linux/net/ipv6/ip6_fib.c
<<
>>
Prefs
   1/*
   2 *      Linux INET6 implementation
   3 *      Forwarding Information Database
   4 *
   5 *      Authors:
   6 *      Pedro Roque             <roque@di.fc.ul.pt>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14/*
  15 *      Changes:
  16 *      Yuji SEKIYA @USAGI:     Support default route on router node;
  17 *                              remove ip6_null_entry from the top of
  18 *                              routing table.
  19 *      Ville Nuorvala:         Fixed routing subtrees.
  20 */
  21
  22#define pr_fmt(fmt) "IPv6: " fmt
  23
  24#include <linux/errno.h>
  25#include <linux/types.h>
  26#include <linux/net.h>
  27#include <linux/route.h>
  28#include <linux/netdevice.h>
  29#include <linux/in6.h>
  30#include <linux/init.h>
  31#include <linux/list.h>
  32#include <linux/slab.h>
  33
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/addrconf.h>
  37
  38#include <net/ip6_fib.h>
  39#include <net/ip6_route.h>
  40
  41#define RT6_DEBUG 2
  42
  43#if RT6_DEBUG >= 3
  44#define RT6_TRACE(x...) pr_debug(x)
  45#else
  46#define RT6_TRACE(x...) do { ; } while (0)
  47#endif
  48
  49static struct kmem_cache * fib6_node_kmem __read_mostly;
  50
  51enum fib_walk_state_t
  52{
  53#ifdef CONFIG_IPV6_SUBTREES
  54        FWS_S,
  55#endif
  56        FWS_L,
  57        FWS_R,
  58        FWS_C,
  59        FWS_U
  60};
  61
  62struct fib6_cleaner_t
  63{
  64        struct fib6_walker_t w;
  65        struct net *net;
  66        int (*func)(struct rt6_info *, void *arg);
  67        void *arg;
  68};
  69
  70static DEFINE_RWLOCK(fib6_walker_lock);
  71
  72#ifdef CONFIG_IPV6_SUBTREES
  73#define FWS_INIT FWS_S
  74#else
  75#define FWS_INIT FWS_L
  76#endif
  77
  78static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  79                              struct rt6_info *rt);
  80static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  81static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  82static int fib6_walk(struct fib6_walker_t *w);
  83static int fib6_walk_continue(struct fib6_walker_t *w);
  84
  85/*
  86 *      A routing update causes an increase of the serial number on the
  87 *      affected subtree. This allows for cached routes to be asynchronously
  88 *      tested when modifications are made to the destination cache as a
  89 *      result of redirects, path MTU changes, etc.
  90 */
  91
  92static __u32 rt_sernum;
  93
  94static void fib6_gc_timer_cb(unsigned long arg);
  95
  96static LIST_HEAD(fib6_walkers);
  97#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
  98
  99static inline void fib6_walker_link(struct fib6_walker_t *w)
 100{
 101        write_lock_bh(&fib6_walker_lock);
 102        list_add(&w->lh, &fib6_walkers);
 103        write_unlock_bh(&fib6_walker_lock);
 104}
 105
 106static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 107{
 108        write_lock_bh(&fib6_walker_lock);
 109        list_del(&w->lh);
 110        write_unlock_bh(&fib6_walker_lock);
 111}
 112static __inline__ u32 fib6_new_sernum(void)
 113{
 114        u32 n = ++rt_sernum;
 115        if ((__s32)n <= 0)
 116                rt_sernum = n = 1;
 117        return n;
 118}
 119
 120/*
 121 *      Auxiliary address test functions for the radix tree.
 122 *
 123 *      These assume a 32bit processor (although it will work on
 124 *      64bit processors)
 125 */
 126
 127/*
 128 *      test bit
 129 */
 130#if defined(__LITTLE_ENDIAN)
 131# define BITOP_BE32_SWIZZLE     (0x1F & ~7)
 132#else
 133# define BITOP_BE32_SWIZZLE     0
 134#endif
 135
 136static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
 137{
 138        const __be32 *addr = token;
 139        /*
 140         * Here,
 141         *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 142         * is optimized version of
 143         *      htonl(1 << ((~fn_bit)&0x1F))
 144         * See include/asm-generic/bitops/le.h.
