1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47 48#ifdef CONFIG_RCU_TORTURE_TEST 49extern int rcutorture_runnable; /* for sysctl */ 50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53extern void rcutorture_record_test_transition(void); 54extern void rcutorture_record_progress(unsigned long vernum); 55extern void do_trace_rcu_torture_read(char *rcutorturename, 56 struct rcu_head *rhp); 57#else 58static inline void rcutorture_record_test_transition(void) 59{ 60} 61static inline void rcutorture_record_progress(unsigned long vernum) 62{ 63} 64#ifdef CONFIG_RCU_TRACE 65extern void do_trace_rcu_torture_read(char *rcutorturename, 66 struct rcu_head *rhp); 67#else 68#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0) 69#endif 70#endif 71 72#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 73#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 74#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 75#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 76 77/* Exported common interfaces */ 78 79#ifdef CONFIG_PREEMPT_RCU 80 81/** 82 * call_rcu() - Queue an RCU callback for invocation after a grace period. 83 * @head: structure to be used for queueing the RCU updates. 84 * @func: actual callback function to be invoked after the grace period 85 * 86 * The callback function will be invoked some time after a full grace 87 * period elapses, in other words after all pre-existing RCU read-side 88 * critical sections have completed. However, the callback function 89 * might well execute concurrently with RCU read-side critical sections 90 * that started after call_rcu() was invoked. RCU read-side critical 91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 92 * and may be nested. 93 * 94 * Note that all CPUs must agree that the grace period extended beyond 95 * all pre-existing RCU read-side critical section. On systems with more 96 * than one CPU, this means that when "func()" is invoked, each CPU is 97 * guaranteed to have executed a full memory barrier since the end of its 98 * last RCU read-side critical section whose beginning preceded the call 99 * to call_rcu(). It also means that each CPU executing an RCU read-side 100 * critical section that continues beyond the start of "func()" must have 101 * executed a memory barrier after the call_rcu() but before the beginning 102 * of that RCU read-side critical section. Note that these guarantees 103 * include CPUs that are offline, idle, or executing in user mode, as 104 * well as CPUs that are executing in the kernel. 105 * 106 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 107 * resulting RCU callback function "func()", then both CPU A and CPU B are 108 * guaranteed to execute a full memory barrier during the time interval 109 * between the call to call_rcu() and the invocation of "func()" -- even 110 * if CPU A and CPU B are the same CPU (but again only if the system has 111 * more than one CPU). 112 */ 113extern void call_rcu(struct rcu_head *head, 114 void (*func)(struct rcu_head *head)); 115 116#else /* #ifdef CONFIG_PREEMPT_RCU */ 117 118/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 119#define call_rcu call_rcu_sched 120 121#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 122 123/** 124 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 125 * @head: structure to be used for queueing the RCU updates. 126 * @func: actual callback function to be invoked after the grace period 127 * 128 * The callback function will be invoked some time after a full grace 129 * period elapses, in other words after all currently executing RCU 130 * read-side critical sections have completed. call_rcu_bh() assumes 131 * that the read-side critical sections end on completion of a softirq 132 * handler. This means that read-side critical sections in process 133 * context must not be interrupted by softirqs. This interface is to be 134 * used when most of the read-side critical sections are in softirq context. 135 * RCU read-side critical sections are delimited by : 136 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 137 * OR 138 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 139 * These may be nested. 140 * 141 * See the description of call_rcu() for more detailed information on 142 * memory ordering guarantees. 143 */ 144extern void call_rcu_bh(struct rcu_head *head, 145 void (*func)(struct rcu_head *head)); 146 147/** 148 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 149 * @head: structure to be used for queueing the RCU updates. 