linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/profile.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23
  24#include <asm/irq_regs.h>
  25
  26#include "tick-internal.h"
  27
  28/*
  29 * Per cpu nohz control structure
  30 */
  31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  32
  33/*
  34 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  35 */
  36static ktime_t last_jiffies_update;
  37
  38struct tick_sched *tick_get_tick_sched(int cpu)
  39{
  40        return &per_cpu(tick_cpu_sched, cpu);
  41}
  42
  43/*
  44 * Must be called with interrupts disabled !
  45 */
  46static void tick_do_update_jiffies64(ktime_t now)
  47{
  48        unsigned long ticks = 0;
  49        ktime_t delta;
  50
  51        /*
  52         * Do a quick check without holding jiffies_lock:
  53         */
  54        delta = ktime_sub(now, last_jiffies_update);
  55        if (delta.tv64 < tick_period.tv64)
  56                return;
  57
  58        /* Reevalute with jiffies_lock held */
  59        write_seqlock(&jiffies_lock);
  60
  61        delta = ktime_sub(now, last_jiffies_update);
  62        if (delta.tv64 >= tick_period.tv64) {
  63
  64                delta = ktime_sub(delta, tick_period);
  65                last_jiffies_update = ktime_add(last_jiffies_update,
  66                                                tick_period);
  67
  68                /* Slow path for long timeouts */
  69                if (unlikely(delta.tv64 >= tick_period.tv64)) {
  70                        s64 incr = ktime_to_ns(tick_period);
  71
  72                        ticks = ktime_divns(delta, incr);
  73
  74                        last_jiffies_update = ktime_add_ns(last_jiffies_update,
  75                                                           incr * ticks);
  76                }
  77                do_timer(++ticks);
  78
  79                /* Keep the tick_next_period variable up to date */
  80                tick_next_period = ktime_add(last_jiffies_update, tick_period);
  81        }
  82        write_sequnlock(&jiffies_lock);
  83}
  84
  85/*
  86 * Initialize and return retrieve the jiffies update.
  87 */
  88static ktime_t tick_init_jiffy_update(void)
  89{
  90        ktime_t period;
  91
  92        write_seqlock(&jiffies_lock);
  93        /* Did we start the jiffies update yet ? */
  94        if (last_jiffies_update.tv64 == 0)
  95                last_jiffies_update = tick_next_period;
  96        period = last_jiffies_update;
  97        write_sequnlock(&jiffies_lock);
  98        return period;
  99}
 100
 101
 102static void tick_sched_do_timer(ktime_t now)
 103{
 104        int cpu = smp_processor_id();
 105
 106#ifdef CONFIG_NO_HZ
 107        /*
 108         * Check if the do_timer duty was dropped. We don't care about
 109         * concurrency: This happens only when the cpu in charge went
 110         * into a long sleep. If two cpus happen to assign themself to
 111         * this duty, then the jiffies update is still serialized by
 112         * jiffies_lock.
 113         */
 114        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 115                tick_do_timer_cpu = cpu;
 116#endif
 117
 118        /* Check, if the jiffies need an update */
 119        if (tick_do_timer_cpu == cpu)
 120                tick_do_update_jiffies64(now);
 121}
 122
 123static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 124{
 125#ifdef CONFIG_NO_HZ
 126        /*
 127         * When we are idle and the tick is stopped, we have to touch
 128         * the watchdog as we might not schedule for a really long
 129         * time. This happens on complete idle SMP systems while
 130         * waiting on the login prompt. We also increment the "start of
 131         * idle" jiffy stamp so the idle accounting adjustment we do
 132         * when we go busy again does not account too much ticks.
 133         */
 134        if (ts->tick_stopped) {
 135                touch_softlockup_watchdog();
 136                if (is_idle_task(current))
 137                        ts->idle_jiffies++;
 138        }
 139#endif
 140        update_process_times(user_mode(regs));
 141        profile_tick(CPU_PROFILING);
 142}
 143
 144/*
 145 * NOHZ - aka dynamic tick functionality
 146 */
 147#ifdef CONFIG_NO_HZ
 148/*
 149 * NO HZ enabled ?
