linux/fs/proc/base.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/cgroup.h>
  77#include <linux/cpuset.h>
  78#include <linux/audit.h>
  79#include <linux/poll.h>
  80#include <linux/nsproxy.h>
  81#include <linux/oom.h>
  82#include <linux/elf.h>
  83#include <linux/pid_namespace.h>
  84#include <linux/user_namespace.h>
  85#include <linux/fs_struct.h>
  86#include <linux/slab.h>
  87#include <linux/flex_array.h>
  88#ifdef CONFIG_HARDWALL
  89#include <asm/hardwall.h>
  90#endif
  91#include <trace/events/oom.h>
  92#include "internal.h"
  93#include "fd.h"
  94
  95/* NOTE:
  96 *      Implementing inode permission operations in /proc is almost
  97 *      certainly an error.  Permission checks need to happen during
  98 *      each system call not at open time.  The reason is that most of
  99 *      what we wish to check for permissions in /proc varies at runtime.
 100 *
 101 *      The classic example of a problem is opening file descriptors
 102 *      in /proc for a task before it execs a suid executable.
 103 */
 104
 105struct pid_entry {
 106        char *name;
 107        int len;
 108        umode_t mode;
 109        const struct inode_operations *iop;
 110        const struct file_operations *fop;
 111        union proc_op op;
 112};
 113
 114#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 115        .name = (NAME),                                 \
 116        .len  = sizeof(NAME) - 1,                       \
 117        .mode = MODE,                                   \
 118        .iop  = IOP,                                    \
 119        .fop  = FOP,                                    \
 120        .op   = OP,                                     \
 121}
 122
 123#define DIR(NAME, MODE, iops, fops)     \
 124        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 125#define LNK(NAME, get_link)                                     \
 126        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 127                &proc_pid_link_inode_operations, NULL,          \
 128                { .proc_get_link = get_link } )
 129#define REG(NAME, MODE, fops)                           \
 130        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 131#define INF(NAME, MODE, read)                           \
 132        NOD(NAME, (S_IFREG|(MODE)),                     \
 133                NULL, &proc_info_file_operations,       \
 134                { .proc_read = read } )
 135#define ONE(NAME, MODE, show)                           \
 136        NOD(NAME, (S_IFREG|(MODE)),                     \
 137                NULL, &proc_single_file_operations,     \
 138                { .proc_show = show } )
 139
 140/*
 141 * Count the number of hardlinks for the pid_entry table, excluding the .
 142 * and .. links.
 143 */
 144static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 145        unsigned int n)
 146{
 147        unsigned int i;
 148        unsigned int count;
 149
 150        count = 0;
 151        for (i = 0; i < n; ++i) {
 152                if (S_ISDIR(entries[i].mode))
 153                        ++count;
 154        }
 155
 156        return count;
 157}
 158
 159static int get_task_root(struct task_struct *task, struct path *root)
 160{
 161        int result = -ENOENT;
 162
 163        task_lock(task);
 164        if (task->fs) {
 165                get_fs_root(task->fs, root);
 166                result = 0;
 167        }
 168        task_unlock(task);
 169        return result;
 170}
 171
 172static int proc_cwd_link(struct dentry *dentry, struct path *path)
 173{
 174        struct task_struct *task = get_proc_task(dentry->d_inode);
 175        int result = -ENOENT;
 176
 177        if (task) {
 178                task_lock(task);
 179                if (task->fs) {
 180                        get_fs_pwd(task->fs, path);
 181                        result = 0;
 182                }
 183                task_unlock(task);
 184                put_task_struct(task);
 185        }
 186        return result;
 187}
 188
 189static int proc_root_link(struct dentry *dentry, struct path *path)
 190{
 191        struct task_struct *task = get_proc_task(dentry->d_inode);
 192        int result = -ENOENT;
 193
 194        if (task) {
 195                result = get_task_root(task, path);
 196                put_task_struct(task);
 197        }
 198        return result;
 199}
 200
 201static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 202{
 203        int res = 0;
 204        unsigned int len;
 205        struct mm_struct *mm = get_task_mm(task);
 206        if (!mm)
 207                goto out;
 208        if (!mm->arg_end)
 209                goto out_mm;    /* Shh! No looking before we're done */
 210
 211        len = mm->arg_end - mm->arg_start;
 212 
 213        if (len > PAGE_SIZE)
 214                len = PAGE_SIZE;
 215 
 216        res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 217
 218        // If the nul at the end of args has been overwritten, then
 219        // assume application is using setproctitle(3).
 220        if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 221                len = strnlen(buffer, res);
 222                if (len < res) {
 223                    res = len;
 224                } else {
 225                        len = mm->env_end - mm->env_start;
 226                        if (len > PAGE_SIZE - res)
 227                                len = PAGE_SIZE - res;
 228                        res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 229                        res = strnlen(buffer, res);
 230                }
 231        }
 232out_mm:
 233        mmput(mm);
 234out:
 235        return res;
 236}
 237
 238static int proc_pid_auxv(struct task_struct *task, char *buffer)
 239{
 240        struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
 241        int res = PTR_ERR(mm);
 242        if (mm && !IS_ERR(mm)) {
 243                unsigned int nwords = 0;
 244                do {
 245                        nwords += 2;
 246                } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 247                res = nwords * sizeof(mm->saved_auxv[0]);
 248                if (res > PAGE_SIZE)
 249                        res = PAGE_SIZE;
 250                memcpy(buffer, mm->saved_auxv, res);
 251                mmput(mm);
 252        }
 253        return res;
 254}
 255
 256
 257#ifdef CONFIG_KALLSYMS
 258/*
 259 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 260 * Returns the resolved symbol.  If that fails, simply return the address.
 261 */
 262static int proc_pid_wchan(struct task_struct *task, char *buffer)
 263{
 264        unsigned long wchan;
 265        char symname[KSYM_NAME_LEN];
 266
 267        wchan = get_wchan(task);
 268
 269        if (lookup_symbol_name(wchan, symname) < 0)
 270                if (!ptrace_may_access(task, PTRACE_MODE_READ))
 271                        return 0;
 272                else
 273                        return sprintf(buffer, "%lu", wchan);
 274        else
 275                return sprintf(buffer, "%s", symname);
 276}
 277#endif /* CONFIG_KALLSYMS */
 278
 279static int lock_trace(struct task_struct *task)
 280{
 281        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 282        if (err)
 283                return err;
 284        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 285                mutex_unlock(&task->signal->cred_guard_mutex);
 286                return -EPERM;
 287        }
 288        return 0;
 289}
 290
 291static void unlock_trace(struct task_struct *task)
 292{
 293        mutex_unlock(&task->signal->cred_guard_mutex);
 294}
 295
 296#ifdef CONFIG_STACKTRACE
 297
 298#define MAX_STACK_TRACE_DEPTH   64
 299
 300static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 301                          struct pid *pid, struct task_struct *task)
 302{
 303        struct stack_trace trace;
 304        unsigned long *entries;
 305        int err;
 306        int i;
 307
 308        entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 309        if (!entries)
 310                return -ENOMEM;
 311
 312        trace.nr_entries        = 0;
 313        trace.max_entries       = MAX_STACK_TRACE_DEPTH;
 314        trace.entries           = entries;
 315        trace.skip              = 0;
 316
 317        err = lock_trace(task);
 318        if (!err) {
 319                save_stack_trace_tsk(task, &trace);
 320
 321                for (i = 0; i < trace.nr_entries; i++) {
 322                        seq_printf(m, "[<%pK>] %pS\n",
 323                                   (void *)entries[i], (void *)entries[i]);
 324                }
 325                unlock_trace(task);
 326        }
 327        kfree(entries);
 328
 329        return err;
 330}
 331#endif
 332
 333#ifdef CONFIG_SCHEDSTATS
 334/*
 335 * Provides /proc/PID/schedstat
 336 */
 337static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 338{
 339        return sprintf(buffer, "%llu %llu %lu\n",
 340                        (unsigned long long)task->se.sum_exec_runtime,
 341                        (unsigned long long)task->sched_info.run_delay,
 342                        task->sched_info.pcount);
 343}
 344#endif
 345
 346#ifdef CONFIG_LATENCYTOP
 347static int lstats_show_proc(struct seq_file *m, void *v)
 348{
 349        int i;
 350        struct inode *inode = m->private;
 351        struct task_struct *task = get_proc_task(inode);
 352
 353        if (!task)
 354                return -ESRCH;
 355        seq_puts(m, "Latency Top version : v0.1\n");
 356        for (i = 0; i < 32; i++) {
 357                struct latency_record *lr = &task->latency_record[i];
 358                if (lr->backtrace[0]) {
 359                        int q;
 360                        seq_printf(m, "%i %li %li",
 361                                   lr->count, lr->time, lr->max);
 362                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 363                                unsigned long bt = lr->backtrace[q];
 364                                if (!bt)
 365                                        break;
 366                                if (bt == ULONG_MAX)
 367                                        break;
 368                                seq_printf(m, " %ps", (void *)bt);
 369                        }
 370                        seq_putc(m, '\n');
 371                }
 372
 373        }
 374        put_task_struct(task);
 375        return 0;
 376}
 377
 378static int lstats_open(struct inode *inode, struct file *file)
 379{
 380        return single_open(file, lstats_show_proc, inode);
 381}
 382
 383static ssize_t lstats_write(struct file *file, const char __user *buf,
 384                            size_t count, loff_t *offs)
 385{
 386        struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 387
 388        if (!task)
 389                return -ESRCH;
 390        clear_all_latency_tracing(task);
 391        put_task_struct(task);
 392
 393        return count;
 394}
 395
 396static const struct file_operations proc_lstats_operations = {
 397        .open           = lstats_open,
 398        .read           = seq_read,
 399        .write          = lstats_write,
 400        .llseek         = seq_lseek,
 401        .release        = single_release,
 402};
 403
 404#endif
 405
 406static int proc_oom_score(struct task_struct *task, char *buffer)
 407{
 408        unsigned long totalpages = totalram_pages + total_swap_pages;
 409        unsigned long points = 0;
 410
 411        read_lock(&tasklist_lock);
 412        if (pid_alive(task))
 413                points = oom_badness(task, NULL, NULL, totalpages) *
 414                                                1000 / totalpages;
 415        read_unlock(&tasklist_lock);
 416        return sprintf(buffer, "%lu\n", points);
 417}
 418
 419struct limit_names {
 420        char *name;
 421        char *unit;
 422};
 423
 424static const struct limit_names lnames[RLIM_NLIMITS] = {
 425        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 426        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 427        [RLIMIT_DATA] = {"Max data size", "bytes"},
 428        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 429        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 430        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 431        [RLIMIT_NPROC] = {"Max processes", "processes"},
 432        [RLIMIT_NOFILE] = {"Max open files", "files"},
 433        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 434        [RLIMIT_AS] = {"Max address space", "bytes"},
 435        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 436        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 437        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 438        [RLIMIT_NICE] = {"Max nice priority", NULL},
 439        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 440        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 441};
 442
 443/* Display limits for a process */
 444static int proc_pid_limits(struct task_struct *task, char *buffer)
 445{
 446        unsigned int i;
 447        int count = 0;
 448        unsigned long flags;
 449        char *bufptr = buffer;
 450
 451        struct rlimit rlim[RLIM_NLIMITS];
 452
 453        if (!lock_task_sighand(task, &flags))
 454                return 0;
 455        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 456        unlock_task_sighand(task, &flags);
 457
 458        /*
 459         * print the file header
 460         */
 461        count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 462                        "Limit", "Soft Limit", "Hard Limit", "Units");
 463
 464        for (i = 0; i < RLIM_NLIMITS; i++) {
 465                if (rlim[i].rlim_cur == RLIM_INFINITY)
 466                        count += sprintf(&bufptr[count], "%-25s %-20s ",
 467                                         lnames[i].name, "unlimited");
 468                else
 469                        count += sprintf(&bufptr[count], "%-25s %-20lu ",
 470                                         lnames[i].name, rlim[i].rlim_cur);
 471
 472                if (rlim[i].rlim_max == RLIM_INFINITY)
 473                        count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 474                else
 475                        count += sprintf(&bufptr[count], "%-20lu ",
 476                                         rlim[i].rlim_max);
 477
 478                if (lnames[i].unit)
 479                        count += sprintf(&bufptr[count], "%-10s\n",
 480                                         lnames[i].unit);
 481                else
 482                        count += sprintf(&bufptr[count], "\n");
 483        }
 484
 485        return count;
 486}
 487
 488#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 489static int proc_pid_syscall(struct task_struct *task, char *buffer)
 490{
 491        long nr;
 492        unsigned long args[6], sp, pc;
 493        int res = lock_trace(task);
 494        if (res)
 495                return res;
 496
 497        if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 498                res = sprintf(buffer, "running\n");
 499        else if (nr < 0)
 500                res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 501        else
 502                res = sprintf(buffer,
 503                       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 504                       nr,
 505                       args[0], args[1], args[2], args[3], args[4], args[5],
 506                       sp, pc);
 507        unlock_trace(task);
 508        return res;
 509}
 510#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 511
 512/************************************************************************/
 513/*                       Here the fs part begins                        */
 514/************************************************************************/
 515
 516/* permission checks */
 517static int proc_fd_access_allowed(struct inode *inode)
 518{
 519        struct task_struct *task;
 520        int allowed = 0;
 521        /* Allow access to a task's file descriptors if it is us or we
 522         * may use ptrace attach to the process and find out that
 523         * information.
