linux/kernel/rcutree_plugin.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/smpboot.h>
  31
  32#define RCU_KTHREAD_PRIO 1
  33
  34#ifdef CONFIG_RCU_BOOST
  35#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
  36#else
  37#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
  38#endif
  39
  40#ifdef CONFIG_RCU_NOCB_CPU
  41static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  42static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
  43static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  44static char __initdata nocb_buf[NR_CPUS * 5];
  45#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  46
  47/*
  48 * Check the RCU kernel configuration parameters and print informative
  49 * messages about anything out of the ordinary.  If you like #ifdef, you
  50 * will love this function.
  51 */
  52static void __init rcu_bootup_announce_oddness(void)
  53{
  54#ifdef CONFIG_RCU_TRACE
  55        printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
  56#endif
  57#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  58        printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  59               CONFIG_RCU_FANOUT);
  60#endif
  61#ifdef CONFIG_RCU_FANOUT_EXACT
  62        printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
  63#endif
  64#ifdef CONFIG_RCU_FAST_NO_HZ
  65        printk(KERN_INFO
  66               "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  67#endif
  68#ifdef CONFIG_PROVE_RCU
  69        printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
  70#endif
  71#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  72        printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
  73#endif
  74#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
  75        printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
  76#endif
  77#if defined(CONFIG_RCU_CPU_STALL_INFO)
  78        printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
  79#endif
  80#if NUM_RCU_LVL_4 != 0
  81        printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
  82#endif
  83        if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
  84                printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  85        if (nr_cpu_ids != NR_CPUS)
  86                printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  87#ifdef CONFIG_RCU_NOCB_CPU
  88        if (have_rcu_nocb_mask) {
  89                if (cpumask_test_cpu(0, rcu_nocb_mask)) {
  90                        cpumask_clear_cpu(0, rcu_nocb_mask);
  91                        pr_info("\tCPU 0: illegal no-CBs CPU (cleared).\n");
  92                }
  93                cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
  94                pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf);
  95                if (rcu_nocb_poll)
  96                        pr_info("\tExperimental polled no-CBs CPUs.\n");
  97        }
  98#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  99}
 100
 101#ifdef CONFIG_TREE_PREEMPT_RCU
 102
 103struct rcu_state rcu_preempt_state =
 104        RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
 105DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
 106static struct rcu_state *rcu_state = &rcu_preempt_state;
 107
 108static int rcu_preempted_readers_exp(struct rcu_node *rnp);
 109
 110/*
 111 * Tell them what RCU they are running.
 112 */
 113static void __init rcu_bootup_announce(void)
 114{
 115        printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
 116        rcu_bootup_announce_oddness();
 117}
 118
 119/*
 120 * Return the number of RCU-preempt batches processed thus far
 121 * for debug and statistics.
 122 */
 123long rcu_batches_completed_preempt(void)
 124{
 125        return rcu_preempt_state.completed;
 126}
 127EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
 128
 129/*
 130 * Return the number of RCU batches processed thus far for debug & stats.
 131 */
 132long rcu_batches_completed(void)
 133{
 134        return rcu_batches_completed_preempt();
 135}
 136EXPORT_SYMBOL_GPL(rcu_batches_completed);
 137
 138/*
 139 * Force a quiescent state for preemptible RCU.
 140 */
 141void rcu_force_quiescent_state(void)
 142{
 143        force_quiescent_state(&rcu_preempt_state);
 144}
 145EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 146
 147/*
 148 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 149 * that this just means that the task currently running on the CPU is
 150 * not in a quiescent state.  There might be any number of tasks blocked
 151 * while in an RCU read-side critical section.
 152 *
 153 * Unlike the other rcu_*_qs() functions, callers to this function
 154 * must disable irqs in order to protect the assignment to
 155 * ->rcu_read_unlock_special.
 156 */
 157static void rcu_preempt_qs(int cpu)
 158{
 159        struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
 160
 161        if (rdp->passed_quiesce == 0)
 162                trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
 163        rdp->passed_quiesce = 1;
 164        current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
 165}
 166
 167/*
 168 * We have entered the scheduler, and the current task might soon be
 169 * context-switched away from.  If this task is in an RCU read-side
 170 * critical section, we will no longer be able to rely on the CPU to
 171 * record that fact, so we enqueue the task on the blkd_tasks list.
 172 * The task will dequeue itself when it exits the outermost enclosing
 173 * RCU read-side critical section.  Therefore, the current grace period
 174 * cannot be permitted to complete until the blkd_tasks list entries
 175 * predating the current grace period drain, in other words, until
 176 * rnp->gp_tasks becomes NULL.
 177 *
 178 * Caller must disable preemption.
 179 */
 180static void rcu_preempt_note_context_switch(int cpu)
 181{
 182        struct task_struct *t = current;
 183        unsigned long flags;
 184        struct rcu_data *rdp;
 185        struct rcu_node *rnp;
 186
 187        if (t->rcu_read_lock_nesting > 0 &&
 188            (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
 189
 190                /* Possibly blocking in an RCU read-side critical section. */
 191                rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
 192                rnp = rdp->mynode;
 193                raw_spin_lock_irqsave(&rnp->lock, flags);
 194                t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
 195                t->rcu_blocked_node = rnp;
 196
 197                /*
 198                 * If this CPU has already checked in, then this task
 199                 * will hold up the next grace period rather than the
 200                 * current grace period.  Queue the task accordingly.
 201                 * If the task is queued for the current grace period
 202                 * (i.e., this CPU has not yet passed through a quiescent
 203                 * state for the current grace period), then as long
 204                 * as that task remains queued, the current grace period
 205                 * cannot end.  Note that there is some uncertainty as
 206                 * to exactly when the current grace period started.
 207                 * We take a conservative approach, which can result
 208                 * in unnecessarily waiting on tasks that started very
 209                 * slightly after the current grace period began.  C'est
 210                 * la vie!!!
 211                 *
 212                 * But first, note that the current CPU must still be
 213                 * on line!
 214                 */
 215                WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
 216                WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 217                if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
 218                        list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
 219                        rnp->gp_tasks = &t->rcu_node_entry;
 220#ifdef CONFIG_RCU_BOOST
 221                        if (rnp->boost_tasks != NULL)
 222                                rnp->boost_tasks = rnp->gp_tasks;
 223#endif /* #ifdef CONFIG_RCU_BOOST */
 224                } else {
 225                        list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 226                        if (rnp->qsmask & rdp->grpmask)
 227                                rnp->gp_tasks = &t->rcu_node_entry;
 228                }
 229                trace_rcu_preempt_task(rdp->rsp->name,
 230                                       t->pid,
 231                                       (rnp->qsmask & rdp->grpmask)
 232                                       ? rnp->gpnum
 233                                       : rnp->gpnum + 1);
 234                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 235        } else if (t->rcu_read_lock_nesting < 0 &&
 236                   t->rcu_read_unlock_special) {
 237
 238                /*
 239                 * Complete exit from RCU read-side critical section on
 240                 * behalf of preempted instance of __rcu_read_unlock().
 241                 */
 242                rcu_read_unlock_special(t);
 243        }
 244
 245        /*
 246         * Either we were not in an RCU read-side critical section to
 247         * begin with, or we have now recorded that critical section
 248         * globally.  Either way, we can now note a quiescent state
 249         * for this CPU.  Again, if we were in an RCU read-side critical
 250         * section, and if that critical section was blocking the current
 251         * grace period, then the fact that the task has been enqueued
 252         * means that we continue to block the current grace period.
 253         */
 254        local_irq_save(flags);
 255        rcu_preempt_qs(cpu);
 256        local_irq_restore(flags);
 257}
 258
 259/*
 260 * Check for preempted RCU readers blocking the current grace period
 261 * for the specified rcu_node structure.  If the caller needs a reliable
 262 * answer, it must hold the rcu_node's ->lock.
 263 */
 264static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 265{
 266        return rnp->gp_tasks != NULL;
 267}
 268
 269/*
 270 * Record a quiescent state for all tasks that were previously queued
 271 * on the specified rcu_node structure and that were blocking the current
 272 * RCU grace period.  The caller must hold the specified rnp->lock with
 273 * irqs disabled, and this lock is released upon return, but irqs remain
 274 * disabled.
 275 */
 276static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 277        __releases(rnp->lock)
 278{
 279        unsigned long mask;
 280        struct rcu_node *rnp_p;
 281
 282        if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 283                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 284                return;  /* Still need more quiescent states! */
 285        }
 286
 287        rnp_p = rnp->parent;
 288        if (rnp_p == NULL) {
 289                /*
 290                 * Either there is only one rcu_node in the tree,
 291                 * or tasks were kicked up to root rcu_node due to
 292                 * CPUs going offline.
 293                 */
 294                rcu_report_qs_rsp(&rcu_preempt_state, flags);
 295                return;
 296        }
 297
 298        /* Report up the rest of the hierarchy. */
 299        mask = rnp->grpmask;
 300        raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
 301        raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
 302        rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
 303}
 304
 305/*
 306 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 307 * returning NULL if at the end of the list.
 308 */
 309static struct list_head *rcu_next_node_entry(struct task_struct *t,
 310                                             struct rcu_node *rnp)
 311{
 312        struct list_head *np;
 313
 314        np = t->rcu_node_entry.next;
 315        if (np == &rnp->blkd_tasks)
 316                np = NULL;
 317        return np;
 318}
 319
 320/*
 321 * Handle special cases during rcu_read_unlock(), such as needing to
 322 * notify RCU core processing or task having blocked during the RCU
 323 * read-side critical section.
 324 */
 325void rcu_read_unlock_special(struct task_struct *t)
 326{
 327        int empty;
 328        int empty_exp;
 329        int empty_exp_now;
 330        unsigned long flags;
 331        struct list_head *np;
 332#ifdef CONFIG_RCU_BOOST
 333        struct rt_mutex *rbmp = NULL;
 334#endif /* #ifdef CONFIG_RCU_BOOST */
 335        struct rcu_node *rnp;
 336        int special;
 337
 338        /* NMI handlers cannot block and cannot safely manipulate state. */
 339        if (in_nmi())
 340                return;
 341
 342        local_irq_save(flags);
 343
 344        /*
 345         * If RCU core is waiting for this CPU to exit critical section,
 346         * let it know that we have done so.
