                io1 = container_of(after, ext4_io_end_t, list);
 137
 138                ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
 139                            io, inode->i_ino, io0, io1);
 140        }
 141#endif
 142}
 143
 144/* Add the io_end to per-inode completed end_io list. */
 145void ext4_add_complete_io(ext4_io_end_t *io_end)
 146{
 147        struct ext4_inode_info *ei = EXT4_I(io_end->inode);
 148        struct workqueue_struct *wq;
 149        unsigned long flags;
 150
 151        BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
 152        wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
 153
 154        spin_lock_irqsave(&ei->i_completed_io_lock, flags);
 155        if (list_empty(&ei->i_completed_io_list)) {
 156                io_end->flag |= EXT4_IO_END_QUEUED;
 157                queue_work(wq, &io_end->work);
 158        }
 159        list_add_tail(&io_end->list, &ei->i_completed_io_list);
 160        spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
 161}
 162
 163static int ext4_do_flush_completed_IO(struct inode *inode,
 164                                      ext4_io_end_t *work_io)
 165{
 166        ext4_io_end_t *io;
 167        struct list_head unwritten, complete, to_free;
 168        unsigned long flags;
 169        struct ext4_inode_info *ei = EXT4_I(inode);
 170        int err, ret = 0;
 171
 172        INIT_LIST_HEAD(&complete);
 173        INIT_LIST_HEAD(&to_free);
 174
 175        spin_lock_irqsave(&ei->i_completed_io_lock, flags);
 176        dump_completed_IO(inode);
 177        list_replace_init(&ei->i_completed_io_list, &unwritten);
 178        spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
 179
 180        while (!list_empty(&unwritten)) {
 181                io = list_entry(unwritten.next, ext4_io_end_t, list);
 182                BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
 183                list_del_init(&io->list);
 184
 185                err = ext4_end_io(io);
 186                if (unlikely(!ret && err))
 187                        ret = err;
 188
 189                list_add_tail(&io->list, &complete);
 190        }
 191        spin_lock_irqsave(&ei->i_completed_io_lock, flags);
 192        while (!list_empty(&complete)) {
 193                io = list_entry(complete.next, ext4_io_end_t, list);
 194                io->flag &= ~EXT4_IO_END_UNWRITTEN;
 195                /* end_io context can not be destroyed now because it still
 196                 * used by queued worker. Worker thread will destroy it later */
 197                if (io->flag & EXT4_IO_END_QUEUED)
 198                        list_del_init(&io->list);
 199                else
 200                        list_move(&io->list, &to_free);
 201        }
 202        /* If we are called from worker context, it is time to clear queued
 203         * flag, and destroy it's end_io if it was converted already */
 204        if (work_io) {
 205                work_io->flag &= ~EXT4_IO_END_QUEUED;
 206                if (!(work_io->flag & EXT4_IO_END_UNWRITTEN))
 207                        list_add_tail(&work_io->list, &to_free);
 208        }
 209        spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
 210
 211        while (!list_empty(&to_free)) {
 212                io = list_entry(to_free.next, ext4_io_end_t, list);
 213                list_del_init(&io->list);
 214                ext4_free_io_end(io);
 215        }
 216        return ret;
 217}
 218
 219/*
 220 * work on completed aio dio IO, to convert unwritten extents to extents
 221 */
 222static void ext4_end_io_work(struct work_struct *work)
 223{
 224        ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
 225        ext4_do_flush_completed_IO(io->inode, io);
 226}
 227
 228int ext4_flush_unwritten_io(struct inode *inode)
 229{
 230        int ret;
 231        WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) &&
 232                     !(inode->i_state & I_FREEING));
 233        ret = ext4_do_flush_completed_IO(inode, NULL);
 234        ext4_unwritten_wait(inode);
 235        return ret;
 236}
 237
 238ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
 239{
 240        ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
 241        if (io) {
 242                atomic_inc(&EXT4_I(inode)->i_ioend_count);
 243                io->inode = inode;
 244                INIT_WORK(&io->work, ext4_end_io_work);
 245                INIT_LIST_HEAD(&io->list);
 246        }
 247        return io;
 248}
 249
 250/*
 251 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 252 * provides compatibility with dmesg scrapers that look for a specific
 253 * buffer I/O error message.  We really need a unified error reporting
 254 * structure to userspace ala Digital Unix's uerf system, but it's
 255 * probably not going to happen in my lifetime, due to LKML politics...
