linux/fs/f2fs/checkpoint.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23
  24static struct kmem_cache *orphan_entry_slab;
  25static struct kmem_cache *inode_entry_slab;
  26
  27/*
  28 * We guarantee no failure on the returned page.
  29 */
  30struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  31{
  32        struct address_space *mapping = sbi->meta_inode->i_mapping;
  33        struct page *page = NULL;
  34repeat:
  35        page = grab_cache_page(mapping, index);
  36        if (!page) {
  37                cond_resched();
  38                goto repeat;
  39        }
  40
  41        /* We wait writeback only inside grab_meta_page() */
  42        wait_on_page_writeback(page);
  43        SetPageUptodate(page);
  44        return page;
  45}
  46
  47/*
  48 * We guarantee no failure on the returned page.
  49 */
  50struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  51{
  52        struct address_space *mapping = sbi->meta_inode->i_mapping;
  53        struct page *page;
  54repeat:
  55        page = grab_cache_page(mapping, index);
  56        if (!page) {
  57                cond_resched();
  58                goto repeat;
  59        }
  60        if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
  61                f2fs_put_page(page, 1);
  62                goto repeat;
  63        }
  64        mark_page_accessed(page);
  65
  66        /* We do not allow returning an errorneous page */
  67        return page;
  68}
  69
  70static int f2fs_write_meta_page(struct page *page,
  71                                struct writeback_control *wbc)
  72{
  73        struct inode *inode = page->mapping->host;
  74        struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  75        int err;
  76
  77        wait_on_page_writeback(page);
  78
  79        err = write_meta_page(sbi, page, wbc);
  80        if (err) {
  81                wbc->pages_skipped++;
  82                set_page_dirty(page);
  83        }
  84
  85        dec_page_count(sbi, F2FS_DIRTY_META);
  86
  87        /* In this case, we should not unlock this page */
  88        if (err != AOP_WRITEPAGE_ACTIVATE)
  89                unlock_page(page);
  90        return err;
  91}
  92
  93static int f2fs_write_meta_pages(struct address_space *mapping,
  94                                struct writeback_control *wbc)
  95{
  96        struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  97        struct block_device *bdev = sbi->sb->s_bdev;
  98        long written;
  99
 100        if (wbc->for_kupdate)
 101                return 0;
 102
 103        if (get_pages(sbi, F2FS_DIRTY_META) == 0)
 104                return 0;
 105
 106        /* if mounting is failed, skip writing node pages */
 107        mutex_lock(&sbi->cp_mutex);
 108        written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
 109        mutex_unlock(&sbi->cp_mutex);
 110        wbc->nr_to_write -= written;
 111        return 0;
 112}
 113
 114long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 115                                                long nr_to_write)
 116{
 117        struct address_space *mapping = sbi->meta_inode->i_mapping;
 118        pgoff_t index = 0, end = LONG_MAX;
 119        struct pagevec pvec;
 120        long nwritten = 0;
 121        struct writeback_control wbc = {
 122                .for_reclaim = 0,
 123        };
 124
 125        pagevec_init(&pvec, 0);
 126
 127        while (index <= end) {
 128                int i, nr_pages;
 129                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 130                                PAGECACHE_TAG_DIRTY,
 131                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 132                if (nr_pages == 0)
 133                        break;
 134
 135                for (i = 0; i < nr_pages; i++) {
 136                        struct page *page = pvec.pages[i];
 137                        lock_page(page);
 138                        BUG_ON(page->mapping != mapping);
 139                        BUG_ON(!PageDirty(page));
 140                        clear_page_dirty_for_io(page);
 141                        f2fs_write_meta_page(page, &wbc);
 142                        if (nwritten++ >= nr_to_write)
 143                                break;
 144                }
 145                pagevec_release(&pvec);
 146                cond_resched();
 147        }
 148
 149        if (nwritten)
 150                f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
 151
 152        return nwritten;
 153}
 154
 155static int f2fs_set_meta_page_dirty(struct page *page)
 156{
 157        struct address_space *mapping = page->mapping;
 158        struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 159