 347         */
 348        special = t->rcu_read_unlock_special;
 349        if (special & RCU_READ_UNLOCK_NEED_QS) {
 350                rcu_preempt_qs(smp_processor_id());
 351        }
 352
 353        /* Hardware IRQ handlers cannot block. */
 354        if (in_irq() || in_serving_softirq()) {
 355                local_irq_restore(flags);
 356                return;
 357        }
 358
 359        /* Clean up if blocked during RCU read-side critical section. */
 360        if (special & RCU_READ_UNLOCK_BLOCKED) {
 361                t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
 362
 363                /*
 364                 * Remove this task from the list it blocked on.  The
 365                 * task can migrate while we acquire the lock, but at
 366                 * most one time.  So at most two passes through loop.
 367                 */
 368                for (;;) {
 369                        rnp = t->rcu_blocked_node;
 370                        raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
 371                        if (rnp == t->rcu_blocked_node)
 372                                break;
 373                        raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 374                }
 375                empty = !rcu_preempt_blocked_readers_cgp(rnp);
 376                empty_exp = !rcu_preempted_readers_exp(rnp);
 377                smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 378                np = rcu_next_node_entry(t, rnp);
 379                list_del_init(&t->rcu_node_entry);
 380                t->rcu_blocked_node = NULL;
 381                trace_rcu_unlock_preempted_task("rcu_preempt",
 382                                                rnp->gpnum, t->pid);
 383                if (&t->rcu_node_entry == rnp->gp_tasks)
 384                        rnp->gp_tasks = np;
 385                if (&t->rcu_node_entry == rnp->exp_tasks)
 386                        rnp->exp_tasks = np;
 387#ifdef CONFIG_RCU_BOOST
 388                if (&t->rcu_node_entry == rnp->boost_tasks)
 389                        rnp->boost_tasks = np;
 390                /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
 391                if (t->rcu_boost_mutex) {
 392                        rbmp = t->rcu_boost_mutex;
 393                        t->rcu_boost_mutex = NULL;
 394                }
 395#endif /* #ifdef CONFIG_RCU_BOOST */
 396
 397                /*
 398                 * If this was the last task on the current list, and if
 399                 * we aren't waiting on any CPUs, report the quiescent state.
 400                 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 401                 * so we must take a snapshot of the expedited state.
 402                 */
 403                empty_exp_now = !rcu_preempted_readers_exp(rnp);
 404                if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
 405                        trace_rcu_quiescent_state_report("preempt_rcu",
 406                                                         rnp->gpnum,
 407                                                         0, rnp->qsmask,
 408                                                         rnp->level,
 409                                                         rnp->grplo,
 410                                                         rnp->grphi,
 411                                                         !!rnp->gp_tasks);
 412                        rcu_report_unblock_qs_rnp(rnp, flags);
 413                } else {
 414                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 415                }
 416
 417#ifdef CONFIG_RCU_BOOST
 418                /* Unboost if we were boosted. */
 419                if (rbmp)
 420                        rt_mutex_unlock(rbmp);
 421#endif /* #ifdef CONFIG_RCU_BOOST */
 422
 423                /*
 424                 * If this was the last task on the expedited lists,
 425                 * then we need to report up the rcu_node hierarchy.
 426                 */
 427                if (!empty_exp && empty_exp_now)
 428                        rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
 429        } else {
 430                local_irq_restore(flags);
 431        }
 432}
 433
 434#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
 435
 436/*
 437 * Dump detailed information for all tasks blocking the current RCU
 438 * grace period on the specified rcu_node structure.
 439 */
 440static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 441{
 442        unsigned long flags;
 443        struct task_struct *t;
 444
 445        raw_spin_lock_irqsave(&rnp->lock, flags);
 446        if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 447                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 448                return;
 449        }
 450        t = list_entry(rnp->gp_tasks,
 451                       struct task_struct, rcu_node_entry);
 452        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 453                sched_show_task(t);
 454        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 455}
 456
 457/*
 458 * Dump detailed information for all tasks blocking the current RCU
 459 * grace period.
 460 */
 461static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 462{
 463        struct rcu_node *rnp = rcu_get_root(rsp);
 464
 465        rcu_print_detail_task_stall_rnp(rnp);
 466        rcu_for_each_leaf_node(rsp, rnp)
 467                rcu_print_detail_task_stall_rnp(rnp);
 468}
 469
 470#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
 471
 472static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 473{
 474}
 475
 476#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
 477
 478#ifdef CONFIG_RCU_CPU_STALL_INFO
 479
 480static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 481{
 482        printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 483               rnp->level, rnp->grplo, rnp->grphi);
 484}
 485
 486static void rcu_print_task_stall_end(void)
 487{
 488        printk(KERN_CONT "\n");
 489}
 490
 491#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
 492
 493static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 494{
 495}
 496
 497static void rcu_print_task_stall_end(void)
 498{
 499}
 500
 501#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
 502
 503/*
 504 * Scan the current list of tasks blocked within RCU read-side critical
 505 * sections, printing out the tid of each.
 506 */
 507static int rcu_print_task_stall(struct rcu_node *rnp)
 508{
 509        struct task_struct *t;
 510        int ndetected = 0;
 511
 512        if (!rcu_preempt_blocked_readers_cgp(rnp))
 513                return 0;
 514        rcu_print_task_stall_begin(rnp);
 515        t = list_entry(rnp->gp_tasks,
 516                       struct task_struct, rcu_node_entry);
 517        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 518                printk(KERN_CONT " P%d", t->pid);
 519                ndetected++;
 520        }
 521        rcu_print_task_stall_end();
 522        return ndetected;
 523}
 524
 525/*
 526 * Check that the list of blocked tasks for the newly completed grace
 527 * period is in fact empty.  It is a serious bug to complete a grace
 528 * period that still has RCU readers blocked!  This function must be
 529 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 530 * must be held by the caller.
 531 *
 532 * Also, if there are blocked tasks on the list, they automatically
 533 * block the newly created grace period, so set up ->gp_tasks accordingly.
 534 */
 535static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 536{
 537        WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 538        if (!list_empty(&rnp->blkd_tasks))
 539                rnp->gp_tasks = rnp->blkd_tasks.next;
 540        WARN_ON_ONCE(rnp->qsmask);
 541}
 542
 543#ifdef CONFIG_HOTPLUG_CPU
 544
 545/*
 546 * Handle tasklist migration for case in which all CPUs covered by the
 547 * specified rcu_node have gone offline.  Move them up to the root
 548 * rcu_node.  The reason for not just moving them to the immediate
 549 * parent is to remove the need for rcu_read_unlock_special() to
 550 * make more than two attempts to acquire the target rcu_node's lock.
 551 * Returns true if there were tasks blocking the current RCU grace
 552 * period.
 553 *
 554 * Returns 1 if there was previously a task blocking the current grace
 555 * period on the specified rcu_node structure.
 556 *
 557 * The caller must hold rnp->lock with irqs disabled.
 558 */
 559static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 560                                     struct rcu_node *rnp,
 561                                     struct rcu_data *rdp)
 562{
 563        struct list_head *lp;
 564        struct list_head *lp_root;
 565        int retval = 0;
 566        struct rcu_node *rnp_root = rcu_get_root(rsp);
 567        struct task_struct *t;
 568
 569        if (rnp == rnp_root) {
 570                WARN_ONCE(1, "Last CPU thought to be offlined?");
 571                return 0;  /* Shouldn't happen: at least one CPU online. */
 572        }
 573
 574        /* If we are on an internal node, complain bitterly. */
 575        WARN_ON_ONCE(rnp != rdp->mynode);
 576
 577        /*
 578         * Move tasks up to root rcu_node.  Don't try to get fancy for
 579         * this corner-case operation -- just put this node's tasks
 580         * at the head of the root node's list, and update the root node's
 581         * ->gp_tasks and ->exp_tasks pointers to those of this node's,
 582         * if non-NULL.  This might result in waiting for more tasks than
 583         * absolutely necessary, but this is a good performance/complexity
 584         * tradeoff.
 585         */
 586        if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
 587                retval |= RCU_OFL_TASKS_NORM_GP;
 588        if (rcu_preempted_readers_exp(rnp))
 589                retval |= RCU_OFL_TASKS_EXP_GP;
 590        lp = &rnp->blkd_tasks;
 591        lp_root = &rnp_root->blkd_tasks;
 592        while (!list_empty(lp)) {
 593                t = list_entry(lp->next, typeof(*t), rcu_node_entry);
 594                raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
 595                list_del(&t->rcu_node_entry);
 596                t->rcu_blocked_node = rnp_root;
 597                list_add(&t->rcu_node_entry, lp_root);
 598                if (&t->rcu_node_entry == rnp->gp_tasks)
 599                        rnp_root->gp_tasks = rnp->gp_tasks;
 600                if (&t->rcu_node_entry == rnp->exp_tasks)
 601                        rnp_root->exp_tasks = rnp->exp_tasks;
 602#ifdef CONFIG_RCU_BOOST
 603                if (&t->rcu_node_entry == rnp->boost_tasks)
 604                        rnp_root->boost_tasks = rnp->boost_tasks;
 605#endif /* #ifdef CONFIG_RCU_BOOST */
 606                raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
 607        }
 608
 609        rnp->gp_tasks = NULL;
 610        rnp->exp_tasks = NULL;
 611#ifdef CONFIG_RCU_BOOST
 612        rnp->boost_tasks = NULL;
 613        /*
 614         * In case root is being boosted and leaf was not.  Make sure
 615         * that we boost the tasks blocking the current grace period
 616         * in this case.
 617         */
 618        raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
 619        if (rnp_root->boost_tasks != NULL &&
 620            rnp_root->boost_tasks != rnp_root->gp_tasks &&
 621            rnp_root->boost_tasks != rnp_root->exp_tasks)
 622                rnp_root->boost_tasks = rnp_root->gp_tasks;
 623        raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
 624#endif /* #ifdef CONFIG_RCU_BOOST */
 625
 626        return retval;
 627}
 628
 629#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 630
 631/*
 632 * Check for a quiescent state from the current CPU.  When a task blocks,
 633 * the task is recorded in the corresponding CPU's rcu_node structure,
 634 * which is checked elsewhere.
