1
2
3
4
5
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/list.h>
10#include <linux/jhash.h>
11#include <linux/interrupt.h>
12#include <linux/mm.h>
13#include <linux/random.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/smp.h>
17#include <linux/completion.h>
18#include <linux/percpu.h>
19#include <linux/bitops.h>
20#include <linux/notifier.h>
21#include <linux/cpu.h>
22#include <linux/cpumask.h>
23#include <linux/mutex.h>
24#include <net/flow.h>
25#include <linux/atomic.h>
26#include <linux/security.h>
27
28struct flow_cache_entry {
29 union {
30 struct hlist_node hlist;
31 struct list_head gc_list;
32 } u;
33 struct net *net;
34 u16 family;
35 u8 dir;
36 u32 genid;
37 struct flowi key;
38 struct flow_cache_object *object;
39};
40
41struct flow_cache_percpu {
42 struct hlist_head *hash_table;
43 int hash_count;
44 u32 hash_rnd;
45 int hash_rnd_recalc;
46 struct tasklet_struct flush_tasklet;
47};
48
49struct flow_flush_info {
50 struct flow_cache *cache;
51 atomic_t cpuleft;
52 struct completion completion;
53};
54
55struct flow_cache {
56 u32 hash_shift;
57 struct flow_cache_percpu __percpu *percpu;
58 struct notifier_block hotcpu_notifier;
59 int low_watermark;
60 int high_watermark;
61 struct timer_list rnd_timer;
62};
63
64atomic_t flow_cache_genid = ATOMIC_INIT(0);
65EXPORT_SYMBOL(flow_cache_genid);
66static struct flow_cache flow_cache_global;
67static struct kmem_cache *flow_cachep __read_mostly;
68
69static DEFINE_SPINLOCK(flow_cache_gc_lock);
70static LIST_HEAD(flow_cache_gc_list);
71
72#define flow_cache_hash_size(cache) (1 << (cache)->hash_shift)
73#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
74
75static void flow_cache_new_hashrnd(unsigned long arg)
76{
77 struct flow_cache *fc = (void *) arg;
78 int i;
79
80 for_each_possible_cpu(i)
81 per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
82
83 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
84 add_timer(&fc->rnd_timer);
85}
86
87static int flow_entry_valid(struct flow_cache_entry *fle)
88{
89 if (atomic_read(&flow_cache_genid) != fle->genid)
90 return 0;
91 if (fle->object && !fle->object->ops->check(fle->object))
92 return 0;
93 return 1;
94}
95
96static void flow_entry_kill(struct flow_cache_entry *fle)
97{
98 if (fle->object)
99 fle->object->ops->delete(fle->object);
100 kmem_cache_free(flow_cachep, fle);
101}
102
103static void flow_cache_gc_task(struct work_struct *work)
104{
105 struct list_head gc_list;
106 struct flow_cache_entry *fce, *n;
107
108 INIT_LIST_HEAD(&gc_list);
109 spin_lock_bh(&flow_cache_gc_lock);
110 list_splice_tail_init(&flow_cache_gc_list, &gc_list);
111 spin_unlock_bh(&flow_cache_gc_lock);
112
113 list_for_each_entry_safe(fce, n, &gc_list, u.gc_list)
114 flow_entry_kill(fce);
115}
116static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task);
117
118static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
119 int deleted, struct list_head *gc_list)
120{
121 if (deleted) {
122 fcp->hash_count -= deleted;
123 spin_lock_bh(&flow_cache_gc_lock);
124 list_splice_tail(gc_list, &flow_cache_gc_list);
125 spin_unlock_bh(&flow_cache_gc_lock);
126 schedule_work(&flow_cache_gc_work);
127 }
128}
129
130static void __flow_cache_shrink(struct flow_cache *fc,
131 struct flow_cache_percpu *fcp,
132 int shrink_to)
133{
134 struct flow_cache_entry *fle;
135 struct hlist_node *entry, *tmp;
136 LIST_HEAD(gc_list);
137 int i, deleted = 0;
138
139 for (i = 0; i < flow_cache_hash_size(fc); i++) {
140 int saved = 0;
141
142 hlist_for_each_entry_safe(fle, entry, tmp,
143 &fcp->hash_table[i], u.hlist) {
144 if (saved < shrink_to &&
145 flow_entry_valid(fle)) {
146 saved++;
147 } else {
148 deleted++;
149 hlist_del(&fle->u.hlist);
150 list_add_tail(&fle->u.gc_list, &gc_list);
151 }
152 }
153 }
154
155 flow_cache_queue_garbage(fcp, deleted, &gc_list);