 524         */
 525        task = get_proc_task(inode);
 526        if (task) {
 527                allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 528                put_task_struct(task);
 529        }
 530        return allowed;
 531}
 532
 533int proc_setattr(struct dentry *dentry, struct iattr *attr)
 534{
 535        int error;
 536        struct inode *inode = dentry->d_inode;
 537
 538        if (attr->ia_valid & ATTR_MODE)
 539                return -EPERM;
 540
 541        error = inode_change_ok(inode, attr);
 542        if (error)
 543                return error;
 544
 545        setattr_copy(inode, attr);
 546        mark_inode_dirty(inode);
 547        return 0;
 548}
 549
 550/*
 551 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 552 * or euid/egid (for hide_pid_min=2)?
 553 */
 554static bool has_pid_permissions(struct pid_namespace *pid,
 555                                 struct task_struct *task,
 556                                 int hide_pid_min)
 557{
 558        if (pid->hide_pid < hide_pid_min)
 559                return true;
 560        if (in_group_p(pid->pid_gid))
 561                return true;
 562        return ptrace_may_access(task, PTRACE_MODE_READ);
 563}
 564
 565
 566static int proc_pid_permission(struct inode *inode, int mask)
 567{
 568        struct pid_namespace *pid = inode->i_sb->s_fs_info;
 569        struct task_struct *task;
 570        bool has_perms;
 571
 572        task = get_proc_task(inode);
 573        if (!task)
 574                return -ESRCH;
 575        has_perms = has_pid_permissions(pid, task, 1);
 576        put_task_struct(task);
 577
 578        if (!has_perms) {
 579                if (pid->hide_pid == 2) {
 580                        /*
 581                         * Let's make getdents(), stat(), and open()
 582                         * consistent with each other.  If a process
 583                         * may not stat() a file, it shouldn't be seen
 584                         * in procfs at all.
 585                         */
 586                        return -ENOENT;
 587                }
 588
 589                return -EPERM;
 590        }
 591        return generic_permission(inode, mask);
 592}
 593
 594
 595
 596static const struct inode_operations proc_def_inode_operations = {
 597        .setattr        = proc_setattr,
 598};
 599
 600#define PROC_BLOCK_SIZE (3*1024)                /* 4K page size but our output routines use some slack for overruns */
 601
 602static ssize_t proc_info_read(struct file * file, char __user * buf,
 603                          size_t count, loff_t *ppos)
 604{
 605        struct inode * inode = file->f_path.dentry->d_inode;
 606        unsigned long page;
 607        ssize_t length;
 608        struct task_struct *task = get_proc_task(inode);
 609
 610        length = -ESRCH;
 611        if (!task)
 612                goto out_no_task;
 613
 614        if (count > PROC_BLOCK_SIZE)
 615                count = PROC_BLOCK_SIZE;
 616
 617        length = -ENOMEM;
 618        if (!(page = __get_free_page(GFP_TEMPORARY)))
 619                goto out;
 620
 621        length = PROC_I(inode)->op.proc_read(task, (char*)page);
 622
 623        if (length >= 0)
 624                length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 625        free_page(page);
 626out:
 627        put_task_struct(task);
 628out_no_task:
 629        return length;
 630}
 631
 632static const struct file_operations proc_info_file_operations = {
 633        .read           = proc_info_read,
 634        .llseek         = generic_file_llseek,
 635};
 636
 637static int proc_single_show(struct seq_file *m, void *v)
 638{
 639        struct inode *inode = m->private;
 640        struct pid_namespace *ns;
 641        struct pid *pid;
 642        struct task_struct *task;
 643        int ret;
 644
 645        ns = inode->i_sb->s_fs_info;
 646        pid = proc_pid(inode);
 647        task = get_pid_task(pid, PIDTYPE_PID);
 648        if (!task)
 649                return -ESRCH;
 650
 651        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 652
 653        put_task_struct(task);
 654        return ret;
 655}
 656
 657static int proc_single_open(struct inode *inode, struct file *filp)
 658{
 659        return single_open(filp, proc_single_show, inode);
 660}
 661
 662static const struct file_operations proc_single_file_operations = {
 663        .open           = proc_single_open,
 664        .read           = seq_read,
 665        .llseek         = seq_lseek,
 666        .release        = single_release,
 667};
 668
 669static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 670{
 671        struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 672        struct mm_struct *mm;
 673
 674        if (!task)
 675                return -ESRCH;
 676
 677        mm = mm_access(task, mode);
 678        put_task_struct(task);
 679
 680        if (IS_ERR(mm))
 681                return PTR_ERR(mm);
 682
 683        if (mm) {
 684                /* ensure this mm_struct can't be freed */
 685                atomic_inc(&mm->mm_count);
 686                /* but do not pin its memory */
 687                mmput(mm);
 688        }
 689
 690        file->private_data = mm;
 691
 692        return 0;
 693}
 694
 695static int mem_open(struct inode *inode, struct file *file)
 696{
 697        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 698
 699        /* OK to pass negative loff_t, we can catch out-of-range */
 700        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 701
 702        return ret;
 703}
 704
 705static ssize_t mem_rw(struct file *file, char __user *buf,
 706                        size_t count, loff_t *ppos, int write)
 707{
 708        struct mm_struct *mm = file->private_data;
 709        unsigned long addr = *ppos;
 710        ssize_t copied;
 711        char *page;
 712
 713        if (!mm)
 714                return 0;
 715
 716        page = (char *)__get_free_page(GFP_TEMPORARY);
 717        if (!page)
 718                return -ENOMEM;
 719
 720        copied = 0;
 721        if (!atomic_inc_not_zero(&mm->mm_users))
 722                goto free;
 723
 724        while (count > 0) {
 725                int this_len = min_t(int, count, PAGE_SIZE);
 726
 727                if (write && copy_from_user(page, buf, this_len)) {
 728                        copied = -EFAULT;
 729                        break;
 730                }
 731
 732                this_len = access_remote_vm(mm, addr, page, this_len, write);
 733                if (!this_len) {
 734                        if (!copied)
 735                                copied = -EIO;
 736                        break;
 737                }
 738
 739                if (!write && copy_to_user(buf, page, this_len)) {
 740                        copied = -EFAULT;
 741                        break;
 742                }
 743
 744                buf += this_len;
 745                addr += this_len;
 746                copied += this_len;
 747                count -= this_len;
 748        }
 749        *ppos = addr;
 750
 751        mmput(mm);
 752free:
 753        free_page((unsigned long) page);
 754        return copied;
 755}
 756
 757static ssize_t mem_read(struct file *file, char __user *buf,
 758                        size_t count, loff_t *ppos)
 759{
 760        return mem_rw(file, buf, count, ppos, 0);
 761}
 762
 763static ssize_t mem_write(struct file *file, const char __user *buf,
 764                         size_t count, loff_t *ppos)
 765{
 766        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 767}
 768
 769loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 770{
 771        switch (orig) {
 772        case 0:
 773                file->f_pos = offset;
 774                break;
 775        case 1:
 776                file->f_pos += offset;
 777                break;
 778        default:
 779                return -EINVAL;
 780        }
 781        force_successful_syscall_return();
 782        return file->f_pos;
 783}
 784
 785static int mem_release(struct inode *inode, struct file *file)
 786{
 787        struct mm_struct *mm = file->private_data;
 788        if (mm)
 789                mmdrop(mm);
 790        return 0;
 791}
 792
 793static const struct file_operations proc_mem_operations = {
 794        .llseek         = mem_lseek,
 795        .read           = mem_read,
 796        .write          = mem_write,
 797        .open           = mem_open,
 798        .release        = mem_release,
 799};
 800
 801static int environ_open(struct inode *inode, struct file *file)
 802{
 803        return __mem_open(inode, file, PTRACE_MODE_READ);
 804}
 805
 806static ssize_t environ_read(struct file *file, char __user *buf,
 807                        size_t count, loff_t *ppos)
 808{
 809        char *page;
 810        unsigned long src = *ppos;
 811        int ret = 0;
 812        struct mm_struct *mm = file->private_data;
 813
 814        if (!mm)
 815                return 0;
 816
 817        page = (char *)__get_free_page(GFP_TEMPORARY);
 818        if (!page)
 819                return -ENOMEM;
 820
 821        ret = 0;
 822        if (!atomic_inc_not_zero(&mm->mm_users))
 823                goto free;
 824        while (count > 0) {
 825                size_t this_len, max_len;
 826                int retval;
 827
 828                if (src >= (mm->env_end - mm->env_start))
 829                        break;
 830
 831                this_len = mm->env_end - (mm->env_start + src);
 832
 833                max_len = min_t(size_t, PAGE_SIZE, count);
 834                this_len = min(max_len, this_len);
 835
 836                retval = access_remote_vm(mm, (mm->env_start + src),
 837                        page, this_len, 0);
 838
 839                if (retval <= 0) {
 840                        ret = retval;
 841                        break;
 842                }
 843
 844                if (copy_to_user(buf, page, retval)) {
 845                        ret = -EFAULT;
 846                        break;
 847                }
 848
 849                ret += retval;
 850                src += retval;
 851                buf += retval;
 852                count -= retval;
 853        }
 854        *ppos = src;
 855        mmput(mm);
 856
 857free:
 858        free_page((unsigned long) page);
 859        return ret;
 860}
 861
 862static const struct file_operations proc_environ_operations = {
 863        .open           = environ_open,
 864        .read           = environ_read,
 865        .llseek         = generic_file_llseek,
 866        .release        = mem_release,
 867};
 868
 869static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
 870                            loff_t *ppos)
 871{
 872        struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 873        char buffer[PROC_NUMBUF];
 874        int oom_adj = OOM_ADJUST_MIN;
 875        size_t len;
 876        unsigned long flags;
 877
 878        if (!task)
 879                return -ESRCH;
 880        if (lock_task_sighand(task, &flags)) {
 881                if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
 882                        oom_adj = OOM_ADJUST_MAX;
 883                else
 884                        oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
 885                                  OOM_SCORE_ADJ_MAX;
 886                unlock_task_sighand(task, &flags);
 887        }
 888        put_task_struct(task);
 889        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
 890        return simple_read_from_buffer(buf, count, ppos, buffer, len);
 891}
 892
 893static ssize_t oom_adj_write(struct file *file, const char __user *buf,
 894                             size_t count, loff_t *ppos)
 895{
 896        struct task_struct *task;
 897        char buffer[PROC_NUMBUF];
 898        int oom_adj;
 899        unsigned long flags;
 900        int err;
 901
 902        memset(buffer, 0, sizeof(buffer));
 903        if (count > sizeof(buffer) - 1)
 904                count = sizeof(buffer) - 1;
 905        if (copy_from_user(buffer, buf, count)) {
 906                err = -EFAULT;
 907                goto out;
 908        }
 909
 910        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
 911        if (err)
 912                goto out;
 913        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
 914             oom_adj != OOM_DISABLE) {
 915                err = -EINVAL;
 916                goto out;
 917        }
 918
 919        task = get_proc_task(file->f_path.dentry->d_inode);
 920        if (!task) {
 921                err = -ESRCH;
 922                goto out;
 923        }
 924
 925        task_lock(task);
 926        if (!task->mm) {
 927                err = -EINVAL;
 928                goto err_task_lock;
 929        }
 930
 931        if (!lock_task_sighand(task, &flags)) {
 932                err = -ESRCH;
 933                goto err_task_lock;
 934        }
 935
 936        /*
 937         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
 938         * value is always attainable.