 635 *
 636 * Caller must disable hard irqs.
 637 */
 638static void rcu_preempt_check_callbacks(int cpu)
 639{
 640        struct task_struct *t = current;
 641
 642        if (t->rcu_read_lock_nesting == 0) {
 643                rcu_preempt_qs(cpu);
 644                return;
 645        }
 646        if (t->rcu_read_lock_nesting > 0 &&
 647            per_cpu(rcu_preempt_data, cpu).qs_pending)
 648                t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
 649}
 650
 651#ifdef CONFIG_RCU_BOOST
 652
 653static void rcu_preempt_do_callbacks(void)
 654{
 655        rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
 656}
 657
 658#endif /* #ifdef CONFIG_RCU_BOOST */
 659
 660/*
 661 * Queue a preemptible-RCU callback for invocation after a grace period.
 662 */
 663void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 664{
 665        __call_rcu(head, func, &rcu_preempt_state, -1, 0);
 666}
 667EXPORT_SYMBOL_GPL(call_rcu);
 668
 669/*
 670 * Queue an RCU callback for lazy invocation after a grace period.
 671 * This will likely be later named something like "call_rcu_lazy()",
 672 * but this change will require some way of tagging the lazy RCU
 673 * callbacks in the list of pending callbacks.  Until then, this
 674 * function may only be called from __kfree_rcu().
 675 */
 676void kfree_call_rcu(struct rcu_head *head,
 677                    void (*func)(struct rcu_head *rcu))
 678{
 679        __call_rcu(head, func, &rcu_preempt_state, -1, 1);
 680}
 681EXPORT_SYMBOL_GPL(kfree_call_rcu);
 682
 683/**
 684 * synchronize_rcu - wait until a grace period has elapsed.
 685 *
 686 * Control will return to the caller some time after a full grace
 687 * period has elapsed, in other words after all currently executing RCU
 688 * read-side critical sections have completed.  Note, however, that
 689 * upon return from synchronize_rcu(), the caller might well be executing
 690 * concurrently with new RCU read-side critical sections that began while
 691 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 692 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 693 *
 694 * See the description of synchronize_sched() for more detailed information
 695 * on memory ordering guarantees.
 696 */
 697void synchronize_rcu(void)
 698{
 699        rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
 700                           !lock_is_held(&rcu_lock_map) &&
 701                           !lock_is_held(&rcu_sched_lock_map),
 702                           "Illegal synchronize_rcu() in RCU read-side critical section");
 703        if (!rcu_scheduler_active)
 704                return;
 705        if (rcu_expedited)
 706                synchronize_rcu_expedited();
 707        else
 708                wait_rcu_gp(call_rcu);
 709}
 710EXPORT_SYMBOL_GPL(synchronize_rcu);
 711
 712static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
 713static unsigned long sync_rcu_preempt_exp_count;
 714static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
 715
 716/*
 717 * Return non-zero if there are any tasks in RCU read-side critical
 718 * sections blocking the current preemptible-RCU expedited grace period.
 719 * If there is no preemptible-RCU expedited grace period currently in
 720 * progress, returns zero unconditionally.
 721 */
 722static int rcu_preempted_readers_exp(struct rcu_node *rnp)
 723{
 724        return rnp->exp_tasks != NULL;
 725}
 726
 727/*
 728 * return non-zero if there is no RCU expedited grace period in progress
 729 * for the specified rcu_node structure, in other words, if all CPUs and
 730 * tasks covered by the specified rcu_node structure have done their bit
 731 * for the current expedited grace period.  Works only for preemptible
 732 * RCU -- other RCU implementation use other means.
 733 *
 734 * Caller must hold sync_rcu_preempt_exp_mutex.
 735 */
 736static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
 737{
 738        return !rcu_preempted_readers_exp(rnp) &&
 739               ACCESS_ONCE(rnp->expmask) == 0;
 740}
 741
 742/*
 743 * Report the exit from RCU read-side critical section for the last task
 744 * that queued itself during or before the current expedited preemptible-RCU
 745 * grace period.  This event is reported either to the rcu_node structure on
 746 * which the task was queued or to one of that rcu_node structure's ancestors,
 747 * recursively up the tree.  (Calm down, calm down, we do the recursion
 748 * iteratively!)
 749 *
 750 * Most callers will set the "wake" flag, but the task initiating the
 751 * expedited grace period need not wake itself.
 752 *
 753 * Caller must hold sync_rcu_preempt_exp_mutex.
 754 */
 755static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 756                               bool wake)
 757{
 758        unsigned long flags;
 759        unsigned long mask;
 760
 761        raw_spin_lock_irqsave(&rnp->lock, flags);
 762        for (;;) {
 763                if (!sync_rcu_preempt_exp_done(rnp)) {
 764                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 765                        break;
 766                }
 767                if (rnp->parent == NULL) {
 768                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 769                        if (wake)
 770                                wake_up(&sync_rcu_preempt_exp_wq);
 771                        break;
 772                }
 773                mask = rnp->grpmask;
 774                raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
 775                rnp = rnp->parent;
 776                raw_spin_lock(&rnp->lock); /* irqs already disabled */
 777                rnp->expmask &= ~mask;
 778        }
 779}
 780
 781/*
 782 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 783 * grace period for the specified rcu_node structure.  If there are no such
 784 * tasks, report it up the rcu_node hierarchy.
 785 *
 786 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 787 * CPU hotplug operations.
 788 */
 789static void
 790sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
 791{
 792        unsigned long flags;
 793        int must_wait = 0;
 794
 795        raw_spin_lock_irqsave(&rnp->lock, flags);
 796        if (list_empty(&rnp->blkd_tasks)) {
 797                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 798        } else {
 799                rnp->exp_tasks = rnp->blkd_tasks.next;
 800                rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
 801                must_wait = 1;
 802        }
 803        if (!must_wait)
 804                rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
 805}
 806
 807/**
 808 * synchronize_rcu_expedited - Brute-force RCU grace period
 809 *
 810 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 811 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 812 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 813 * significant time on all CPUs and is unfriendly to real-time workloads,
 814 * so is thus not recommended for any sort of common-case code.
 815 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 816 * please restructure your code to batch your updates, and then Use a
 817 * single synchronize_rcu() instead.
 818 *
 819 * Note that it is illegal to call this function while holding any lock
 820 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 821 * to call this function from a CPU-hotplug notifier.  Failing to observe
 822 * these restriction will result in deadlock.
 823 */
 824void synchronize_rcu_expedited(void)
 825{
 826        unsigned long flags;
 827        struct rcu_node *rnp;
 828        struct rcu_state *rsp = &rcu_preempt_state;
 829        unsigned long snap;
 830        int trycount = 0;
 831
 832        smp_mb(); /* Caller's modifications seen first by other CPUs. */
 833        snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
 834        smp_mb(); /* Above access cannot bleed into critical section. */
 835
 836        /*
 837         * Block CPU-hotplug operations.  This means that any CPU-hotplug
 838         * operation that finds an rcu_node structure with tasks in the
 839         * process of being boosted will know that all tasks blocking
 840         * this expedited grace period will already be in the process of
 841         * being boosted.  This simplifies the process of moving tasks
 842         * from leaf to root rcu_node structures.
 843         */
 844        get_online_cpus();
 845
 846        /*
 847         * Acquire lock, falling back to synchronize_rcu() if too many
 848         * lock-acquisition failures.  Of course, if someone does the
 849         * expedited grace period for us, just leave.
 850         */
 851        while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
 852                if (ULONG_CMP_LT(snap,
 853                    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
 854                        put_online_cpus();
 855                        goto mb_ret; /* Others did our work for us. */
 856                }
 857                if (trycount++ < 10) {
 858                        udelay(trycount * num_online_cpus());
 859                } else {
 860                        put_online_cpus();
 861                        wait_rcu_gp(call_rcu);
 862                        return;
 863                }
 864        }
 865        if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
 866                put_online_cpus();
 867                goto unlock_mb_ret; /* Others did our work for us. */
 868        }
 869
 870        /* force all RCU readers onto ->blkd_tasks lists. */
 871        synchronize_sched_expedited();
 872
 873        /* Initialize ->expmask for all non-leaf rcu_node structures. */
 874        rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
 875                raw_spin_lock_irqsave(&rnp->lock, flags);
 876                rnp->expmask = rnp->qsmaskinit;
 877                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 878        }
 879
 880        /* Snapshot current state of ->blkd_tasks lists. */
 881        rcu_for_each_leaf_node(rsp, rnp)
 882                sync_rcu_preempt_exp_init(rsp, rnp);
 883        if (NUM_RCU_NODES > 1)
 884                sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
 885
 886        put_online_cpus();
 887
 888        /* Wait for snapshotted ->blkd_tasks lists to drain. */
 889        rnp = rcu_get_root(rsp);
 890        wait_event(sync_rcu_preempt_exp_wq,
 891                   sync_rcu_preempt_exp_done(rnp));
 892
 893        /* Clean up and exit. */
 894        smp_mb(); /* ensure expedited GP seen before counter increment. */
 895        ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
 896unlock_mb_ret:
 897        mutex_unlock(&sync_rcu_preempt_exp_mutex);
 898mb_ret:
 899        smp_mb(); /* ensure subsequent action seen after grace period. */
 900}
 901EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 902
 903/**
 904 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 905 *
 906 * Note that this primitive does not necessarily wait for an RCU grace period
 907 * to complete.  For example, if there are no RCU callbacks queued anywhere
 908 * in the system, then rcu_barrier() is within its rights to return
 909 * immediately, without waiting for anything, much less an RCU grace period.
 910 */
 911void rcu_barrier(void)
 912{
 913        _rcu_barrier(&rcu_preempt_state);
 914}
 915EXPORT_SYMBOL_GPL(rcu_barrier);
 916
 917/*
 918 * Initialize preemptible RCU's state structures.