 150 */
 151int tick_nohz_enabled __read_mostly  = 1;
 152
 153/*
 154 * Enable / Disable tickless mode
 155 */
 156static int __init setup_tick_nohz(char *str)
 157{
 158        if (!strcmp(str, "off"))
 159                tick_nohz_enabled = 0;
 160        else if (!strcmp(str, "on"))
 161                tick_nohz_enabled = 1;
 162        else
 163                return 0;
 164        return 1;
 165}
 166
 167__setup("nohz=", setup_tick_nohz);
 168
 169/**
 170 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 171 *
 172 * Called from interrupt entry when the CPU was idle
 173 *
 174 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 175 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 176 * value. We do this unconditionally on any cpu, as we don't know whether the
 177 * cpu, which has the update task assigned is in a long sleep.
 178 */
 179static void tick_nohz_update_jiffies(ktime_t now)
 180{
 181        int cpu = smp_processor_id();
 182        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 183        unsigned long flags;
 184
 185        ts->idle_waketime = now;
 186
 187        local_irq_save(flags);
 188        tick_do_update_jiffies64(now);
 189        local_irq_restore(flags);
 190
 191        touch_softlockup_watchdog();
 192}
 193
 194/*
 195 * Updates the per cpu time idle statistics counters
 196 */
 197static void
 198update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 199{
 200        ktime_t delta;
 201
 202        if (ts->idle_active) {
 203                delta = ktime_sub(now, ts->idle_entrytime);
 204                if (nr_iowait_cpu(cpu) > 0)
 205                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 206                else
 207                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 208                ts->idle_entrytime = now;
 209        }
 210
 211        if (last_update_time)
 212                *last_update_time = ktime_to_us(now);
 213
 214}
 215
 216static void tick_nohz_stop_idle(int cpu, ktime_t now)
 217{
 218        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 219
 220        update_ts_time_stats(cpu, ts, now, NULL);
 221        ts->idle_active = 0;
 222
 223        sched_clock_idle_wakeup_event(0);
 224}
 225
 226static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
 227{
 228        ktime_t now = ktime_get();
 229
 230        ts->idle_entrytime = now;
 231        ts->idle_active = 1;
 232        sched_clock_idle_sleep_event();
 233        return now;
 234}
 235
 236/**
 237 * get_cpu_idle_time_us - get the total idle time of a cpu
 238 * @cpu: CPU number to query
 239 * @last_update_time: variable to store update time in. Do not update
 240 * counters if NULL.
 241 *
 242 * Return the cummulative idle time (since boot) for a given
 243 * CPU, in microseconds.
 244 *
 245 * This time is measured via accounting rather than sampling,
 246 * and is as accurate as ktime_get() is.
 247 *
 248 * This function returns -1 if NOHZ is not enabled.
 249 */
 250u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 251{
 252        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 253        ktime_t now, idle;
 254
 255        if (!tick_nohz_enabled)
 256                return -1;
 257
 258        now = ktime_get();
 259        if (last_update_time) {
 260                update_ts_time_stats(cpu, ts, now, last_update_time);
 261                idle = ts->idle_sleeptime;
 262        } else {
 263                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 264                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 265
 266                        idle = ktime_add(ts->idle_sleeptime, delta);
 267                } else {
 268                        idle = ts->idle_sleeptime;
 269                }
 270        }
 271
 272        return ktime_to_us(idle);
 273
 274}
 275EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 276
 277/**
 278 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 279 * @cpu: CPU number to query
 280 * @last_update_time: variable to store update time in. Do not update
 281 * counters if NULL.
 282 *
 283 * Return the cummulative iowait time (since boot) for a given
 284 * CPU, in microseconds.
 285 *
 286 * This time is measured via accounting rather than sampling,
 287 * and is as accurate as ktime_get() is.
 288 *
 289 * This function returns -1 if NOHZ is not enabled.