 145         */
 146        return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 147               addr[fn_bit >> 5];
 148}
 149
 150static __inline__ struct fib6_node * node_alloc(void)
 151{
 152        struct fib6_node *fn;
 153
 154        fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 155
 156        return fn;
 157}
 158
 159static __inline__ void node_free(struct fib6_node * fn)
 160{
 161        kmem_cache_free(fib6_node_kmem, fn);
 162}
 163
 164static __inline__ void rt6_release(struct rt6_info *rt)
 165{
 166        if (atomic_dec_and_test(&rt->rt6i_ref))
 167                dst_free(&rt->dst);
 168}
 169
 170static void fib6_link_table(struct net *net, struct fib6_table *tb)
 171{
 172        unsigned int h;
 173
 174        /*
 175         * Initialize table lock at a single place to give lockdep a key,
 176         * tables aren't visible prior to being linked to the list.
 177         */
 178        rwlock_init(&tb->tb6_lock);
 179
 180        h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 181
 182        /*
 183         * No protection necessary, this is the only list mutatation
 184         * operation, tables never disappear once they exist.
 185         */
 186        hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 187}
 188
 189#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 190
 191static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 192{
 193        struct fib6_table *table;
 194
 195        table = kzalloc(sizeof(*table), GFP_ATOMIC);
 196        if (table) {
 197                table->tb6_id = id;
 198                table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 199                table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 200                inet_peer_base_init(&table->tb6_peers);
 201        }
 202
 203        return table;
 204}
 205
 206struct fib6_table *fib6_new_table(struct net *net, u32 id)
 207{
 208        struct fib6_table *tb;
 209
 210        if (id == 0)
 211                id = RT6_TABLE_MAIN;
 212        tb = fib6_get_table(net, id);
 213        if (tb)
 214                return tb;
 215
 216        tb = fib6_alloc_table(net, id);
 217        if (tb)
 218                fib6_link_table(net, tb);
 219
 220        return tb;
 221}
 222
 223struct fib6_table *fib6_get_table(struct net *net, u32 id)
 224{
 225        struct fib6_table *tb;
 226        struct hlist_head *head;
 227        struct hlist_node *node;
 228        unsigned int h;
 229
 230        if (id == 0)
 231                id = RT6_TABLE_MAIN;
 232        h = id & (FIB6_TABLE_HASHSZ - 1);
 233        rcu_read_lock();
 234        head = &net->ipv6.fib_table_hash[h];
 235        hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 236                if (tb->tb6_id == id) {
 237                        rcu_read_unlock();
 238                        return tb;
 239                }
 240        }
 241        rcu_read_unlock();
 242
 243        return NULL;
 244}
 245
 246static void __net_init fib6_tables_init(struct net *net)
 247{
 248        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 249        fib6_link_table(net, net->ipv6.fib6_local_tbl);
 250}
 251#else
 252
 253struct fib6_table *fib6_new_table(struct net *net, u32 id)
 254{
 255        return fib6_get_table(net, id);
 256}
 257
 258struct fib6_table *fib6_get_table(struct net *net, u32 id)
 259{
 260          return net->ipv6.fib6_main_tbl;
 261}
 262
 263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 264                                   int flags, pol_lookup_t lookup)
 265{
 266        return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 267}
 268
 269static void __net_init fib6_tables_init(struct net *net)
 270{
 271        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 272}
 273
 274#endif
 275
 276static int fib6_dump_node(struct fib6_walker_t *w)
 277{
 278        int res;
 279        struct rt6_info *rt;
 280
 281        for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 282                res = rt6_dump_route(rt, w->args);
 283                if (res < 0) {
 284                        /* Frame is full, suspend walking */
 285                        w->leaf = rt;
 286                        return 1;
 287                }
 288                WARN_ON(res == 0);
 289        }
 290        w->leaf = NULL;
 291        return 0;
