1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29
30
31
32
33
34
35
36
37static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 ktime_t (*gettime)(void);
41 clockid_t base_clockid;
42} alarm_bases[ALARM_NUMTYPE];
43
44
45static ktime_t freezer_delta;
46static DEFINE_SPINLOCK(freezer_delta_lock);
47
48static struct wakeup_source *ws;
49
50#ifdef CONFIG_RTC_CLASS
51
52static struct rtc_timer rtctimer;
53static struct rtc_device *rtcdev;
54static DEFINE_SPINLOCK(rtcdev_lock);
55
56
57
58
59
60
61
62
63struct rtc_device *alarmtimer_get_rtcdev(void)
64{
65 unsigned long flags;
66 struct rtc_device *ret;
67
68 spin_lock_irqsave(&rtcdev_lock, flags);
69 ret = rtcdev;
70 spin_unlock_irqrestore(&rtcdev_lock, flags);
71
72 return ret;
73}
74
75
76static int alarmtimer_rtc_add_device(struct device *dev,
77 struct class_interface *class_intf)
78{
79 unsigned long flags;
80 struct rtc_device *rtc = to_rtc_device(dev);
81
82 if (rtcdev)
83 return -EBUSY;
84
85 if (!rtc->ops->set_alarm)
86 return -1;
87 if (!device_may_wakeup(rtc->dev.parent))
88 return -1;
89
90 spin_lock_irqsave(&rtcdev_lock, flags);
91 if (!rtcdev) {
92 rtcdev = rtc;
93
94 get_device(dev);
95 }
96 spin_unlock_irqrestore(&rtcdev_lock, flags);
97 return 0;
98}
99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102 rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106 .add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111 alarmtimer_rtc_interface.class = rtc_class;
112 return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116 class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121 return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129
130
131
132
133
134
135
136
137
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 timerqueue_del(&base->timerqueue, &alarm->node);
142
143 timerqueue_add(&base->timerqueue, &alarm->node);
144 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145}
146
147
148
149
150
151
152
153
154
155
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 return;
160
161 timerqueue_del(&base->timerqueue, &alarm->node);
162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163}
164
165
166
167
168
169
170
171
172
173
174
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177 struct alarm *alarm = container_of(timer, struct alarm, timer);
178 struct alarm_base *base = &alarm_bases[alarm->type];
179 unsigned long flags;
180 int ret = HRTIMER_NORESTART;
181 int restart = ALARMTIMER_NORESTART;
182
183 spin_lock_irqsave(&base->lock, flags);
184 alarmtimer_dequeue(base, alarm);
185 spin_unlock_irqrestore(&base->lock, flags);
186
187 if (alarm->function)
188 restart = alarm->function(alarm, base->gettime());
189
190 spin_lock_irqsave(&base->lock, flags);
191 if (restart != ALARMTIMER_NORESTART) {
192 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 alarmtimer_enqueue(base, alarm);
194 ret = HRTIMER_RESTART;
195 }
196 spin_unlock_irqrestore(&base->lock, flags);
197
198 return ret;
199
200}
201
202#ifdef CONFIG_RTC_CLASS
203
204
205
206
207
208
209
210
211
212
213static int alarmtimer_suspend(struct device *dev)
214{
215 struct rtc_time tm;
216 ktime_t min, now;
217 unsigned long flags;
218 struct rtc_device *rtc;
219 int i;
220 int ret;
221
222 spin_lock_irqsave(&freezer_delta_lock, flags);
223 min = freezer_delta;
224 freezer_delta = ktime_set(0, 0);
225 spin_unlock_irqrestore(&freezer_delta_lock, flags);
226
227 rtc = alarmtimer_get_rtcdev();
228
229 if (!rtc)
230 return 0;
231
232
233 for (i = 0; i < ALARM_NUMTYPE; i++) {
234 struct alarm_base *base = &alarm_bases[i];
235 struct timerqueue_node *next;
236 ktime_t delta;
237
238 spin_lock_irqsave(&base->lock, flags);