 939         */
 940        if (oom_adj == OOM_ADJUST_MAX)
 941                oom_adj = OOM_SCORE_ADJ_MAX;
 942        else
 943                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
 944
 945        if (oom_adj < task->signal->oom_score_adj &&
 946            !capable(CAP_SYS_RESOURCE)) {
 947                err = -EACCES;
 948                goto err_sighand;
 949        }
 950
 951        /*
 952         * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
 953         * /proc/pid/oom_score_adj instead.
 954         */
 955        printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
 956                  current->comm, task_pid_nr(current), task_pid_nr(task),
 957                  task_pid_nr(task));
 958
 959        task->signal->oom_score_adj = oom_adj;
 960        trace_oom_score_adj_update(task);
 961err_sighand:
 962        unlock_task_sighand(task, &flags);
 963err_task_lock:
 964        task_unlock(task);
 965        put_task_struct(task);
 966out:
 967        return err < 0 ? err : count;
 968}
 969
 970static const struct file_operations proc_oom_adj_operations = {
 971        .read           = oom_adj_read,
 972        .write          = oom_adj_write,
 973        .llseek         = generic_file_llseek,
 974};
 975
 976static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
 977                                        size_t count, loff_t *ppos)
 978{
 979        struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 980        char buffer[PROC_NUMBUF];
 981        short oom_score_adj = OOM_SCORE_ADJ_MIN;
 982        unsigned long flags;
 983        size_t len;
 984
 985        if (!task)
 986                return -ESRCH;
 987        if (lock_task_sighand(task, &flags)) {
 988                oom_score_adj = task->signal->oom_score_adj;
 989                unlock_task_sighand(task, &flags);
 990        }
 991        put_task_struct(task);
 992        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
 993        return simple_read_from_buffer(buf, count, ppos, buffer, len);
 994}
 995
 996static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
 997                                        size_t count, loff_t *ppos)
 998{
 999        struct task_struct *task;
1000        char buffer[PROC_NUMBUF];
1001        unsigned long flags;
1002        int oom_score_adj;
1003        int err;
1004
1005        memset(buffer, 0, sizeof(buffer));
1006        if (count > sizeof(buffer) - 1)
1007                count = sizeof(buffer) - 1;
1008        if (copy_from_user(buffer, buf, count)) {
1009                err = -EFAULT;
1010                goto out;
1011        }
1012
1013        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1014        if (err)
1015                goto out;
1016        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1017                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1018                err = -EINVAL;
1019                goto out;
1020        }
1021
1022        task = get_proc_task(file->f_path.dentry->d_inode);
1023        if (!task) {
1024                err = -ESRCH;
1025                goto out;
1026        }
1027
1028        task_lock(task);
1029        if (!task->mm) {
1030                err = -EINVAL;
1031                goto err_task_lock;
1032        }
1033
1034        if (!lock_task_sighand(task, &flags)) {
1035                err = -ESRCH;
1036                goto err_task_lock;
1037        }
1038
1039        if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1040                        !capable(CAP_SYS_RESOURCE)) {
1041                err = -EACCES;
1042                goto err_sighand;
1043        }
1044
1045        task->signal->oom_score_adj = (short)oom_score_adj;
1046        if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1047                task->signal->oom_score_adj_min = (short)oom_score_adj;
1048        trace_oom_score_adj_update(task);
1049
1050err_sighand:
1051        unlock_task_sighand(task, &flags);
1052err_task_lock:
1053        task_unlock(task);
1054        put_task_struct(task);
1055out:
1056        return err < 0 ? err : count;
1057}
1058
1059static const struct file_operations proc_oom_score_adj_operations = {
1060        .read           = oom_score_adj_read,
1061        .write          = oom_score_adj_write,
1062        .llseek         = default_llseek,
1063};
1064
1065#ifdef CONFIG_AUDITSYSCALL
1066#define TMPBUFLEN 21
1067static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1068                                  size_t count, loff_t *ppos)
1069{
1070        struct inode * inode = file->f_path.dentry->d_inode;
1071        struct task_struct *task = get_proc_task(inode);
1072        ssize_t length;
1073        char tmpbuf[TMPBUFLEN];
1074
1075        if (!task)
1076                return -ESRCH;
1077        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1078                           from_kuid(file->f_cred->user_ns,
1079                                     audit_get_loginuid(task)));
1080        put_task_struct(task);
1081        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1082}
1083
1084static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1085                                   size_t count, loff_t *ppos)
1086{
1087        struct inode * inode = file->f_path.dentry->d_inode;
1088        char *page, *tmp;
1089        ssize_t length;
1090        uid_t loginuid;
1091        kuid_t kloginuid;
1092
1093        rcu_read_lock();
1094        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1095                rcu_read_unlock();
1096                return -EPERM;
1097        }
1098        rcu_read_unlock();
1099
1100        if (count >= PAGE_SIZE)
1101                count = PAGE_SIZE - 1;
1102
1103        if (*ppos != 0) {
1104                /* No partial writes. */
1105                return -EINVAL;
1106        }
1107        page = (char*)__get_free_page(GFP_TEMPORARY);
1108        if (!page)
1109                return -ENOMEM;
1110        length = -EFAULT;
1111        if (copy_from_user(page, buf, count))
1112                goto out_free_page;
1113
1114        page[count] = '\0';
1115        loginuid = simple_strtoul(page, &tmp, 10);
1116        if (tmp == page) {
1117                length = -EINVAL;
1118                goto out_free_page;
1119
1120        }
1121        kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1122        if (!uid_valid(kloginuid)) {
1123                length = -EINVAL;
1124                goto out_free_page;
1125        }
1126
1127        length = audit_set_loginuid(kloginuid);
1128        if (likely(length == 0))
1129                length = count;
1130
1131out_free_page:
1132        free_page((unsigned long) page);
1133        return length;
1134}
1135
1136static const struct file_operations proc_loginuid_operations = {
1137        .read           = proc_loginuid_read,
1138        .write          = proc_loginuid_write,
1139        .llseek         = generic_file_llseek,
1140};
1141
1142static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1143                                  size_t count, loff_t *ppos)
1144{
1145        struct inode * inode = file->f_path.dentry->d_inode;
1146        struct task_struct *task = get_proc_task(inode);
1147        ssize_t length;
1148        char tmpbuf[TMPBUFLEN];
1149
1150        if (!task)
1151                return -ESRCH;
1152        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1153                                audit_get_sessionid(task));
1154        put_task_struct(task);
1155        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1156}
1157
1158static const struct file_operations proc_sessionid_operations = {
1159        .read           = proc_sessionid_read,
1160        .llseek         = generic_file_llseek,
1161};
1162#endif
1163
1164#ifdef CONFIG_FAULT_INJECTION
1165static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1166                                      size_t count, loff_t *ppos)
1167{
1168        struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1169        char buffer[PROC_NUMBUF];
1170        size_t len;
1171        int make_it_fail;
1172
1173        if (!task)
1174                return -ESRCH;
1175        make_it_fail = task->make_it_fail;
1176        put_task_struct(task);
1177
1178        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1179
1180        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181}
1182
1183static ssize_t proc_fault_inject_write(struct file * file,
1184                        const char __user * buf, size_t count, loff_t *ppos)
1185{
1186        struct task_struct *task;
1187        char buffer[PROC_NUMBUF], *end;
1188        int make_it_fail;
1189
1190        if (!capable(CAP_SYS_RESOURCE))
1191                return -EPERM;
1192        memset(buffer, 0, sizeof(buffer));
1193        if (count > sizeof(buffer) - 1)
1194                count = sizeof(buffer) - 1;
1195        if (copy_from_user(buffer, buf, count))
1196                return -EFAULT;
1197        make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1198        if (*end)
1199                return -EINVAL;
1200        task = get_proc_task(file->f_dentry->d_inode);
1201        if (!task)
1202                return -ESRCH;
1203        task->make_it_fail = make_it_fail;
1204        put_task_struct(task);
1205
1206        return count;
1207}
1208
1209static const struct file_operations proc_fault_inject_operations = {
1210        .read           = proc_fault_inject_read,
1211        .write          = proc_fault_inject_write,
1212        .llseek         = generic_file_llseek,
1213};
1214#endif
1215
1216
1217#ifdef CONFIG_SCHED_DEBUG
1218/*
1219 * Print out various scheduling related per-task fields:
1220 */
1221static int sched_show(struct seq_file *m, void *v)
1222{
1223        struct inode *inode = m->private;
1224        struct task_struct *p;
1225
1226        p = get_proc_task(inode);
1227        if (!p)
1228                return -ESRCH;
1229        proc_sched_show_task(p, m);
1230
1231        put_task_struct(p);
1232
1233        return 0;
1234}
1235
1236static ssize_t
1237sched_write(struct file *file, const char __user *buf,
1238            size_t count, loff_t *offset)
1239{
1240        struct inode *inode = file->f_path.dentry->d_inode;
1241        struct task_struct *p;
1242
1243        p = get_proc_task(inode);
1244        if (!p)
1245                return -ESRCH;
1246        proc_sched_set_task(p);
1247
1248        put_task_struct(p);
1249
1250        return count;
1251}
1252
1253static int sched_open(struct inode *inode, struct file *filp)
1254{
1255        return single_open(filp, sched_show, inode);
1256}
1257
1258static const struct file_operations proc_pid_sched_operations = {
1259        .open           = sched_open,
1260        .read           = seq_read,
1261        .write          = sched_write,
1262        .llseek         = seq_lseek,
1263        .release        = single_release,
1264};
1265
1266#endif
1267
1268#ifdef CONFIG_SCHED_AUTOGROUP
1269/*
1270 * Print out autogroup related information:
1271 */
1272static int sched_autogroup_show(struct seq_file *m, void *v)
1273{
1274        struct inode *inode = m->private;
1275        struct task_struct *p;
1276
1277        p = get_proc_task(inode);
1278        if (!p)
1279                return -ESRCH;
1280        proc_sched_autogroup_show_task(p, m);
1281
1282        put_task_struct(p);
1283
1284        return 0;
1285}
1286
1287static ssize_t
1288sched_autogroup_write(struct file *file, const char __user *buf,
1289            size_t count, loff_t *offset)
1290{
1291        struct inode *inode = file->f_path.dentry->d_inode;
1292        struct task_struct *p;
1293        char buffer[PROC_NUMBUF];
1294        int nice;
1295        int err;
1296
1297        memset(buffer, 0, sizeof(buffer));
1298        if (count > sizeof(buffer) - 1)
1299                count = sizeof(buffer) - 1;
1300        if (copy_from_user(buffer, buf, count))
1301                return -EFAULT;
1302
1303        err = kstrtoint(strstrip(buffer), 0, &nice);
1304        if (err < 0)
1305                return err;
1306
1307        p = get_proc_task(inode);
1308        if (!p)