150 * @func: actual callback function to be invoked after the grace period 151 * 152 * The callback function will be invoked some time after a full grace 153 * period elapses, in other words after all currently executing RCU 154 * read-side critical sections have completed. call_rcu_sched() assumes 155 * that the read-side critical sections end on enabling of preemption 156 * or on voluntary preemption. 157 * RCU read-side critical sections are delimited by : 158 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 159 * OR 160 * anything that disables preemption. 161 * These may be nested. 162 * 163 * See the description of call_rcu() for more detailed information on 164 * memory ordering guarantees. 165 */ 166extern void call_rcu_sched(struct rcu_head *head, 167 void (*func)(struct rcu_head *rcu)); 168 169extern void synchronize_sched(void); 170 171#ifdef CONFIG_PREEMPT_RCU 172 173extern void __rcu_read_lock(void); 174extern void __rcu_read_unlock(void); 175extern void rcu_read_unlock_special(struct task_struct *t); 176void synchronize_rcu(void); 177 178/* 179 * Defined as a macro as it is a very low level header included from 180 * areas that don't even know about current. This gives the rcu_read_lock() 181 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 182 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 183 */ 184#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 185 186#else /* #ifdef CONFIG_PREEMPT_RCU */ 187 188static inline void __rcu_read_lock(void) 189{ 190 preempt_disable(); 191} 192 193static inline void __rcu_read_unlock(void) 194{ 195 preempt_enable(); 196} 197 198static inline void synchronize_rcu(void) 199{ 200 synchronize_sched(); 201} 202 203static inline int rcu_preempt_depth(void) 204{ 205 return 0; 206} 207 208#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 209 210/* Internal to kernel */ 211extern void rcu_sched_qs(int cpu); 212extern void rcu_bh_qs(int cpu); 213extern void rcu_check_callbacks(int cpu, int user); 214struct notifier_block; 215extern void rcu_idle_enter(void); 216extern void rcu_idle_exit(void); 217extern void rcu_irq_enter(void); 218extern void rcu_irq_exit(void); 219 220#ifdef CONFIG_RCU_USER_QS 221extern void rcu_user_enter(void); 222extern void rcu_user_exit(void); 223extern void rcu_user_enter_after_irq(void); 224extern void rcu_user_exit_after_irq(void); 225#else 226static inline void rcu_user_enter(void) { } 227static inline void rcu_user_exit(void) { } 228static inline void rcu_user_enter_after_irq(void) { } 229static inline void rcu_user_exit_after_irq(void) { } 230static inline void rcu_user_hooks_switch(struct task_struct *prev, 231 struct task_struct *next) { } 232#endif /* CONFIG_RCU_USER_QS */ 233 234extern void exit_rcu(void); 235 236/** 237 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 238 * @a: Code that RCU needs to pay attention to. 239 * 240 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 241 * in the inner idle loop, that is, between the rcu_idle_enter() and 242 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 243 * critical sections. However, things like powertop need tracepoints 244 * in the inner idle loop. 245 * 246 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 247 * will tell RCU that it needs to pay attending, invoke its argument 248 * (in this example, a call to the do_something_with_RCU() function), 249 * and then tell RCU to go back to ignoring this CPU. It is permissible 250 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 251 * quite limited. If deeper nesting is required, it will be necessary 252 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 253 */ 254#define RCU_NONIDLE(a) \ 255 do { \ 256 rcu_irq_enter(); \ 257 do { a; } while (0); \ 258 rcu_irq_exit(); \ 259 } while (0) 260 261/* 262 * Infrastructure to implement the synchronize_() primitives in 263 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 264 */ 265 266typedef void call_rcu_func_t(struct rcu_head *head, 267 void (*func)(struct rcu_head *head)); 268void wait_rcu_gp(call_rcu_func_t crf); 269 270#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 271#include <linux/rcutree.h> 272#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU) 273#include <linux/rcutiny.h> 274#else 275#error "Unknown RCU implementation specified to kernel configuration" 276#endif 277 278/* 279 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 280 * initialization and destruction of rcu_head on the stack. rcu_head structures 281 * allocated dynamically in the heap or defined statically don't need any 282 * initialization. 