239 next = timerqueue_getnext(&base->timerqueue);
240 spin_unlock_irqrestore(&base->lock, flags);
241 if (!next)
242 continue;
243 delta = ktime_sub(next->expires, base->gettime());
244 if (!min.tv64 || (delta.tv64 < min.tv64))
245 min = delta;
246 }
247 if (min.tv64 == 0)
248 return 0;
249
250 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
251 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
252 return -EBUSY;
253 }
254
255
256 rtc_timer_cancel(rtc, &rtctimer);
257 rtc_read_time(rtc, &tm);
258 now = rtc_tm_to_ktime(tm);
259 now = ktime_add(now, min);
260
261
262 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
263 if (ret < 0)
264 __pm_wakeup_event(ws, MSEC_PER_SEC);
265 return ret;
266}
267#else
268static int alarmtimer_suspend(struct device *dev)
269{
270 return 0;
271}
272#endif
273
274static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
275{
276 ktime_t delta;
277 unsigned long flags;
278 struct alarm_base *base = &alarm_bases[type];
279
280 delta = ktime_sub(absexp, base->gettime());
281
282 spin_lock_irqsave(&freezer_delta_lock, flags);
283 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
284 freezer_delta = delta;
285 spin_unlock_irqrestore(&freezer_delta_lock, flags);
286}
287
288
289
290
291
292
293
294
295void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
296 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
297{
298 timerqueue_init(&alarm->node);
299 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
300 HRTIMER_MODE_ABS);
301 alarm->timer.function = alarmtimer_fired;
302 alarm->function = function;
303 alarm->type = type;
304 alarm->state = ALARMTIMER_STATE_INACTIVE;
305}
306
307
308
309
310
311
312int alarm_start(struct alarm *alarm, ktime_t start)
313{
314 struct alarm_base *base = &alarm_bases[alarm->type];
315 unsigned long flags;
316 int ret;
317
318 spin_lock_irqsave(&base->lock, flags);
319 alarm->node.expires = start;
320 alarmtimer_enqueue(base, alarm);
321 ret = hrtimer_start(&alarm->timer, alarm->node.expires,
322 HRTIMER_MODE_ABS);
323 spin_unlock_irqrestore(&base->lock, flags);
324 return ret;
325}
326
327
328
329
330
331
332
333
334int alarm_try_to_cancel(struct alarm *alarm)
335{
336 struct alarm_base *base = &alarm_bases[alarm->type];
337 unsigned long flags;
338 int ret;
339
340 spin_lock_irqsave(&base->lock, flags);
341 ret = hrtimer_try_to_cancel(&alarm->timer);
342 if (ret >= 0)
343 alarmtimer_dequeue(base, alarm);
344 spin_unlock_irqrestore(&base->lock, flags);
345 return ret;
346}
347
348
349
350
351
352
353
354
355int alarm_cancel(struct alarm *alarm)
356{
357 for (;;) {
358 int ret = alarm_try_to_cancel(alarm);
359 if (ret >= 0)
360 return ret;
361 cpu_relax();
362 }
363}
364
365
366u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
367{
368 u64 overrun = 1;
369 ktime_t delta;
370
371 delta = ktime_sub(now, alarm->node.expires);
372
373 if (delta.tv64 < 0)
374 return 0;
375
376 if (unlikely(delta.tv64 >= interval.tv64)) {
377 s64 incr = ktime_to_ns(interval);
378
379 overrun = ktime_divns(delta, incr);
380
381 alarm->node.expires = ktime_add_ns(alarm->node.expires,
382 incr*overrun);
383
384 if (alarm->node.expires.tv64 > now.tv64)
385 return overrun;
386
387
388
389
390 overrun++;
391 }
392
393 alarm->node.expires = ktime_add(alarm->node.expires, interval);
394 return overrun;
395}
396
397
398
399
400
401
402
403
404static enum alarmtimer_type clock2alarm(clockid_t clockid)
405{
406 if (clockid == CLOCK_REALTIME_ALARM)
407 return ALARM_REALTIME;
408 if (clockid == CLOCK_BOOTTIME_ALARM)
409 return ALARM_BOOTTIME;
410 return -1;
411}
412
413
414
415
416
417
418
419static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
420 ktime_t now)
421{