156}
157
158static void flow_cache_shrink(struct flow_cache *fc,
159 struct flow_cache_percpu *fcp)
160{
161 int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
162
163 __flow_cache_shrink(fc, fcp, shrink_to);
164}
165
166static void flow_new_hash_rnd(struct flow_cache *fc,
167 struct flow_cache_percpu *fcp)
168{
169 get_random_bytes(&fcp->hash_rnd, sizeof(u32));
170 fcp->hash_rnd_recalc = 0;
171 __flow_cache_shrink(fc, fcp, 0);
172}
173
174static u32 flow_hash_code(struct flow_cache *fc,
175 struct flow_cache_percpu *fcp,
176 const struct flowi *key,
177 size_t keysize)
178{
179 const u32 *k = (const u32 *) key;
180 const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
181
182 return jhash2(k, length, fcp->hash_rnd)
183 & (flow_cache_hash_size(fc) - 1);
184}
185
186
187
188
189static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
190 size_t keysize)
191{
192 const flow_compare_t *k1, *k1_lim, *k2;
193
194 k1 = (const flow_compare_t *) key1;
195 k1_lim = k1 + keysize;
196
197 k2 = (const flow_compare_t *) key2;
198
199 do {
200 if (*k1++ != *k2++)
201 return 1;
202 } while (k1 < k1_lim);
203
204 return 0;
205}
206
207struct flow_cache_object *
208flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
209 flow_resolve_t resolver, void *ctx)
210{
211 struct flow_cache *fc = &flow_cache_global;
212 struct flow_cache_percpu *fcp;
213 struct flow_cache_entry *fle, *tfle;
214 struct hlist_node *entry;
215 struct flow_cache_object *flo;
216 size_t keysize;
217 unsigned int hash;
218
219 local_bh_disable();
220 fcp = this_cpu_ptr(fc->percpu);
221
222 fle = NULL;
223 flo = NULL;
224
225 keysize = flow_key_size(family);
226 if (!keysize)
227 goto nocache;
228
229
230
231 if (!fcp->hash_table)
232 goto nocache;
233
234 if (fcp->hash_rnd_recalc)
235 flow_new_hash_rnd(fc, fcp);
236
237 hash = flow_hash_code(fc, fcp, key, keysize);
238 hlist_for_each_entry(tfle, entry, &fcp->hash_table[hash], u.hlist) {
239 if (tfle->net == net &&
240 tfle->family == family &&
241 tfle->dir == dir &&
242 flow_key_compare(key, &tfle->key, keysize) == 0) {
243 fle = tfle;
244 break;
245 }
246 }
247
248 if (unlikely(!fle)) {
249 if (fcp->hash_count > fc->high_watermark)
250 flow_cache_shrink(fc, fcp);
251
252 fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
253 if (fle) {
254 fle->net = net;
255 fle->family = family;
256 fle->dir = dir;
257 memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
258 fle->object = NULL;
259 hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
260 fcp->hash_count++;
261 }
262 } else if (likely(fle->genid == atomic_read(&flow_cache_genid))) {
263 flo = fle->object;
264 if (!flo)
265 goto ret_object;
266 flo = flo->ops->get(flo);
267 if (flo)
268 goto ret_object;
269 } else if (fle->object) {
270 flo = fle->object;
271 flo->ops->delete(flo);
272 fle->object = NULL;
273 }
274
275nocache:
276 flo = NULL;
277 if (fle) {
278 flo = fle->object;
279 fle->object = NULL;
280 }
281 flo = resolver(net, key, family, dir, flo, ctx);
282 if (fle) {
283 fle->genid = atomic_read(&flow_cache_genid);
284 if (!IS_ERR(flo))
285 fle->object = flo;
286 else
287 fle->genid--;
288 } else {
289 if (flo && !IS_ERR(flo))
290 flo->ops->delete(flo);
291 }
292ret_object:
293 local_bh_enable();
294 return flo;
295}
296EXPORT_SYMBOL(flow_cache_lookup);
297
298static void flow_cache_flush_tasklet(unsigned long data)
299{
300 struct flow_flush_info *info = (void *)data;
301 struct flow_cache *fc = info->cache;
302 struct flow_cache_percpu *fcp;
303 struct flow_cache_entry *fle;
304 struct hlist_node *entry, *tmp;
305 LIST_HEAD(gc_list);
306 int i, deleted = 0;
307
308 fcp = this_cpu_ptr(fc->percpu);
309 for (i = 0; i < flow_cache_hash_size(fc); i++) {
310 hlist_for_each_entry_safe(fle, entry, tmp,
311 &fcp->hash_table[i], u.hlist) {
312 if (flow_entry_valid(fle))