 160        SetPageUptodate(page);
 161        if (!PageDirty(page)) {
 162                __set_page_dirty_nobuffers(page);
 163                inc_page_count(sbi, F2FS_DIRTY_META);
 164                F2FS_SET_SB_DIRT(sbi);
 165                return 1;
 166        }
 167        return 0;
 168}
 169
 170const struct address_space_operations f2fs_meta_aops = {
 171        .writepage      = f2fs_write_meta_page,
 172        .writepages     = f2fs_write_meta_pages,
 173        .set_page_dirty = f2fs_set_meta_page_dirty,
 174};
 175
 176int check_orphan_space(struct f2fs_sb_info *sbi)
 177{
 178        unsigned int max_orphans;
 179        int err = 0;
 180
 181        /*
 182         * considering 512 blocks in a segment 5 blocks are needed for cp
 183         * and log segment summaries. Remaining blocks are used to keep
 184         * orphan entries with the limitation one reserved segment
 185         * for cp pack we can have max 1020*507 orphan entries
 186         */
 187        max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
 188        mutex_lock(&sbi->orphan_inode_mutex);
 189        if (sbi->n_orphans >= max_orphans)
 190                err = -ENOSPC;
 191        mutex_unlock(&sbi->orphan_inode_mutex);
 192        return err;
 193}
 194
 195void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 196{
 197        struct list_head *head, *this;
 198        struct orphan_inode_entry *new = NULL, *orphan = NULL;
 199
 200        mutex_lock(&sbi->orphan_inode_mutex);
 201        head = &sbi->orphan_inode_list;
 202        list_for_each(this, head) {
 203                orphan = list_entry(this, struct orphan_inode_entry, list);
 204                if (orphan->ino == ino)
 205                        goto out;
 206                if (orphan->ino > ino)
 207                        break;
 208                orphan = NULL;
 209        }
 210retry:
 211        new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
 212        if (!new) {
 213                cond_resched();
 214                goto retry;
 215        }
 216        new->ino = ino;
 217
 218        /* add new_oentry into list which is sorted by inode number */
 219        if (orphan) {
 220                struct orphan_inode_entry *prev;
 221
 222                /* get previous entry */
 223                prev = list_entry(orphan->list.prev, typeof(*prev), list);
 224                if (&prev->list != head)
 225                        /* insert new orphan inode entry */
 226                        list_add(&new->list, &prev->list);
 227                else
 228                        list_add(&new->list, head);
 229        } else {
 230                list_add_tail(&new->list, head);
 231        }
 232        sbi->n_orphans++;
 233out:
 234        mutex_unlock(&sbi->orphan_inode_mutex);
 235}
 236
 237void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 238{
 239        struct list_head *this, *next, *head;
 240        struct orphan_inode_entry *orphan;
 241
 242        mutex_lock(&sbi->orphan_inode_mutex);
 243        head = &sbi->orphan_inode_list;
 244        list_for_each_safe(this, next, head) {
 245                orphan = list_entry(this, struct orphan_inode_entry, list);
 246                if (orphan->ino == ino) {
 247                        list_del(&orphan->list);
 248                        kmem_cache_free(orphan_entry_slab, orphan);
 249                        sbi->n_orphans--;
 250                        break;
 251                }
 252        }
 253        mutex_unlock(&sbi->orphan_inode_mutex);
 254}
 255
 256static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 257{
 258        struct inode *inode = f2fs_iget(sbi->sb, ino);
 259        BUG_ON(IS_ERR(inode));
 260        clear_nlink(inode);
 261
 262        /* truncate all the data during iput */
 263        iput(inode);
 264}
 265
 266int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 267{
 268        block_t start_blk, orphan_blkaddr, i, j;
 269
 270        if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
 271                return 0;
 272
 273        sbi->por_doing = 1;
 274        start_blk = __start_cp_addr(sbi) + 1;
 275        orphan_blkaddr = __start_sum_addr(sbi) - 1;
 276
 277        for (i = 0; i < orphan_blkaddr; i++) {
 278                struct page *page = get_meta_page(sbi, start_blk + i);
 279                struct f2fs_orphan_block *orphan_blk;
 280
 281                orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 282                for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 283                        nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 284                        recover_orphan_inode(sbi, ino);
 285                }
 286                f2fs_put_page(page, 1);
 287        }
