linux/kernel/events/uprobes.c
<<
>>
Prefs
   1/*
   2 * User-space Probes (UProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2012
  19 * Authors:
  20 *      Srikar Dronamraju
  21 *      Jim Keniston
  22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>      /* read_mapping_page */
  28#include <linux/slab.h>
  29#include <linux/sched.h>
  30#include <linux/rmap.h>         /* anon_vma_prepare */
  31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
  32#include <linux/swap.h>         /* try_to_free_swap */
  33#include <linux/ptrace.h>       /* user_enable_single_step */
  34#include <linux/kdebug.h>       /* notifier mechanism */
  35#include "../../mm/internal.h"  /* munlock_vma_page */
  36#include <linux/percpu-rwsem.h>
  37
  38#include <linux/uprobes.h>
  39
  40#define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  41#define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
  42
  43static struct rb_root uprobes_tree = RB_ROOT;
  44
  45static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
  46
  47#define UPROBES_HASH_SZ 13
  48
  49/*
  50 * We need separate register/unregister and mmap/munmap lock hashes because
  51 * of mmap_sem nesting.
  52 *
  53 * uprobe_register() needs to install probes on (potentially) all processes
  54 * and thus needs to acquire multiple mmap_sems (consequtively, not
  55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
  56 * for the particular process doing the mmap.
  57 *
  58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
  59 * because of lock order against i_mmap_mutex. This means there's a hole in
  60 * the register vma iteration where a mmap() can happen.
  61 *
  62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
  63 * install a probe where one is already installed.
  64 */
  65
  66/* serialize (un)register */
  67static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
  68
  69#define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  70
  71/* serialize uprobe->pending_list */
  72static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  73#define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  74
  75static struct percpu_rw_semaphore dup_mmap_sem;
  76
  77/*
  78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
  79 * events active at this time.  Probably a fine grained per inode count is
  80 * better?
  81 */
  82static atomic_t uprobe_events = ATOMIC_INIT(0);
  83
  84/* Have a copy of original instruction */
  85#define UPROBE_COPY_INSN        0
  86/* Dont run handlers when first register/ last unregister in progress*/
  87#define UPROBE_RUN_HANDLER      1
  88/* Can skip singlestep */
  89#define UPROBE_SKIP_SSTEP       2
  90
  91struct uprobe {
  92        struct rb_node          rb_node;        /* node in the rb tree */
  93        atomic_t                ref;
  94        struct rw_semaphore     consumer_rwsem;
  95        struct mutex            copy_mutex;     /* TODO: kill me and UPROBE_COPY_INSN */
  96        struct list_head        pending_list;
  97        struct uprobe_consumer  *consumers;
  98        struct inode            *inode;         /* Also hold a ref to inode */
  99        loff_t                  offset;
 100        unsigned long           flags;
 101        struct arch_uprobe      arch;
 102};
 103
 104/*
 105 * valid_vma: Verify if the specified vma is an executable vma
 106 * Relax restrictions while unregistering: vm_flags might have
 107 * changed after breakpoint was inserted.
 108 *      - is_register: indicates if we are in register context.
 109 *      - Return 1 if the specified virtual address is in an
 110 *        executable vma.
 111 */
 112static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 113{
 114        vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
 115
 116        if (is_register)
 117                flags |= VM_WRITE;
 118
 119        return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 120}
 121
 122static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 123{
 124        return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 125}
 126
 127static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 128{
 129        return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 130}
 131
 132/**
 133 * __replace_page - replace page in vma by new page.
 134 * based on replace_page in mm/ksm.c
 135 *
 136 * @vma:      vma that holds the pte pointing to page
 137 * @addr:     address the old @page is mapped at
 138 * @page:     the cowed page we are replacing by kpage
 139 * @kpage:    the modified page we replace page by
 140 *
 141 * Returns 0 on success, -EFAULT on failure.
 142 */
 143static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 144                                struct page *page, struct page *kpage)
 145{
 146        struct mm_struct *mm = vma->vm_mm;
 147        spinlock_t *ptl;
 148        pte_t *ptep;
 149        int err;
 150        /* For mmu_notifiers */
 151        const unsigned long mmun_start = addr;
 152        const unsigned long mmun_end   = addr + PAGE_SIZE;
 153
 154        /* For try_to_free_swap() and munlock_vma_page() below */
 155        lock_page(page);
 156
 157        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 158        err = -EAGAIN;
 159        ptep = page_check_address(page, mm, addr, &ptl, 0);
 160        if (!ptep)
 161                goto unlock;
 162
 163        get_page(kpage);
 164        page_add_new_anon_rmap(kpage, vma, addr);
 165
 166        if (!PageAnon(page)) {
 167                dec_mm_counter(mm, MM_FILEPAGES);
 168                inc_mm_counter(mm, MM_ANONPAGES);
 169        }
 170
 171        flush_cache_page(vma, addr, pte_pfn(*ptep));
 172        ptep_clear_flush(vma, addr, ptep);
 173        set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 174
 175        page_remove_rmap(page);
 176        if (!page_mapped(page))
 177                try_to_free_swap(page);
 178        pte_unmap_unlock(ptep, ptl);
 179
 180        if (vma->vm_flags & VM_LOCKED)
 181                munlock_vma_page(page);
 182        put_page(page);
 183
 184        err = 0;
 185 unlock:
 186        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 187        unlock_page(page);
 188        return err;
 189}
 190
 191/**
 192 * is_swbp_insn - check if instruction is breakpoint instruction.
 193 * @insn: instruction to be checked.
 194 * Default implementation of is_swbp_insn
 195 * Returns true if @insn is a breakpoint instruction.
