1#ifndef _LINUX_JIFFIES_H 2#define _LINUX_JIFFIES_H 3 4#include <linux/math64.h> 5#include <linux/kernel.h> 6#include <linux/types.h> 7#include <linux/time.h> 8#include <linux/timex.h> 9#include <asm/param.h> /* for HZ */ 10 11/* 12 * The following defines establish the engineering parameters of the PLL 13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 16 * nearest power of two in order to avoid hardware multiply operations. 17 */ 18#if HZ >= 12 && HZ < 24 19# define SHIFT_HZ 4 20#elif HZ >= 24 && HZ < 48 21# define SHIFT_HZ 5 22#elif HZ >= 48 && HZ < 96 23# define SHIFT_HZ 6 24#elif HZ >= 96 && HZ < 192 25# define SHIFT_HZ 7 26#elif HZ >= 192 && HZ < 384 27# define SHIFT_HZ 8 28#elif HZ >= 384 && HZ < 768 29# define SHIFT_HZ 9 30#elif HZ >= 768 && HZ < 1536 31# define SHIFT_HZ 10 32#elif HZ >= 1536 && HZ < 3072 33# define SHIFT_HZ 11 34#elif HZ >= 3072 && HZ < 6144 35# define SHIFT_HZ 12 36#elif HZ >= 6144 && HZ < 12288 37# define SHIFT_HZ 13 38#else 39# error Invalid value of HZ. 40#endif 41 42/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 43 * improve accuracy by shifting LSH bits, hence calculating: 44 * (NOM << LSH) / DEN 45 * This however means trouble for large NOM, because (NOM << LSH) may no 46 * longer fit in 32 bits. The following way of calculating this gives us 47 * some slack, under the following conditions: 48 * - (NOM / DEN) fits in (32 - LSH) bits. 49 * - (NOM % DEN) fits in (32 - LSH) bits. 50 */ 51#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 52 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 53 54/* LATCH is used in the interval timer and ftape setup. */ 55#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 56 57extern int register_refined_jiffies(long clock_tick_rate); 58 59/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ 60#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ) 61 62/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 63#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 64 65/* some arch's have a small-data section that can be accessed register-relative 66 * but that can only take up to, say, 4-byte variables. jiffies being part of 67 * an 8-byte variable may not be correctly accessed unless we force the issue 68 */ 69#define __jiffy_data __attribute__((section(".data"))) 70 71/* 72 * The 64-bit value is not atomic - you MUST NOT read it 73 * without sampling the sequence number in jiffies_lock. 74 * get_jiffies_64() will do this for you as appropriate. 75 */ 76extern u64 __jiffy_data jiffies_64; 77extern unsigned long volatile __jiffy_data jiffies; 78extern seqlock_t jiffies_lock; 79 80#if (BITS_PER_LONG < 64) 81u64 get_jiffies_64(void); 82#else 83static inline u64 get_jiffies_64(void) 84{ 85 return (u64)jiffies; 86} 87#endif 88 89/* 90 * These inlines deal with timer wrapping correctly. You are 91 * strongly encouraged to use them 92 * 1. Because people otherwise forget 93 * 2. Because if the timer wrap changes in future you won't have to 94 * alter your driver code. 95 * 96 * time_after(a,b) returns true if the time a is after time b. 97 * 98 * Do this with "<0" and ">=0" to only test the sign of the result. A 99 * good compiler would generate better code (and a really good compiler 100 * wouldn't care). Gcc is currently neither. 101 */ 102#define time_after(a,b) \ 103 (typecheck(unsigned long, a) && \ 104 typecheck(unsigned long, b) && \ 105 ((long)(b) - (long)(a) < 0)) 106#define time_before(a,b) time_after(b,a) 107 108#define time_after_eq(a,b) \ 109 (typecheck(unsigned long, a) && \ 110 typecheck(unsigned long, b) && \ 111 ((long)(a) - (long)(b) >= 0)) 112#define time_before_eq(a,b) time_after_eq(b,a) 113 114/* 115 * Calculate whether a is in the range of [b, c]. 116 */ 117#define time_in_range(a,b,c) \ 118 (time_after_eq(a,b) && \ 119 time_before_eq(a,c)) 120 121/* 122 * Calculate whether a is in the range of [b, c). 123 */ 124#define time_in_range_open(a,b,c) \ 125 (time_after_eq(a,b) && \ 126 time_before(a,c)) 127 128/* Same as above, but does so with platform independent 64bit types. 129 * These must be used when utilizing jiffies_64 (i.e. return value of 130 * get_jiffies_64() */ 131#define time_after64(a,b) \ 132 (typecheck(__u64, a) && \ 133 typecheck(__u64, b) && \ 134 ((__s64)(b) - (__s64)(a) < 0)) 135#define time_before64(a,b) time_after64(b,a) 136 137#define time_after_eq64(a,b) \ 138 (typecheck(__u64, a) && \ 139 typecheck(__u64, b) && \ 140 ((__s64)(a) - (__s64)(b) >= 0)) 141#define time_before_eq64(a,b) time_after_eq64(b,a) 142 143/* 144 * These four macros compare jiffies and 'a' for convenience. 145 */ 146 147/* time_is_before_jiffies(a) return true if a is before jiffies */ 148#define time_is_before_jiffies(a) time_after(jiffies, a) 149 150/* time_is_after_jiffies(a) return true if a is after jiffies */ 151#define time_is_after_jiffies(a) time_before(jiffies, a) 152 153/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ 154#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 155 156/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ 157#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 158 159/* 160 * Have the 32 bit jiffies value wrap 5 minutes after boot 161 * so jiffies wrap bugs show up earlier. 162 */ 163#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 164 165/* 166 * Change timeval to jiffies, trying to avoid the 167 * most obvious overflows.. 168 * 169 * And some not so obvious. 170 * 171 * Note that we don't want to return LONG_MAX, because 172 * for various timeout reasons we often end up having 173 * to wait "jiffies+1" in order to guarantee that we wait 174 * at _least_ "jiffies" - so "jiffies+1" had better still 175 * be positive. 