1309                return -ESRCH;
1310
1311        err = proc_sched_autogroup_set_nice(p, nice);
1312        if (err)
1313                count = err;
1314
1315        put_task_struct(p);
1316
1317        return count;
1318}
1319
1320static int sched_autogroup_open(struct inode *inode, struct file *filp)
1321{
1322        int ret;
1323
1324        ret = single_open(filp, sched_autogroup_show, NULL);
1325        if (!ret) {
1326                struct seq_file *m = filp->private_data;
1327
1328                m->private = inode;
1329        }
1330        return ret;
1331}
1332
1333static const struct file_operations proc_pid_sched_autogroup_operations = {
1334        .open           = sched_autogroup_open,
1335        .read           = seq_read,
1336        .write          = sched_autogroup_write,
1337        .llseek         = seq_lseek,
1338        .release        = single_release,
1339};
1340
1341#endif /* CONFIG_SCHED_AUTOGROUP */
1342
1343static ssize_t comm_write(struct file *file, const char __user *buf,
1344                                size_t count, loff_t *offset)
1345{
1346        struct inode *inode = file->f_path.dentry->d_inode;
1347        struct task_struct *p;
1348        char buffer[TASK_COMM_LEN];
1349
1350        memset(buffer, 0, sizeof(buffer));
1351        if (count > sizeof(buffer) - 1)
1352                count = sizeof(buffer) - 1;
1353        if (copy_from_user(buffer, buf, count))
1354                return -EFAULT;
1355
1356        p = get_proc_task(inode);
1357        if (!p)
1358                return -ESRCH;
1359
1360        if (same_thread_group(current, p))
1361                set_task_comm(p, buffer);
1362        else
1363                count = -EINVAL;
1364
1365        put_task_struct(p);
1366
1367        return count;
1368}
1369
1370static int comm_show(struct seq_file *m, void *v)
1371{
1372        struct inode *inode = m->private;
1373        struct task_struct *p;
1374
1375        p = get_proc_task(inode);
1376        if (!p)
1377                return -ESRCH;
1378
1379        task_lock(p);
1380        seq_printf(m, "%s\n", p->comm);
1381        task_unlock(p);
1382
1383        put_task_struct(p);
1384
1385        return 0;
1386}
1387
1388static int comm_open(struct inode *inode, struct file *filp)
1389{
1390        return single_open(filp, comm_show, inode);
1391}
1392
1393static const struct file_operations proc_pid_set_comm_operations = {
1394        .open           = comm_open,
1395        .read           = seq_read,
1396        .write          = comm_write,
1397        .llseek         = seq_lseek,
1398        .release        = single_release,
1399};
1400
1401static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1402{
1403        struct task_struct *task;
1404        struct mm_struct *mm;
1405        struct file *exe_file;
1406
1407        task = get_proc_task(dentry->d_inode);
1408        if (!task)
1409                return -ENOENT;
1410        mm = get_task_mm(task);
1411        put_task_struct(task);
1412        if (!mm)
1413                return -ENOENT;
1414        exe_file = get_mm_exe_file(mm);
1415        mmput(mm);
1416        if (exe_file) {
1417                *exe_path = exe_file->f_path;
1418                path_get(&exe_file->f_path);
1419                fput(exe_file);
1420                return 0;
1421        } else
1422                return -ENOENT;
1423}
1424
1425static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1426{
1427        struct inode *inode = dentry->d_inode;
1428        struct path path;
1429        int error = -EACCES;
1430
1431        /* Are we allowed to snoop on the tasks file descriptors? */
1432        if (!proc_fd_access_allowed(inode))
1433                goto out;
1434
1435        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1436        if (error)
1437                goto out;
1438
1439        nd_jump_link(nd, &path);
1440        return NULL;
1441out:
1442        return ERR_PTR(error);
1443}
1444
1445static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1446{
1447        char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1448        char *pathname;
1449        int len;
1450
1451        if (!tmp)
1452                return -ENOMEM;
1453
1454        pathname = d_path(path, tmp, PAGE_SIZE);
1455        len = PTR_ERR(pathname);
1456        if (IS_ERR(pathname))
1457                goto out;
1458        len = tmp + PAGE_SIZE - 1 - pathname;
1459
1460        if (len > buflen)
1461                len = buflen;
1462        if (copy_to_user(buffer, pathname, len))
1463                len = -EFAULT;
1464 out:
1465        free_page((unsigned long)tmp);
1466        return len;
1467}
1468
1469static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1470{
1471        int error = -EACCES;
1472        struct inode *inode = dentry->d_inode;
1473        struct path path;
1474
1475        /* Are we allowed to snoop on the tasks file descriptors? */
1476        if (!proc_fd_access_allowed(inode))
1477                goto out;
1478
1479        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1480        if (error)
1481                goto out;
1482
1483        error = do_proc_readlink(&path, buffer, buflen);
1484        path_put(&path);
1485out:
1486        return error;
1487}
1488
1489const struct inode_operations proc_pid_link_inode_operations = {
1490        .readlink       = proc_pid_readlink,
1491        .follow_link    = proc_pid_follow_link,
1492        .setattr        = proc_setattr,
1493};
1494
1495
1496/* building an inode */
1497
1498struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1499{
1500        struct inode * inode;
1501        struct proc_inode *ei;
1502        const struct cred *cred;
1503
1504        /* We need a new inode */
1505
1506        inode = new_inode(sb);
1507        if (!inode)
1508                goto out;
1509
1510        /* Common stuff */
1511        ei = PROC_I(inode);
1512        inode->i_ino = get_next_ino();
1513        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1514        inode->i_op = &proc_def_inode_operations;
1515
1516        /*
1517         * grab the reference to task.
1518         */
1519        ei->pid = get_task_pid(task, PIDTYPE_PID);
1520        if (!ei->pid)
1521                goto out_unlock;
1522
1523        if (task_dumpable(task)) {
1524                rcu_read_lock();
1525                cred = __task_cred(task);
1526                inode->i_uid = cred->euid;
1527                inode->i_gid = cred->egid;
1528                rcu_read_unlock();
1529        }
1530        security_task_to_inode(task, inode);
1531
1532out:
1533        return inode;
1534
1535out_unlock:
1536        iput(inode);
1537        return NULL;
1538}
1539
1540int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1541{
1542        struct inode *inode = dentry->d_inode;
1543        struct task_struct *task;
1544        const struct cred *cred;
1545        struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1546
1547        generic_fillattr(inode, stat);
1548
1549        rcu_read_lock();
1550        stat->uid = GLOBAL_ROOT_UID;
1551        stat->gid = GLOBAL_ROOT_GID;
1552        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1553        if (task) {
1554                if (!has_pid_permissions(pid, task, 2)) {
1555                        rcu_read_unlock();
1556                        /*
1557                         * This doesn't prevent learning whether PID exists,
1558                         * it only makes getattr() consistent with readdir().
1559                         */
1560                        return -ENOENT;
1561                }
1562                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1563                    task_dumpable(task)) {
1564                        cred = __task_cred(task);
1565                        stat->uid = cred->euid;
1566                        stat->gid = cred->egid;
1567                }
1568        }
1569        rcu_read_unlock();
1570        return 0;
1571}
1572
1573/* dentry stuff */
1574
1575/*
1576 *      Exceptional case: normally we are not allowed to unhash a busy
1577 * directory. In this case, however, we can do it - no aliasing problems
1578 * due to the way we treat inodes.
1579 *
1580 * Rewrite the inode's ownerships here because the owning task may have
1581 * performed a setuid(), etc.
1582 *
1583 * Before the /proc/pid/status file was created the only way to read
1584 * the effective uid of a /process was to stat /proc/pid.  Reading
1585 * /proc/pid/status is slow enough that procps and other packages
1586 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1587 * made this apply to all per process world readable and executable
1588 * directories.
1589 */
1590int pid_revalidate(struct dentry *dentry, unsigned int flags)
1591{
1592        struct inode *inode;
1593        struct task_struct *task;
1594        const struct cred *cred;
1595
1596        if (flags & LOOKUP_RCU)
1597                return -ECHILD;
1598
1599        inode = dentry->d_inode;
1600        task = get_proc_task(inode);
1601
1602        if (task) {
1603                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1604                    task_dumpable(task)) {
1605                        rcu_read_lock();
1606                        cred = __task_cred(task);
1607                        inode->i_uid = cred->euid;
1608                        inode->i_gid = cred->egid;
1609                        rcu_read_unlock();
1610                } else {
1611                        inode->i_uid = GLOBAL_ROOT_UID;
1612                        inode->i_gid = GLOBAL_ROOT_GID;
1613                }
1614                inode->i_mode &= ~(S_ISUID | S_ISGID);
1615                security_task_to_inode(task, inode);
1616                put_task_struct(task);
1617                return 1;
1618        }
1619        d_drop(dentry);
1620        return 0;
1621}
1622
1623const struct dentry_operations pid_dentry_operations =
1624{
1625        .d_revalidate   = pid_revalidate,
1626        .d_delete       = pid_delete_dentry,
1627};
1628
1629/* Lookups */
1630
1631/*
1632 * Fill a directory entry.
1633 *
1634 * If possible create the dcache entry and derive our inode number and
1635 * file type from dcache entry.
1636 *
1637 * Since all of the proc inode numbers are dynamically generated, the inode
1638 * numbers do not exist until the inode is cache.  This means creating the
1639 * the dcache entry in readdir is necessary to keep the inode numbers
1640 * reported by readdir in sync with the inode numbers reported
1641 * by stat.
1642 */
1643int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1644        const char *name, int len,
1645        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1646{
1647        struct dentry *child, *dir = filp->f_path.dentry;
1648        struct inode *inode;
1649        struct qstr qname;
1650        ino_t ino = 0;
1651        unsigned type = DT_UNKNOWN;
1652
1653        qname.name = name;
1654        qname.len  = len;
1655        qname.hash = full_name_hash(name, len);
1656
1657        child = d_lookup(dir, &qname);
1658        if (!child) {
1659                struct dentry *new;
1660                new = d_alloc(dir, &qname);
1661                if (new) {
1662                        child = instantiate(dir->d_inode, new, task, ptr);
1663                        if (child)
1664                                dput(new);
1665                        else
1666                                child = new;
1667                }
1668        }
1669        if (!child || IS_ERR(child) || !child->d_inode)
1670                goto end_instantiate;
1671        inode = child->d_inode;
1672        if (inode) {
1673                ino = inode->i_ino;
1674                type = inode->i_mode >> 12;
1675        }
1676        dput(child);
1677end_instantiate:
1678        if (!ino)
1679                ino = find_inode_number(dir, &qname);
1680        if (!ino)
1681                ino = 1;
1682        return filldir(dirent, name, len, filp->f_pos, ino, type);
1683}
1684
1685#ifdef CONFIG_CHECKPOINT_RESTORE
1686
1687/*
1688 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1689 * which represent vma start and end addresses.