422 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
423 it.alarm.alarmtimer);
424 if (posix_timer_event(ptr, 0) != 0)
425 ptr->it_overrun++;
426
427
428 if (ptr->it.alarm.interval.tv64) {
429 ptr->it_overrun += alarm_forward(alarm, now,
430 ptr->it.alarm.interval);
431 return ALARMTIMER_RESTART;
432 }
433 return ALARMTIMER_NORESTART;
434}
435
436
437
438
439
440
441
442
443static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
444{
445 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
446
447 if (!alarmtimer_get_rtcdev())
448 return -ENOTSUPP;
449
450 return hrtimer_get_res(baseid, tp);
451}
452
453
454
455
456
457
458
459
460static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
461{
462 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
463
464 if (!alarmtimer_get_rtcdev())
465 return -ENOTSUPP;
466
467 *tp = ktime_to_timespec(base->gettime());
468 return 0;
469}
470
471
472
473
474
475
476
477static int alarm_timer_create(struct k_itimer *new_timer)
478{
479 enum alarmtimer_type type;
480 struct alarm_base *base;
481
482 if (!alarmtimer_get_rtcdev())
483 return -ENOTSUPP;
484
485 if (!capable(CAP_WAKE_ALARM))
486 return -EPERM;
487
488 type = clock2alarm(new_timer->it_clock);
489 base = &alarm_bases[type];
490 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
491 return 0;
492}
493
494
495
496
497
498
499
500
501static void alarm_timer_get(struct k_itimer *timr,
502 struct itimerspec *cur_setting)
503{
504 memset(cur_setting, 0, sizeof(struct itimerspec));
505
506 cur_setting->it_interval =
507 ktime_to_timespec(timr->it.alarm.interval);
508 cur_setting->it_value =
509 ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
510 return;
511}
512
513
514
515
516
517
518
519static int alarm_timer_del(struct k_itimer *timr)
520{
521 if (!rtcdev)
522 return -ENOTSUPP;
523
524 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
525 return TIMER_RETRY;
526
527 return 0;
528}
529
530
531
532
533
534
535
536
537
538
539static int alarm_timer_set(struct k_itimer *timr, int flags,
540 struct itimerspec *new_setting,
541 struct itimerspec *old_setting)
542{
543 if (!rtcdev)
544 return -ENOTSUPP;
545
546 if (old_setting)
547 alarm_timer_get(timr, old_setting);
548
549
550 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
551 return TIMER_RETRY;
552
553
554 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
555 alarm_start(&timr->it.alarm.alarmtimer,
556 timespec_to_ktime(new_setting->it_value));
557 return 0;
558}
559
560
561
562
563
564
565
566static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
567 ktime_t now)
568{
569 struct task_struct *task = (struct task_struct *)alarm->data;
570
571 alarm->data = NULL;
572 if (task)
573 wake_up_process(task);
574 return ALARMTIMER_NORESTART;
575}
576
577
578
579
580
581
582
583
584static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
585{
586 alarm->data = (void *)current;
587 do {
588 set_current_state(TASK_INTERRUPTIBLE);
589 alarm_start(alarm, absexp);
590 if (likely(alarm->data))
591 schedule();
592
593 alarm_cancel(alarm);
594 } while (alarm->data && !signal_pending(current));
595
596 __set_current_state(TASK_RUNNING);
597
598 return (alarm->data == NULL);
599}
600
601
602
603
604
605
606
607
608
609
610
611static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
612 struct timespec __user *rmtp)
613{
614 struct timespec rmt;
615 ktime_t rem;
616
617 rem = ktime_sub(exp, alarm_bases[type].gettime());
618
619 if (rem.tv64 <= 0)
620 return 0;
621 rmt = ktime_to_timespec(rem);
622
623 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
624 return -EFAULT;
625
626 return 1;
627
628}
629
630
631
632
633
634
635