 290 */
 291u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 292{
 293        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 294        ktime_t now, iowait;
 295
 296        if (!tick_nohz_enabled)
 297                return -1;
 298
 299        now = ktime_get();
 300        if (last_update_time) {
 301                update_ts_time_stats(cpu, ts, now, last_update_time);
 302                iowait = ts->iowait_sleeptime;
 303        } else {
 304                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 305                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 306
 307                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 308                } else {
 309                        iowait = ts->iowait_sleeptime;
 310                }
 311        }
 312
 313        return ktime_to_us(iowait);
 314}
 315EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 316
 317static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 318                                         ktime_t now, int cpu)
 319{
 320        unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
 321        ktime_t last_update, expires, ret = { .tv64 = 0 };
 322        unsigned long rcu_delta_jiffies;
 323        struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
 324        u64 time_delta;
 325
 326        /* Read jiffies and the time when jiffies were updated last */
 327        do {
 328                seq = read_seqbegin(&jiffies_lock);
 329                last_update = last_jiffies_update;
 330                last_jiffies = jiffies;
 331                time_delta = timekeeping_max_deferment();
 332        } while (read_seqretry(&jiffies_lock, seq));
 333
 334        if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
 335            arch_needs_cpu(cpu)) {
 336                next_jiffies = last_jiffies + 1;
 337                delta_jiffies = 1;
 338        } else {
 339                /* Get the next timer wheel timer */
 340                next_jiffies = get_next_timer_interrupt(last_jiffies);
 341                delta_jiffies = next_jiffies - last_jiffies;
 342                if (rcu_delta_jiffies < delta_jiffies) {
 343                        next_jiffies = last_jiffies + rcu_delta_jiffies;
 344                        delta_jiffies = rcu_delta_jiffies;
 345                }
 346        }
 347        /*
 348         * Do not stop the tick, if we are only one off
 349         * or if the cpu is required for rcu
 350         */
 351        if (!ts->tick_stopped && delta_jiffies == 1)
 352                goto out;
 353
 354        /* Schedule the tick, if we are at least one jiffie off */
 355        if ((long)delta_jiffies >= 1) {
 356
 357                /*
 358                 * If this cpu is the one which updates jiffies, then
 359                 * give up the assignment and let it be taken by the
 360                 * cpu which runs the tick timer next, which might be
 361                 * this cpu as well. If we don't drop this here the
 362                 * jiffies might be stale and do_timer() never
 363                 * invoked. Keep track of the fact that it was the one
 364                 * which had the do_timer() duty last. If this cpu is
 365                 * the one which had the do_timer() duty last, we
 366                 * limit the sleep time to the timekeeping
 367                 * max_deferement value which we retrieved
 368                 * above. Otherwise we can sleep as long as we want.
 369                 */
 370                if (cpu == tick_do_timer_cpu) {
 371                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 372                        ts->do_timer_last = 1;
 373                } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 374                        time_delta = KTIME_MAX;
 375                        ts->do_timer_last = 0;
 376                } else if (!ts->do_timer_last) {
 377                        time_delta = KTIME_MAX;
 378                }
 379
 380                /*
 381                 * calculate the expiry time for the next timer wheel
 382                 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
 383                 * that there is no timer pending or at least extremely
 384                 * far into the future (12 days for HZ=1000). In this
 385                 * case we set the expiry to the end of time.
 386                 */
 387                if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
 388                        /*
 389                         * Calculate the time delta for the next timer event.
 390                         * If the time delta exceeds the maximum time delta
 391                         * permitted by the current clocksource then adjust
 392                         * the time delta accordingly to ensure the
 393                         * clocksource does not wrap.
 394                         */
 395                        time_delta = min_t(u64, time_delta,
 396                                           tick_period.tv64 * delta_jiffies);
 397                }
 398
 399                if (time_delta < KTIME_MAX)
 400                        expires = ktime_add_ns(last_update, time_delta);
 401                else
 402                        expires.tv64 = KTIME_MAX;
 403
 404                /* Skip reprogram of event if its not changed */
 405                if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
 406                        goto out;
 407
 408                ret = expires;
 409
 410                /*
 411                 * nohz_stop_sched_tick can be called several times before
 412                 * the nohz_restart_sched_tick is called. This happens when
 413                 * interrupts arrive which do not cause a reschedule. In the
 414                 * first call we save the current tick time, so we can restart
 415                 * the scheduler tick in nohz_restart_sched_tick.