 288        /* clear Orphan Flag */
 289        clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
 290        sbi->por_doing = 0;
 291        return 0;
 292}
 293
 294static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 295{
 296        struct list_head *head, *this, *next;
 297        struct f2fs_orphan_block *orphan_blk = NULL;
 298        struct page *page = NULL;
 299        unsigned int nentries = 0;
 300        unsigned short index = 1;
 301        unsigned short orphan_blocks;
 302
 303        orphan_blocks = (unsigned short)((sbi->n_orphans +
 304                (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
 305
 306        mutex_lock(&sbi->orphan_inode_mutex);
 307        head = &sbi->orphan_inode_list;
 308
 309        /* loop for each orphan inode entry and write them in Jornal block */
 310        list_for_each_safe(this, next, head) {
 311                struct orphan_inode_entry *orphan;
 312
 313                orphan = list_entry(this, struct orphan_inode_entry, list);
 314
 315                if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 316                        /*
 317                         * an orphan block is full of 1020 entries,
 318                         * then we need to flush current orphan blocks
 319                         * and bring another one in memory
 320                         */
 321                        orphan_blk->blk_addr = cpu_to_le16(index);
 322                        orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 323                        orphan_blk->entry_count = cpu_to_le32(nentries);
 324                        set_page_dirty(page);
 325                        f2fs_put_page(page, 1);
 326                        index++;
 327                        start_blk++;
 328                        nentries = 0;
 329                        page = NULL;
 330                }
 331                if (page)
 332                        goto page_exist;
 333
 334                page = grab_meta_page(sbi, start_blk);
 335                orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 336                memset(orphan_blk, 0, sizeof(*orphan_blk));
 337page_exist:
 338                orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 339        }
 340        if (!page)
 341                goto end;
 342
 343        orphan_blk->blk_addr = cpu_to_le16(index);
 344        orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 345        orphan_blk->entry_count = cpu_to_le32(nentries);
 346        set_page_dirty(page);
 347        f2fs_put_page(page, 1);
 348end:
 349        mutex_unlock(&sbi->orphan_inode_mutex);
 350}
 351
 352static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 353                                block_t cp_addr, unsigned long long *version)
 354{
 355        struct page *cp_page_1, *cp_page_2 = NULL;
 356        unsigned long blk_size = sbi->blocksize;
 357        struct f2fs_checkpoint *cp_block;
 358        unsigned long long cur_version = 0, pre_version = 0;
 359        unsigned int crc = 0;
 360        size_t crc_offset;
 361
 362        /* Read the 1st cp block in this CP pack */
 363        cp_page_1 = get_meta_page(sbi, cp_addr);
 364
 365        /* get the version number */
 366        cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
 367        crc_offset = le32_to_cpu(cp_block->checksum_offset);
 368        if (crc_offset >= blk_size)
 369                goto invalid_cp1;
 370
 371        crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
 372        if (!f2fs_crc_valid(crc, cp_block, crc_offset))
 373                goto invalid_cp1;
 374
 375        pre_version = le64_to_cpu(cp_block->checkpoint_ver);
 376
 377        /* Read the 2nd cp block in this CP pack */
 378        cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 379        cp_page_2 = get_meta_page(sbi, cp_addr);
 380
 381        cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
 382        crc_offset = le32_to_cpu(cp_block->checksum_offset);
 383        if (crc_offset >= blk_size)
 384                goto invalid_cp2;
 385
 386        crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
 387        if (!f2fs_crc_valid(crc, cp_block, crc_offset))
 388                goto invalid_cp2;
 389
 390        cur_version = le64_to_cpu(cp_block->checkpoint_ver);
 391
 392        if (cur_version == pre_version) {
 393                *version = cur_version;
 394                f2fs_put_page(cp_page_2, 1);
 395                return cp_page_1;
 396        }
 397invalid_cp2:
 398        f2fs_put_page(cp_page_2, 1);
 399invalid_cp1:
 400        f2fs_put_page(cp_page_1, 1);
 401        return NULL;
 402}
 403
 404int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 405{
 406        struct f2fs_checkpoint *cp_block;