 919 */
 920static void __init __rcu_init_preempt(void)
 921{
 922        rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
 923}
 924
 925#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
 926
 927static struct rcu_state *rcu_state = &rcu_sched_state;
 928
 929/*
 930 * Tell them what RCU they are running.
 931 */
 932static void __init rcu_bootup_announce(void)
 933{
 934        printk(KERN_INFO "Hierarchical RCU implementation.\n");
 935        rcu_bootup_announce_oddness();
 936}
 937
 938/*
 939 * Return the number of RCU batches processed thus far for debug & stats.
 940 */
 941long rcu_batches_completed(void)
 942{
 943        return rcu_batches_completed_sched();
 944}
 945EXPORT_SYMBOL_GPL(rcu_batches_completed);
 946
 947/*
 948 * Force a quiescent state for RCU, which, because there is no preemptible
 949 * RCU, becomes the same as rcu-sched.
 950 */
 951void rcu_force_quiescent_state(void)
 952{
 953        rcu_sched_force_quiescent_state();
 954}
 955EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 956
 957/*
 958 * Because preemptible RCU does not exist, we never have to check for
 959 * CPUs being in quiescent states.
 960 */
 961static void rcu_preempt_note_context_switch(int cpu)
 962{
 963}
 964
 965/*
 966 * Because preemptible RCU does not exist, there are never any preempted
 967 * RCU readers.
 968 */
 969static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 970{
 971        return 0;
 972}
 973
 974#ifdef CONFIG_HOTPLUG_CPU
 975
 976/* Because preemptible RCU does not exist, no quieting of tasks. */
 977static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 978{
 979        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 980}
 981
 982#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 983
 984/*
 985 * Because preemptible RCU does not exist, we never have to check for
 986 * tasks blocked within RCU read-side critical sections.
 987 */
 988static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 989{
 990}
 991
 992/*
 993 * Because preemptible RCU does not exist, we never have to check for
 994 * tasks blocked within RCU read-side critical sections.
 995 */
 996static int rcu_print_task_stall(struct rcu_node *rnp)
 997{
 998        return 0;
 999}
1000
1001/*
1002 * Because there is no preemptible RCU, there can be no readers blocked,
1003 * so there is no need to check for blocked tasks.  So check only for
1004 * bogus qsmask values.
1005 */
1006static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1007{
1008        WARN_ON_ONCE(rnp->qsmask);
1009}
1010
1011#ifdef CONFIG_HOTPLUG_CPU
1012
1013/*
1014 * Because preemptible RCU does not exist, it never needs to migrate
1015 * tasks that were blocked within RCU read-side critical sections, and
1016 * such non-existent tasks cannot possibly have been blocking the current
1017 * grace period.
1018 */
1019static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1020                                     struct rcu_node *rnp,
1021                                     struct rcu_data *rdp)
1022{
1023        return 0;
1024}
1025
1026#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1027
1028/*
1029 * Because preemptible RCU does not exist, it never has any callbacks
1030 * to check.
1031 */
1032static void rcu_preempt_check_callbacks(int cpu)
1033{
1034}
1035
1036/*
1037 * Queue an RCU callback for lazy invocation after a grace period.
1038 * This will likely be later named something like "call_rcu_lazy()",
1039 * but this change will require some way of tagging the lazy RCU
1040 * callbacks in the list of pending callbacks.  Until then, this
1041 * function may only be called from __kfree_rcu().
1042 *
1043 * Because there is no preemptible RCU, we use RCU-sched instead.
1044 */
1045void kfree_call_rcu(struct rcu_head *head,
1046                    void (*func)(struct rcu_head *rcu))
1047{
1048        __call_rcu(head, func, &rcu_sched_state, -1, 1);
1049}
1050EXPORT_SYMBOL_GPL(kfree_call_rcu);
1051
1052/*
1053 * Wait for an rcu-preempt grace period, but make it happen quickly.
1054 * But because preemptible RCU does not exist, map to rcu-sched.
1055 */
1056void synchronize_rcu_expedited(void)
1057{
1058        synchronize_sched_expedited();
1059}
1060EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1061
1062#ifdef CONFIG_HOTPLUG_CPU
1063
1064/*
1065 * Because preemptible RCU does not exist, there is never any need to
1066 * report on tasks preempted in RCU read-side critical sections during
1067 * expedited RCU grace periods.
1068 */
1069static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1070                               bool wake)
1071{
1072}
1073
1074#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1075
1076/*
1077 * Because preemptible RCU does not exist, rcu_barrier() is just
1078 * another name for rcu_barrier_sched().
1079 */
1080void rcu_barrier(void)
1081{
1082        rcu_barrier_sched();
1083}
1084EXPORT_SYMBOL_GPL(rcu_barrier);
1085
1086/*
1087 * Because preemptible RCU does not exist, it need not be initialized.
1088 */
1089static void __init __rcu_init_preempt(void)
1090{
1091}
1092
1093#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1094
1095#ifdef CONFIG_RCU_BOOST
1096
1097#include "rtmutex_common.h"
1098
1099#ifdef CONFIG_RCU_TRACE
1100
1101static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1102{
1103        if (list_empty(&rnp->blkd_tasks))
1104                rnp->n_balk_blkd_tasks++;
1105        else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1106                rnp->n_balk_exp_gp_tasks++;
1107        else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1108                rnp->n_balk_boost_tasks++;
1109        else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1110                rnp->n_balk_notblocked++;
1111        else if (rnp->gp_tasks != NULL &&
1112                 ULONG_CMP_LT(jiffies, rnp->boost_time))
1113                rnp->n_balk_notyet++;
1114        else
1115                rnp->n_balk_nos++;
1116}
1117
1118#else /* #ifdef CONFIG_RCU_TRACE */
1119
1120static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1121{
1122}
1123
1124#endif /* #else #ifdef CONFIG_RCU_TRACE */
1125
1126static void rcu_wake_cond(struct task_struct *t, int status)
1127{
1128        /*
1129         * If the thread is yielding, only wake it when this
1130         * is invoked from idle
1131         */
1132        if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1133                wake_up_process(t);
1134}
1135
1136/*
1137 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1138 * or ->boost_tasks, advancing the pointer to the next task in the
1139 * ->blkd_tasks list.
1140 *
1141 * Note that irqs must be enabled: boosting the task can block.
1142 * Returns 1 if there are more tasks needing to be boosted.
1143 */
1144static int rcu_boost(struct rcu_node *rnp)
1145{
1146        unsigned long flags;
1147        struct rt_mutex mtx;
1148        struct task_struct *t;
1149        struct list_head *tb;
1150
1151        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1152                return 0;  /* Nothing left to boost. */
1153
1154        raw_spin_lock_irqsave(&rnp->lock, flags);
1155
1156        /*
1157         * Recheck under the lock: all tasks in need of boosting
1158         * might exit their RCU read-side critical sections on their own.
1159         */
1160        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1161                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1162                return 0;
1163        }
1164
1165        /*
1166         * Preferentially boost tasks blocking expedited grace periods.
1167         * This cannot starve the normal grace periods because a second
1168         * expedited grace period must boost all blocked tasks, including
1169         * those blocking the pre-existing normal grace period.
1170         */
1171        if (rnp->exp_tasks != NULL) {
1172                tb = rnp->exp_tasks;
1173                rnp->n_exp_boosts++;
1174        } else {
1175                tb = rnp->boost_tasks;
1176                rnp->n_normal_boosts++;
1177        }
1178        rnp->n_tasks_boosted++;
1179
1180        /*
1181         * We boost task t by manufacturing an rt_mutex that appears to
1182         * be held by task t.  We leave a pointer to that rt_mutex where
1183         * task t can find it, and task t will release the mutex when it
1184         * exits its outermost RCU read-side critical section.  Then
1185         * simply acquiring this artificial rt_mutex will boost task
1186         * t's priority.  (Thanks to tglx for suggesting this approach!)
1187         *
1188         * Note that task t must acquire rnp->lock to remove itself from
1189         * the ->blkd_tasks list, which it will do from exit() if from
1190         * nowhere else.  We therefore are guaranteed that task t will
1191         * stay around at least until we drop rnp->lock.  Note that
1192         * rnp->lock also resolves races between our priority boosting
1193         * and task t's exiting its outermost RCU read-side critical
1194         * section.
1195         */
1196        t = container_of(tb, struct task_struct, rcu_node_entry);
1197        rt_mutex_init_proxy_locked(&mtx, t);
1198        t->rcu_boost_mutex = &mtx;
1199        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1200        rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1201        rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1202
1203        return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1204               ACCESS_ONCE(rnp->boost_tasks) != NULL;
1205}
1206
1207/*
1208 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1209 * root rcu_node.
1210 */
1211static int rcu_boost_kthread(void *arg)
1212{
1213        struct rcu_node *rnp = (struct rcu_node *)arg;
1214        int spincnt = 0;
1215        int more2boost;
1216
1217        trace_rcu_utilization("Start boost kthread@init");
1218        for (;;) {
1219                rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1220                trace_rcu_utilization("End boost kthread@rcu_wait");
1221                rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1222                trace_rcu_utilization("Start boost kthread@rcu_wait");
1223                rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1224                more2boost = rcu_boost(rnp);
1225                if (more2boost)
1226                        spincnt++;
1227                else
1228                        spincnt = 0;
1229                if (spincnt > 10) {
1230                        rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1231                        trace_rcu_utilization("End boost kthread@rcu_yield");
1232                        schedule_timeout_interruptible(2);
1233                        trace_rcu_utilization("Start boost kthread@rcu_yield");
1234                        spincnt = 0;
1235                }
1236        }
1237        /* NOTREACHED */
1238        trace_rcu_utilization("End boost kthread@notreached");
1239        return 0;
1240}
1241
1242/*
1243 * Check to see if it is time to start boosting RCU readers that are
1244 * blocking the current grace period, and, if so, tell the per-rcu_node
1245 * kthread to start boosting them.  If there is an expedited grace
1246 * period in progress, it is always time to boost.
1247 *
1248 * The caller must hold rnp->lock, which this function releases.
1249 * The ->boost_kthread_task is immortal, so we don't need to worry
1250 * about it going away.