283 */ 284#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 285extern void init_rcu_head_on_stack(struct rcu_head *head); 286extern void destroy_rcu_head_on_stack(struct rcu_head *head); 287#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 288static inline void init_rcu_head_on_stack(struct rcu_head *head) 289{ 290} 291 292static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 293{ 294} 295#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 296 297#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) 298extern int rcu_is_cpu_idle(void); 299#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */ 300 301#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 302bool rcu_lockdep_current_cpu_online(void); 303#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 304static inline bool rcu_lockdep_current_cpu_online(void) 305{ 306 return 1; 307} 308#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 309 310#ifdef CONFIG_DEBUG_LOCK_ALLOC 311 312static inline void rcu_lock_acquire(struct lockdep_map *map) 313{ 314 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 315} 316 317static inline void rcu_lock_release(struct lockdep_map *map) 318{ 319 lock_release(map, 1, _THIS_IP_); 320} 321 322extern struct lockdep_map rcu_lock_map; 323extern struct lockdep_map rcu_bh_lock_map; 324extern struct lockdep_map rcu_sched_lock_map; 325extern int debug_lockdep_rcu_enabled(void); 326 327/** 328 * rcu_read_lock_held() - might we be in RCU read-side critical section? 329 * 330 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 331 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 332 * this assumes we are in an RCU read-side critical section unless it can 333 * prove otherwise. This is useful for debug checks in functions that 334 * require that they be called within an RCU read-side critical section. 335 * 336 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 337 * and while lockdep is disabled. 338 * 339 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 340 * occur in the same context, for example, it is illegal to invoke 341 * rcu_read_unlock() in process context if the matching rcu_read_lock() 342 * was invoked from within an irq handler. 343 * 344 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 345 * offline from an RCU perspective, so check for those as well. 346 */ 347static inline int rcu_read_lock_held(void) 348{ 349 if (!debug_lockdep_rcu_enabled()) 350 return 1; 351 if (rcu_is_cpu_idle()) 352 return 0; 353 if (!rcu_lockdep_current_cpu_online()) 354 return 0; 355 return lock_is_held(&rcu_lock_map); 356} 357 358/* 359 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 360 * hell. 361 */ 362extern int rcu_read_lock_bh_held(void); 363 364/** 365 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 366 * 367 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 368 * RCU-sched read-side critical section. In absence of 369 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 370 * critical section unless it can prove otherwise. Note that disabling 371 * of preemption (including disabling irqs) counts as an RCU-sched 372 * read-side critical section. This is useful for debug checks in functions 373 * that required that they be called within an RCU-sched read-side 374 * critical section. 375 * 376 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 377 * and while lockdep is disabled. 378 * 379 * Note that if the CPU is in the idle loop from an RCU point of 380 * view (ie: that we are in the section between rcu_idle_enter() and 381 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 382 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 383 * that are in such a section, considering these as in extended quiescent 384 * state, so such a CPU is effectively never in an RCU read-side critical 385 * section regardless of what RCU primitives it invokes. This state of 386 * affairs is required --- we need to keep an RCU-free window in idle 387 * where the CPU may possibly enter into low power mode. This way we can 388 * notice an extended quiescent state to other CPUs that started a grace 389 * period. Otherwise we would delay any grace period as long as we run in 390 * the idle task. 391 * 392 * Similarly, we avoid claiming an SRCU read lock held if the current 393 * CPU is offline. 