 196 */
 197bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 198{
 199        return *insn == UPROBE_SWBP_INSN;
 200}
 201
 202static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
 203{
 204        void *kaddr = kmap_atomic(page);
 205        memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
 206        kunmap_atomic(kaddr);
 207}
 208
 209static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 210{
 211        uprobe_opcode_t old_opcode;
 212        bool is_swbp;
 213
 214        copy_opcode(page, vaddr, &old_opcode);
 215        is_swbp = is_swbp_insn(&old_opcode);
 216
 217        if (is_swbp_insn(new_opcode)) {
 218                if (is_swbp)            /* register: already installed? */
 219                        return 0;
 220        } else {
 221                if (!is_swbp)           /* unregister: was it changed by us? */
 222                        return 0;
 223        }
 224
 225        return 1;
 226}
 227
 228/*
 229 * NOTE:
 230 * Expect the breakpoint instruction to be the smallest size instruction for
 231 * the architecture. If an arch has variable length instruction and the
 232 * breakpoint instruction is not of the smallest length instruction
 233 * supported by that architecture then we need to modify is_swbp_at_addr and
 234 * write_opcode accordingly. This would never be a problem for archs that
 235 * have fixed length instructions.
 236 */
 237
 238/*
 239 * write_opcode - write the opcode at a given virtual address.
 240 * @mm: the probed process address space.
 241 * @vaddr: the virtual address to store the opcode.
 242 * @opcode: opcode to be written at @vaddr.
 243 *
 244 * Called with mm->mmap_sem held (for read and with a reference to
 245 * mm).
 246 *
 247 * For mm @mm, write the opcode at @vaddr.
 248 * Return 0 (success) or a negative errno.
 249 */
 250static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
 251                        uprobe_opcode_t opcode)
 252{
 253        struct page *old_page, *new_page;
 254        void *vaddr_old, *vaddr_new;
 255        struct vm_area_struct *vma;
 256        int ret;
 257
 258retry:
 259        /* Read the page with vaddr into memory */
 260        ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
 261        if (ret <= 0)
 262                return ret;
 263
 264        ret = verify_opcode(old_page, vaddr, &opcode);
 265        if (ret <= 0)
 266                goto put_old;
 267
 268        ret = -ENOMEM;
 269        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 270        if (!new_page)
 271                goto put_old;
 272
 273        __SetPageUptodate(new_page);
 274
 275        /* copy the page now that we've got it stable */
 276        vaddr_old = kmap_atomic(old_page);
 277        vaddr_new = kmap_atomic(new_page);
 278
 279        memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
 280        memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
 281
 282        kunmap_atomic(vaddr_new);
 283        kunmap_atomic(vaddr_old);
 284
 285        ret = anon_vma_prepare(vma);
 286        if (ret)
 287                goto put_new;
 288
 289        ret = __replace_page(vma, vaddr, old_page, new_page);
 290
 291put_new:
 292        page_cache_release(new_page);
 293put_old:
 294        put_page(old_page);
 295
 296        if (unlikely(ret == -EAGAIN))
 297                goto retry;
 298        return ret;
 299}
 300
 301/**
 302 * set_swbp - store breakpoint at a given address.
 303 * @auprobe: arch specific probepoint information.
 304 * @mm: the probed process address space.
 305 * @vaddr: the virtual address to insert the opcode.
 306 *
 307 * For mm @mm, store the breakpoint instruction at @vaddr.
 308 * Return 0 (success) or a negative errno.
 309 */
 310int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 311{
 312        return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
 313}
 314
 315/**
 316 * set_orig_insn - Restore the original instruction.
 317 * @mm: the probed process address space.
 318 * @auprobe: arch specific probepoint information.
 319 * @vaddr: the virtual address to insert the opcode.
 320 *
 321 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 322 * Return 0 (success) or a negative errno.
 323 */
 324int __weak
 325set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 326{
 327        return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
 328}
 329
 330static int match_uprobe(struct uprobe *l, struct uprobe *r)
 331{
 332        if (l->inode < r->inode)
 333                return -1;
 334
 335        if (l->inode > r->inode)
 336                return 1;
 337
 338        if (l->offset < r->offset)
 339                return -1;
 340
 341        if (l->offset > r->offset)
 342                return 1;
 343
 344        return 0;
 345}
 346
 347static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 348{
 349        struct uprobe u = { .inode = inode, .offset = offset };
 350        struct rb_node *n = uprobes_tree.rb_node;
 351        struct uprobe *uprobe;
 352        int match;
 353
 354        while (n) {
 355                uprobe = rb_entry(n, struct uprobe, rb_node);
 356                match = match_uprobe(&u, uprobe);
 357                if (!match) {
 358                        atomic_inc(&uprobe->ref);
 359                        return uprobe;
 360                }
 361
 362                if (match < 0)
 363                        n = n->rb_left;
 364                else
 365                        n = n->rb_right;
 366        }
 367        return NULL;
 368}
 369
 370/*
 371 * Find a uprobe corresponding to a given inode:offset
 372 * Acquires uprobes_treelock
 373 */
 374static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 375{
 376        struct uprobe *uprobe;
 377
 378        spin_lock(&uprobes_treelock);
 379        uprobe = __find_uprobe(inode, offset);
 380        spin_unlock(&uprobes_treelock);
 381
 382        return uprobe;
 383}
 384
 385static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 386{
 387        struct rb_node **p = &uprobes_tree.rb_node;
 388        struct rb_node *parent = NULL;
 389        struct uprobe *u;
 390        int match;
 391
 392        while (*p) {
 393                parent = *p;
 394                u = rb_entry(parent, struct uprobe, rb_node);
 395                match = match_uprobe(uprobe, u);
 396                if (!match) {
 397                        atomic_inc(&u->ref);
 398                        return u;
 399                }
 400
 401                if (match < 0)
 402                        p = &parent->rb_left;
 403                else
 404                        p = &parent->rb_right;
 405
 406        }
 407
 408        u = NULL;
 409        rb_link_node(&uprobe->rb_node, parent, p);
 410        rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 411        /* get access + creation ref */
 412        atomic_set(&uprobe->ref, 2);
 413
 414        return u;
 415}
 416
 417/*
 418 * Acquire uprobes_treelock.