1251 */
1252static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1253{
1254        struct task_struct *t;
1255
1256        if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1257                rnp->n_balk_exp_gp_tasks++;
1258                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259                return;
1260        }
1261        if (rnp->exp_tasks != NULL ||
1262            (rnp->gp_tasks != NULL &&
1263             rnp->boost_tasks == NULL &&
1264             rnp->qsmask == 0 &&
1265             ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1266                if (rnp->exp_tasks == NULL)
1267                        rnp->boost_tasks = rnp->gp_tasks;
1268                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1269                t = rnp->boost_kthread_task;
1270                if (t)
1271                        rcu_wake_cond(t, rnp->boost_kthread_status);
1272        } else {
1273                rcu_initiate_boost_trace(rnp);
1274                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1275        }
1276}
1277
1278/*
1279 * Wake up the per-CPU kthread to invoke RCU callbacks.
1280 */
1281static void invoke_rcu_callbacks_kthread(void)
1282{
1283        unsigned long flags;
1284
1285        local_irq_save(flags);
1286        __this_cpu_write(rcu_cpu_has_work, 1);
1287        if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1288            current != __this_cpu_read(rcu_cpu_kthread_task)) {
1289                rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1290                              __this_cpu_read(rcu_cpu_kthread_status));
1291        }
1292        local_irq_restore(flags);
1293}
1294
1295/*
1296 * Is the current CPU running the RCU-callbacks kthread?
1297 * Caller must have preemption disabled.
1298 */
1299static bool rcu_is_callbacks_kthread(void)
1300{
1301        return __get_cpu_var(rcu_cpu_kthread_task) == current;
1302}
1303
1304#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1305
1306/*
1307 * Do priority-boost accounting for the start of a new grace period.
1308 */
1309static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1310{
1311        rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1312}
1313
1314/*
1315 * Create an RCU-boost kthread for the specified node if one does not
1316 * already exist.  We only create this kthread for preemptible RCU.
1317 * Returns zero if all is well, a negated errno otherwise.
1318 */
1319static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1320                                                 struct rcu_node *rnp)
1321{
1322        int rnp_index = rnp - &rsp->node[0];
1323        unsigned long flags;
1324        struct sched_param sp;
1325        struct task_struct *t;
1326
1327        if (&rcu_preempt_state != rsp)
1328                return 0;
1329
1330        if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1331                return 0;
1332
1333        rsp->boost = 1;
1334        if (rnp->boost_kthread_task != NULL)
1335                return 0;
1336        t = kthread_create(rcu_boost_kthread, (void *)rnp,
1337                           "rcub/%d", rnp_index);
1338        if (IS_ERR(t))
1339                return PTR_ERR(t);
1340        raw_spin_lock_irqsave(&rnp->lock, flags);
1341        rnp->boost_kthread_task = t;
1342        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1343        sp.sched_priority = RCU_BOOST_PRIO;
1344        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1345        wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1346        return 0;
1347}
1348
1349static void rcu_kthread_do_work(void)
1350{
1351        rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1352        rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1353        rcu_preempt_do_callbacks();
1354}
1355
1356static void rcu_cpu_kthread_setup(unsigned int cpu)
1357{
1358        struct sched_param sp;
1359
1360        sp.sched_priority = RCU_KTHREAD_PRIO;
1361        sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1362}
1363
1364static void rcu_cpu_kthread_park(unsigned int cpu)
1365{
1366        per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1367}
1368
1369static int rcu_cpu_kthread_should_run(unsigned int cpu)
1370{
1371        return __get_cpu_var(rcu_cpu_has_work);
1372}
1373
1374/*
1375 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1376 * RCU softirq used in flavors and configurations of RCU that do not
1377 * support RCU priority boosting.
1378 */
1379static void rcu_cpu_kthread(unsigned int cpu)
1380{
1381        unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status);
1382        char work, *workp = &__get_cpu_var(rcu_cpu_has_work);
1383        int spincnt;
1384
1385        for (spincnt = 0; spincnt < 10; spincnt++) {
1386                trace_rcu_utilization("Start CPU kthread@rcu_wait");
1387                local_bh_disable();
1388                *statusp = RCU_KTHREAD_RUNNING;
1389                this_cpu_inc(rcu_cpu_kthread_loops);
1390                local_irq_disable();
1391                work = *workp;
1392                *workp = 0;
1393                local_irq_enable();
1394                if (work)
1395                        rcu_kthread_do_work();
1396                local_bh_enable();
1397                if (*workp == 0) {
1398                        trace_rcu_utilization("End CPU kthread@rcu_wait");
1399                        *statusp = RCU_KTHREAD_WAITING;
1400                        return;
1401                }
1402        }
1403        *statusp = RCU_KTHREAD_YIELDING;
1404        trace_rcu_utilization("Start CPU kthread@rcu_yield");
1405        schedule_timeout_interruptible(2);
1406        trace_rcu_utilization("End CPU kthread@rcu_yield");
1407        *statusp = RCU_KTHREAD_WAITING;
1408}
1409
1410/*
1411 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1412 * served by the rcu_node in question.  The CPU hotplug lock is still
1413 * held, so the value of rnp->qsmaskinit will be stable.
1414 *
1415 * We don't include outgoingcpu in the affinity set, use -1 if there is
1416 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1417 * this function allows the kthread to execute on any CPU.
1418 */
1419static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1420{
1421        struct task_struct *t = rnp->boost_kthread_task;
1422        unsigned long mask = rnp->qsmaskinit;
1423        cpumask_var_t cm;
1424        int cpu;
1425
1426        if (!t)
1427                return;
1428        if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1429                return;
1430        for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1431                if ((mask & 0x1) && cpu != outgoingcpu)
1432                        cpumask_set_cpu(cpu, cm);
1433        if (cpumask_weight(cm) == 0) {
1434                cpumask_setall(cm);
1435                for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1436                        cpumask_clear_cpu(cpu, cm);
1437                WARN_ON_ONCE(cpumask_weight(cm) == 0);
1438        }
1439        set_cpus_allowed_ptr(t, cm);
1440        free_cpumask_var(cm);
1441}
1442
1443static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1444        .store                  = &rcu_cpu_kthread_task,
1445        .thread_should_run      = rcu_cpu_kthread_should_run,
1446        .thread_fn              = rcu_cpu_kthread,
1447        .thread_comm            = "rcuc/%u",
1448        .setup                  = rcu_cpu_kthread_setup,
1449        .park                   = rcu_cpu_kthread_park,
1450};
1451
1452/*
1453 * Spawn all kthreads -- called as soon as the scheduler is running.
1454 */
1455static int __init rcu_spawn_kthreads(void)
1456{
1457        struct rcu_node *rnp;
1458        int cpu;
1459
1460        rcu_scheduler_fully_active = 1;
1461        for_each_possible_cpu(cpu)
1462                per_cpu(rcu_cpu_has_work, cpu) = 0;
1463        BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1464        rnp = rcu_get_root(rcu_state);
1465        (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1466        if (NUM_RCU_NODES > 1) {
1467                rcu_for_each_leaf_node(rcu_state, rnp)
1468                        (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1469        }
1470        return 0;
1471}
1472early_initcall(rcu_spawn_kthreads);
1473
1474static void __cpuinit rcu_prepare_kthreads(int cpu)
1475{
1476        struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1477        struct rcu_node *rnp = rdp->mynode;
1478
1479        /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1480        if (rcu_scheduler_fully_active)
1481                (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1482}
1483
1484#else /* #ifdef CONFIG_RCU_BOOST */
1485
1486static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1487{
1488        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1489}
1490
1491static void invoke_rcu_callbacks_kthread(void)
1492{
1493        WARN_ON_ONCE(1);
1494}
1495
1496static bool rcu_is_callbacks_kthread(void)
1497{
1498        return false;
1499}
1500
1501static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1502{
1503}
1504
1505static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1506{
1507}
1508
1509static int __init rcu_scheduler_really_started(void)
1510{
1511        rcu_scheduler_fully_active = 1;
1512        return 0;
1513}
1514early_initcall(rcu_scheduler_really_started);
1515
1516static void __cpuinit rcu_prepare_kthreads(int cpu)
1517{
1518}
1519
1520#endif /* #else #ifdef CONFIG_RCU_BOOST */
1521
1522#if !defined(CONFIG_RCU_FAST_NO_HZ)
1523
1524/*
1525 * Check to see if any future RCU-related work will need to be done
1526 * by the current CPU, even if none need be done immediately, returning
1527 * 1 if so.  This function is part of the RCU implementation; it is -not-
1528 * an exported member of the RCU API.
1529 *
1530 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1531 * any flavor of RCU.
1532 */
1533int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1534{
1535        *delta_jiffies = ULONG_MAX;
1536        return rcu_cpu_has_callbacks(cpu);
1537}
1538
1539/*
1540 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1541 */
1542static void rcu_prepare_for_idle_init(int cpu)
1543{
1544}
1545
1546/*
1547 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1548 * after it.
1549 */
1550static void rcu_cleanup_after_idle(int cpu)
1551{
1552}
1553
1554/*
1555 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1556 * is nothing.
1557 */
1558static void rcu_prepare_for_idle(int cpu)
1559{
1560}
1561
1562/*
1563 * Don't bother keeping a running count of the number of RCU callbacks
1564 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1565 */
1566static void rcu_idle_count_callbacks_posted(void)
1567{
1568}
1569
1570#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1571
1572/*
1573 * This code is invoked when a CPU goes idle, at which point we want
1574 * to have the CPU do everything required for RCU so that it can enter
1575 * the energy-efficient dyntick-idle mode.  This is handled by a
1576 * state machine implemented by rcu_prepare_for_idle() below.
1577 *
1578 * The following three proprocessor symbols control this state machine:
1579 *
1580 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1581 *      to satisfy RCU.  Beyond this point, it is better to incur a periodic
1582 *      scheduling-clock interrupt than to loop through the state machine
1583 *      at full power.
1584 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1585 *      optional if RCU does not need anything immediately from this
1586 *      CPU, even if this CPU still has RCU callbacks queued.  The first
1587 *      times through the state machine are mandatory: we need to give
1588 *      the state machine a chance to communicate a quiescent state
1589 *      to the RCU core.