394 */ 395#ifdef CONFIG_PREEMPT_COUNT 396static inline int rcu_read_lock_sched_held(void) 397{ 398 int lockdep_opinion = 0; 399 400 if (!debug_lockdep_rcu_enabled()) 401 return 1; 402 if (rcu_is_cpu_idle()) 403 return 0; 404 if (!rcu_lockdep_current_cpu_online()) 405 return 0; 406 if (debug_locks) 407 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 408 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 409} 410#else /* #ifdef CONFIG_PREEMPT_COUNT */ 411static inline int rcu_read_lock_sched_held(void) 412{ 413 return 1; 414} 415#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 416 417#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 418 419# define rcu_lock_acquire(a) do { } while (0) 420# define rcu_lock_release(a) do { } while (0) 421 422static inline int rcu_read_lock_held(void) 423{ 424 return 1; 425} 426 427static inline int rcu_read_lock_bh_held(void) 428{ 429 return 1; 430} 431 432#ifdef CONFIG_PREEMPT_COUNT 433static inline int rcu_read_lock_sched_held(void) 434{ 435 return preempt_count() != 0 || irqs_disabled(); 436} 437#else /* #ifdef CONFIG_PREEMPT_COUNT */ 438static inline int rcu_read_lock_sched_held(void) 439{ 440 return 1; 441} 442#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 443 444#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 445 446#ifdef CONFIG_PROVE_RCU 447 448extern int rcu_my_thread_group_empty(void); 449 450/** 451 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 452 * @c: condition to check 453 * @s: informative message 454 */ 455#define rcu_lockdep_assert(c, s) \ 456 do { \ 457 static bool __section(.data.unlikely) __warned; \ 458 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 459 __warned = true; \ 460 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 461 } \ 462 } while (0) 463 464#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 465static inline void rcu_preempt_sleep_check(void) 466{ 467 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 468 "Illegal context switch in RCU read-side critical section"); 469} 470#else /* #ifdef CONFIG_PROVE_RCU */ 471static inline void rcu_preempt_sleep_check(void) 472{ 473} 474#endif /* #else #ifdef CONFIG_PROVE_RCU */ 475 476#define rcu_sleep_check() \ 477 do { \ 478 rcu_preempt_sleep_check(); \ 479 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 480 "Illegal context switch in RCU-bh" \ 481 " read-side critical section"); \ 482 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 483 "Illegal context switch in RCU-sched"\ 484 " read-side critical section"); \ 485 } while (0) 486 487#else /* #ifdef CONFIG_PROVE_RCU */ 488 489#define rcu_lockdep_assert(c, s) do { } while (0) 490#define rcu_sleep_check() do { } while (0) 491 492#endif /* #else #ifdef CONFIG_PROVE_RCU */ 493 494/* 495 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 496 * and rcu_assign_pointer(). Some of these could be folded into their 497 * callers, but they are left separate in order to ease introduction of 498 * multiple flavors of pointers to match the multiple flavors of RCU 499 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 500 * the future. 501 */ 502 503#ifdef __CHECKER__ 504#define rcu_dereference_sparse(p, space) \ 505 ((void)(((typeof(*p) space *)p) == p)) 506#else /* #ifdef __CHECKER__ */ 507#define rcu_dereference_sparse(p, space) 508#endif /* #else #ifdef __CHECKER__ */ 509 510#define __rcu_access_pointer(p, space) \ 511 ({ \ 512 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 513 rcu_dereference_sparse(p, space); \ 514 ((typeof(*p) __force __kernel *)(_________p1)); \ 515 }) 516#define __rcu_dereference_check(p, c, space) \ 517 ({ \ 518 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 519 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 520 " usage"); \ 521 rcu_dereference_sparse(p, space); \ 522 smp_read_barrier_depends(); \ 523 ((typeof(*p) __force __kernel *)(_________p1)); \ 524 }) 525#define __rcu_dereference_protected(p, c, space) \ 526 ({ \ 527 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 528 " usage"); \ 529 rcu_dereference_sparse(p, space); \ 530 ((typeof(*p) __force __kernel *)(p)); \ 531 }) 532 533#define __rcu_access_index(p, space) \ 534 ({ \ 535 typeof(p) _________p1 = ACCESS_ONCE(p); \ 536 rcu_dereference_sparse(p, space); \ 537 (_________p1); \ 538 }) 539#define __rcu_dereference_index_check(p, c) \ 540 ({ \ 541 typeof(p) _________p1 = ACCESS_ONCE(p); \ 542 rcu_lockdep_assert(c, \ 543 "suspicious rcu_dereference_index_check()" \ 544 " usage"); \ 545 smp_read_barrier_depends(); \ 546 (_________p1); \ 547 }) 548#define __rcu_assign_pointer(p, v, space) \ 549 do { \ 550 smp_wmb(); \ 551 (p) = (typeof(*v) __force space *)(v); \ 552 } while (0) 553 554 555/** 556 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 557 * @p: The pointer to read 558 * 559 * Return the value of the specified RCU-protected pointer, but omit the 560 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 561 * when the value of this pointer is accessed, but the pointer is not 562 * dereferenced, for example, when testing an RCU-protected pointer against 563 * NULL. Although rcu_access_pointer() may also be used in cases where 564 * update-side locks prevent the value of the pointer from changing, you 565 * should instead use rcu_dereference_protected() for this use case. 566 * 567 * It is also permissible to use rcu_access_pointer() when read-side 568 * access to the pointer was removed at least one grace period ago, as 569 * is the case in the context of the RCU callback that is freeing up 570 * the data, or after a synchronize_rcu() returns. This can be useful 571 * when tearing down multi-linked structures after a grace period 572 * has elapsed. 573 */ 574#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 575 576/** 577 * rcu_dereference_check() - rcu_dereference with debug checking 578 * @p: The pointer to read, prior to dereferencing 579 * @c: The conditions under which the dereference will take place 580 * 581 * Do an rcu_dereference(), but check that the conditions under which the 582 * dereference will take place are correct. Typically the conditions 583 * indicate the various locking conditions that should be held at that 584 * point. The check should return true if the conditions are satisfied. 585 * An implicit check for being in an RCU read-side critical section 586 * (rcu_read_lock()) is included. 587 * 588 * For example: 589 * 590 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 591 * 592 * could be used to indicate to lockdep that foo->bar may only be dereferenced 593 * if either rcu_read_lock() is held, or that the lock required to replace 594 * the bar struct at foo->bar is held. 595 * 596 * Note that the list of conditions may also include indications of when a lock 597 * need not be held, for example during initialisation or destruction of the 598 * target struct: 599 * 600 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 601 * atomic_read(&foo->usage) == 0); 602 * 603 * Inserts memory barriers on architectures that require them 604 * (currently only the Alpha), prevents the compiler from refetching 605 * (and from merging fetches), and, more importantly, documents exactly 606 * which pointers are protected by RCU and checks that the pointer is 607 * annotated as __rcu. 608 */ 609#define rcu_dereference_check(p, c) \ 610 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 611 612/** 613 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 614 * @p: The pointer to read, prior to dereferencing 615 * @c: The conditions under which the dereference will take place 616 * 617 * This is the RCU-bh counterpart to rcu_dereference_check(). 618 */ 619#define rcu_dereference_bh_check(p, c) \ 620 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 621 622/** 623 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 624 * @p: The pointer to read, prior to dereferencing 625 * @c: The conditions under which the dereference will take place 626 * 627 * This is the RCU-sched counterpart to rcu_dereference_check(). 628 */ 629#define rcu_dereference_sched_check(p, c) \ 630 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 631 __rcu) 632 633#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 634 635/** 636 * rcu_access_index() - fetch RCU index with no dereferencing 637 * @p: The index to read 638 * 639 * Return the value of the specified RCU-protected index, but omit the 640 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 641 * when the value of this index is accessed, but the index is not 642 * dereferenced, for example, when testing an RCU-protected index against 643 * -1. Although rcu_access_index() may also be used in cases where 644 * update-side locks prevent the value of the index from changing, you 645 * should instead use rcu_dereference_index_protected() for this use case. 646 */ 647#define rcu_access_index(p) __rcu_access_index((p), __rcu) 648 649/** 650 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 651 * @p: The pointer to read, prior to dereferencing 652 * @c: The conditions under which the dereference will take place 653 * 654 * Similar to rcu_dereference_check(), but omits the sparse checking. 655 * This allows rcu_dereference_index_check() to be used on integers, 656 * which can then be used as array indices. Attempting to use 657 * rcu_dereference_check() on an integer will give compiler warnings 658 * because the sparse address-space mechanism relies on dereferencing 659 * the RCU-protected pointer. Dereferencing integers is not something 660 * that even gcc will put up with. 661 * 662 * Note that this function does not implicitly check for RCU read-side 663 * critical sections. If this function gains lots of uses, it might 664 * make sense to provide versions for each flavor of RCU, but it does 665 * not make sense as of early 2010. 