 416                 */
 417                if (!ts->tick_stopped) {
 418                        nohz_balance_enter_idle(cpu);
 419                        calc_load_enter_idle();
 420
 421                        ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 422                        ts->tick_stopped = 1;
 423                }
 424
 425                /*
 426                 * If the expiration time == KTIME_MAX, then
 427                 * in this case we simply stop the tick timer.
 428                 */
 429                 if (unlikely(expires.tv64 == KTIME_MAX)) {
 430                        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 431                                hrtimer_cancel(&ts->sched_timer);
 432                        goto out;
 433                }
 434
 435                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 436                        hrtimer_start(&ts->sched_timer, expires,
 437                                      HRTIMER_MODE_ABS_PINNED);
 438                        /* Check, if the timer was already in the past */
 439                        if (hrtimer_active(&ts->sched_timer))
 440                                goto out;
 441                } else if (!tick_program_event(expires, 0))
 442                                goto out;
 443                /*
 444                 * We are past the event already. So we crossed a
 445                 * jiffie boundary. Update jiffies and raise the
 446                 * softirq.
 447                 */
 448                tick_do_update_jiffies64(ktime_get());
 449        }
 450        raise_softirq_irqoff(TIMER_SOFTIRQ);
 451out:
 452        ts->next_jiffies = next_jiffies;
 453        ts->last_jiffies = last_jiffies;
 454        ts->sleep_length = ktime_sub(dev->next_event, now);
 455
 456        return ret;
 457}
 458
 459static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 460{
 461        /*
 462         * If this cpu is offline and it is the one which updates
 463         * jiffies, then give up the assignment and let it be taken by
 464         * the cpu which runs the tick timer next. If we don't drop
 465         * this here the jiffies might be stale and do_timer() never
 466         * invoked.
 467         */
 468        if (unlikely(!cpu_online(cpu))) {
 469                if (cpu == tick_do_timer_cpu)
 470                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 471        }
 472
 473        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 474                return false;
 475
 476        if (need_resched())
 477                return false;
 478
 479        if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 480                static int ratelimit;
 481
 482                if (ratelimit < 10 &&
 483                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 484                        printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
 485                               (unsigned int) local_softirq_pending());
 486                        ratelimit++;
 487                }
 488                return false;
 489        }
 490
 491        return true;
 492}
 493
 494static void __tick_nohz_idle_enter(struct tick_sched *ts)
 495{
 496        ktime_t now, expires;
 497        int cpu = smp_processor_id();
 498
 499        now = tick_nohz_start_idle(cpu, ts);
 500
 501        if (can_stop_idle_tick(cpu, ts)) {
 502                int was_stopped = ts->tick_stopped;
 503
 504                ts->idle_calls++;
 505
 506                expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 507                if (expires.tv64 > 0LL) {
 508                        ts->idle_sleeps++;
 509                        ts->idle_expires = expires;
 510                }
 511
 512                if (!was_stopped && ts->tick_stopped)
 513                        ts->idle_jiffies = ts->last_jiffies;
 514        }
 515}
 516
 517/**
 518 * tick_nohz_idle_enter - stop the idle tick from the idle task
 519 *
 520 * When the next event is more than a tick into the future, stop the idle tick
 521 * Called when we start the idle loop.
 522 *
 523 * The arch is responsible of calling:
 524 *
 525 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 526 *  to sleep.
 527 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 528 */
 529void tick_nohz_idle_enter(void)
 530{
 531        struct tick_sched *ts;
 532
 533        WARN_ON_ONCE(irqs_disabled());
 534
 535        /*
 536         * Update the idle state in the scheduler domain hierarchy
 537         * when tick_nohz_stop_sched_tick() is called from the idle loop.
 538         * State will be updated to busy during the first busy tick after
 539         * exiting idle.