 419 * Matching uprobe already exists in rbtree;
 420 *      increment (access refcount) and return the matching uprobe.
 421 *
 422 * No matching uprobe; insert the uprobe in rb_tree;
 423 *      get a double refcount (access + creation) and return NULL.
 424 */
 425static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 426{
 427        struct uprobe *u;
 428
 429        spin_lock(&uprobes_treelock);
 430        u = __insert_uprobe(uprobe);
 431        spin_unlock(&uprobes_treelock);
 432
 433        /* For now assume that the instruction need not be single-stepped */
 434        __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
 435
 436        return u;
 437}
 438
 439static void put_uprobe(struct uprobe *uprobe)
 440{
 441        if (atomic_dec_and_test(&uprobe->ref))
 442                kfree(uprobe);
 443}
 444
 445static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
 446{
 447        struct uprobe *uprobe, *cur_uprobe;
 448
 449        uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 450        if (!uprobe)
 451                return NULL;
 452
 453        uprobe->inode = igrab(inode);
 454        uprobe->offset = offset;
 455        init_rwsem(&uprobe->consumer_rwsem);
 456        mutex_init(&uprobe->copy_mutex);
 457
 458        /* add to uprobes_tree, sorted on inode:offset */
 459        cur_uprobe = insert_uprobe(uprobe);
 460
 461        /* a uprobe exists for this inode:offset combination */
 462        if (cur_uprobe) {
 463                kfree(uprobe);
 464                uprobe = cur_uprobe;
 465                iput(inode);
 466        } else {
 467                atomic_inc(&uprobe_events);
 468        }
 469
 470        return uprobe;
 471}
 472
 473static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
 474{
 475        struct uprobe_consumer *uc;
 476
 477        if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
 478                return;
 479
 480        down_read(&uprobe->consumer_rwsem);
 481        for (uc = uprobe->consumers; uc; uc = uc->next) {
 482                if (!uc->filter || uc->filter(uc, current))
 483                        uc->handler(uc, regs);
 484        }
 485        up_read(&uprobe->consumer_rwsem);
 486}
 487
 488/* Returns the previous consumer */
 489static struct uprobe_consumer *
 490consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 491{
 492        down_write(&uprobe->consumer_rwsem);
 493        uc->next = uprobe->consumers;
 494        uprobe->consumers = uc;
 495        up_write(&uprobe->consumer_rwsem);
 496
 497        return uc->next;
 498}
 499
 500/*
 501 * For uprobe @uprobe, delete the consumer @uc.
 502 * Return true if the @uc is deleted successfully
 503 * or return false.
 504 */
 505static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 506{
 507        struct uprobe_consumer **con;
 508        bool ret = false;
 509
 510        down_write(&uprobe->consumer_rwsem);
 511        for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 512                if (*con == uc) {
 513                        *con = uc->next;
 514                        ret = true;
 515                        break;
 516                }
 517        }
 518        up_write(&uprobe->consumer_rwsem);
 519
 520        return ret;
 521}
 522
 523static int
 524__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
 525                        unsigned long nbytes, loff_t offset)
 526{
 527        struct page *page;
 528        void *vaddr;
 529        unsigned long off;
 530        pgoff_t idx;
 531
 532        if (!filp)
 533                return -EINVAL;
 534
 535        if (!mapping->a_ops->readpage)
 536                return -EIO;
 537
 538        idx = offset >> PAGE_CACHE_SHIFT;
 539        off = offset & ~PAGE_MASK;
 540
 541        /*
 542         * Ensure that the page that has the original instruction is
 543         * populated and in page-cache.
 544         */
 545        page = read_mapping_page(mapping, idx, filp);
 546        if (IS_ERR(page))
 547                return PTR_ERR(page);
 548
 549        vaddr = kmap_atomic(page);
 550        memcpy(insn, vaddr + off, nbytes);
 551        kunmap_atomic(vaddr);
 552        page_cache_release(page);
 553
 554        return 0;
 555}
 556
 557static int copy_insn(struct uprobe *uprobe, struct file *filp)
 558{
 559        struct address_space *mapping;
 560        unsigned long nbytes;
 561        int bytes;
 562
 563        nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
 564        mapping = uprobe->inode->i_mapping;
 565
 566        /* Instruction at end of binary; copy only available bytes */
 567        if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
 568                bytes = uprobe->inode->i_size - uprobe->offset;
 569        else
 570                bytes = MAX_UINSN_BYTES;
 571
 572        /* Instruction at the page-boundary; copy bytes in second page */
 573        if (nbytes < bytes) {
 574                int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
 575                                bytes - nbytes, uprobe->offset + nbytes);
 576                if (err)
 577                        return err;
 578                bytes = nbytes;
 579        }
 580        return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
 581}
 582
 583static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 584                                struct mm_struct *mm, unsigned long vaddr)
 585{
 586        int ret = 0;
 587
 588        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 589                return ret;
 590
 591        mutex_lock(&uprobe->copy_mutex);
 592        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 593                goto out;
 594
 595        ret = copy_insn(uprobe, file);
 596        if (ret)
 597                goto out;
 598
 599        ret = -ENOTSUPP;
 600        if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
 601                goto out;
 602
 603        ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 604        if (ret)
 605                goto out;
 606
 607        /* write_opcode() assumes we don't cross page boundary */
 608        BUG_ON((uprobe->offset & ~PAGE_MASK) +
 609                        UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 610
 611        smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
 612        set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 613
 614 out:
 615        mutex_unlock(&uprobe->copy_mutex);
 616
 617        return ret;
 618}
 619
 620static int
 621install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 622                        struct vm_area_struct *vma, unsigned long vaddr)
 623{
 624        bool first_uprobe;
 625        int ret;
 626
 627        /*
 628         * If probe is being deleted, unregister thread could be done with
 629         * the vma-rmap-walk through. Adding a probe now can be fatal since
 630         * nobody will be able to cleanup. Also we could be from fork or
 631         * mremap path, where the probe might have already been inserted.