1590 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1591 *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1592 *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1593 *      benchmarkers who might otherwise be tempted to set this to a large
1594 *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1595 *      system.  And if you are -that- concerned about energy efficiency,
1596 *      just power the system down and be done with it!
1597 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1598 *      permitted to sleep in dyntick-idle mode with only lazy RCU
1599 *      callbacks pending.  Setting this too high can OOM your system.
1600 *
1601 * The values below work well in practice.  If future workloads require
1602 * adjustment, they can be converted into kernel config parameters, though
1603 * making the state machine smarter might be a better option.
1604 */
1605#define RCU_IDLE_FLUSHES 5              /* Number of dyntick-idle tries. */
1606#define RCU_IDLE_OPT_FLUSHES 3          /* Optional dyntick-idle tries. */
1607#define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1608#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1609
1610extern int tick_nohz_enabled;
1611
1612/*
1613 * Does the specified flavor of RCU have non-lazy callbacks pending on
1614 * the specified CPU?  Both RCU flavor and CPU are specified by the
1615 * rcu_data structure.
1616 */
1617static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1618{
1619        return rdp->qlen != rdp->qlen_lazy;
1620}
1621
1622#ifdef CONFIG_TREE_PREEMPT_RCU
1623
1624/*
1625 * Are there non-lazy RCU-preempt callbacks?  (There cannot be if there
1626 * is no RCU-preempt in the kernel.)
1627 */
1628static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1629{
1630        struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1631
1632        return __rcu_cpu_has_nonlazy_callbacks(rdp);
1633}
1634
1635#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1636
1637static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1638{
1639        return 0;
1640}
1641
1642#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1643
1644/*
1645 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1646 */
1647static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
1648{
1649        return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
1650               __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
1651               rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
1652}
1653
1654/*
1655 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1656 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1657 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1658 * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed
1659 * to enter dyntick-idle mode, we refuse to try to enter it.  After all,
1660 * it is better to incur scheduling-clock interrupts than to spin
1661 * continuously for the same time duration!
1662 *
1663 * The delta_jiffies argument is used to store the time when RCU is
1664 * going to need the CPU again if it still has callbacks.  The reason
1665 * for this is that rcu_prepare_for_idle() might need to post a timer,
1666 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1667 * the wakeup time for this CPU.  This means that RCU's timer can be
1668 * delayed until the wakeup time, which defeats the purpose of posting
1669 * a timer.
1670 */
1671int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1672{
1673        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1674
1675        /* Flag a new idle sojourn to the idle-entry state machine. */
1676        rdtp->idle_first_pass = 1;
1677        /* If no callbacks, RCU doesn't need the CPU. */
1678        if (!rcu_cpu_has_callbacks(cpu)) {
1679                *delta_jiffies = ULONG_MAX;
1680                return 0;
1681        }
1682        if (rdtp->dyntick_holdoff == jiffies) {
1683                /* RCU recently tried and failed, so don't try again. */
1684                *delta_jiffies = 1;
1685                return 1;
1686        }
1687        /* Set up for the possibility that RCU will post a timer. */
1688        if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1689                *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
1690                                          RCU_IDLE_GP_DELAY) - jiffies;
1691        } else {
1692                *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
1693                *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
1694        }
1695        return 0;
1696}
1697
1698/*
1699 * Handler for smp_call_function_single().  The only point of this
1700 * handler is to wake the CPU up, so the handler does only tracing.
1701 */
1702void rcu_idle_demigrate(void *unused)
1703{
1704        trace_rcu_prep_idle("Demigrate");
1705}
1706
1707/*
1708 * Timer handler used to force CPU to start pushing its remaining RCU
1709 * callbacks in the case where it entered dyntick-idle mode with callbacks
1710 * pending.  The hander doesn't really need to do anything because the
1711 * real work is done upon re-entry to idle, or by the next scheduling-clock
1712 * interrupt should idle not be re-entered.
1713 *
1714 * One special case: the timer gets migrated without awakening the CPU
1715 * on which the timer was scheduled on.  In this case, we must wake up
1716 * that CPU.  We do so with smp_call_function_single().
1717 */
1718static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1719{
1720        int cpu = (int)cpu_in;
1721
1722        trace_rcu_prep_idle("Timer");
1723        if (cpu != smp_processor_id())
1724                smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
1725        else
1726                WARN_ON_ONCE(1); /* Getting here can hang the system... */
1727}
1728
1729/*
1730 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1731 */
1732static void rcu_prepare_for_idle_init(int cpu)
1733{
1734        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1735
1736        rdtp->dyntick_holdoff = jiffies - 1;
1737        setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
1738        rdtp->idle_gp_timer_expires = jiffies - 1;
1739        rdtp->idle_first_pass = 1;
1740}
1741
1742/*
1743 * Clean up for exit from idle.  Because we are exiting from idle, there
1744 * is no longer any point to ->idle_gp_timer, so cancel it.  This will
1745 * do nothing if this timer is not active, so just cancel it unconditionally.
1746 */
1747static void rcu_cleanup_after_idle(int cpu)
1748{
1749        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1750
1751        del_timer(&rdtp->idle_gp_timer);
1752        trace_rcu_prep_idle("Cleanup after idle");
1753        rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1754}
1755
1756/*
1757 * Check to see if any RCU-related work can be done by the current CPU,
1758 * and if so, schedule a softirq to get it done.  This function is part
1759 * of the RCU implementation; it is -not- an exported member of the RCU API.
1760 *
1761 * The idea is for the current CPU to clear out all work required by the
1762 * RCU core for the current grace period, so that this CPU can be permitted
1763 * to enter dyntick-idle mode.  In some cases, it will need to be awakened
1764 * at the end of the grace period by whatever CPU ends the grace period.
1765 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1766 * number of wakeups by a modest integer factor.
1767 *
1768 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1769 * disabled, we do one pass of force_quiescent_state(), then do a
1770 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1771 * later.  The ->dyntick_drain field controls the sequencing.
1772 *
1773 * The caller must have disabled interrupts.
1774 */
1775static void rcu_prepare_for_idle(int cpu)
1776{
1777        struct timer_list *tp;
1778        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1779        int tne;
1780
1781        /* Handle nohz enablement switches conservatively. */
1782        tne = ACCESS_ONCE(tick_nohz_enabled);
1783        if (tne != rdtp->tick_nohz_enabled_snap) {
1784                if (rcu_cpu_has_callbacks(cpu))
1785                        invoke_rcu_core(); /* force nohz to see update. */
1786                rdtp->tick_nohz_enabled_snap = tne;
1787                return;
1788        }
1789        if (!tne)
1790                return;
1791
1792        /* Adaptive-tick mode, where usermode execution is idle to RCU. */
1793        if (!is_idle_task(current)) {
1794                rdtp->dyntick_holdoff = jiffies - 1;
1795                if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1796                        trace_rcu_prep_idle("User dyntick with callbacks");
1797                        rdtp->idle_gp_timer_expires =
1798                                round_up(jiffies + RCU_IDLE_GP_DELAY,
1799                                         RCU_IDLE_GP_DELAY);
1800                } else if (rcu_cpu_has_callbacks(cpu)) {
1801                        rdtp->idle_gp_timer_expires =
1802                                round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
1803                        trace_rcu_prep_idle("User dyntick with lazy callbacks");
1804                } else {
1805                        return;
1806                }
1807                tp = &rdtp->idle_gp_timer;
1808                mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1809                return;
1810        }
1811
1812        /*
1813         * If this is an idle re-entry, for example, due to use of
1814         * RCU_NONIDLE() or the new idle-loop tracing API within the idle
1815         * loop, then don't take any state-machine actions, unless the
1816         * momentary exit from idle queued additional non-lazy callbacks.
1817         * Instead, repost the ->idle_gp_timer if this CPU has callbacks
1818         * pending.
1819         */
1820        if (!rdtp->idle_first_pass &&
1821            (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
1822                if (rcu_cpu_has_callbacks(cpu)) {
1823                        tp = &rdtp->idle_gp_timer;
1824                        mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1825                }
1826                return;
1827        }
1828        rdtp->idle_first_pass = 0;
1829        rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
1830
1831        /*
1832         * If there are no callbacks on this CPU, enter dyntick-idle mode.
1833         * Also reset state to avoid prejudicing later attempts.
1834         */
1835        if (!rcu_cpu_has_callbacks(cpu)) {
1836                rdtp->dyntick_holdoff = jiffies - 1;
1837                rdtp->dyntick_drain = 0;
1838                trace_rcu_prep_idle("No callbacks");
1839                return;
1840        }
1841
1842        /*
1843         * If in holdoff mode, just return.  We will presumably have
1844         * refrained from disabling the scheduling-clock tick.
1845         */
1846        if (rdtp->dyntick_holdoff == jiffies) {
1847                trace_rcu_prep_idle("In holdoff");
1848                return;
1849        }
1850
1851        /* Check and update the ->dyntick_drain sequencing. */
1852        if (rdtp->dyntick_drain <= 0) {
1853                /* First time through, initialize the counter. */
1854                rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
1855        } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
1856                   !rcu_pending(cpu) &&
1857                   !local_softirq_pending()) {
1858                /* Can we go dyntick-idle despite still having callbacks? */
1859                rdtp->dyntick_drain = 0;
1860                rdtp->dyntick_holdoff = jiffies;
1861                if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1862                        trace_rcu_prep_idle("Dyntick with callbacks");
1863                        rdtp->idle_gp_timer_expires =
1864                                round_up(jiffies + RCU_IDLE_GP_DELAY,
1865                                         RCU_IDLE_GP_DELAY);
1866                } else {
1867                        rdtp->idle_gp_timer_expires =
1868                                round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
1869                        trace_rcu_prep_idle("Dyntick with lazy callbacks");
1870                }
1871                tp = &rdtp->idle_gp_timer;
1872                mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1873                rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1874                return; /* Nothing more to do immediately. */
1875        } else if (--(rdtp->dyntick_drain) <= 0) {
1876                /* We have hit the limit, so time to give up. */
1877                rdtp->dyntick_holdoff = jiffies;
1878                trace_rcu_prep_idle("Begin holdoff");
1879                invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */
1880                return;
1881        }
1882
1883        /*
1884         * Do one step of pushing the remaining RCU callbacks through
1885         * the RCU core state machine.