 292}
 293
 294static void fib6_dump_end(struct netlink_callback *cb)
 295{
 296        struct fib6_walker_t *w = (void*)cb->args[2];
 297
 298        if (w) {
 299                if (cb->args[4]) {
 300                        cb->args[4] = 0;
 301                        fib6_walker_unlink(w);
 302                }
 303                cb->args[2] = 0;
 304                kfree(w);
 305        }
 306        cb->done = (void*)cb->args[3];
 307        cb->args[1] = 3;
 308}
 309
 310static int fib6_dump_done(struct netlink_callback *cb)
 311{
 312        fib6_dump_end(cb);
 313        return cb->done ? cb->done(cb) : 0;
 314}
 315
 316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 317                           struct netlink_callback *cb)
 318{
 319        struct fib6_walker_t *w;
 320        int res;
 321
 322        w = (void *)cb->args[2];
 323        w->root = &table->tb6_root;
 324
 325        if (cb->args[4] == 0) {
 326                w->count = 0;
 327                w->skip = 0;
 328
 329                read_lock_bh(&table->tb6_lock);
 330                res = fib6_walk(w);
 331                read_unlock_bh(&table->tb6_lock);
 332                if (res > 0) {
 333                        cb->args[4] = 1;
 334                        cb->args[5] = w->root->fn_sernum;
 335                }
 336        } else {
 337                if (cb->args[5] != w->root->fn_sernum) {
 338                        /* Begin at the root if the tree changed */
 339                        cb->args[5] = w->root->fn_sernum;
 340                        w->state = FWS_INIT;
 341                        w->node = w->root;
 342                        w->skip = w->count;
 343                } else
 344                        w->skip = 0;
 345
 346                read_lock_bh(&table->tb6_lock);
 347                res = fib6_walk_continue(w);
 348                read_unlock_bh(&table->tb6_lock);
 349                if (res <= 0) {
 350                        fib6_walker_unlink(w);
 351                        cb->args[4] = 0;
 352                }
 353        }
 354
 355        return res;
 356}
 357
 358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 359{
 360        struct net *net = sock_net(skb->sk);
 361        unsigned int h, s_h;
 362        unsigned int e = 0, s_e;
 363        struct rt6_rtnl_dump_arg arg;
 364        struct fib6_walker_t *w;
 365        struct fib6_table *tb;
 366        struct hlist_node *node;
 367        struct hlist_head *head;
 368        int res = 0;
 369
 370        s_h = cb->args[0];
 371        s_e = cb->args[1];
 372
 373        w = (void *)cb->args[2];
 374        if (!w) {
 375                /* New dump:
 376                 *
 377                 * 1. hook callback destructor.
 378                 */
 379                cb->args[3] = (long)cb->done;
 380                cb->done = fib6_dump_done;
 381
 382                /*
 383                 * 2. allocate and initialize walker.
 384                 */
 385                w = kzalloc(sizeof(*w), GFP_ATOMIC);
 386                if (!w)
 387                        return -ENOMEM;
 388                w->func = fib6_dump_node;
 389                cb->args[2] = (long)w;
 390        }
 391
 392        arg.skb = skb;
 393        arg.cb = cb;
 394        arg.net = net;
 395        w->args = &arg;
 396
 397        rcu_read_lock();
 398        for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 399                e = 0;
 400                head = &net->ipv6.fib_table_hash[h];
 401                hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 402                        if (e < s_e)
 403                                goto next;
 404                        res = fib6_dump_table(tb, skb, cb);
 405                        if (res != 0)
 406                                goto out;
 407next:
 408                        e++;
 409                }
 410        }
 411out:
 412        rcu_read_unlock();
 413        cb->args[1] = e;
 414        cb->args[0] = h;
 415
 416        res = res < 0 ? res : skb->len;
 417        if (res <= 0)
 418                fib6_dump_end(cb);
 419        return res;
 420}
 421
 422/*
 423 *      Routing Table
 424 *
 425 *      return the appropriate node for a routing tree "add" operation
 426 *      by either creating and inserting or by returning an existing
 427 *      node.