 540         */
 541        set_cpu_sd_state_idle();
 542
 543        local_irq_disable();
 544
 545        ts = &__get_cpu_var(tick_cpu_sched);
 546        /*
 547         * set ts->inidle unconditionally. even if the system did not
 548         * switch to nohz mode the cpu frequency governers rely on the
 549         * update of the idle time accounting in tick_nohz_start_idle().
 550         */
 551        ts->inidle = 1;
 552        __tick_nohz_idle_enter(ts);
 553
 554        local_irq_enable();
 555}
 556
 557/**
 558 * tick_nohz_irq_exit - update next tick event from interrupt exit
 559 *
 560 * When an interrupt fires while we are idle and it doesn't cause
 561 * a reschedule, it may still add, modify or delete a timer, enqueue
 562 * an RCU callback, etc...
 563 * So we need to re-calculate and reprogram the next tick event.
 564 */
 565void tick_nohz_irq_exit(void)
 566{
 567        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 568
 569        if (!ts->inidle)
 570                return;
 571
 572        /* Cancel the timer because CPU already waken up from the C-states*/
 573        menu_hrtimer_cancel();
 574        __tick_nohz_idle_enter(ts);
 575}
 576
 577/**
 578 * tick_nohz_get_sleep_length - return the length of the current sleep
 579 *
 580 * Called from power state control code with interrupts disabled
 581 */
 582ktime_t tick_nohz_get_sleep_length(void)
 583{
 584        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 585
 586        return ts->sleep_length;
 587}
 588
 589static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 590{
 591        hrtimer_cancel(&ts->sched_timer);
 592        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 593
 594        while (1) {
 595                /* Forward the time to expire in the future */
 596                hrtimer_forward(&ts->sched_timer, now, tick_period);
 597
 598                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 599                        hrtimer_start_expires(&ts->sched_timer,
 600                                              HRTIMER_MODE_ABS_PINNED);
 601                        /* Check, if the timer was already in the past */
 602                        if (hrtimer_active(&ts->sched_timer))
 603                                break;
 604                } else {
 605                        if (!tick_program_event(
 606                                hrtimer_get_expires(&ts->sched_timer), 0))
 607                                break;
 608                }
 609                /* Reread time and update jiffies */
 610                now = ktime_get();
 611                tick_do_update_jiffies64(now);
 612        }
 613}
 614
 615static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 616{
 617        /* Update jiffies first */
 618        tick_do_update_jiffies64(now);
 619        update_cpu_load_nohz();
 620
 621        calc_load_exit_idle();
 622        touch_softlockup_watchdog();
 623        /*
 624         * Cancel the scheduled timer and restore the tick
 625         */
 626        ts->tick_stopped  = 0;
 627        ts->idle_exittime = now;
 628
 629        tick_nohz_restart(ts, now);
 630}
 631
 632static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 633{
 634#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 635        unsigned long ticks;
 636        /*
 637         * We stopped the tick in idle. Update process times would miss the
 638         * time we slept as update_process_times does only a 1 tick
 639         * accounting. Enforce that this is accounted to idle !
 640         */
 641        ticks = jiffies - ts->idle_jiffies;
 642        /*
 643         * We might be one off. Do not randomly account a huge number of ticks!
 644         */
 645        if (ticks && ticks < LONG_MAX)
 646                account_idle_ticks(ticks);
 647#endif
 648}
 649
 650/**
 651 * tick_nohz_idle_exit - restart the idle tick from the idle task
 652 *
 653 * Restart the idle tick when the CPU is woken up from idle
 654 * This also exit the RCU extended quiescent state. The CPU
 655 * can use RCU again after this function is called.