1886         */
1887#ifdef CONFIG_TREE_PREEMPT_RCU
1888        if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
1889                rcu_preempt_qs(cpu);
1890                force_quiescent_state(&rcu_preempt_state);
1891        }
1892#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1893        if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1894                rcu_sched_qs(cpu);
1895                force_quiescent_state(&rcu_sched_state);
1896        }
1897        if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1898                rcu_bh_qs(cpu);
1899                force_quiescent_state(&rcu_bh_state);
1900        }
1901
1902        /*
1903         * If RCU callbacks are still pending, RCU still needs this CPU.
1904         * So try forcing the callbacks through the grace period.
1905         */
1906        if (rcu_cpu_has_callbacks(cpu)) {
1907                trace_rcu_prep_idle("More callbacks");
1908                invoke_rcu_core();
1909        } else {
1910                trace_rcu_prep_idle("Callbacks drained");
1911        }
1912}
1913
1914/*
1915 * Keep a running count of the number of non-lazy callbacks posted
1916 * on this CPU.  This running counter (which is never decremented) allows
1917 * rcu_prepare_for_idle() to detect when something out of the idle loop
1918 * posts a callback, even if an equal number of callbacks are invoked.
1919 * Of course, callbacks should only be posted from within a trace event
1920 * designed to be called from idle or from within RCU_NONIDLE().
1921 */
1922static void rcu_idle_count_callbacks_posted(void)
1923{
1924        __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1925}
1926
1927/*
1928 * Data for flushing lazy RCU callbacks at OOM time.
1929 */
1930static atomic_t oom_callback_count;
1931static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1932
1933/*
1934 * RCU OOM callback -- decrement the outstanding count and deliver the
1935 * wake-up if we are the last one.
1936 */
1937static void rcu_oom_callback(struct rcu_head *rhp)
1938{
1939        if (atomic_dec_and_test(&oom_callback_count))
1940                wake_up(&oom_callback_wq);
1941}
1942
1943/*
1944 * Post an rcu_oom_notify callback on the current CPU if it has at
1945 * least one lazy callback.  This will unnecessarily post callbacks
1946 * to CPUs that already have a non-lazy callback at the end of their
1947 * callback list, but this is an infrequent operation, so accept some
1948 * extra overhead to keep things simple.
1949 */
1950static void rcu_oom_notify_cpu(void *unused)
1951{
1952        struct rcu_state *rsp;
1953        struct rcu_data *rdp;
1954
1955        for_each_rcu_flavor(rsp) {
1956                rdp = __this_cpu_ptr(rsp->rda);
1957                if (rdp->qlen_lazy != 0) {
1958                        atomic_inc(&oom_callback_count);
1959                        rsp->call(&rdp->oom_head, rcu_oom_callback);
1960                }
1961        }
1962}
1963
1964/*
1965 * If low on memory, ensure that each CPU has a non-lazy callback.
1966 * This will wake up CPUs that have only lazy callbacks, in turn
1967 * ensuring that they free up the corresponding memory in a timely manner.
1968 * Because an uncertain amount of memory will be freed in some uncertain
1969 * timeframe, we do not claim to have freed anything.
1970 */
1971static int rcu_oom_notify(struct notifier_block *self,
1972                          unsigned long notused, void *nfreed)
1973{
1974        int cpu;
1975
1976        /* Wait for callbacks from earlier instance to complete. */
1977        wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1978
1979        /*
1980         * Prevent premature wakeup: ensure that all increments happen
1981         * before there is a chance of the counter reaching zero.
1982         */
1983        atomic_set(&oom_callback_count, 1);
1984
1985        get_online_cpus();
1986        for_each_online_cpu(cpu) {
1987                smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1988                cond_resched();
1989        }
1990        put_online_cpus();
1991
1992        /* Unconditionally decrement: no need to wake ourselves up. */
1993        atomic_dec(&oom_callback_count);
1994
1995        return NOTIFY_OK;
1996}
1997
1998static struct notifier_block rcu_oom_nb = {
1999        .notifier_call = rcu_oom_notify
2000};
2001
2002static int __init rcu_register_oom_notifier(void)
2003{
2004        register_oom_notifier(&rcu_oom_nb);
2005        return 0;
2006}
2007early_initcall(rcu_register_oom_notifier);
2008
2009#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2010
2011#ifdef CONFIG_RCU_CPU_STALL_INFO
2012
2013#ifdef CONFIG_RCU_FAST_NO_HZ
2014
2015static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2016{
2017        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2018        struct timer_list *tltp = &rdtp->idle_gp_timer;
2019        char c;
2020
2021        c = rdtp->dyntick_holdoff == jiffies ? 'H' : '.';
2022        if (timer_pending(tltp))
2023                sprintf(cp, "drain=%d %c timer=%lu",
2024                        rdtp->dyntick_drain, c, tltp->expires - jiffies);
2025        else
2026                sprintf(cp, "drain=%d %c timer not pending",
2027                        rdtp->dyntick_drain, c);
2028}
2029
2030#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2031
2032static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2033{
2034        *cp = '\0';
2035}
2036
2037#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2038
2039/* Initiate the stall-info list. */
2040static void print_cpu_stall_info_begin(void)
2041{
2042        printk(KERN_CONT "\n");
2043}
2044
2045/*
2046 * Print out diagnostic information for the specified stalled CPU.
2047 *
2048 * If the specified CPU is aware of the current RCU grace period
2049 * (flavor specified by rsp), then print the number of scheduling
2050 * clock interrupts the CPU has taken during the time that it has
2051 * been aware.  Otherwise, print the number of RCU grace periods
2052 * that this CPU is ignorant of, for example, "1" if the CPU was
2053 * aware of the previous grace period.
2054 *
2055 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2056 */
2057static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2058{
2059        char fast_no_hz[72];
2060        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2061        struct rcu_dynticks *rdtp = rdp->dynticks;
2062        char *ticks_title;
2063        unsigned long ticks_value;
2064
2065        if (rsp->gpnum == rdp->gpnum) {
2066                ticks_title = "ticks this GP";
2067                ticks_value = rdp->ticks_this_gp;
2068        } else {
2069                ticks_title = "GPs behind";
2070                ticks_value = rsp->gpnum - rdp->gpnum;
2071        }
2072        print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2073        printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2074               cpu, ticks_value, ticks_title,
2075               atomic_read(&rdtp->dynticks) & 0xfff,
2076               rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2077               fast_no_hz);
2078}
2079
2080/* Terminate the stall-info list. */
2081static void print_cpu_stall_info_end(void)
2082{
2083        printk(KERN_ERR "\t");
2084}
2085
2086/* Zero ->ticks_this_gp for all flavors of RCU. */
2087static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2088{
2089        rdp->ticks_this_gp = 0;
2090}
2091
2092/* Increment ->ticks_this_gp for all flavors of RCU. */
2093static void increment_cpu_stall_ticks(void)
2094{
2095        struct rcu_state *rsp;
2096
2097        for_each_rcu_flavor(rsp)
2098                __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2099}
2100
2101#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2102
2103static void print_cpu_stall_info_begin(void)
2104{
2105        printk(KERN_CONT " {");
2106}
2107
2108static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2109{
2110        printk(KERN_CONT " %d", cpu);
2111}
2112
2113static void print_cpu_stall_info_end(void)
2114{
2115        printk(KERN_CONT "} ");
2116}
2117
2118static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2119{
2120}
2121
2122static void increment_cpu_stall_ticks(void)
2123{
2124}
2125
2126#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2127
2128#ifdef CONFIG_RCU_NOCB_CPU
2129
2130/*
2131 * Offload callback processing from the boot-time-specified set of CPUs
2132 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
2133 * kthread created that pulls the callbacks from the corresponding CPU,
2134 * waits for a grace period to elapse, and invokes the callbacks.
2135 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2136 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2137 * has been specified, in which case each kthread actively polls its
2138 * CPU.  (Which isn't so great for energy efficiency, but which does
2139 * reduce RCU's overhead on that CPU.)
2140 *
2141 * This is intended to be used in conjunction with Frederic Weisbecker's
2142 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2143 * running CPU-bound user-mode computations.
2144 *
2145 * Offloading of callback processing could also in theory be used as
2146 * an energy-efficiency measure because CPUs with no RCU callbacks
2147 * queued are more aggressive about entering dyntick-idle mode.
2148 */
2149
2150
2151/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2152static int __init rcu_nocb_setup(char *str)
2153{
2154        alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2155        have_rcu_nocb_mask = true;
2156        cpulist_parse(str, rcu_nocb_mask);
2157        return 1;
2158}
2159__setup("rcu_nocbs=", rcu_nocb_setup);
2160
2161static int __init parse_rcu_nocb_poll(char *arg)
2162{
2163        rcu_nocb_poll = 1;
2164        return 0;
2165}
2166early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2167
2168/* Is the specified CPU a no-CPUs CPU? */
2169static bool is_nocb_cpu(int cpu)
2170{
2171        if (have_rcu_nocb_mask)
2172                return cpumask_test_cpu(cpu, rcu_nocb_mask);
2173        return false;
2174}
2175
2176/*
2177 * Enqueue the specified string of rcu_head structures onto the specified
2178 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2179 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2180 * counts are supplied by rhcount and rhcount_lazy.
2181 *
2182 * If warranted, also wake up the kthread servicing this CPUs queues.