1690 */
1691static int dname_to_vma_addr(struct dentry *dentry,
1692                             unsigned long *start, unsigned long *end)
1693{
1694        if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1695                return -EINVAL;
1696
1697        return 0;
1698}
1699
1700static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1701{
1702        unsigned long vm_start, vm_end;
1703        bool exact_vma_exists = false;
1704        struct mm_struct *mm = NULL;
1705        struct task_struct *task;
1706        const struct cred *cred;
1707        struct inode *inode;
1708        int status = 0;
1709
1710        if (flags & LOOKUP_RCU)
1711                return -ECHILD;
1712
1713        if (!capable(CAP_SYS_ADMIN)) {
1714                status = -EACCES;
1715                goto out_notask;
1716        }
1717
1718        inode = dentry->d_inode;
1719        task = get_proc_task(inode);
1720        if (!task)
1721                goto out_notask;
1722
1723        mm = mm_access(task, PTRACE_MODE_READ);
1724        if (IS_ERR_OR_NULL(mm))
1725                goto out;
1726
1727        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1728                down_read(&mm->mmap_sem);
1729                exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1730                up_read(&mm->mmap_sem);
1731        }
1732
1733        mmput(mm);
1734
1735        if (exact_vma_exists) {
1736                if (task_dumpable(task)) {
1737                        rcu_read_lock();
1738                        cred = __task_cred(task);
1739                        inode->i_uid = cred->euid;
1740                        inode->i_gid = cred->egid;
1741                        rcu_read_unlock();
1742                } else {
1743                        inode->i_uid = GLOBAL_ROOT_UID;
1744                        inode->i_gid = GLOBAL_ROOT_GID;
1745                }
1746                security_task_to_inode(task, inode);
1747                status = 1;
1748        }
1749
1750out:
1751        put_task_struct(task);
1752
1753out_notask:
1754        if (status <= 0)
1755                d_drop(dentry);
1756
1757        return status;
1758}
1759
1760static const struct dentry_operations tid_map_files_dentry_operations = {
1761        .d_revalidate   = map_files_d_revalidate,
1762        .d_delete       = pid_delete_dentry,
1763};
1764
1765static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1766{
1767        unsigned long vm_start, vm_end;
1768        struct vm_area_struct *vma;
1769        struct task_struct *task;
1770        struct mm_struct *mm;
1771        int rc;
1772
1773        rc = -ENOENT;
1774        task = get_proc_task(dentry->d_inode);
1775        if (!task)
1776                goto out;
1777
1778        mm = get_task_mm(task);
1779        put_task_struct(task);
1780        if (!mm)
1781                goto out;
1782
1783        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1784        if (rc)
1785                goto out_mmput;
1786
1787        down_read(&mm->mmap_sem);
1788        vma = find_exact_vma(mm, vm_start, vm_end);
1789        if (vma && vma->vm_file) {
1790                *path = vma->vm_file->f_path;
1791                path_get(path);
1792                rc = 0;
1793        }
1794        up_read(&mm->mmap_sem);
1795
1796out_mmput:
1797        mmput(mm);
1798out:
1799        return rc;
1800}
1801
1802struct map_files_info {
1803        fmode_t         mode;
1804        unsigned long   len;
1805        unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1806};
1807
1808static struct dentry *
1809proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1810                           struct task_struct *task, const void *ptr)
1811{
1812        fmode_t mode = (fmode_t)(unsigned long)ptr;
1813        struct proc_inode *ei;
1814        struct inode *inode;
1815
1816        inode = proc_pid_make_inode(dir->i_sb, task);
1817        if (!inode)
1818                return ERR_PTR(-ENOENT);
1819
1820        ei = PROC_I(inode);
1821        ei->op.proc_get_link = proc_map_files_get_link;
1822
1823        inode->i_op = &proc_pid_link_inode_operations;
1824        inode->i_size = 64;
1825        inode->i_mode = S_IFLNK;
1826
1827        if (mode & FMODE_READ)
1828                inode->i_mode |= S_IRUSR;
1829        if (mode & FMODE_WRITE)
1830                inode->i_mode |= S_IWUSR;
1831
1832        d_set_d_op(dentry, &tid_map_files_dentry_operations);
1833        d_add(dentry, inode);
1834
1835        return NULL;
1836}
1837
1838static struct dentry *proc_map_files_lookup(struct inode *dir,
1839                struct dentry *dentry, unsigned int flags)
1840{
1841        unsigned long vm_start, vm_end;
1842        struct vm_area_struct *vma;
1843        struct task_struct *task;
1844        struct dentry *result;
1845        struct mm_struct *mm;
1846
1847        result = ERR_PTR(-EACCES);
1848        if (!capable(CAP_SYS_ADMIN))
1849                goto out;
1850
1851        result = ERR_PTR(-ENOENT);
1852        task = get_proc_task(dir);
1853        if (!task)
1854                goto out;
1855
1856        result = ERR_PTR(-EACCES);
1857        if (!ptrace_may_access(task, PTRACE_MODE_READ))
1858                goto out_put_task;
1859
1860        result = ERR_PTR(-ENOENT);
1861        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1862                goto out_put_task;
1863
1864        mm = get_task_mm(task);
1865        if (!mm)
1866                goto out_put_task;
1867
1868        down_read(&mm->mmap_sem);
1869        vma = find_exact_vma(mm, vm_start, vm_end);
1870        if (!vma)
1871                goto out_no_vma;
1872
1873        if (vma->vm_file)
1874                result = proc_map_files_instantiate(dir, dentry, task,
1875                                (void *)(unsigned long)vma->vm_file->f_mode);
1876
1877out_no_vma:
1878        up_read(&mm->mmap_sem);
1879        mmput(mm);
1880out_put_task:
1881        put_task_struct(task);
1882out:
1883        return result;
1884}
1885
1886static const struct inode_operations proc_map_files_inode_operations = {
1887        .lookup         = proc_map_files_lookup,
1888        .permission     = proc_fd_permission,
1889        .setattr        = proc_setattr,
1890};
1891
1892static int
1893proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1894{
1895        struct dentry *dentry = filp->f_path.dentry;
1896        struct inode *inode = dentry->d_inode;
1897        struct vm_area_struct *vma;
1898        struct task_struct *task;
1899        struct mm_struct *mm;
1900        ino_t ino;
1901        int ret;
1902
1903        ret = -EACCES;
1904        if (!capable(CAP_SYS_ADMIN))
1905                goto out;
1906
1907        ret = -ENOENT;
1908        task = get_proc_task(inode);
1909        if (!task)
1910                goto out;
1911
1912        ret = -EACCES;
1913        if (!ptrace_may_access(task, PTRACE_MODE_READ))
1914                goto out_put_task;
1915
1916        ret = 0;
1917        switch (filp->f_pos) {
1918        case 0:
1919                ino = inode->i_ino;
1920                if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1921                        goto out_put_task;
1922                filp->f_pos++;
1923        case 1:
1924                ino = parent_ino(dentry);
1925                if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1926                        goto out_put_task;
1927                filp->f_pos++;
1928        default:
1929        {
1930                unsigned long nr_files, pos, i;
1931                struct flex_array *fa = NULL;
1932                struct map_files_info info;
1933                struct map_files_info *p;
1934
1935                mm = get_task_mm(task);
1936                if (!mm)
1937                        goto out_put_task;
1938                down_read(&mm->mmap_sem);
1939
1940                nr_files = 0;
1941
1942                /*
1943                 * We need two passes here:
1944                 *
1945                 *  1) Collect vmas of mapped files with mmap_sem taken
1946                 *  2) Release mmap_sem and instantiate entries
1947                 *
1948                 * otherwise we get lockdep complained, since filldir()
1949                 * routine might require mmap_sem taken in might_fault().
1950                 */
1951
1952                for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1953                        if (vma->vm_file && ++pos > filp->f_pos)
1954                                nr_files++;
1955                }
1956
1957                if (nr_files) {
1958                        fa = flex_array_alloc(sizeof(info), nr_files,
1959                                                GFP_KERNEL);
1960                        if (!fa || flex_array_prealloc(fa, 0, nr_files,
1961                                                        GFP_KERNEL)) {
1962                                ret = -ENOMEM;
1963                                if (fa)
1964                                        flex_array_free(fa);
1965                                up_read(&mm->mmap_sem);
1966                                mmput(mm);
1967                                goto out_put_task;
1968                        }
1969                        for (i = 0, vma = mm->mmap, pos = 2; vma;
1970                                        vma = vma->vm_next) {
1971                                if (!vma->vm_file)
1972                                        continue;
1973                                if (++pos <= filp->f_pos)
1974                                        continue;
1975
1976                                info.mode = vma->vm_file->f_mode;
1977                                info.len = snprintf(info.name,
1978                                                sizeof(info.name), "%lx-%lx",
1979                                                vma->vm_start, vma->vm_end);
1980                                if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1981                                        BUG();
1982                        }
1983                }
1984                up_read(&mm->mmap_sem);
1985
1986                for (i = 0; i < nr_files; i++) {
1987                        p = flex_array_get(fa, i);
1988                        ret = proc_fill_cache(filp, dirent, filldir,
1989                                              p->name, p->len,
1990                                              proc_map_files_instantiate,
1991                                              task,
1992                                              (void *)(unsigned long)p->mode);
1993                        if (ret)
1994                                break;
1995                        filp->f_pos++;
1996                }
1997                if (fa)
1998                        flex_array_free(fa);
1999                mmput(mm);
2000        }
2001        }
2002
2003out_put_task:
2004        put_task_struct(task);
2005out:
2006        return ret;
2007}
2008
2009static const struct file_operations proc_map_files_operations = {
2010        .read           = generic_read_dir,
2011        .readdir        = proc_map_files_readdir,
2012        .llseek         = default_llseek,
2013};
2014
2015#endif /* CONFIG_CHECKPOINT_RESTORE */
2016
2017static struct dentry *proc_pident_instantiate(struct inode *dir,
2018        struct dentry *dentry, struct task_struct *task, const void *ptr)
2019{
2020        const struct pid_entry *p = ptr;
2021        struct inode *inode;
2022        struct proc_inode *ei;
2023        struct dentry *error = ERR_PTR(-ENOENT);
2024
2025        inode = proc_pid_make_inode(dir->i_sb, task);
2026        if (!inode)
2027                goto out;
2028
2029        ei = PROC_I(inode);
2030        inode->i_mode = p->mode;
2031        if (S_ISDIR(inode->i_mode))
2032                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2033        if (p->iop)
2034                inode->i_op = p->iop;
2035        if (p->fop)
2036                inode->i_fop = p->fop;
2037        ei->op = p->op;
2038        d_set_d_op(dentry, &pid_dentry_operations);
2039        d_add(dentry, inode);
2040        /* Close the race of the process dying before we return the dentry */
2041        if (pid_revalidate(dentry, 0))
2042                error = NULL;
2043out:
2044        return error;
2045}
2046
2047static struct dentry *proc_pident_lookup(struct inode *dir, 
2048                                         struct dentry *dentry,
2049                                         const struct pid_entry *ents,
2050                                         unsigned int nents)
2051{
2052        struct dentry *error;
2053        struct task_struct *task = get_proc_task(dir);
2054        const struct pid_entry *p, *last;
2055
2056        error = ERR_PTR(-ENOENT);
2057
2058        if (!task)
2059                goto out_no_task;
2060
2061        /*
2062         * Yes, it does not scale. And it should not. Don't add
2063         * new entries into /proc/<tgid>/ without very good reasons.