 407        struct f2fs_super_block *fsb = sbi->raw_super;
 408        struct page *cp1, *cp2, *cur_page;
 409        unsigned long blk_size = sbi->blocksize;
 410        unsigned long long cp1_version = 0, cp2_version = 0;
 411        unsigned long long cp_start_blk_no;
 412
 413        sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
 414        if (!sbi->ckpt)
 415                return -ENOMEM;
 416        /*
 417         * Finding out valid cp block involves read both
 418         * sets( cp pack1 and cp pack 2)
 419         */
 420        cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 421        cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 422
 423        /* The second checkpoint pack should start at the next segment */
 424        cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 425        cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 426
 427        if (cp1 && cp2) {
 428                if (ver_after(cp2_version, cp1_version))
 429                        cur_page = cp2;
 430                else
 431                        cur_page = cp1;
 432        } else if (cp1) {
 433                cur_page = cp1;
 434        } else if (cp2) {
 435                cur_page = cp2;
 436        } else {
 437                goto fail_no_cp;
 438        }
 439
 440        cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 441        memcpy(sbi->ckpt, cp_block, blk_size);
 442
 443        f2fs_put_page(cp1, 1);
 444        f2fs_put_page(cp2, 1);
 445        return 0;
 446
 447fail_no_cp:
 448        kfree(sbi->ckpt);
 449        return -EINVAL;
 450}
 451
 452void set_dirty_dir_page(struct inode *inode, struct page *page)
 453{
 454        struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 455        struct list_head *head = &sbi->dir_inode_list;
 456        struct dir_inode_entry *new;
 457        struct list_head *this;
 458
 459        if (!S_ISDIR(inode->i_mode))
 460                return;
 461retry:
 462        new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
 463        if (!new) {
 464                cond_resched();
 465                goto retry;
 466        }
 467        new->inode = inode;
 468        INIT_LIST_HEAD(&new->list);
 469
 470        spin_lock(&sbi->dir_inode_lock);
 471        list_for_each(this, head) {
 472                struct dir_inode_entry *entry;
 473                entry = list_entry(this, struct dir_inode_entry, list);
 474                if (entry->inode == inode) {
 475                        kmem_cache_free(inode_entry_slab, new);
 476                        goto out;
 477                }
 478        }
 479        list_add_tail(&new->list, head);
 480        sbi->n_dirty_dirs++;
 481
 482        BUG_ON(!S_ISDIR(inode->i_mode));
 483out:
 484        inc_page_count(sbi, F2FS_DIRTY_DENTS);
 485        inode_inc_dirty_dents(inode);
 486        SetPagePrivate(page);
 487
 488        spin_unlock(&sbi->dir_inode_lock);
 489}
 490
 491void remove_dirty_dir_inode(struct inode *inode)
 492{
 493        struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 494        struct list_head *head = &sbi->dir_inode_list;
 495        struct list_head *this;
 496
 497        if (!S_ISDIR(inode->i_mode))
 498                return;
 499
 500        spin_lock(&sbi->dir_inode_lock);
 501        if (atomic_read(&F2FS_I(inode)->dirty_dents))
 502                goto out;
 503
 504        list_for_each(this, head) {
 505                struct dir_inode_entry *entry;
 506                entry = list_entry(this, struct dir_inode_entry, list);
 507                if (entry->inode == inode) {
 508                        list_del(&entry->list);
 509                        kmem_cache_free(inode_entry_slab, entry);
 510                        sbi->n_dirty_dirs--;
 511                        break;
 512                }
 513        }
 514out:
 515        spin_unlock(&sbi->dir_inode_lock);
 516}
 517
 518void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
 519{
 520        struct list_head *head = &sbi->dir_inode_list;
 521        struct dir_inode_entry *entry;
 522        struct inode *inode;
 523retry:
 524        spin_lock(&sbi->dir_inode_lock);
 525        if (list_empty(head)) {
 526                spin_unlock(&sbi->dir_inode_lock);
 527                return;
 528        }
 529        entry = list_entry(head->next, struct dir_inode_entry, list);
 530        inode = igrab(entry->inode);
 531        spin_unlock(&sbi->dir_inode_lock);
 532        if (inode) {
 533                filemap_flush(inode->i_mapping);
 534                iput(inode);
 535        } else {
 536                /*
 537                 * We should submit bio, since it exists several
 538                 * wribacking dentry pages in the freeing inode.