313 continue;
314
315 deleted++;
316 hlist_del(&fle->u.hlist);
317 list_add_tail(&fle->u.gc_list, &gc_list);
318 }
319 }
320
321 flow_cache_queue_garbage(fcp, deleted, &gc_list);
322
323 if (atomic_dec_and_test(&info->cpuleft))
324 complete(&info->completion);
325}
326
327static void flow_cache_flush_per_cpu(void *data)
328{
329 struct flow_flush_info *info = data;
330 struct tasklet_struct *tasklet;
331
332 tasklet = this_cpu_ptr(&info->cache->percpu->flush_tasklet);
333 tasklet->data = (unsigned long)info;
334 tasklet_schedule(tasklet);
335}
336
337void flow_cache_flush(void)
338{
339 struct flow_flush_info info;
340 static DEFINE_MUTEX(flow_flush_sem);
341
342
343 get_online_cpus();
344 mutex_lock(&flow_flush_sem);
345 info.cache = &flow_cache_global;
346 atomic_set(&info.cpuleft, num_online_cpus());
347 init_completion(&info.completion);
348
349 local_bh_disable();
350 smp_call_function(flow_cache_flush_per_cpu, &info, 0);
351 flow_cache_flush_tasklet((unsigned long)&info);
352 local_bh_enable();
353
354 wait_for_completion(&info.completion);
355 mutex_unlock(&flow_flush_sem);
356 put_online_cpus();
357}
358
359static void flow_cache_flush_task(struct work_struct *work)
360{
361 flow_cache_flush();
362}
363
364static DECLARE_WORK(flow_cache_flush_work, flow_cache_flush_task);
365
366void flow_cache_flush_deferred(void)
367{
368 schedule_work(&flow_cache_flush_work);
369}
370
371static int __cpuinit flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
372{
373 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
374 size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
375
376 if (!fcp->hash_table) {
377 fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
378 if (!fcp->hash_table) {
379 pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
380 return -ENOMEM;
381 }
382 fcp->hash_rnd_recalc = 1;
383 fcp->hash_count = 0;
384 tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
385 }
386 return 0;
387}
388
389static int __cpuinit flow_cache_cpu(struct notifier_block *nfb,
390 unsigned long action,
391 void *hcpu)
392{
393 struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier);
394 int res, cpu = (unsigned long) hcpu;
395 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
396
397 switch (action) {
398 case CPU_UP_PREPARE:
399 case CPU_UP_PREPARE_FROZEN:
400 res = flow_cache_cpu_prepare(fc, cpu);
401 if (res)
402 return notifier_from_errno(res);
403 break;
404 case CPU_DEAD:
405 case CPU_DEAD_FROZEN:
406 __flow_cache_shrink(fc, fcp, 0);
407 break;
408 }
409 return NOTIFY_OK;
410}
411
412static int __init flow_cache_init(struct flow_cache *fc)
413{
414 int i;
415
416 fc->hash_shift = 10;
417 fc->low_watermark = 2 * flow_cache_hash_size(fc);
418 fc->high_watermark = 4 * flow_cache_hash_size(fc);
419
420 fc->percpu = alloc_percpu(struct flow_cache_percpu);
421 if (!fc->percpu)
422 return -ENOMEM;
423
424 for_each_online_cpu(i) {
425 if (flow_cache_cpu_prepare(fc, i))
426 goto err;
427 }
428 fc->hotcpu_notifier = (struct notifier_block){
429 .notifier_call = flow_cache_cpu,
430 };
431 register_hotcpu_notifier(&fc->hotcpu_notifier);
432
433 setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
434 (unsigned long) fc);
435 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
436 add_timer(&fc->rnd_timer);
437
438 return 0;
439
440err:
441 for_each_possible_cpu(i) {
442 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
443 kfree(fcp->hash_table);
444 fcp->hash_table = NULL;
445 }
446
447 free_percpu(fc->percpu);
448 fc->percpu = NULL;
449
450 return -ENOMEM;
451}
452
453static int __init flow_cache_init_global(void)
454{
455 flow_cachep = kmem_cache_create("flow_cache",
456 sizeof(struct flow_cache_entry),
457 0, SLAB_PANIC, NULL);
458
459 return flow_cache_init(&flow_cache_global);
460}
461
462module_init(flow_cache_init_global);
463