 656 */
 657void tick_nohz_idle_exit(void)
 658{
 659        int cpu = smp_processor_id();
 660        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 661        ktime_t now;
 662
 663        local_irq_disable();
 664
 665        WARN_ON_ONCE(!ts->inidle);
 666
 667        ts->inidle = 0;
 668
 669        /* Cancel the timer because CPU already waken up from the C-states*/
 670        menu_hrtimer_cancel();
 671        if (ts->idle_active || ts->tick_stopped)
 672                now = ktime_get();
 673
 674        if (ts->idle_active)
 675                tick_nohz_stop_idle(cpu, now);
 676
 677        if (ts->tick_stopped) {
 678                tick_nohz_restart_sched_tick(ts, now);
 679                tick_nohz_account_idle_ticks(ts);
 680        }
 681
 682        local_irq_enable();
 683}
 684
 685static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
 686{
 687        hrtimer_forward(&ts->sched_timer, now, tick_period);
 688        return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
 689}
 690
 691/*
 692 * The nohz low res interrupt handler
 693 */
 694static void tick_nohz_handler(struct clock_event_device *dev)
 695{
 696        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 697        struct pt_regs *regs = get_irq_regs();
 698        ktime_t now = ktime_get();
 699
 700        dev->next_event.tv64 = KTIME_MAX;
 701
 702        tick_sched_do_timer(now);
 703        tick_sched_handle(ts, regs);
 704
 705        while (tick_nohz_reprogram(ts, now)) {
 706                now = ktime_get();
 707                tick_do_update_jiffies64(now);
 708        }
 709}
 710
 711/**
 712 * tick_nohz_switch_to_nohz - switch to nohz mode
 713 */
 714static void tick_nohz_switch_to_nohz(void)
 715{
 716        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 717        ktime_t next;
 718
 719        if (!tick_nohz_enabled)
 720                return;
 721
 722        local_irq_disable();
 723        if (tick_switch_to_oneshot(tick_nohz_handler)) {
 724                local_irq_enable();
 725                return;
 726        }
 727
 728        ts->nohz_mode = NOHZ_MODE_LOWRES;
 729
 730        /*
 731         * Recycle the hrtimer in ts, so we can share the
 732         * hrtimer_forward with the highres code.
 733         */
 734        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 735        /* Get the next period */
 736        next = tick_init_jiffy_update();
 737
 738        for (;;) {
 739                hrtimer_set_expires(&ts->sched_timer, next);
 740                if (!tick_program_event(next, 0))
 741                        break;
 742                next = ktime_add(next, tick_period);
 743        }
 744        local_irq_enable();
 745}
 746
 747/*
 748 * When NOHZ is enabled and the tick is stopped, we need to kick the
 749 * tick timer from irq_enter() so that the jiffies update is kept
 750 * alive during long running softirqs. That's ugly as hell, but
 751 * correctness is key even if we need to fix the offending softirq in
 752 * the first place.
 753 *
 754 * Note, this is different to tick_nohz_restart. We just kick the
 755 * timer and do not touch the other magic bits which need to be done
 756 * when idle is left.
 757 */
 758static void tick_nohz_kick_tick(int cpu, ktime_t now)
 759{
 760#if 0
 761        /* Switch back to 2.6.27 behaviour */
 762
 763        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 764        ktime_t delta;
 765
 766        /*
 767         * Do not touch the tick device, when the next expiry is either
 768         * already reached or less/equal than the tick period.
 769         */
 770        delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
 771        if (delta.tv64 <= tick_period.tv64)
 772                return;
 773
 774        tick_nohz_restart(ts, now);
 775#endif
 776}
 777
 778static inline void tick_check_nohz(int cpu)
 779{
 780        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 781        ktime_t now;
 782
 783        if (!ts->idle_active && !ts->tick_stopped)
 784                return;
 785        now = ktime_get();
 786        if (ts->idle_active)
 787                tick_nohz_stop_idle(cpu, now);
 788        if (ts->tick_stopped) {
 789                tick_nohz_update_jiffies(now);
 790                tick_nohz_kick_tick(cpu, now);
 791        }
 792}
 793
 794#else
 795
 796static inline void tick_nohz_switch_to_nohz(void) { }
 797static inline void tick_check_nohz(int cpu) { }
 798
 799#endif /* NO_HZ */
 800
 801/*
 802 * Called from irq_enter to notify about the possible interruption of idle()
 803 */
 804void tick_check_idle(int cpu)
 805{
 806        tick_check_oneshot_broadcast(cpu);
 807        tick_check_nohz(cpu);
 808}
 809
 810/*
 811 * High resolution timer specific code
 812 */
 813#ifdef CONFIG_HIGH_RES_TIMERS
 814/*
 815 * We rearm the timer until we get disabled by the idle code.