 539                 */
 540                f2fs_submit_bio(sbi, DATA, true);
 541        }
 542        goto retry;
 543}
 544
 545/*
 546 * Freeze all the FS-operations for checkpoint.
 547 */
 548void block_operations(struct f2fs_sb_info *sbi)
 549{
 550        int t;
 551        struct writeback_control wbc = {
 552                .sync_mode = WB_SYNC_ALL,
 553                .nr_to_write = LONG_MAX,
 554                .for_reclaim = 0,
 555        };
 556
 557        /* Stop renaming operation */
 558        mutex_lock_op(sbi, RENAME);
 559        mutex_lock_op(sbi, DENTRY_OPS);
 560
 561retry_dents:
 562        /* write all the dirty dentry pages */
 563        sync_dirty_dir_inodes(sbi);
 564
 565        mutex_lock_op(sbi, DATA_WRITE);
 566        if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 567                mutex_unlock_op(sbi, DATA_WRITE);
 568                goto retry_dents;
 569        }
 570
 571        /* block all the operations */
 572        for (t = DATA_NEW; t <= NODE_TRUNC; t++)
 573                mutex_lock_op(sbi, t);
 574
 575        mutex_lock(&sbi->write_inode);
 576
 577        /*
 578         * POR: we should ensure that there is no dirty node pages
 579         * until finishing nat/sit flush.
 580         */
 581retry:
 582        sync_node_pages(sbi, 0, &wbc);
 583
 584        mutex_lock_op(sbi, NODE_WRITE);
 585
 586        if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 587                mutex_unlock_op(sbi, NODE_WRITE);
 588                goto retry;
 589        }
 590        mutex_unlock(&sbi->write_inode);
 591}
 592
 593static void unblock_operations(struct f2fs_sb_info *sbi)
 594{
 595        int t;
 596        for (t = NODE_WRITE; t >= RENAME; t--)
 597                mutex_unlock_op(sbi, t);
 598}
 599
 600static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
 601{
 602        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 603        nid_t last_nid = 0;
 604        block_t start_blk;
 605        struct page *cp_page;
 606        unsigned int data_sum_blocks, orphan_blocks;
 607        unsigned int crc32 = 0;
 608        void *kaddr;
 609        int i;
 610
 611        /* Flush all the NAT/SIT pages */
 612        while (get_pages(sbi, F2FS_DIRTY_META))
 613                sync_meta_pages(sbi, META, LONG_MAX);
 614
 615        next_free_nid(sbi, &last_nid);
 616
 617        /*
 618         * modify checkpoint
 619         * version number is already updated
 620         */
 621        ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 622        ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 623        ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 624        for (i = 0; i < 3; i++) {
 625                ckpt->cur_node_segno[i] =
 626                        cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
 627                ckpt->cur_node_blkoff[i] =
 628                        cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
 629                ckpt->alloc_type[i + CURSEG_HOT_NODE] =
 630                                curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
 631        }
 632        for (i = 0; i < 3; i++) {
 633                ckpt->cur_data_segno[i] =
 634                        cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
 635                ckpt->cur_data_blkoff[i] =
 636                        cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
 637                ckpt->alloc_type[i + CURSEG_HOT_DATA] =
 638                                curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
 639        }
 640
 641        ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 642        ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 643        ckpt->next_free_nid = cpu_to_le32(last_nid);
 644
 645        /* 2 cp  + n data seg summary + orphan inode blocks */
 646        data_sum_blocks = npages_for_summary_flush(sbi);
 647        if (data_sum_blocks < 3)
 648                set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 649        else
 650                clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 651
 652        orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
 653                                        / F2FS_ORPHANS_PER_BLOCK;
 654        ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
 655
 656        if (is_umount) {
 657                set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 658                ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
 659                        data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
 660        } else {
 661                clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 662                ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
 663                        data_sum_blocks + orphan_blocks);