666 */ 667#define rcu_dereference_index_check(p, c) \ 668 __rcu_dereference_index_check((p), (c)) 669 670/** 671 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 672 * @p: The pointer to read, prior to dereferencing 673 * @c: The conditions under which the dereference will take place 674 * 675 * Return the value of the specified RCU-protected pointer, but omit 676 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 677 * is useful in cases where update-side locks prevent the value of the 678 * pointer from changing. Please note that this primitive does -not- 679 * prevent the compiler from repeating this reference or combining it 680 * with other references, so it should not be used without protection 681 * of appropriate locks. 682 * 683 * This function is only for update-side use. Using this function 684 * when protected only by rcu_read_lock() will result in infrequent 685 * but very ugly failures. 686 */ 687#define rcu_dereference_protected(p, c) \ 688 __rcu_dereference_protected((p), (c), __rcu) 689 690 691/** 692 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 693 * @p: The pointer to read, prior to dereferencing 694 * 695 * This is a simple wrapper around rcu_dereference_check(). 696 */ 697#define rcu_dereference(p) rcu_dereference_check(p, 0) 698 699/** 700 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 701 * @p: The pointer to read, prior to dereferencing 702 * 703 * Makes rcu_dereference_check() do the dirty work. 704 */ 705#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 706 707/** 708 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 709 * @p: The pointer to read, prior to dereferencing 710 * 711 * Makes rcu_dereference_check() do the dirty work. 712 */ 713#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 714 715/** 716 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 717 * 718 * When synchronize_rcu() is invoked on one CPU while other CPUs 719 * are within RCU read-side critical sections, then the 720 * synchronize_rcu() is guaranteed to block until after all the other 721 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 722 * on one CPU while other CPUs are within RCU read-side critical 723 * sections, invocation of the corresponding RCU callback is deferred 724 * until after the all the other CPUs exit their critical sections. 725 * 726 * Note, however, that RCU callbacks are permitted to run concurrently 727 * with new RCU read-side critical sections. One way that this can happen 728 * is via the following sequence of events: (1) CPU 0 enters an RCU 729 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 730 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 731 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 732 * callback is invoked. This is legal, because the RCU read-side critical 733 * section that was running concurrently with the call_rcu() (and which 734 * therefore might be referencing something that the corresponding RCU 735 * callback would free up) has completed before the corresponding 736 * RCU callback is invoked. 737 * 738 * RCU read-side critical sections may be nested. Any deferred actions 739 * will be deferred until the outermost RCU read-side critical section 740 * completes. 741 * 742 * You can avoid reading and understanding the next paragraph by 743 * following this rule: don't put anything in an rcu_read_lock() RCU 744 * read-side critical section that would block in a !PREEMPT kernel. 745 * But if you want the full story, read on! 746 * 747 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 748 * is illegal to block while in an RCU read-side critical section. In 749 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 750 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 751 * be preempted, but explicit blocking is illegal. Finally, in preemptible 752 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds, 753 * RCU read-side critical sections may be preempted and they may also 754 * block, but only when acquiring spinlocks that are subject to priority 755 * inheritance. 756 */ 757static inline void rcu_read_lock(void) 758{ 759 __rcu_read_lock(); 760 __acquire(RCU); 761 rcu_lock_acquire(&rcu_lock_map); 762 rcu_lockdep_assert(!rcu_is_cpu_idle(), 763 "rcu_read_lock() used illegally while idle"); 764} 765 766/* 767 * So where is rcu_write_lock()? It does not exist, as there is no 768 * way for writers to lock out RCU readers. This is a feature, not 769 * a bug -- this property is what provides RCU's performance benefits. 