 428 */
 429
 430static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 431                                     int addrlen, int plen,
 432                                     int offset, int allow_create,
 433                                     int replace_required)
 434{
 435        struct fib6_node *fn, *in, *ln;
 436        struct fib6_node *pn = NULL;
 437        struct rt6key *key;
 438        int     bit;
 439        __be32  dir = 0;
 440        __u32   sernum = fib6_new_sernum();
 441
 442        RT6_TRACE("fib6_add_1\n");
 443
 444        /* insert node in tree */
 445
 446        fn = root;
 447
 448        do {
 449                key = (struct rt6key *)((u8 *)fn->leaf + offset);
 450
 451                /*
 452                 *      Prefix match
 453                 */
 454                if (plen < fn->fn_bit ||
 455                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
 456                        if (!allow_create) {
 457                                if (replace_required) {
 458                                        pr_warn("Can't replace route, no match found\n");
 459                                        return ERR_PTR(-ENOENT);
 460                                }
 461                                pr_warn("NLM_F_CREATE should be set when creating new route\n");
 462                        }
 463                        goto insert_above;
 464                }
 465
 466                /*
 467                 *      Exact match ?
 468                 */
 469
 470                if (plen == fn->fn_bit) {
 471                        /* clean up an intermediate node */
 472                        if (!(fn->fn_flags & RTN_RTINFO)) {
 473                                rt6_release(fn->leaf);
 474                                fn->leaf = NULL;
 475                        }
 476
 477                        fn->fn_sernum = sernum;
 478
 479                        return fn;
 480                }
 481
 482                /*
 483                 *      We have more bits to go
 484                 */
 485
 486                /* Try to walk down on tree. */
 487                fn->fn_sernum = sernum;
 488                dir = addr_bit_set(addr, fn->fn_bit);
 489                pn = fn;
 490                fn = dir ? fn->right: fn->left;
 491        } while (fn);
 492
 493        if (!allow_create) {
 494                /* We should not create new node because
 495                 * NLM_F_REPLACE was specified without NLM_F_CREATE
 496                 * I assume it is safe to require NLM_F_CREATE when
 497                 * REPLACE flag is used! Later we may want to remove the
 498                 * check for replace_required, because according
 499                 * to netlink specification, NLM_F_CREATE
 500                 * MUST be specified if new route is created.
 501                 * That would keep IPv6 consistent with IPv4
 502                 */
 503                if (replace_required) {
 504                        pr_warn("Can't replace route, no match found\n");
 505                        return ERR_PTR(-ENOENT);
 506                }
 507                pr_warn("NLM_F_CREATE should be set when creating new route\n");
 508        }
 509        /*
 510         *      We walked to the bottom of tree.
 511         *      Create new leaf node without children.
 512         */
 513
 514        ln = node_alloc();
 515
 516        if (!ln)
 517                return ERR_PTR(-ENOMEM);
 518        ln->fn_bit = plen;
 519
 520        ln->parent = pn;
 521        ln->fn_sernum = sernum;
 522
 523        if (dir)
 524                pn->right = ln;
 525        else
 526                pn->left  = ln;
 527
 528        return ln;
 529
 530
 531insert_above:
 532        /*
 533         * split since we don't have a common prefix anymore or
 534         * we have a less significant route.
 535         * we've to insert an intermediate node on the list
 536         * this new node will point to the one we need to create
 537         * and the current
 538         */
 539
 540        pn = fn->parent;
 541
 542        /* find 1st bit in difference between the 2 addrs.
 543
 544           See comment in __ipv6_addr_diff: bit may be an invalid value,
 545           but if it is >= plen, the value is ignored in any case.