 632         * Hence behave as if probe already existed.
 633         */
 634        if (!uprobe->consumers)
 635                return 0;
 636
 637        ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 638        if (ret)
 639                return ret;
 640
 641        /*
 642         * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 643         * the task can hit this breakpoint right after __replace_page().
 644         */
 645        first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 646        if (first_uprobe)
 647                set_bit(MMF_HAS_UPROBES, &mm->flags);
 648
 649        ret = set_swbp(&uprobe->arch, mm, vaddr);
 650        if (!ret)
 651                clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 652        else if (first_uprobe)
 653                clear_bit(MMF_HAS_UPROBES, &mm->flags);
 654
 655        return ret;
 656}
 657
 658static int
 659remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 660{
 661        /* can happen if uprobe_register() fails */
 662        if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
 663                return 0;
 664
 665        set_bit(MMF_RECALC_UPROBES, &mm->flags);
 666        return set_orig_insn(&uprobe->arch, mm, vaddr);
 667}
 668
 669/*
 670 * There could be threads that have already hit the breakpoint. They
 671 * will recheck the current insn and restart if find_uprobe() fails.
 672 * See find_active_uprobe().
 673 */
 674static void delete_uprobe(struct uprobe *uprobe)
 675{
 676        spin_lock(&uprobes_treelock);
 677        rb_erase(&uprobe->rb_node, &uprobes_tree);
 678        spin_unlock(&uprobes_treelock);
 679        iput(uprobe->inode);
 680        put_uprobe(uprobe);
 681        atomic_dec(&uprobe_events);
 682}
 683
 684struct map_info {
 685        struct map_info *next;
 686        struct mm_struct *mm;
 687        unsigned long vaddr;
 688};
 689
 690static inline struct map_info *free_map_info(struct map_info *info)
 691{
 692        struct map_info *next = info->next;
 693        kfree(info);
 694        return next;
 695}
 696
 697static struct map_info *
 698build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 699{
 700        unsigned long pgoff = offset >> PAGE_SHIFT;
 701        struct vm_area_struct *vma;
 702        struct map_info *curr = NULL;
 703        struct map_info *prev = NULL;
 704        struct map_info *info;
 705        int more = 0;
 706
 707 again:
 708        mutex_lock(&mapping->i_mmap_mutex);
 709        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 710                if (!valid_vma(vma, is_register))
 711                        continue;
 712
 713                if (!prev && !more) {
 714                        /*
 715                         * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
 716                         * reclaim. This is optimistic, no harm done if it fails.
 717                         */
 718                        prev = kmalloc(sizeof(struct map_info),
 719                                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 720                        if (prev)
 721                                prev->next = NULL;
 722                }
 723                if (!prev) {
 724                        more++;
 725                        continue;
 726                }
 727
 728                if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
 729                        continue;
 730
 731                info = prev;
 732                prev = prev->next;
 733                info->next = curr;
 734                curr = info;
 735
 736                info->mm = vma->vm_mm;
 737                info->vaddr = offset_to_vaddr(vma, offset);
 738        }
 739        mutex_unlock(&mapping->i_mmap_mutex);
 740
 741        if (!more)
 742                goto out;
 743
 744        prev = curr;
 745        while (curr) {
 746                mmput(curr->mm);
 747                curr = curr->next;
 748        }
 749
 750        do {
 751                info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
 752                if (!info) {
 753                        curr = ERR_PTR(-ENOMEM);
 754                        goto out;
 755                }
 756                info->next = prev;
 757                prev = info;
 758        } while (--more);
 759
 760        goto again;
 761 out:
 762        while (prev)
 763                prev = free_map_info(prev);
 764        return curr;
 765}
 766
 767static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
 768{
 769        struct map_info *info;
 770        int err = 0;
 771
 772        percpu_down_write(&dup_mmap_sem);
 773        info = build_map_info(uprobe->inode->i_mapping,
 774                                        uprobe->offset, is_register);
 775        if (IS_ERR(info)) {
 776                err = PTR_ERR(info);
 777                goto out;
 778        }
 779
 780        while (info) {
 781                struct mm_struct *mm = info->mm;
 782                struct vm_area_struct *vma;
 783
 784                if (err && is_register)
 785                        goto free;
 786
 787                down_write(&mm->mmap_sem);
 788                vma = find_vma(mm, info->vaddr);
 789                if (!vma || !valid_vma(vma, is_register) ||
 790                    vma->vm_file->f_mapping->host != uprobe->inode)
 791                        goto unlock;
 792
 793                if (vma->vm_start > info->vaddr ||
 794                    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
 795                        goto unlock;
 796
 797                if (is_register)
 798                        err = install_breakpoint(uprobe, mm, vma, info->vaddr);
 799                else
 800                        err |= remove_breakpoint(uprobe, mm, info->vaddr);
 801
 802 unlock:
 803                up_write(&mm->mmap_sem);
 804 free:
 805                mmput(mm);
 806                info = free_map_info(info);
 807        }
 808 out:
 809        percpu_up_write(&dup_mmap_sem);
 810        return err;
 811}
 812
 813static int __uprobe_register(struct uprobe *uprobe)
 814{
 815        return register_for_each_vma(uprobe, true);
 816}
 817
 818static void __uprobe_unregister(struct uprobe *uprobe)
 819{
 820        if (!register_for_each_vma(uprobe, false))
 821                delete_uprobe(uprobe);
 822
 823        /* TODO : cant unregister? schedule a worker thread */
 824}
 825
 826/*
 827 * uprobe_register - register a probe
 828 * @inode: the file in which the probe has to be placed.