 664        }
 665
 666        if (sbi->n_orphans)
 667                set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 668        else
 669                clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 670
 671        /* update SIT/NAT bitmap */
 672        get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
 673        get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
 674
 675        crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
 676        *(__le32 *)((unsigned char *)ckpt +
 677                                le32_to_cpu(ckpt->checksum_offset))
 678                                = cpu_to_le32(crc32);
 679
 680        start_blk = __start_cp_addr(sbi);
 681
 682        /* write out checkpoint buffer at block 0 */
 683        cp_page = grab_meta_page(sbi, start_blk++);
 684        kaddr = page_address(cp_page);
 685        memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
 686        set_page_dirty(cp_page);
 687        f2fs_put_page(cp_page, 1);
 688
 689        if (sbi->n_orphans) {
 690                write_orphan_inodes(sbi, start_blk);
 691                start_blk += orphan_blocks;
 692        }
 693
 694        write_data_summaries(sbi, start_blk);
 695        start_blk += data_sum_blocks;
 696        if (is_umount) {
 697                write_node_summaries(sbi, start_blk);
 698                start_blk += NR_CURSEG_NODE_TYPE;
 699        }
 700
 701        /* writeout checkpoint block */
 702        cp_page = grab_meta_page(sbi, start_blk);
 703        kaddr = page_address(cp_page);
 704        memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
 705        set_page_dirty(cp_page);
 706        f2fs_put_page(cp_page, 1);
 707
 708        /* wait for previous submitted node/meta pages writeback */
 709        while (get_pages(sbi, F2FS_WRITEBACK))
 710                congestion_wait(BLK_RW_ASYNC, HZ / 50);
 711
 712        filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
 713        filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
 714
 715        /* update user_block_counts */
 716        sbi->last_valid_block_count = sbi->total_valid_block_count;
 717        sbi->alloc_valid_block_count = 0;
 718
 719        /* Here, we only have one bio having CP pack */
 720        if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))
 721                sbi->sb->s_flags |= MS_RDONLY;
 722        else
 723                sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
 724
 725        clear_prefree_segments(sbi);
 726        F2FS_RESET_SB_DIRT(sbi);
 727}
 728
 729/*
 730 * We guarantee that this checkpoint procedure should not fail.
 731 */
 732void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
 733{
 734        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 735        unsigned long long ckpt_ver;
 736
 737        if (!blocked) {
 738                mutex_lock(&sbi->cp_mutex);
 739                block_operations(sbi);
 740        }
 741
 742        f2fs_submit_bio(sbi, DATA, true);
 743        f2fs_submit_bio(sbi, NODE, true);
 744        f2fs_submit_bio(sbi, META, true);
 745
 746        /*
 747         * update checkpoint pack index
 748         * Increase the version number so that
 749         * SIT entries and seg summaries are written at correct place
 750         */
 751        ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
 752        ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
 753
 754        /* write cached NAT/SIT entries to NAT/SIT area */
 755        flush_nat_entries(sbi);
 756        flush_sit_entries(sbi);
 757
 758        reset_victim_segmap(sbi);
 759
 760        /* unlock all the fs_lock[] in do_checkpoint() */
 761        do_checkpoint(sbi, is_umount);
 762
 763        unblock_operations(sbi);
 764        mutex_unlock(&sbi->cp_mutex);
 765}
 766
 767void init_orphan_info(struct f2fs_sb_info *sbi)
 768{
 769        mutex_init(&sbi->orphan_inode_mutex);
 770        INIT_LIST_HEAD(&sbi->orphan_inode_list);
 771        sbi->n_orphans = 0;
 772}
 773
 774int __init create_checkpoint_caches(void)
 775{
 776        orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
 777                        sizeof(struct orphan_inode_entry), NULL);
 778        if (unlikely(!orphan_entry_slab))
 779                return -ENOMEM;
 780        inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
 781                        sizeof(struct dir_inode_entry), NULL);
 782        if (unlikely(!inode_entry_slab)) {
 783                kmem_cache_destroy(orphan_entry_slab);
 784                return -ENOMEM;
 785        }
 786        return 0;
 787}
 788
 789void destroy_checkpoint_caches(void)
 790{
 791        kmem_cache_destroy(orphan_entry_slab);
 792        kmem_cache_destroy(inode_entry_slab);
 793}
 794