 256 */
 257static void buffer_io_error(struct buffer_head *bh)
 258{
 259        char b[BDEVNAME_SIZE];
 260        printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
 261                        bdevname(bh->b_bdev, b),
 262                        (unsigned long long)bh->b_blocknr);
 263}
 264
 265static void ext4_end_bio(struct bio *bio, int error)
 266{
 267        ext4_io_end_t *io_end = bio->bi_private;
 268        struct inode *inode;
 269        int i;
 270        sector_t bi_sector = bio->bi_sector;
 271
 272        BUG_ON(!io_end);
 273        bio->bi_private = NULL;
 274        bio->bi_end_io = NULL;
 275        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
 276                error = 0;
 277        bio_put(bio);
 278
 279        for (i = 0; i < io_end->num_io_pages; i++) {
 280                struct page *page = io_end->pages[i]->p_page;
 281                struct buffer_head *bh, *head;
 282                loff_t offset;
 283                loff_t io_end_offset;
 284
 285                if (error) {
 286                        SetPageError(page);
 287                        set_bit(AS_EIO, &page->mapping->flags);
 288                        head = page_buffers(page);
 289                        BUG_ON(!head);
 290
 291                        io_end_offset = io_end->offset + io_end->size;
 292
 293                        offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
 294                        bh = head;
 295                        do {
 296                                if ((offset >= io_end->offset) &&
 297                                    (offset+bh->b_size <= io_end_offset))
 298                                        buffer_io_error(bh);
 299
 300                                offset += bh->b_size;
 301                                bh = bh->b_this_page;
 302                        } while (bh != head);
 303                }
 304
 305                put_io_page(io_end->pages[i]);
 306        }
 307        io_end->num_io_pages = 0;
 308        inode = io_end->inode;
 309
 310        if (error) {
 311                io_end->flag |= EXT4_IO_END_ERROR;
 312                ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
 313                             "(offset %llu size %ld starting block %llu)",
 314                             inode->i_ino,
 315                             (unsigned long long) io_end->offset,
 316                             (long) io_end->size,
 317                             (unsigned long long)
 318                             bi_sector >> (inode->i_blkbits - 9));
 319        }
 320
 321        if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
 322                ext4_free_io_end(io_end);
 323                return;
 324        }
 325
 326        ext4_add_complete_io(io_end);
 327}
 328
 329void ext4_io_submit(struct ext4_io_submit *io)
 330{
 331        struct bio *bio = io->io_bio;
 332
 333        if (bio) {
 334                bio_get(io->io_bio);
 335                submit_bio(io->io_op, io->io_bio);
 336                BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
 337                bio_put(io->io_bio);
 338        }
 339        io->io_bio = NULL;
 340        io->io_op = 0;
 341        io->io_end = NULL;
 342}
 343
 344static int io_submit_init(struct ext4_io_submit *io,
 345                          struct inode *inode,
 346                          struct writeback_control *wbc,
 347                          struct buffer_head *bh)
 348{
 349        ext4_io_end_t *io_end;
 350        struct page *page = bh->b_page;
 351        int nvecs = bio_get_nr_vecs(bh->b_bdev);
 352        struct bio *bio;
 353
 354        io_end = ext4_init_io_end(inode, GFP_NOFS);
 355        if (!io_end)
 356                return -ENOMEM;
 357        bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
 358        bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 359        bio->bi_bdev = bh->b_bdev;
 360        bio->bi_private = io->io_end = io_end;
 361        bio->bi_end_io = ext4_end_bio;
 362
 363        io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
 364
 365        io->io_bio = bio;
 366        io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
 367        io->io_next_block = bh->b_blocknr;
 368        return 0;
 369}
 370
 371static int io_submit_add_bh(struct ext4_io_submit *io,
 372                            struct ext4_io_page *io_page,
 373                            struct inode *inode,
 374                            struct writeback_control *wbc,
 375                            struct buffer_head *bh)
 376{
 377        ext4_io_end_t *io_end;
 378        int ret;
 379
 380        if (buffer_new(bh)) {
 381                clear_buffer_new(bh);