 829 * @offset: offset from the start of the file.
 830 * @uc: information on howto handle the probe..
 831 *
 832 * Apart from the access refcount, uprobe_register() takes a creation
 833 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 834 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 835 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 836 * @uprobe even before the register operation is complete. Creation
 837 * refcount is released when the last @uc for the @uprobe
 838 * unregisters.
 839 *
 840 * Return errno if it cannot successully install probes
 841 * else return 0 (success)
 842 */
 843int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 844{
 845        struct uprobe *uprobe;
 846        int ret;
 847
 848        if (!inode || !uc || uc->next)
 849                return -EINVAL;
 850
 851        if (offset > i_size_read(inode))
 852                return -EINVAL;
 853
 854        ret = 0;
 855        mutex_lock(uprobes_hash(inode));
 856        uprobe = alloc_uprobe(inode, offset);
 857
 858        if (!uprobe) {
 859                ret = -ENOMEM;
 860        } else if (!consumer_add(uprobe, uc)) {
 861                ret = __uprobe_register(uprobe);
 862                if (ret) {
 863                        uprobe->consumers = NULL;
 864                        __uprobe_unregister(uprobe);
 865                } else {
 866                        set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
 867                }
 868        }
 869
 870        mutex_unlock(uprobes_hash(inode));
 871        if (uprobe)
 872                put_uprobe(uprobe);
 873
 874        return ret;
 875}
 876
 877/*
 878 * uprobe_unregister - unregister a already registered probe.
 879 * @inode: the file in which the probe has to be removed.
 880 * @offset: offset from the start of the file.
 881 * @uc: identify which probe if multiple probes are colocated.
 882 */
 883void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 884{
 885        struct uprobe *uprobe;
 886
 887        if (!inode || !uc)
 888                return;
 889
 890        uprobe = find_uprobe(inode, offset);
 891        if (!uprobe)
 892                return;
 893
 894        mutex_lock(uprobes_hash(inode));
 895
 896        if (consumer_del(uprobe, uc)) {
 897                if (!uprobe->consumers) {
 898                        __uprobe_unregister(uprobe);
 899                        clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
 900                }
 901        }
 902
 903        mutex_unlock(uprobes_hash(inode));
 904        if (uprobe)
 905                put_uprobe(uprobe);
 906}
 907
 908static struct rb_node *
 909find_node_in_range(struct inode *inode, loff_t min, loff_t max)
 910{
 911        struct rb_node *n = uprobes_tree.rb_node;
 912
 913        while (n) {
 914                struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
 915
 916                if (inode < u->inode) {
 917                        n = n->rb_left;
 918                } else if (inode > u->inode) {
 919                        n = n->rb_right;
 920                } else {
 921                        if (max < u->offset)
 922                                n = n->rb_left;
 923                        else if (min > u->offset)
 924                                n = n->rb_right;
 925                        else
 926                                break;
 927                }
 928        }
 929
 930        return n;
 931}
 932
 933/*
 934 * For a given range in vma, build a list of probes that need to be inserted.
 935 */
 936static void build_probe_list(struct inode *inode,
 937                                struct vm_area_struct *vma,
 938                                unsigned long start, unsigned long end,
 939                                struct list_head *head)
 940{
 941        loff_t min, max;
 942        struct rb_node *n, *t;
 943        struct uprobe *u;
 944
 945        INIT_LIST_HEAD(head);
 946        min = vaddr_to_offset(vma, start);
 947        max = min + (end - start) - 1;
 948
 949        spin_lock(&uprobes_treelock);
 950        n = find_node_in_range(inode, min, max);
 951        if (n) {
 952                for (t = n; t; t = rb_prev(t)) {
 953                        u = rb_entry(t, struct uprobe, rb_node);
 954                        if (u->inode != inode || u->offset < min)
 955                                break;
 956                        list_add(&u->pending_list, head);
 957                        atomic_inc(&u->ref);
 958                }
 959                for (t = n; (t = rb_next(t)); ) {
 960                        u = rb_entry(t, struct uprobe, rb_node);
 961                        if (u->inode != inode || u->offset > max)
 962                                break;
 963                        list_add(&u->pending_list, head);
 964                        atomic_inc(&u->ref);
 965                }
 966        }
 967        spin_unlock(&uprobes_treelock);
 968}
 969
 970/*
 971 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
 972 *
 973 * Currently we ignore all errors and always return 0, the callers
 974 * can't handle the failure anyway.
 975 */
 976int uprobe_mmap(struct vm_area_struct *vma)
 977{
 978        struct list_head tmp_list;
 979        struct uprobe *uprobe, *u;
 980        struct inode *inode;
 981
 982        if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
 983                return 0;
 984
 985        inode = vma->vm_file->f_mapping->host;
 986        if (!inode)
 987                return 0;
 988
 989        mutex_lock(uprobes_mmap_hash(inode));
 990        build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
 991
 992        list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
 993                if (!fatal_signal_pending(current)) {
 994                        unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
 995                        install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
 996                }
 997                put_uprobe(uprobe);
 998        }
 999        mutex_unlock(uprobes_mmap_hash(inode));
1000
1001        return 0;
1002}
1003
1004static bool
1005vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1006{
1007        loff_t min, max;
1008        struct inode *inode;
1009        struct rb_node *n;
1010
1011        inode = vma->vm_file->f_mapping->host;
1012
1013        min = vaddr_to_offset(vma, start);
1014        max = min + (end - start) - 1;
1015
1016        spin_lock(&uprobes_treelock);
1017        n = find_node_in_range(inode, min, max);
1018        spin_unlock(&uprobes_treelock);
1019
1020        return !!n;
1021}
1022
1023/*
1024 * Called in context of a munmap of a vma.