2064         */
2065        last = &ents[nents - 1];
2066        for (p = ents; p <= last; p++) {
2067                if (p->len != dentry->d_name.len)
2068                        continue;
2069                if (!memcmp(dentry->d_name.name, p->name, p->len))
2070                        break;
2071        }
2072        if (p > last)
2073                goto out;
2074
2075        error = proc_pident_instantiate(dir, dentry, task, p);
2076out:
2077        put_task_struct(task);
2078out_no_task:
2079        return error;
2080}
2081
2082static int proc_pident_fill_cache(struct file *filp, void *dirent,
2083        filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2084{
2085        return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2086                                proc_pident_instantiate, task, p);
2087}
2088
2089static int proc_pident_readdir(struct file *filp,
2090                void *dirent, filldir_t filldir,
2091                const struct pid_entry *ents, unsigned int nents)
2092{
2093        int i;
2094        struct dentry *dentry = filp->f_path.dentry;
2095        struct inode *inode = dentry->d_inode;
2096        struct task_struct *task = get_proc_task(inode);
2097        const struct pid_entry *p, *last;
2098        ino_t ino;
2099        int ret;
2100
2101        ret = -ENOENT;
2102        if (!task)
2103                goto out_no_task;
2104
2105        ret = 0;
2106        i = filp->f_pos;
2107        switch (i) {
2108        case 0:
2109                ino = inode->i_ino;
2110                if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2111                        goto out;
2112                i++;
2113                filp->f_pos++;
2114                /* fall through */
2115        case 1:
2116                ino = parent_ino(dentry);
2117                if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2118                        goto out;
2119                i++;
2120                filp->f_pos++;
2121                /* fall through */
2122        default:
2123                i -= 2;
2124                if (i >= nents) {
2125                        ret = 1;
2126                        goto out;
2127                }
2128                p = ents + i;
2129                last = &ents[nents - 1];
2130                while (p <= last) {
2131                        if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2132                                goto out;
2133                        filp->f_pos++;
2134                        p++;
2135                }
2136        }
2137
2138        ret = 1;
2139out:
2140        put_task_struct(task);
2141out_no_task:
2142        return ret;
2143}
2144
2145#ifdef CONFIG_SECURITY
2146static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2147                                  size_t count, loff_t *ppos)
2148{
2149        struct inode * inode = file->f_path.dentry->d_inode;
2150        char *p = NULL;
2151        ssize_t length;
2152        struct task_struct *task = get_proc_task(inode);
2153
2154        if (!task)
2155                return -ESRCH;
2156
2157        length = security_getprocattr(task,
2158                                      (char*)file->f_path.dentry->d_name.name,
2159                                      &p);
2160        put_task_struct(task);
2161        if (length > 0)
2162                length = simple_read_from_buffer(buf, count, ppos, p, length);
2163        kfree(p);
2164        return length;
2165}
2166
2167static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2168                                   size_t count, loff_t *ppos)
2169{
2170        struct inode * inode = file->f_path.dentry->d_inode;
2171        char *page;
2172        ssize_t length;
2173        struct task_struct *task = get_proc_task(inode);
2174
2175        length = -ESRCH;
2176        if (!task)
2177                goto out_no_task;
2178        if (count > PAGE_SIZE)
2179                count = PAGE_SIZE;
2180
2181        /* No partial writes. */
2182        length = -EINVAL;
2183        if (*ppos != 0)
2184                goto out;
2185
2186        length = -ENOMEM;
2187        page = (char*)__get_free_page(GFP_TEMPORARY);
2188        if (!page)
2189                goto out;
2190
2191        length = -EFAULT;
2192        if (copy_from_user(page, buf, count))
2193                goto out_free;
2194
2195        /* Guard against adverse ptrace interaction */
2196        length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2197        if (length < 0)
2198                goto out_free;
2199
2200        length = security_setprocattr(task,
2201                                      (char*)file->f_path.dentry->d_name.name,
2202                                      (void*)page, count);
2203        mutex_unlock(&task->signal->cred_guard_mutex);
2204out_free:
2205        free_page((unsigned long) page);
2206out:
2207        put_task_struct(task);
2208out_no_task:
2209        return length;
2210}
2211
2212static const struct file_operations proc_pid_attr_operations = {
2213        .read           = proc_pid_attr_read,
2214        .write          = proc_pid_attr_write,
2215        .llseek         = generic_file_llseek,
2216};
2217
2218static const struct pid_entry attr_dir_stuff[] = {
2219        REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2220        REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2221        REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2222        REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2223        REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2224        REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2225};
2226
2227static int proc_attr_dir_readdir(struct file * filp,
2228                             void * dirent, filldir_t filldir)
2229{
2230        return proc_pident_readdir(filp,dirent,filldir,
2231                                   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2232}
2233
2234static const struct file_operations proc_attr_dir_operations = {
2235        .read           = generic_read_dir,
2236        .readdir        = proc_attr_dir_readdir,
2237        .llseek         = default_llseek,
2238};
2239
2240static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2241                                struct dentry *dentry, unsigned int flags)
2242{
2243        return proc_pident_lookup(dir, dentry,
2244                                  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2245}
2246
2247static const struct inode_operations proc_attr_dir_inode_operations = {
2248        .lookup         = proc_attr_dir_lookup,
2249        .getattr        = pid_getattr,
2250        .setattr        = proc_setattr,
2251};
2252
2253#endif
2254
2255#ifdef CONFIG_ELF_CORE
2256static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2257                                         size_t count, loff_t *ppos)
2258{
2259        struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2260        struct mm_struct *mm;
2261        char buffer[PROC_NUMBUF];
2262        size_t len;
2263        int ret;
2264
2265        if (!task)
2266                return -ESRCH;
2267
2268        ret = 0;
2269        mm = get_task_mm(task);
2270        if (mm) {
2271                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2272                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2273                                MMF_DUMP_FILTER_SHIFT));
2274                mmput(mm);
2275                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2276        }
2277
2278        put_task_struct(task);
2279
2280        return ret;
2281}
2282
2283static ssize_t proc_coredump_filter_write(struct file *file,
2284                                          const char __user *buf,
2285                                          size_t count,
2286                                          loff_t *ppos)
2287{
2288        struct task_struct *task;
2289        struct mm_struct *mm;
2290        char buffer[PROC_NUMBUF], *end;
2291        unsigned int val;
2292        int ret;
2293        int i;
2294        unsigned long mask;
2295
2296        ret = -EFAULT;
2297        memset(buffer, 0, sizeof(buffer));
2298        if (count > sizeof(buffer) - 1)
2299                count = sizeof(buffer) - 1;
2300        if (copy_from_user(buffer, buf, count))
2301                goto out_no_task;
2302
2303        ret = -EINVAL;
2304        val = (unsigned int)simple_strtoul(buffer, &end, 0);
2305        if (*end == '\n')
2306                end++;
2307        if (end - buffer == 0)
2308                goto out_no_task;
2309
2310        ret = -ESRCH;
2311        task = get_proc_task(file->f_dentry->d_inode);
2312        if (!task)
2313                goto out_no_task;
2314
2315        ret = end - buffer;
2316        mm = get_task_mm(task);
2317        if (!mm)
2318                goto out_no_mm;
2319
2320        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2321                if (val & mask)
2322                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2323                else
2324                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2325        }
2326
2327        mmput(mm);
2328 out_no_mm:
2329        put_task_struct(task);
2330 out_no_task:
2331        return ret;
2332}
2333
2334static const struct file_operations proc_coredump_filter_operations = {
2335        .read           = proc_coredump_filter_read,
2336        .write          = proc_coredump_filter_write,
2337        .llseek         = generic_file_llseek,
2338};
2339#endif
2340
2341#ifdef CONFIG_TASK_IO_ACCOUNTING
2342static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2343{
2344        struct task_io_accounting acct = task->ioac;
2345        unsigned long flags;
2346        int result;
2347
2348        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2349        if (result)
2350                return result;
2351
2352        if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2353                result = -EACCES;
2354                goto out_unlock;
2355        }
2356
2357        if (whole && lock_task_sighand(task, &flags)) {
2358                struct task_struct *t = task;
2359
2360                task_io_accounting_add(&acct, &task->signal->ioac);
2361                while_each_thread(task, t)
2362                        task_io_accounting_add(&acct, &t->ioac);
2363
2364                unlock_task_sighand(task, &flags);
2365        }
2366        result = sprintf(buffer,
2367                        "rchar: %llu\n"
2368                        "wchar: %llu\n"
2369                        "syscr: %llu\n"
2370                        "syscw: %llu\n"
2371                        "read_bytes: %llu\n"
2372                        "write_bytes: %llu\n"
2373                        "cancelled_write_bytes: %llu\n",
2374                        (unsigned long long)acct.rchar,
2375                        (unsigned long long)acct.wchar,
2376                        (unsigned long long)acct.syscr,
2377                        (unsigned long long)acct.syscw,
2378                        (unsigned long long)acct.read_bytes,
2379                        (unsigned long long)acct.write_bytes,
2380                        (unsigned long long)acct.cancelled_write_bytes);
2381out_unlock:
2382        mutex_unlock(&task->signal->cred_guard_mutex);
2383        return result;
2384}
2385
2386static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2387{
2388        return do_io_accounting(task, buffer, 0);
2389}
2390
2391static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2392{
2393        return do_io_accounting(task, buffer, 1);
2394}
2395#endif /* CONFIG_TASK_IO_ACCOUNTING */
2396
2397#ifdef CONFIG_USER_NS
2398static int proc_id_map_open(struct inode *inode, struct file *file,
2399        struct seq_operations *seq_ops)
2400{
2401        struct user_namespace *ns = NULL;
2402        struct task_struct *task;
2403        struct seq_file *seq;
2404        int ret = -EINVAL;
2405
2406        task = get_proc_task(inode);
2407        if (task) {
2408                rcu_read_lock();
2409                ns = get_user_ns(task_cred_xxx(task, user_ns));
2410                rcu_read_unlock();
2411                put_task_struct(task);
2412        }
2413        if (!ns)
2414                goto err;
2415
2416        ret = seq_open(file, seq_ops);
2417        if (ret)
2418                goto err_put_ns;
2419
2420        seq = file->private_data;
2421        seq->private = ns;
2422
2423        return 0;
2424err_put_ns:
2425        put_user_ns(ns);
2426err:
2427        return ret;
2428}
2429
2430static int proc_id_map_release(struct inode *inode, struct file *file)
2431{
2432        struct seq_file *seq = file->private_data;
2433        struct user_namespace *ns = seq->private;
2434        put_user_ns(ns);
2435        return seq_release(inode, file);
2436}
2437
2438static int proc_uid_map_open(struct inode *inode, struct file *file)