 816 * Called with interrupts disabled.
 817 */
 818static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
 819{
 820        struct tick_sched *ts =
 821                container_of(timer, struct tick_sched, sched_timer);
 822        struct pt_regs *regs = get_irq_regs();
 823        ktime_t now = ktime_get();
 824
 825        tick_sched_do_timer(now);
 826
 827        /*
 828         * Do not call, when we are not in irq context and have
 829         * no valid regs pointer
 830         */
 831        if (regs)
 832                tick_sched_handle(ts, regs);
 833
 834        hrtimer_forward(timer, now, tick_period);
 835
 836        return HRTIMER_RESTART;
 837}
 838
 839static int sched_skew_tick;
 840
 841static int __init skew_tick(char *str)
 842{
 843        get_option(&str, &sched_skew_tick);
 844
 845        return 0;
 846}
 847early_param("skew_tick", skew_tick);
 848
 849/**
 850 * tick_setup_sched_timer - setup the tick emulation timer
 851 */
 852void tick_setup_sched_timer(void)
 853{
 854        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 855        ktime_t now = ktime_get();
 856
 857        /*
 858         * Emulate tick processing via per-CPU hrtimers:
 859         */
 860        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 861        ts->sched_timer.function = tick_sched_timer;
 862
 863        /* Get the next period (per cpu) */
 864        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
 865
 866        /* Offset the tick to avert jiffies_lock contention. */
 867        if (sched_skew_tick) {
 868                u64 offset = ktime_to_ns(tick_period) >> 1;
 869                do_div(offset, num_possible_cpus());
 870                offset *= smp_processor_id();
 871                hrtimer_add_expires_ns(&ts->sched_timer, offset);
 872        }
 873
 874        for (;;) {
 875                hrtimer_forward(&ts->sched_timer, now, tick_period);
 876                hrtimer_start_expires(&ts->sched_timer,
 877                                      HRTIMER_MODE_ABS_PINNED);
 878                /* Check, if the timer was already in the past */
 879                if (hrtimer_active(&ts->sched_timer))
 880                        break;
 881                now = ktime_get();
 882        }
 883
 884#ifdef CONFIG_NO_HZ
 885        if (tick_nohz_enabled)
 886                ts->nohz_mode = NOHZ_MODE_HIGHRES;
 887#endif
 888}
 889#endif /* HIGH_RES_TIMERS */
 890
 891#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
 892void tick_cancel_sched_timer(int cpu)
 893{
 894        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 895
 896# ifdef CONFIG_HIGH_RES_TIMERS
 897        if (ts->sched_timer.base)
 898                hrtimer_cancel(&ts->sched_timer);
 899# endif
 900
 901        ts->nohz_mode = NOHZ_MODE_INACTIVE;
 902}
 903#endif
 904
 905/**
 906 * Async notification about clocksource changes
 907 */
 908void tick_clock_notify(void)
 909{
 910        int cpu;
 911
 912        for_each_possible_cpu(cpu)
 913                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
 914}
 915
 916/*
 917 * Async notification about clock event changes
 918 */
 919void tick_oneshot_notify(void)
 920{
 921        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 922
 923        set_bit(0, &ts->check_clocks);
 924}
 925
 926/**
 927 * Check, if a change happened, which makes oneshot possible.
 928 *
 929 * Called cyclic from the hrtimer softirq (driven by the timer
 930 * softirq) allow_nohz signals, that we can switch into low-res nohz
 931 * mode, because high resolution timers are disabled (either compile
 932 * or runtime).
 933 */
 934int tick_check_oneshot_change(int allow_nohz)
 935{
 936        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 937
 938        if (!test_and_clear_bit(0, &ts->check_clocks))
 939                return 0;
 940
 941        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
 942                return 0;
 943
 944        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
 945                return 0;
 946
 947        if (!allow_nohz)
 948                return 1;
 949
 950        tick_nohz_switch_to_nohz();
 951        return 0;
 952}
 953