1025 */
1026void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1027{
1028        if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1029                return;
1030
1031        if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1032                return;
1033
1034        if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1035             test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1036                return;
1037
1038        if (vma_has_uprobes(vma, start, end))
1039                set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1040}
1041
1042/* Slot allocation for XOL */
1043static int xol_add_vma(struct xol_area *area)
1044{
1045        struct mm_struct *mm;
1046        int ret;
1047
1048        area->page = alloc_page(GFP_HIGHUSER);
1049        if (!area->page)
1050                return -ENOMEM;
1051
1052        ret = -EALREADY;
1053        mm = current->mm;
1054
1055        down_write(&mm->mmap_sem);
1056        if (mm->uprobes_state.xol_area)
1057                goto fail;
1058
1059        ret = -ENOMEM;
1060
1061        /* Try to map as high as possible, this is only a hint. */
1062        area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1063        if (area->vaddr & ~PAGE_MASK) {
1064                ret = area->vaddr;
1065                goto fail;
1066        }
1067
1068        ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1069                                VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1070        if (ret)
1071                goto fail;
1072
1073        smp_wmb();      /* pairs with get_xol_area() */
1074        mm->uprobes_state.xol_area = area;
1075        ret = 0;
1076
1077fail:
1078        up_write(&mm->mmap_sem);
1079        if (ret)
1080                __free_page(area->page);
1081
1082        return ret;
1083}
1084
1085static struct xol_area *get_xol_area(struct mm_struct *mm)
1086{
1087        struct xol_area *area;
1088
1089        area = mm->uprobes_state.xol_area;
1090        smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1091
1092        return area;
1093}
1094
1095/*
1096 * xol_alloc_area - Allocate process's xol_area.
1097 * This area will be used for storing instructions for execution out of
1098 * line.
1099 *
1100 * Returns the allocated area or NULL.
1101 */
1102static struct xol_area *xol_alloc_area(void)
1103{
1104        struct xol_area *area;
1105
1106        area = kzalloc(sizeof(*area), GFP_KERNEL);
1107        if (unlikely(!area))
1108                return NULL;
1109
1110        area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1111
1112        if (!area->bitmap)
1113                goto fail;
1114
1115        init_waitqueue_head(&area->wq);
1116        if (!xol_add_vma(area))
1117                return area;
1118
1119fail:
1120        kfree(area->bitmap);
1121        kfree(area);
1122
1123        return get_xol_area(current->mm);
1124}
1125
1126/*
1127 * uprobe_clear_state - Free the area allocated for slots.
1128 */
1129void uprobe_clear_state(struct mm_struct *mm)
1130{
1131        struct xol_area *area = mm->uprobes_state.xol_area;
1132
1133        if (!area)
1134                return;
1135
1136        put_page(area->page);
1137        kfree(area->bitmap);
1138        kfree(area);
1139}
1140
1141void uprobe_start_dup_mmap(void)
1142{
1143        percpu_down_read(&dup_mmap_sem);
1144}
1145
1146void uprobe_end_dup_mmap(void)
1147{
1148        percpu_up_read(&dup_mmap_sem);
1149}
1150
1151void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1152{
1153        newmm->uprobes_state.xol_area = NULL;
1154
1155        if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1156                set_bit(MMF_HAS_UPROBES, &newmm->flags);
1157                /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1158                set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1159        }
1160}
1161
1162/*
1163 *  - search for a free slot.
1164 */
1165static unsigned long xol_take_insn_slot(struct xol_area *area)
1166{
1167        unsigned long slot_addr;
1168        int slot_nr;
1169
1170        do {
1171                slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1172                if (slot_nr < UINSNS_PER_PAGE) {
1173                        if (!test_and_set_bit(slot_nr, area->bitmap))
1174                                break;
1175
1176                        slot_nr = UINSNS_PER_PAGE;
1177                        continue;
1178                }
1179                wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1180        } while (slot_nr >= UINSNS_PER_PAGE);
1181
1182        slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1183        atomic_inc(&area->slot_count);
1184
1185        return slot_addr;
1186}
1187
1188/*
1189 * xol_get_insn_slot - If was not allocated a slot, then
1190 * allocate a slot.
1191 * Returns the allocated slot address or 0.
1192 */
1193static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1194{
1195        struct xol_area *area;
1196        unsigned long offset;
1197        void *vaddr;
1198
1199        area = get_xol_area(current->mm);
1200        if (!area) {
1201                area = xol_alloc_area();
1202                if (!area)
1203                        return 0;
1204        }
1205        current->utask->xol_vaddr = xol_take_insn_slot(area);
1206
1207        /*
1208         * Initialize the slot if xol_vaddr points to valid
1209         * instruction slot.
1210         */
1211        if (unlikely(!current->utask->xol_vaddr))
1212                return 0;
1213
1214        current->utask->vaddr = slot_addr;
1215        offset = current->utask->xol_vaddr & ~PAGE_MASK;
1216        vaddr = kmap_atomic(area->page);
1217        memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1218        kunmap_atomic(vaddr);
1219        /*
1220         * We probably need flush_icache_user_range() but it needs vma.
1221         * This should work on supported architectures too.