2183 */
2184static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2185                                    struct rcu_head *rhp,
2186                                    struct rcu_head **rhtp,
2187                                    int rhcount, int rhcount_lazy)
2188{
2189        int len;
2190        struct rcu_head **old_rhpp;
2191        struct task_struct *t;
2192
2193        /* Enqueue the callback on the nocb list and update counts. */
2194        old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2195        ACCESS_ONCE(*old_rhpp) = rhp;
2196        atomic_long_add(rhcount, &rdp->nocb_q_count);
2197        atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2198
2199        /* If we are not being polled and there is a kthread, awaken it ... */
2200        t = ACCESS_ONCE(rdp->nocb_kthread);
2201        if (rcu_nocb_poll | !t)
2202                return;
2203        len = atomic_long_read(&rdp->nocb_q_count);
2204        if (old_rhpp == &rdp->nocb_head) {
2205                wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
2206                rdp->qlen_last_fqs_check = 0;
2207        } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2208                wake_up_process(t); /* ... or if many callbacks queued. */
2209                rdp->qlen_last_fqs_check = LONG_MAX / 2;
2210        }
2211        return;
2212}
2213
2214/*
2215 * This is a helper for __call_rcu(), which invokes this when the normal
2216 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2217 * function returns failure back to __call_rcu(), which can complain
2218 * appropriately.
2219 *
2220 * Otherwise, this function queues the callback where the corresponding
2221 * "rcuo" kthread can find it.
2222 */
2223static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2224                            bool lazy)
2225{
2226
2227        if (!is_nocb_cpu(rdp->cpu))
2228                return 0;
2229        __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
2230        return 1;
2231}
2232
2233/*
2234 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2235 * not a no-CBs CPU.
2236 */
2237static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2238                                                     struct rcu_data *rdp)
2239{
2240        long ql = rsp->qlen;
2241        long qll = rsp->qlen_lazy;
2242
2243        /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2244        if (!is_nocb_cpu(smp_processor_id()))
2245                return 0;
2246        rsp->qlen = 0;
2247        rsp->qlen_lazy = 0;
2248
2249        /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2250        if (rsp->orphan_donelist != NULL) {
2251                __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2252                                        rsp->orphan_donetail, ql, qll);
2253                ql = qll = 0;
2254                rsp->orphan_donelist = NULL;
2255                rsp->orphan_donetail = &rsp->orphan_donelist;
2256        }
2257        if (rsp->orphan_nxtlist != NULL) {
2258                __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2259                                        rsp->orphan_nxttail, ql, qll);
2260                ql = qll = 0;
2261                rsp->orphan_nxtlist = NULL;
2262                rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2263        }
2264        return 1;
2265}
2266
2267/*
2268 * There must be at least one non-no-CBs CPU in operation at any given
2269 * time, because no-CBs CPUs are not capable of initiating grace periods
2270 * independently.  This function therefore complains if the specified
2271 * CPU is the last non-no-CBs CPU, allowing the CPU-hotplug system to
2272 * avoid offlining the last such CPU.  (Recursion is a wonderful thing,
2273 * but you have to have a base case!)
2274 */
2275static bool nocb_cpu_expendable(int cpu)
2276{
2277        cpumask_var_t non_nocb_cpus;
2278        int ret;
2279
2280        /*
2281         * If there are no no-CB CPUs or if this CPU is not a no-CB CPU,
2282         * then offlining this CPU is harmless.  Let it happen.
2283         */
2284        if (!have_rcu_nocb_mask || is_nocb_cpu(cpu))
2285                return 1;
2286
2287        /* If no memory, play it safe and keep the CPU around. */
2288        if (!alloc_cpumask_var(&non_nocb_cpus, GFP_NOIO))
2289                return 0;
2290        cpumask_andnot(non_nocb_cpus, cpu_online_mask, rcu_nocb_mask);
2291        cpumask_clear_cpu(cpu, non_nocb_cpus);
2292        ret = !cpumask_empty(non_nocb_cpus);
2293        free_cpumask_var(non_nocb_cpus);
2294        return ret;
2295}
2296
2297/*
2298 * Helper structure for remote registry of RCU callbacks.
2299 * This is needed for when a no-CBs CPU needs to start a grace period.
2300 * If it just invokes call_rcu(), the resulting callback will be queued,
2301 * which can result in deadlock.
2302 */
2303struct rcu_head_remote {
2304        struct rcu_head *rhp;
2305        call_rcu_func_t *crf;
2306        void (*func)(struct rcu_head *rhp);
2307};
2308
2309/*
2310 * Register a callback as specified by the rcu_head_remote struct.
2311 * This function is intended to be invoked via smp_call_function_single().
2312 */
2313static void call_rcu_local(void *arg)
2314{
2315        struct rcu_head_remote *rhrp =
2316                container_of(arg, struct rcu_head_remote, rhp);
2317
2318        rhrp->crf(rhrp->rhp, rhrp->func);
2319}
2320
2321/*
2322 * Set up an rcu_head_remote structure and the invoke call_rcu_local()
2323 * on CPU 0 (which is guaranteed to be a non-no-CBs CPU) via
2324 * smp_call_function_single().
2325 */
2326static void invoke_crf_remote(struct rcu_head *rhp,
2327                              void (*func)(struct rcu_head *rhp),
2328                              call_rcu_func_t crf)
2329{
2330        struct rcu_head_remote rhr;
2331
2332        rhr.rhp = rhp;
2333        rhr.crf = crf;
2334        rhr.func = func;
2335        smp_call_function_single(0, call_rcu_local, &rhr, 1);
2336}
2337
2338/*
2339 * Helper functions to be passed to wait_rcu_gp(), each of which
2340 * invokes invoke_crf_remote() to register a callback appropriately.
2341 */
2342static void __maybe_unused
2343call_rcu_preempt_remote(struct rcu_head *rhp,
2344                        void (*func)(struct rcu_head *rhp))
2345{
2346        invoke_crf_remote(rhp, func, call_rcu);
2347}
2348static void call_rcu_bh_remote(struct rcu_head *rhp,
2349                               void (*func)(struct rcu_head *rhp))
2350{
2351        invoke_crf_remote(rhp, func, call_rcu_bh);
2352}
2353static void call_rcu_sched_remote(struct rcu_head *rhp,
2354                                  void (*func)(struct rcu_head *rhp))
2355{
2356        invoke_crf_remote(rhp, func, call_rcu_sched);
2357}
2358
2359/*
2360 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2361 * callbacks queued by the corresponding no-CBs CPU.
2362 */
2363static int rcu_nocb_kthread(void *arg)
2364{
2365        int c, cl;
2366        struct rcu_head *list;
2367        struct rcu_head *next;
2368        struct rcu_head **tail;
2369        struct rcu_data *rdp = arg;
2370
2371        /* Each pass through this loop invokes one batch of callbacks */
2372        for (;;) {
2373                /* If not polling, wait for next batch of callbacks. */
2374                if (!rcu_nocb_poll)
2375                        wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2376                list = ACCESS_ONCE(rdp->nocb_head);
2377                if (!list) {
2378                        schedule_timeout_interruptible(1);
2379                        flush_signals(current);
2380                        continue;
2381                }
2382
2383                /*
2384                 * Extract queued callbacks, update counts, and wait
2385                 * for a grace period to elapse.
2386                 */
2387                ACCESS_ONCE(rdp->nocb_head) = NULL;
2388                tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2389                c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2390                cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2391                ACCESS_ONCE(rdp->nocb_p_count) += c;
2392                ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2393                wait_rcu_gp(rdp->rsp->call_remote);
2394
2395                /* Each pass through the following loop invokes a callback. */
2396                trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2397                c = cl = 0;
2398                while (list) {
2399                        next = list->next;
2400                        /* Wait for enqueuing to complete, if needed. */
2401                        while (next == NULL && &list->next != tail) {
2402                                schedule_timeout_interruptible(1);
2403                                next = list->next;
2404                        }
2405                        debug_rcu_head_unqueue(list);
2406                        local_bh_disable();
2407                        if (__rcu_reclaim(rdp->rsp->name, list))
2408                                cl++;
2409                        c++;
2410                        local_bh_enable();
2411                        list = next;
2412                }
2413                trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2414                ACCESS_ONCE(rdp->nocb_p_count) -= c;
2415                ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2416                rdp->n_nocbs_invoked += c;
2417        }
2418        return 0;
2419}
2420
2421/* Initialize per-rcu_data variables for no-CBs CPUs. */
2422static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2423{
2424        rdp->nocb_tail = &rdp->nocb_head;
2425        init_waitqueue_head(&rdp->nocb_wq);
2426}
2427
2428/* Create a kthread for each RCU flavor for each no-CBs CPU. */
2429static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2430{
2431        int cpu;
2432        struct rcu_data *rdp;
2433        struct task_struct *t;
2434
2435        if (rcu_nocb_mask == NULL)
2436                return;
2437        for_each_cpu(cpu, rcu_nocb_mask) {
2438                rdp = per_cpu_ptr(rsp->rda, cpu);
2439                t = kthread_run(rcu_nocb_kthread, rdp, "rcuo%d", cpu);
2440                BUG_ON(IS_ERR(t));
2441                ACCESS_ONCE(rdp->nocb_kthread) = t;
2442        }
2443}
2444
2445/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2446static void init_nocb_callback_list(struct rcu_data *rdp)
2447{
2448        if (rcu_nocb_mask == NULL ||
2449            !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2450                return;
2451        rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2452}
2453
2454/* Initialize the ->call_remote fields in the rcu_state structures. */
2455static void __init rcu_init_nocb(void)
2456{
2457#ifdef CONFIG_PREEMPT_RCU
2458        rcu_preempt_state.call_remote = call_rcu_preempt_remote;
2459#endif /* #ifdef CONFIG_PREEMPT_RCU */
2460        rcu_bh_state.call_remote = call_rcu_bh_remote;
2461        rcu_sched_state.call_remote = call_rcu_sched_remote;
2462}
2463
2464#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2465
2466static bool is_nocb_cpu(int cpu)
2467{
2468        return false;
2469}
2470
2471static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2472                            bool lazy)
2473{
2474        return 0;
2475}
2476
2477static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2478                                                     struct rcu_data *rdp)
2479{
2480        return 0;
2481}
2482
2483static bool nocb_cpu_expendable(int cpu)
2484{
2485        return 1;
2486}
2487
2488static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2489{
2490}
2491
2492static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2493{
2494}
2495
2496static void init_nocb_callback_list(struct rcu_data *rdp)
2497{
2498}
2499
2500static void __init rcu_init_nocb(void)
2501{
2502}
2503
2504#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2505