2439{
2440        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2441}
2442
2443static int proc_gid_map_open(struct inode *inode, struct file *file)
2444{
2445        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2446}
2447
2448static int proc_projid_map_open(struct inode *inode, struct file *file)
2449{
2450        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2451}
2452
2453static const struct file_operations proc_uid_map_operations = {
2454        .open           = proc_uid_map_open,
2455        .write          = proc_uid_map_write,
2456        .read           = seq_read,
2457        .llseek         = seq_lseek,
2458        .release        = proc_id_map_release,
2459};
2460
2461static const struct file_operations proc_gid_map_operations = {
2462        .open           = proc_gid_map_open,
2463        .write          = proc_gid_map_write,
2464        .read           = seq_read,
2465        .llseek         = seq_lseek,
2466        .release        = proc_id_map_release,
2467};
2468
2469static const struct file_operations proc_projid_map_operations = {
2470        .open           = proc_projid_map_open,
2471        .write          = proc_projid_map_write,
2472        .read           = seq_read,
2473        .llseek         = seq_lseek,
2474        .release        = proc_id_map_release,
2475};
2476#endif /* CONFIG_USER_NS */
2477
2478static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2479                                struct pid *pid, struct task_struct *task)
2480{
2481        int err = lock_trace(task);
2482        if (!err) {
2483                seq_printf(m, "%08x\n", task->personality);
2484                unlock_trace(task);
2485        }
2486        return err;
2487}
2488
2489/*
2490 * Thread groups
2491 */
2492static const struct file_operations proc_task_operations;
2493static const struct inode_operations proc_task_inode_operations;
2494
2495static const struct pid_entry tgid_base_stuff[] = {
2496        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2497        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2498#ifdef CONFIG_CHECKPOINT_RESTORE
2499        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2500#endif
2501        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2502        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2503#ifdef CONFIG_NET
2504        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2505#endif
2506        REG("environ",    S_IRUSR, proc_environ_operations),
2507        INF("auxv",       S_IRUSR, proc_pid_auxv),
2508        ONE("status",     S_IRUGO, proc_pid_status),
2509        ONE("personality", S_IRUGO, proc_pid_personality),
2510        INF("limits",     S_IRUGO, proc_pid_limits),
2511#ifdef CONFIG_SCHED_DEBUG
2512        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2513#endif
2514#ifdef CONFIG_SCHED_AUTOGROUP
2515        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2516#endif
2517        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2518#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2519        INF("syscall",    S_IRUGO, proc_pid_syscall),
2520#endif
2521        INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2522        ONE("stat",       S_IRUGO, proc_tgid_stat),
2523        ONE("statm",      S_IRUGO, proc_pid_statm),
2524        REG("maps",       S_IRUGO, proc_pid_maps_operations),
2525#ifdef CONFIG_NUMA
2526        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2527#endif
2528        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2529        LNK("cwd",        proc_cwd_link),
2530        LNK("root",       proc_root_link),
2531        LNK("exe",        proc_exe_link),
2532        REG("mounts",     S_IRUGO, proc_mounts_operations),
2533        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2534        REG("mountstats", S_IRUSR, proc_mountstats_operations),
2535#ifdef CONFIG_PROC_PAGE_MONITOR
2536        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2537        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2538        REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2539#endif
2540#ifdef CONFIG_SECURITY
2541        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2542#endif
2543#ifdef CONFIG_KALLSYMS
2544        INF("wchan",      S_IRUGO, proc_pid_wchan),
2545#endif
2546#ifdef CONFIG_STACKTRACE
2547        ONE("stack",      S_IRUGO, proc_pid_stack),
2548#endif
2549#ifdef CONFIG_SCHEDSTATS
2550        INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2551#endif
2552#ifdef CONFIG_LATENCYTOP
2553        REG("latency",  S_IRUGO, proc_lstats_operations),
2554#endif
2555#ifdef CONFIG_PROC_PID_CPUSET
2556        REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2557#endif
2558#ifdef CONFIG_CGROUPS
2559        REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2560#endif
2561        INF("oom_score",  S_IRUGO, proc_oom_score),
2562        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2563        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2564#ifdef CONFIG_AUDITSYSCALL
2565        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2566        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2567#endif
2568#ifdef CONFIG_FAULT_INJECTION
2569        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2570#endif
2571#ifdef CONFIG_ELF_CORE
2572        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2573#endif
2574#ifdef CONFIG_TASK_IO_ACCOUNTING
2575        INF("io",       S_IRUSR, proc_tgid_io_accounting),
2576#endif
2577#ifdef CONFIG_HARDWALL
2578        INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2579#endif
2580#ifdef CONFIG_USER_NS
2581        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2582        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2583        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2584#endif
2585};
2586
2587static int proc_tgid_base_readdir(struct file * filp,
2588                             void * dirent, filldir_t filldir)
2589{
2590        return proc_pident_readdir(filp,dirent,filldir,
2591                                   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2592}
2593
2594static const struct file_operations proc_tgid_base_operations = {
2595        .read           = generic_read_dir,
2596        .readdir        = proc_tgid_base_readdir,
2597        .llseek         = default_llseek,
2598};
2599
2600static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2601{
2602        return proc_pident_lookup(dir, dentry,
2603                                  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2604}
2605
2606static const struct inode_operations proc_tgid_base_inode_operations = {
2607        .lookup         = proc_tgid_base_lookup,
2608        .getattr        = pid_getattr,
2609        .setattr        = proc_setattr,
2610        .permission     = proc_pid_permission,
2611};
2612
2613static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2614{
2615        struct dentry *dentry, *leader, *dir;
2616        char buf[PROC_NUMBUF];
2617        struct qstr name;
2618
2619        name.name = buf;
2620        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2621        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2622        if (dentry) {
2623                shrink_dcache_parent(dentry);
2624                d_drop(dentry);
2625                dput(dentry);
2626        }
2627
2628        name.name = buf;
2629        name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2630        leader = d_hash_and_lookup(mnt->mnt_root, &name);
2631        if (!leader)
2632                goto out;
2633
2634        name.name = "task";
2635        name.len = strlen(name.name);
2636        dir = d_hash_and_lookup(leader, &name);
2637        if (!dir)
2638                goto out_put_leader;
2639
2640        name.name = buf;
2641        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2642        dentry = d_hash_and_lookup(dir, &name);
2643        if (dentry) {
2644                shrink_dcache_parent(dentry);
2645                d_drop(dentry);
2646                dput(dentry);
2647        }
2648
2649        dput(dir);
2650out_put_leader:
2651        dput(leader);
2652out:
2653        return;
2654}
2655
2656/**
2657 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2658 * @task: task that should be flushed.
2659 *
2660 * When flushing dentries from proc, one needs to flush them from global
2661 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2662 * in. This call is supposed to do all of this job.
2663 *
2664 * Looks in the dcache for
2665 * /proc/@pid
2666 * /proc/@tgid/task/@pid
2667 * if either directory is present flushes it and all of it'ts children
2668 * from the dcache.
2669 *
2670 * It is safe and reasonable to cache /proc entries for a task until
2671 * that task exits.  After that they just clog up the dcache with
2672 * useless entries, possibly causing useful dcache entries to be
2673 * flushed instead.  This routine is proved to flush those useless
2674 * dcache entries at process exit time.
2675 *
2676 * NOTE: This routine is just an optimization so it does not guarantee
2677 *       that no dcache entries will exist at process exit time it
2678 *       just makes it very unlikely that any will persist.
2679 */
2680
2681void proc_flush_task(struct task_struct *task)
2682{
2683        int i;
2684        struct pid *pid, *tgid;
2685        struct upid *upid;
2686
2687        pid = task_pid(task);
2688        tgid = task_tgid(task);
2689
2690        for (i = 0; i <= pid->level; i++) {
2691                upid = &pid->numbers[i];
2692                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2693                                        tgid->numbers[i].nr);
2694        }
2695}
2696
2697static struct dentry *proc_pid_instantiate(struct inode *dir,
2698                                           struct dentry * dentry,
2699                                           struct task_struct *task, const void *ptr)
2700{
2701        struct dentry *error = ERR_PTR(-ENOENT);
2702        struct inode *inode;
2703
2704        inode = proc_pid_make_inode(dir->i_sb, task);
2705        if (!inode)
2706                goto out;
2707
2708        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2709        inode->i_op = &proc_tgid_base_inode_operations;
2710        inode->i_fop = &proc_tgid_base_operations;
2711        inode->i_flags|=S_IMMUTABLE;
2712
2713        set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2714                                                  ARRAY_SIZE(tgid_base_stuff)));
2715
2716        d_set_d_op(dentry, &pid_dentry_operations);
2717
2718        d_add(dentry, inode);
2719        /* Close the race of the process dying before we return the dentry */
2720        if (pid_revalidate(dentry, 0))
2721                error = NULL;
2722out:
2723        return error;
2724}
2725
2726struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2727{
2728        struct dentry *result = NULL;
2729        struct task_struct *task;
2730        unsigned tgid;
2731        struct pid_namespace *ns;
2732
2733        tgid = name_to_int(dentry);
2734        if (tgid == ~0U)
2735                goto out;
2736
2737        ns = dentry->d_sb->s_fs_info;
2738        rcu_read_lock();
2739        task = find_task_by_pid_ns(tgid, ns);
2740        if (task)
2741                get_task_struct(task);
2742        rcu_read_unlock();
2743        if (!task)
2744                goto out;
2745
2746        result = proc_pid_instantiate(dir, dentry, task, NULL);
2747        put_task_struct(task);
2748out:
2749        return result;
2750}
2751
2752/*
2753 * Find the first task with tgid >= tgid
2754 *
2755 */
2756struct tgid_iter {
2757        unsigned int tgid;
2758        struct task_struct *task;
2759};
2760static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2761{
2762        struct pid *pid;
2763
2764        if (iter.task)
2765                put_task_struct(iter.task);
2766        rcu_read_lock();
2767retry:
2768        iter.task = NULL;
2769        pid = find_ge_pid(iter.tgid, ns);
2770        if (pid) {
2771                iter.tgid = pid_nr_ns(pid, ns);
2772                iter.task = pid_task(pid, PIDTYPE_PID);
2773                /* What we to know is if the pid we have find is the
2774                 * pid of a thread_group_leader.  Testing for task
2775                 * being a thread_group_leader is the obvious thing
2776                 * todo but there is a window when it fails, due to
2777                 * the pid transfer logic in de_thread.
2778                 *
2779                 * So we perform the straight forward test of seeing
2780                 * if the pid we have found is the pid of a thread
2781                 * group leader, and don't worry if the task we have
2782                 * found doesn't happen to be a thread group leader.
2783                 * As we don't care in the case of readdir.