636static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
637{
638 enum alarmtimer_type type = restart->nanosleep.clockid;
639 ktime_t exp;
640 struct timespec __user *rmtp;
641 struct alarm alarm;
642 int ret = 0;
643
644 exp.tv64 = restart->nanosleep.expires;
645 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
646
647 if (alarmtimer_do_nsleep(&alarm, exp))
648 goto out;
649
650 if (freezing(current))
651 alarmtimer_freezerset(exp, type);
652
653 rmtp = restart->nanosleep.rmtp;
654 if (rmtp) {
655 ret = update_rmtp(exp, type, rmtp);
656 if (ret <= 0)
657 goto out;
658 }
659
660
661
662 ret = -ERESTART_RESTARTBLOCK;
663out:
664 return ret;
665}
666
667
668
669
670
671
672
673
674
675
676static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
677 struct timespec *tsreq, struct timespec __user *rmtp)
678{
679 enum alarmtimer_type type = clock2alarm(which_clock);
680 struct alarm alarm;
681 ktime_t exp;
682 int ret = 0;
683 struct restart_block *restart;
684
685 if (!alarmtimer_get_rtcdev())
686 return -ENOTSUPP;
687
688 if (!capable(CAP_WAKE_ALARM))
689 return -EPERM;
690
691 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
692
693 exp = timespec_to_ktime(*tsreq);
694
695 if (flags != TIMER_ABSTIME) {
696 ktime_t now = alarm_bases[type].gettime();
697 exp = ktime_add(now, exp);
698 }
699
700 if (alarmtimer_do_nsleep(&alarm, exp))
701 goto out;
702
703 if (freezing(current))
704 alarmtimer_freezerset(exp, type);
705
706
707 if (flags == TIMER_ABSTIME) {
708 ret = -ERESTARTNOHAND;
709 goto out;
710 }
711
712 if (rmtp) {
713 ret = update_rmtp(exp, type, rmtp);
714 if (ret <= 0)
715 goto out;
716 }
717
718 restart = ¤t_thread_info()->restart_block;
719 restart->fn = alarm_timer_nsleep_restart;
720 restart->nanosleep.clockid = type;
721 restart->nanosleep.expires = exp.tv64;
722 restart->nanosleep.rmtp = rmtp;
723 ret = -ERESTART_RESTARTBLOCK;
724
725out:
726 return ret;
727}
728
729
730
731static const struct dev_pm_ops alarmtimer_pm_ops = {
732 .suspend = alarmtimer_suspend,
733};
734
735static struct platform_driver alarmtimer_driver = {
736 .driver = {
737 .name = "alarmtimer",
738 .pm = &alarmtimer_pm_ops,
739 }
740};
741
742
743
744
745
746
747
748static int __init alarmtimer_init(void)
749{
750 struct platform_device *pdev;
751 int error = 0;
752 int i;
753 struct k_clock alarm_clock = {
754 .clock_getres = alarm_clock_getres,
755 .clock_get = alarm_clock_get,
756 .timer_create = alarm_timer_create,
757 .timer_set = alarm_timer_set,
758 .timer_del = alarm_timer_del,
759 .timer_get = alarm_timer_get,
760 .nsleep = alarm_timer_nsleep,
761 };
762
763 alarmtimer_rtc_timer_init();
764
765 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
766 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
767
768
769 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
770 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
771 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
772 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
773 for (i = 0; i < ALARM_NUMTYPE; i++) {
774 timerqueue_init_head(&alarm_bases[i].timerqueue);
775 spin_lock_init(&alarm_bases[i].lock);
776 }
777
778 error = alarmtimer_rtc_interface_setup();
779 if (error)
780 return error;
781
782 error = platform_driver_register(&alarmtimer_driver);
783 if (error)
784 goto out_if;
785
786 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
787 if (IS_ERR(pdev)) {
788 error = PTR_ERR(pdev);
789 goto out_drv;
790 }
791 ws = wakeup_source_register("alarmtimer");
792 return 0;
793
794out_drv:
795 platform_driver_unregister(&alarmtimer_driver);
796out_if:
797 alarmtimer_rtc_interface_remove();
798 return error;
799}
800device_initcall(alarmtimer_init);
801