1222         */
1223        flush_dcache_page(area->page);
1224
1225        return current->utask->xol_vaddr;
1226}
1227
1228/*
1229 * xol_free_insn_slot - If slot was earlier allocated by
1230 * @xol_get_insn_slot(), make the slot available for
1231 * subsequent requests.
1232 */
1233static void xol_free_insn_slot(struct task_struct *tsk)
1234{
1235        struct xol_area *area;
1236        unsigned long vma_end;
1237        unsigned long slot_addr;
1238
1239        if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1240                return;
1241
1242        slot_addr = tsk->utask->xol_vaddr;
1243
1244        if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1245                return;
1246
1247        area = tsk->mm->uprobes_state.xol_area;
1248        vma_end = area->vaddr + PAGE_SIZE;
1249        if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1250                unsigned long offset;
1251                int slot_nr;
1252
1253                offset = slot_addr - area->vaddr;
1254                slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1255                if (slot_nr >= UINSNS_PER_PAGE)
1256                        return;
1257
1258                clear_bit(slot_nr, area->bitmap);
1259                atomic_dec(&area->slot_count);
1260                if (waitqueue_active(&area->wq))
1261                        wake_up(&area->wq);
1262
1263                tsk->utask->xol_vaddr = 0;
1264        }
1265}
1266
1267/**
1268 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1269 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1270 * instruction.
1271 * Return the address of the breakpoint instruction.
1272 */
1273unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1274{
1275        return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1276}
1277
1278/*
1279 * Called with no locks held.
1280 * Called in context of a exiting or a exec-ing thread.
1281 */
1282void uprobe_free_utask(struct task_struct *t)
1283{
1284        struct uprobe_task *utask = t->utask;
1285
1286        if (!utask)
1287                return;
1288
1289        if (utask->active_uprobe)
1290                put_uprobe(utask->active_uprobe);
1291
1292        xol_free_insn_slot(t);
1293        kfree(utask);
1294        t->utask = NULL;
1295}
1296
1297/*
1298 * Called in context of a new clone/fork from copy_process.
1299 */
1300void uprobe_copy_process(struct task_struct *t)
1301{
1302        t->utask = NULL;
1303}
1304
1305/*
1306 * Allocate a uprobe_task object for the task.
1307 * Called when the thread hits a breakpoint for the first time.
1308 *
1309 * Returns:
1310 * - pointer to new uprobe_task on success
1311 * - NULL otherwise
1312 */
1313static struct uprobe_task *add_utask(void)
1314{
1315        struct uprobe_task *utask;
1316
1317        utask = kzalloc(sizeof *utask, GFP_KERNEL);
1318        if (unlikely(!utask))
1319                return NULL;
1320
1321        current->utask = utask;
1322        return utask;
1323}
1324
1325/* Prepare to single-step probed instruction out of line. */
1326static int
1327pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1328{
1329        if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1330                return 0;
1331
1332        return -EFAULT;
1333}
1334
1335/*
1336 * If we are singlestepping, then ensure this thread is not connected to
1337 * non-fatal signals until completion of singlestep.  When xol insn itself
1338 * triggers the signal,  restart the original insn even if the task is
1339 * already SIGKILL'ed (since coredump should report the correct ip).  This
1340 * is even more important if the task has a handler for SIGSEGV/etc, The
1341 * _same_ instruction should be repeated again after return from the signal
1342 * handler, and SSTEP can never finish in this case.
1343 */
1344bool uprobe_deny_signal(void)
1345{
1346        struct task_struct *t = current;
1347        struct uprobe_task *utask = t->utask;
1348
1349        if (likely(!utask || !utask->active_uprobe))
1350                return false;
1351
1352        WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1353
1354        if (signal_pending(t)) {
1355                spin_lock_irq(&t->sighand->siglock);
1356                clear_tsk_thread_flag(t, TIF_SIGPENDING);
1357                spin_unlock_irq(&t->sighand->siglock);
1358
1359                if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1360                        utask->state = UTASK_SSTEP_TRAPPED;
1361                        set_tsk_thread_flag(t, TIF_UPROBE);
1362                        set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1363                }
1364        }
1365
1366        return true;
1367}
1368
1369/*
1370 * Avoid singlestepping the original instruction if the original instruction
1371 * is a NOP or can be emulated.
1372 */
1373static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1374{
1375        if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1376                if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1377                        return true;
1378                clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1379        }
1380        return false;
1381}
1382
1383static void mmf_recalc_uprobes(struct mm_struct *mm)
1384{
1385        struct vm_area_struct *vma;
1386
1387        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1388                if (!valid_vma(vma, false))
1389                        continue;
1390                /*
1391                 * This is not strictly accurate, we can race with
1392                 * uprobe_unregister() and see the already removed
1393                 * uprobe if delete_uprobe() was not yet called.
1394                 */
1395                if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1396                        return;
1397        }
1398
1399        clear_bit(MMF_HAS_UPROBES, &mm->flags);
1400}
1401
1402static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1403{
1404        struct page *page;
1405        uprobe_opcode_t opcode;
1406        int result;
1407
1408        pagefault_disable();
1409        result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1410                                                        sizeof(opcode));
1411        pagefault_enable();
1412
1413        if (likely(result == 0))
1414                goto out;
1415
1416        result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1417        if (result < 0)
1418                return result;
1419
1420        copy_opcode(page, vaddr, &opcode);
1421        put_page(page);
1422 out:
1423        return is_swbp_insn(&opcode);
1424}
1425
1426static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1427{
1428        struct mm_struct *mm = current->mm;
1429        struct uprobe *uprobe = NULL;
1430        struct vm_area_struct *vma;
1431
1432        down_read(&mm->mmap_sem);
1433        vma = find_vma(mm, bp_vaddr);
1434        if (vma && vma->vm_start <= bp_vaddr) {
1435                if (valid_vma(vma, false)) {
1436                        struct inode *inode = vma->vm_file->f_mapping->host;
1437                        loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1438
1439                        uprobe = find_uprobe(inode, offset);
1440                }
1441
1442                if (!uprobe)
1443                        *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1444        } else {
1445                *is_swbp = -EFAULT;
1446        }
1447
1448        if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1449                mmf_recalc_uprobes(mm);
1450        up_read(&mm->mmap_sem);
1451
1452        return uprobe;
1453}
1454
1455/*
1456 * Run handler and ask thread to singlestep.