2784                 */
2785                if (!iter.task || !has_group_leader_pid(iter.task)) {
2786                        iter.tgid += 1;
2787                        goto retry;
2788                }
2789                get_task_struct(iter.task);
2790        }
2791        rcu_read_unlock();
2792        return iter;
2793}
2794
2795#define TGID_OFFSET (FIRST_PROCESS_ENTRY)
2796
2797static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2798        struct tgid_iter iter)
2799{
2800        char name[PROC_NUMBUF];
2801        int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2802        return proc_fill_cache(filp, dirent, filldir, name, len,
2803                                proc_pid_instantiate, iter.task, NULL);
2804}
2805
2806static int fake_filldir(void *buf, const char *name, int namelen,
2807                        loff_t offset, u64 ino, unsigned d_type)
2808{
2809        return 0;
2810}
2811
2812/* for the /proc/ directory itself, after non-process stuff has been done */
2813int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2814{
2815        struct tgid_iter iter;
2816        struct pid_namespace *ns;
2817        filldir_t __filldir;
2818
2819        if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2820                goto out;
2821
2822        ns = filp->f_dentry->d_sb->s_fs_info;
2823        iter.task = NULL;
2824        iter.tgid = filp->f_pos - TGID_OFFSET;
2825        for (iter = next_tgid(ns, iter);
2826             iter.task;
2827             iter.tgid += 1, iter = next_tgid(ns, iter)) {
2828                if (has_pid_permissions(ns, iter.task, 2))
2829                        __filldir = filldir;
2830                else
2831                        __filldir = fake_filldir;
2832
2833                filp->f_pos = iter.tgid + TGID_OFFSET;
2834                if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2835                        put_task_struct(iter.task);
2836                        goto out;
2837                }
2838        }
2839        filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2840out:
2841        return 0;
2842}
2843
2844/*
2845 * Tasks
2846 */
2847static const struct pid_entry tid_base_stuff[] = {
2848        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2849        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2850        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2851        REG("environ",   S_IRUSR, proc_environ_operations),
2852        INF("auxv",      S_IRUSR, proc_pid_auxv),
2853        ONE("status",    S_IRUGO, proc_pid_status),
2854        ONE("personality", S_IRUGO, proc_pid_personality),
2855        INF("limits",    S_IRUGO, proc_pid_limits),
2856#ifdef CONFIG_SCHED_DEBUG
2857        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2858#endif
2859        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2860#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2861        INF("syscall",   S_IRUGO, proc_pid_syscall),
2862#endif
2863        INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2864        ONE("stat",      S_IRUGO, proc_tid_stat),
2865        ONE("statm",     S_IRUGO, proc_pid_statm),
2866        REG("maps",      S_IRUGO, proc_tid_maps_operations),
2867#ifdef CONFIG_CHECKPOINT_RESTORE
2868        REG("children",  S_IRUGO, proc_tid_children_operations),
2869#endif
2870#ifdef CONFIG_NUMA
2871        REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2872#endif
2873        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2874        LNK("cwd",       proc_cwd_link),
2875        LNK("root",      proc_root_link),
2876        LNK("exe",       proc_exe_link),
2877        REG("mounts",    S_IRUGO, proc_mounts_operations),
2878        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2879#ifdef CONFIG_PROC_PAGE_MONITOR
2880        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2881        REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2882        REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2883#endif
2884#ifdef CONFIG_SECURITY
2885        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2886#endif
2887#ifdef CONFIG_KALLSYMS
2888        INF("wchan",     S_IRUGO, proc_pid_wchan),
2889#endif
2890#ifdef CONFIG_STACKTRACE
2891        ONE("stack",      S_IRUGO, proc_pid_stack),
2892#endif
2893#ifdef CONFIG_SCHEDSTATS
2894        INF("schedstat", S_IRUGO, proc_pid_schedstat),
2895#endif
2896#ifdef CONFIG_LATENCYTOP
2897        REG("latency",  S_IRUGO, proc_lstats_operations),
2898#endif
2899#ifdef CONFIG_PROC_PID_CPUSET
2900        REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2901#endif
2902#ifdef CONFIG_CGROUPS
2903        REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2904#endif
2905        INF("oom_score", S_IRUGO, proc_oom_score),
2906        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2907        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2908#ifdef CONFIG_AUDITSYSCALL
2909        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2910        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2911#endif
2912#ifdef CONFIG_FAULT_INJECTION
2913        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2914#endif
2915#ifdef CONFIG_TASK_IO_ACCOUNTING
2916        INF("io",       S_IRUSR, proc_tid_io_accounting),
2917#endif
2918#ifdef CONFIG_HARDWALL
2919        INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2920#endif
2921#ifdef CONFIG_USER_NS
2922        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2923        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2924        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2925#endif
2926};
2927
2928static int proc_tid_base_readdir(struct file * filp,
2929                             void * dirent, filldir_t filldir)
2930{
2931        return proc_pident_readdir(filp,dirent,filldir,
2932                                   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2933}
2934
2935static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2936{
2937        return proc_pident_lookup(dir, dentry,
2938                                  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2939}
2940
2941static const struct file_operations proc_tid_base_operations = {
2942        .read           = generic_read_dir,
2943        .readdir        = proc_tid_base_readdir,
2944        .llseek         = default_llseek,
2945};
2946
2947static const struct inode_operations proc_tid_base_inode_operations = {
2948        .lookup         = proc_tid_base_lookup,
2949        .getattr        = pid_getattr,
2950        .setattr        = proc_setattr,
2951};
2952
2953static struct dentry *proc_task_instantiate(struct inode *dir,
2954        struct dentry *dentry, struct task_struct *task, const void *ptr)
2955{
2956        struct dentry *error = ERR_PTR(-ENOENT);
2957        struct inode *inode;
2958        inode = proc_pid_make_inode(dir->i_sb, task);
2959
2960        if (!inode)
2961                goto out;
2962        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2963        inode->i_op = &proc_tid_base_inode_operations;
2964        inode->i_fop = &proc_tid_base_operations;
2965        inode->i_flags|=S_IMMUTABLE;
2966
2967        set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2968                                                  ARRAY_SIZE(tid_base_stuff)));
2969
2970        d_set_d_op(dentry, &pid_dentry_operations);
2971
2972        d_add(dentry, inode);
2973        /* Close the race of the process dying before we return the dentry */
2974        if (pid_revalidate(dentry, 0))
2975                error = NULL;
2976out:
2977        return error;
2978}
2979
2980static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2981{
2982        struct dentry *result = ERR_PTR(-ENOENT);
2983        struct task_struct *task;
2984        struct task_struct *leader = get_proc_task(dir);
2985        unsigned tid;
2986        struct pid_namespace *ns;
2987
2988        if (!leader)
2989                goto out_no_task;
2990
2991        tid = name_to_int(dentry);
2992        if (tid == ~0U)
2993                goto out;
2994
2995        ns = dentry->d_sb->s_fs_info;
2996        rcu_read_lock();
2997        task = find_task_by_pid_ns(tid, ns);
2998        if (task)
2999                get_task_struct(task);
3000        rcu_read_unlock();
3001        if (!task)
3002                goto out;
3003        if (!same_thread_group(leader, task))
3004                goto out_drop_task;
3005
3006        result = proc_task_instantiate(dir, dentry, task, NULL);
3007out_drop_task:
3008        put_task_struct(task);
3009out:
3010        put_task_struct(leader);
3011out_no_task:
3012        return result;
3013}
3014
3015/*
3016 * Find the first tid of a thread group to return to user space.
3017 *
3018 * Usually this is just the thread group leader, but if the users
3019 * buffer was too small or there was a seek into the middle of the
3020 * directory we have more work todo.
3021 *
3022 * In the case of a short read we start with find_task_by_pid.
3023 *
3024 * In the case of a seek we start with the leader and walk nr
3025 * threads past it.
3026 */
3027static struct task_struct *first_tid(struct task_struct *leader,
3028                int tid, int nr, struct pid_namespace *ns)
3029{
3030        struct task_struct *pos;
3031
3032        rcu_read_lock();
3033        /* Attempt to start with the pid of a thread */
3034        if (tid && (nr > 0)) {
3035                pos = find_task_by_pid_ns(tid, ns);
3036                if (pos && (pos->group_leader == leader))
3037                        goto found;
3038        }
3039
3040        /* If nr exceeds the number of threads there is nothing todo */
3041        pos = NULL;
3042        if (nr && nr >= get_nr_threads(leader))
3043                goto out;
3044
3045        /* If we haven't found our starting place yet start
3046         * with the leader and walk nr threads forward.
3047         */
3048        for (pos = leader; nr > 0; --nr) {
3049                pos = next_thread(pos);
3050                if (pos == leader) {
3051                        pos = NULL;
3052                        goto out;
3053                }
3054        }
3055found:
3056        get_task_struct(pos);
3057out:
3058        rcu_read_unlock();
3059        return pos;
3060}
3061
3062/*
3063 * Find the next thread in the thread list.
3064 * Return NULL if there is an error or no next thread.
3065 *
3066 * The reference to the input task_struct is released.
3067 */
3068static struct task_struct *next_tid(struct task_struct *start)
3069{
3070        struct task_struct *pos = NULL;
3071        rcu_read_lock();
3072        if (pid_alive(start)) {
3073                pos = next_thread(start);
3074                if (thread_group_leader(pos))
3075                        pos = NULL;
3076                else
3077                        get_task_struct(pos);
3078        }
3079        rcu_read_unlock();
3080        put_task_struct(start);
3081        return pos;
3082}
3083
3084static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3085        struct task_struct *task, int tid)
3086{
3087        char name[PROC_NUMBUF];
3088        int len = snprintf(name, sizeof(name), "%d", tid);
3089        return proc_fill_cache(filp, dirent, filldir, name, len,
3090                                proc_task_instantiate, task, NULL);
3091}
3092
3093/* for the /proc/TGID/task/ directories */
3094static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3095{
3096        struct dentry *dentry = filp->f_path.dentry;
3097        struct inode *inode = dentry->d_inode;
3098        struct task_struct *leader = NULL;
3099        struct task_struct *task;
3100        int retval = -ENOENT;
3101        ino_t ino;
3102        int tid;
3103        struct pid_namespace *ns;
3104
3105        task = get_proc_task(inode);
3106        if (!task)
3107                goto out_no_task;
3108        rcu_read_lock();
3109        if (pid_alive(task)) {
3110                leader = task->group_leader;
3111                get_task_struct(leader);
3112        }
3113        rcu_read_unlock();
3114        put_task_struct(task);
3115        if (!leader)
3116                goto out_no_task;
3117        retval = 0;
3118
3119        switch ((unsigned long)filp->f_pos) {
3120        case 0:
3121                ino = inode->i_ino;
3122                if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3123                        goto out;
3124                filp->f_pos++;
3125                /* fall through */
3126        case 1:
3127                ino = parent_ino(dentry);
3128                if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3129                        goto out;
3130                filp->f_pos++;
3131                /* fall through */
3132        }
3133
3134        /* f_version caches the tgid value that the last readdir call couldn't
3135         * return. lseek aka telldir automagically resets f_version to 0.
3136         */
3137        ns = filp->f_dentry->d_sb->s_fs_info;
3138        tid = (int)filp->f_version;
3139        filp->f_version = 0;
3140        for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3141             task;
3142             task = next_tid(task), filp->f_pos++) {
3143                tid = task_pid_nr_ns(task, ns);
3144                if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3145                        /* returning this tgid failed, save it as the first
3146                         * pid for the next readir call */
3147                        filp->f_version = (u64)tid;
3148                        put_task_struct(task);
3149                        break;
3150                }
3151        }
3152out:
3153        put_task_struct(leader);
3154out_no_task:
3155        return retval;
3156}
3157
3158static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3159{
3160        struct inode *inode = dentry->d_inode;
3161        struct task_struct *p = get_proc_task(inode);
3162        generic_fillattr(inode, stat);
3163
3164        if (p) {
3165                stat->nlink += get_nr_threads(p);
3166                put_task_struct(p);
3167        }
3168
3169        return 0;
3170}
3171
3172static const struct inode_operations proc_task_inode_operations = {
3173        .lookup         = proc_task_lookup,
3174        .getattr        = proc_task_getattr,
3175        .setattr        = proc_setattr,
3176        .permission     = proc_pid_permission,
3177};
3178
3179static const struct file_operations proc_task_operations = {
3180        .read           = generic_read_dir,
3181        .readdir        = proc_task_readdir,
3182        .llseek         = default_llseek,
3183};
3184