176 */ 177#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 178 179extern unsigned long preset_lpj; 180 181/* 182 * We want to do realistic conversions of time so we need to use the same 183 * values the update wall clock code uses as the jiffies size. This value 184 * is: TICK_NSEC (which is defined in timex.h). This 185 * is a constant and is in nanoseconds. We will use scaled math 186 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 187 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 188 * constants and so are computed at compile time. SHIFT_HZ (computed in 189 * timex.h) adjusts the scaling for different HZ values. 190 191 * Scaled math??? What is that? 192 * 193 * Scaled math is a way to do integer math on values that would, 194 * otherwise, either overflow, underflow, or cause undesired div 195 * instructions to appear in the execution path. In short, we "scale" 196 * up the operands so they take more bits (more precision, less 197 * underflow), do the desired operation and then "scale" the result back 198 * by the same amount. If we do the scaling by shifting we avoid the 199 * costly mpy and the dastardly div instructions. 200 201 * Suppose, for example, we want to convert from seconds to jiffies 202 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 203 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 204 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 205 * might calculate at compile time, however, the result will only have 206 * about 3-4 bits of precision (less for smaller values of HZ). 207 * 208 * So, we scale as follows: 209 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 210 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 211 * Then we make SCALE a power of two so: 212 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 213 * Now we define: 214 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 215 * jiff = (sec * SEC_CONV) >> SCALE; 216 * 217 * Often the math we use will expand beyond 32-bits so we tell C how to 218 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 219 * which should take the result back to 32-bits. We want this expansion 220 * to capture as much precision as possible. At the same time we don't 221 * want to overflow so we pick the SCALE to avoid this. In this file, 222 * that means using a different scale for each range of HZ values (as 223 * defined in timex.h). 224 * 225 * For those who want to know, gcc will give a 64-bit result from a "*" 226 * operator if the result is a long long AND at least one of the 227 * operands is cast to long long (usually just prior to the "*" so as 228 * not to confuse it into thinking it really has a 64-bit operand, 229 * which, buy the way, it can do, but it takes more code and at least 2 230 * mpys). 231 232 * We also need to be aware that one second in nanoseconds is only a 233 * couple of bits away from overflowing a 32-bit word, so we MUST use 234 * 64-bits to get the full range time in nanoseconds. 235 236 */ 237 238/* 239 * Here are the scales we will use. One for seconds, nanoseconds and 240 * microseconds. 241 * 242 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 243 * check if the sign bit is set. If not, we bump the shift count by 1. 244 * (Gets an extra bit of precision where we can use it.) 245 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 246 * Haven't tested others. 247 248 * Limits of cpp (for #if expressions) only long (no long long), but 249 * then we only need the most signicant bit. 250 */ 251 252#define SEC_JIFFIE_SC (31 - SHIFT_HZ) 253#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 254#undef SEC_JIFFIE_SC 255#define SEC_JIFFIE_SC (32 - SHIFT_HZ) 256#endif 257#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 258#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) 259#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 260 TICK_NSEC -1) / (u64)TICK_NSEC)) 261 262#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 263 TICK_NSEC -1) / (u64)TICK_NSEC)) 264#define USEC_CONVERSION \ 265 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ 266 TICK_NSEC -1) / (u64)TICK_NSEC)) 267/* 268 * USEC_ROUND is used in the timeval to jiffie conversion. See there 269 * for more details. It is the scaled resolution rounding value. Note 270 * that it is a 64-bit value. Since, when it is applied, we are already 271 * in jiffies (albit scaled), it is nothing but the bits we will shift 272 * off. 273 */ 274#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) 275/* 276 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 277 * into seconds. The 64-bit case will overflow if we are not careful, 278 * so use the messy SH_DIV macro to do it. Still all constants. 279 */ 280#if BITS_PER_LONG < 64 281# define MAX_SEC_IN_JIFFIES \ 282 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 283#else /* take care of overflow on 64 bits machines */ 284# define MAX_SEC_IN_JIFFIES \ 285 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 286 287#endif 288 289/* 290 * Convert various time units to each other: 291 */ 292extern unsigned int jiffies_to_msecs(const unsigned long j); 293extern unsigned int jiffies_to_usecs(const unsigned long j); 294extern unsigned long msecs_to_jiffies(const unsigned int m); 295extern unsigned long usecs_to_jiffies(const unsigned int u); 296extern unsigned long timespec_to_jiffies(const struct timespec *value); 297extern void jiffies_to_timespec(const unsigned long jiffies, 298 struct timespec *value); 299extern unsigned long timeval_to_jiffies(const struct timeval *value); 300extern void jiffies_to_timeval(const unsigned long jiffies, 301 struct timeval *value); 302 303extern clock_t jiffies_to_clock_t(unsigned long x); 304static inline clock_t jiffies_delta_to_clock_t(long delta) 305{ 306 return jiffies_to_clock_t(max(0L, delta)); 307} 308 309extern unsigned long clock_t_to_jiffies(unsigned long x); 310extern u64 jiffies_64_to_clock_t(u64 x); 311extern u64 nsec_to_clock_t(u64 x); 312extern u64 nsecs_to_jiffies64(u64 n); 313extern unsigned long nsecs_to_jiffies(u64 n); 314 315#define TIMESTAMP_SIZE 30 316 317#endif 318