770 * Of course, writers must coordinate with each other. The normal 771 * spinlock primitives work well for this, but any other technique may be 772 * used as well. RCU does not care how the writers keep out of each 773 * others' way, as long as they do so. 774 */ 775 776/** 777 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 778 * 779 * See rcu_read_lock() for more information. 780 */ 781static inline void rcu_read_unlock(void) 782{ 783 rcu_lockdep_assert(!rcu_is_cpu_idle(), 784 "rcu_read_unlock() used illegally while idle"); 785 rcu_lock_release(&rcu_lock_map); 786 __release(RCU); 787 __rcu_read_unlock(); 788} 789 790/** 791 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 792 * 793 * This is equivalent of rcu_read_lock(), but to be used when updates 794 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 795 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 796 * softirq handler to be a quiescent state, a process in RCU read-side 797 * critical section must be protected by disabling softirqs. Read-side 798 * critical sections in interrupt context can use just rcu_read_lock(), 799 * though this should at least be commented to avoid confusing people 800 * reading the code. 801 * 802 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 803 * must occur in the same context, for example, it is illegal to invoke 804 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 805 * was invoked from some other task. 806 */ 807static inline void rcu_read_lock_bh(void) 808{ 809 local_bh_disable(); 810 __acquire(RCU_BH); 811 rcu_lock_acquire(&rcu_bh_lock_map); 812 rcu_lockdep_assert(!rcu_is_cpu_idle(), 813 "rcu_read_lock_bh() used illegally while idle"); 814} 815 816/* 817 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 818 * 819 * See rcu_read_lock_bh() for more information. 820 */ 821static inline void rcu_read_unlock_bh(void) 822{ 823 rcu_lockdep_assert(!rcu_is_cpu_idle(), 824 "rcu_read_unlock_bh() used illegally while idle"); 825 rcu_lock_release(&rcu_bh_lock_map); 826 __release(RCU_BH); 827 local_bh_enable(); 828} 829 830/** 831 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 832 * 833 * This is equivalent of rcu_read_lock(), but to be used when updates 834 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 835 * Read-side critical sections can also be introduced by anything that 836 * disables preemption, including local_irq_disable() and friends. 837 * 838 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 839 * must occur in the same context, for example, it is illegal to invoke 840 * rcu_read_unlock_sched() from process context if the matching 841 * rcu_read_lock_sched() was invoked from an NMI handler. 842 */ 843static inline void rcu_read_lock_sched(void) 844{ 845 preempt_disable(); 846 __acquire(RCU_SCHED); 847 rcu_lock_acquire(&rcu_sched_lock_map); 848 rcu_lockdep_assert(!rcu_is_cpu_idle(), 849 "rcu_read_lock_sched() used illegally while idle"); 850} 851 852/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 853static inline notrace void rcu_read_lock_sched_notrace(void) 854{ 855 preempt_disable_notrace(); 856 __acquire(RCU_SCHED); 857} 858 859/* 860 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 861 * 862 * See rcu_read_lock_sched for more information. 863 */ 864static inline void rcu_read_unlock_sched(void) 865{ 866 rcu_lockdep_assert(!rcu_is_cpu_idle(), 867 "rcu_read_unlock_sched() used illegally while idle"); 868 rcu_lock_release(&rcu_sched_lock_map); 869 __release(RCU_SCHED); 870 preempt_enable(); 871} 872 873/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 874static inline notrace void rcu_read_unlock_sched_notrace(void) 875{ 876 __release(RCU_SCHED); 877 preempt_enable_notrace(); 878} 879 880/** 881 * rcu_assign_pointer() - assign to RCU-protected pointer 882 * @p: pointer to assign to 883 * @v: value to assign (publish) 884 * 885 * Assigns the specified value to the specified RCU-protected 886 * pointer, ensuring that any concurrent RCU readers will see 887 * any prior initialization. 888 * 889 * Inserts memory barriers on architectures that require them 890 * (which is most of them), and also prevents the compiler from 891 * reordering the code that initializes the structure after the pointer 892 * assignment. More importantly, this call documents which pointers 893 * will be dereferenced by RCU read-side code. 894 * 895 * In some special cases, you may use RCU_INIT_POINTER() instead 896 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 897 * to the fact that it does not constrain either the CPU or the compiler. 