 382                unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 383        }
 384
 385        if (!buffer_mapped(bh) || buffer_delay(bh)) {
 386                if (!buffer_mapped(bh))
 387                        clear_buffer_dirty(bh);
 388                if (io->io_bio)
 389                        ext4_io_submit(io);
 390                return 0;
 391        }
 392
 393        if (io->io_bio && bh->b_blocknr != io->io_next_block) {
 394submit_and_retry:
 395                ext4_io_submit(io);
 396        }
 397        if (io->io_bio == NULL) {
 398                ret = io_submit_init(io, inode, wbc, bh);
 399                if (ret)
 400                        return ret;
 401        }
 402        io_end = io->io_end;
 403        if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
 404            (io_end->pages[io_end->num_io_pages-1] != io_page))
 405                goto submit_and_retry;
 406        if (buffer_uninit(bh))
 407                ext4_set_io_unwritten_flag(inode, io_end);
 408        io->io_end->size += bh->b_size;
 409        io->io_next_block++;
 410        ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
 411        if (ret != bh->b_size)
 412                goto submit_and_retry;
 413        if ((io_end->num_io_pages == 0) ||
 414            (io_end->pages[io_end->num_io_pages-1] != io_page)) {
 415                io_end->pages[io_end->num_io_pages++] = io_page;
 416                atomic_inc(&io_page->p_count);
 417        }
 418        return 0;
 419}
 420
 421int ext4_bio_write_page(struct ext4_io_submit *io,
 422                        struct page *page,
 423                        int len,
 424                        struct writeback_control *wbc)
 425{
 426        struct inode *inode = page->mapping->host;
 427        unsigned block_start, block_end, blocksize;
 428        struct ext4_io_page *io_page;
 429        struct buffer_head *bh, *head;
 430        int ret = 0;
 431
 432        blocksize = 1 << inode->i_blkbits;
 433
 434        BUG_ON(!PageLocked(page));
 435        BUG_ON(PageWriteback(page));
 436
 437        io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
 438        if (!io_page) {
 439                set_page_dirty(page);
 440                unlock_page(page);
 441                return -ENOMEM;
 442        }
 443        io_page->p_page = page;
 444        atomic_set(&io_page->p_count, 1);
 445        get_page(page);
 446        set_page_writeback(page);
 447        ClearPageError(page);
 448
 449        for (bh = head = page_buffers(page), block_start = 0;
 450             bh != head || !block_start;
 451             block_start = block_end, bh = bh->b_this_page) {
 452
 453                block_end = block_start + blocksize;
 454                if (block_start >= len) {
 455                        /*
 456                         * Comments copied from block_write_full_page_endio:
 457                         *
 458                         * The page straddles i_size.  It must be zeroed out on
 459                         * each and every writepage invocation because it may
 460                         * be mmapped.  "A file is mapped in multiples of the
 461                         * page size.  For a file that is not a multiple of
 462                         * the  page size, the remaining memory is zeroed when
 463                         * mapped, and writes to that region are not written
 464                         * out to the file."
 465                         */
 466                        zero_user_segment(page, block_start, block_end);
 467                        clear_buffer_dirty(bh);
 468                        set_buffer_uptodate(bh);
 469                        continue;
 470                }
 471                clear_buffer_dirty(bh);
 472                ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
 473                if (ret) {
 474                        /*
 475                         * We only get here on ENOMEM.  Not much else
 476                         * we can do but mark the page as dirty, and
 477                         * better luck next time.
 478                         */
 479                        set_page_dirty(page);
 480                        break;
 481                }
 482        }
 483        unlock_page(page);
 484        /*
 485         * If the page was truncated before we could do the writeback,
 486         * or we had a memory allocation error while trying to write
 487         * the first buffer head, we won't have submitted any pages for
 488         * I/O.  In that case we need to make sure we've cleared the
 489         * PageWriteback bit from the page to prevent the system from
 490         * wedging later on.
 491         */
 492        put_io_page(io_page);
 493        return ret;
 494}
 495