1457 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1458 */
1459static void handle_swbp(struct pt_regs *regs)
1460{
1461        struct uprobe_task *utask;
1462        struct uprobe *uprobe;
1463        unsigned long bp_vaddr;
1464        int uninitialized_var(is_swbp);
1465
1466        bp_vaddr = uprobe_get_swbp_addr(regs);
1467        uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1468
1469        if (!uprobe) {
1470                if (is_swbp > 0) {
1471                        /* No matching uprobe; signal SIGTRAP. */
1472                        send_sig(SIGTRAP, current, 0);
1473                } else {
1474                        /*
1475                         * Either we raced with uprobe_unregister() or we can't
1476                         * access this memory. The latter is only possible if
1477                         * another thread plays with our ->mm. In both cases
1478                         * we can simply restart. If this vma was unmapped we
1479                         * can pretend this insn was not executed yet and get
1480                         * the (correct) SIGSEGV after restart.
1481                         */
1482                        instruction_pointer_set(regs, bp_vaddr);
1483                }
1484                return;
1485        }
1486        /*
1487         * TODO: move copy_insn/etc into _register and remove this hack.
1488         * After we hit the bp, _unregister + _register can install the
1489         * new and not-yet-analyzed uprobe at the same address, restart.
1490         */
1491        smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1492        if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1493                goto restart;
1494
1495        utask = current->utask;
1496        if (!utask) {
1497                utask = add_utask();
1498                /* Cannot allocate; re-execute the instruction. */
1499                if (!utask)
1500                        goto restart;
1501        }
1502
1503        handler_chain(uprobe, regs);
1504        if (can_skip_sstep(uprobe, regs))
1505                goto out;
1506
1507        if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1508                utask->active_uprobe = uprobe;
1509                utask->state = UTASK_SSTEP;
1510                return;
1511        }
1512
1513restart:
1514        /*
1515         * cannot singlestep; cannot skip instruction;
1516         * re-execute the instruction.
1517         */
1518        instruction_pointer_set(regs, bp_vaddr);
1519out:
1520        put_uprobe(uprobe);
1521}
1522
1523/*
1524 * Perform required fix-ups and disable singlestep.
1525 * Allow pending signals to take effect.
1526 */
1527static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1528{
1529        struct uprobe *uprobe;
1530
1531        uprobe = utask->active_uprobe;
1532        if (utask->state == UTASK_SSTEP_ACK)
1533                arch_uprobe_post_xol(&uprobe->arch, regs);
1534        else if (utask->state == UTASK_SSTEP_TRAPPED)
1535                arch_uprobe_abort_xol(&uprobe->arch, regs);
1536        else
1537                WARN_ON_ONCE(1);
1538
1539        put_uprobe(uprobe);
1540        utask->active_uprobe = NULL;
1541        utask->state = UTASK_RUNNING;
1542        xol_free_insn_slot(current);
1543
1544        spin_lock_irq(&current->sighand->siglock);
1545        recalc_sigpending(); /* see uprobe_deny_signal() */
1546        spin_unlock_irq(&current->sighand->siglock);
1547}
1548
1549/*
1550 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1551 * allows the thread to return from interrupt. After that handle_swbp()
1552 * sets utask->active_uprobe.
1553 *
1554 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1555 * and allows the thread to return from interrupt.
1556 *
1557 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1558 * uprobe_notify_resume().
1559 */
1560void uprobe_notify_resume(struct pt_regs *regs)
1561{
1562        struct uprobe_task *utask;
1563
1564        clear_thread_flag(TIF_UPROBE);
1565
1566        utask = current->utask;
1567        if (utask && utask->active_uprobe)
1568                handle_singlestep(utask, regs);
1569        else
1570                handle_swbp(regs);
1571}
1572
1573/*
1574 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1575 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1576 */
1577int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1578{
1579        if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1580                return 0;
1581
1582        set_thread_flag(TIF_UPROBE);
1583        return 1;
1584}
1585
1586/*
1587 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1588 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1589 */
1590int uprobe_post_sstep_notifier(struct pt_regs *regs)
1591{
1592        struct uprobe_task *utask = current->utask;
1593
1594        if (!current->mm || !utask || !utask->active_uprobe)
1595                /* task is currently not uprobed */
1596                return 0;
1597
1598        utask->state = UTASK_SSTEP_ACK;
1599        set_thread_flag(TIF_UPROBE);
1600        return 1;
1601}
1602
1603static struct notifier_block uprobe_exception_nb = {
1604        .notifier_call          = arch_uprobe_exception_notify,
1605        .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1606};
1607
1608static int __init init_uprobes(void)
1609{
1610        int i;
1611
1612        for (i = 0; i < UPROBES_HASH_SZ; i++) {
1613                mutex_init(&uprobes_mutex[i]);
1614                mutex_init(&uprobes_mmap_mutex[i]);
1615        }
1616
1617        if (percpu_init_rwsem(&dup_mmap_sem))
1618                return -ENOMEM;
1619
1620        return register_die_notifier(&uprobe_exception_nb);
1621}
1622module_init(init_uprobes);
1623
1624static void __exit exit_uprobes(void)
1625{
1626}
1627module_exit(exit_uprobes);
1628