898 * That said, using RCU_INIT_POINTER() when you should have used 899 * rcu_assign_pointer() is a very bad thing that results in 900 * impossible-to-diagnose memory corruption. So please be careful. 901 * See the RCU_INIT_POINTER() comment header for details. 902 */ 903#define rcu_assign_pointer(p, v) \ 904 __rcu_assign_pointer((p), (v), __rcu) 905 906/** 907 * RCU_INIT_POINTER() - initialize an RCU protected pointer 908 * 909 * Initialize an RCU-protected pointer in special cases where readers 910 * do not need ordering constraints on the CPU or the compiler. These 911 * special cases are: 912 * 913 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 914 * 2. The caller has taken whatever steps are required to prevent 915 * RCU readers from concurrently accessing this pointer -or- 916 * 3. The referenced data structure has already been exposed to 917 * readers either at compile time or via rcu_assign_pointer() -and- 918 * a. You have not made -any- reader-visible changes to 919 * this structure since then -or- 920 * b. It is OK for readers accessing this structure from its 921 * new location to see the old state of the structure. (For 922 * example, the changes were to statistical counters or to 923 * other state where exact synchronization is not required.) 924 * 925 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 926 * result in impossible-to-diagnose memory corruption. As in the structures 927 * will look OK in crash dumps, but any concurrent RCU readers might 928 * see pre-initialized values of the referenced data structure. So 929 * please be very careful how you use RCU_INIT_POINTER()!!! 930 * 931 * If you are creating an RCU-protected linked structure that is accessed 932 * by a single external-to-structure RCU-protected pointer, then you may 933 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 934 * pointers, but you must use rcu_assign_pointer() to initialize the 935 * external-to-structure pointer -after- you have completely initialized 936 * the reader-accessible portions of the linked structure. 937 */ 938#define RCU_INIT_POINTER(p, v) \ 939 do { \ 940 p = (typeof(*v) __force __rcu *)(v); \ 941 } while (0) 942 943/** 944 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 945 * 946 * GCC-style initialization for an RCU-protected pointer in a structure field. 947 */ 948#define RCU_POINTER_INITIALIZER(p, v) \ 949 .p = (typeof(*v) __force __rcu *)(v) 950 951/* 952 * Does the specified offset indicate that the corresponding rcu_head 953 * structure can be handled by kfree_rcu()? 954 */ 955#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 956 957/* 958 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 959 */ 960#define __kfree_rcu(head, offset) \ 961 do { \ 962 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 963 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 964 } while (0) 965 966/** 967 * kfree_rcu() - kfree an object after a grace period. 968 * @ptr: pointer to kfree 969 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 970 * 971 * Many rcu callbacks functions just call kfree() on the base structure. 972 * These functions are trivial, but their size adds up, and furthermore 973 * when they are used in a kernel module, that module must invoke the 974 * high-latency rcu_barrier() function at module-unload time. 975 * 976 * The kfree_rcu() function handles this issue. Rather than encoding a 977 * function address in the embedded rcu_head structure, kfree_rcu() instead 978 * encodes the offset of the rcu_head structure within the base structure. 979 * Because the functions are not allowed in the low-order 4096 bytes of 980 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 981 * If the offset is larger than 4095 bytes, a compile-time error will 982 * be generated in __kfree_rcu(). If this error is triggered, you can 983 * either fall back to use of call_rcu() or rearrange the structure to 984 * position the rcu_head structure into the first 4096 bytes. 985 * 986 * Note that the allowable offset might decrease in the future, for example, 987 * to allow something like kmem_cache_free_rcu(). 988 * 989 * The BUILD_BUG_ON check must not involve any function calls, hence the 990 * checks are done in macros here. 991 */ 992#define kfree_rcu(ptr, rcu_head) \ 993 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 994 995#endif /* __LINUX_RCUPDATE_H */ 996