 546         */
 547
 548        bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 549
 550        /*
 551         *              (intermediate)[in]
 552         *                /        \
 553         *      (new leaf node)[ln] (old node)[fn]
 554         */
 555        if (plen > bit) {
 556                in = node_alloc();
 557                ln = node_alloc();
 558
 559                if (!in || !ln) {
 560                        if (in)
 561                                node_free(in);
 562                        if (ln)
 563                                node_free(ln);
 564                        return ERR_PTR(-ENOMEM);
 565                }
 566
 567                /*
 568                 * new intermediate node.
 569                 * RTN_RTINFO will
 570                 * be off since that an address that chooses one of
 571                 * the branches would not match less specific routes
 572                 * in the other branch
 573                 */
 574
 575                in->fn_bit = bit;
 576
 577                in->parent = pn;
 578                in->leaf = fn->leaf;
 579                atomic_inc(&in->leaf->rt6i_ref);
 580
 581                in->fn_sernum = sernum;
 582
 583                /* update parent pointer */
 584                if (dir)
 585                        pn->right = in;
 586                else
 587                        pn->left  = in;
 588
 589                ln->fn_bit = plen;
 590
 591                ln->parent = in;
 592                fn->parent = in;
 593
 594                ln->fn_sernum = sernum;
 595
 596                if (addr_bit_set(addr, bit)) {
 597                        in->right = ln;
 598                        in->left  = fn;
 599                } else {
 600                        in->left  = ln;
 601                        in->right = fn;
 602                }
 603        } else { /* plen <= bit */
 604
 605                /*
 606                 *              (new leaf node)[ln]
 607                 *                /        \
 608                 *           (old node)[fn] NULL
 609                 */
 610
 611                ln = node_alloc();
 612
 613                if (!ln)
 614                        return ERR_PTR(-ENOMEM);
 615
 616                ln->fn_bit = plen;
 617
 618                ln->parent = pn;
 619
 620                ln->fn_sernum = sernum;
 621
 622                if (dir)
 623                        pn->right = ln;
 624                else
 625                        pn->left  = ln;
 626
 627                if (addr_bit_set(&key->addr, plen))
 628                        ln->right = fn;
 629                else
 630                        ln->left  = fn;
 631
 632                fn->parent = ln;
 633        }
 634        return ln;
 635}
 636
 637/*
 638 *      Insert routing information in a node.
 639 */
 640
 641static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 642                            struct nl_info *info)
 643{
 644        struct rt6_info *iter = NULL;
 645        struct rt6_info **ins;
 646        int replace = (info->nlh &&
 647                       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
 648        int add = (!info->nlh ||
 649                   (info->nlh->nlmsg_flags & NLM_F_CREATE));
 650        int found = 0;
 651
 652        ins = &fn->leaf;
 653
 654        for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
 655                /*
 656                 *      Search for duplicates
 657                 */
 658
 659                if (iter->rt6i_metric == rt->rt6i_metric) {
 660                        /*
 661                         *      Same priority level
 662                         */
 663                        if (info->nlh &&
 664                            (info->nlh->nlmsg_flags & NLM_F_EXCL))
 665                                return -EEXIST;
 666                        if (replace) {
 667                                found++;
 668                                break;
 669                        }
 670
 671                        if (iter->dst.dev == rt->dst.dev &&
 672                            iter->rt6i_idev == rt->rt6i_idev &&
 673                            ipv6_addr_equal(&iter->rt6i_gateway,
 674                                            &rt->rt6i_gateway)) {
 675                                if (rt->rt6i_nsiblings)
 676                                        rt->rt6i_nsiblings = 0;
 677                                if (!(iter->rt6i_flags & RTF_EXPIRES))
 678                                        return -EEXIST;
 679                                if (!(rt->rt6i_flags & RTF_EXPIRES))
 680                                        rt6_clean_expires(iter);
 681                                else
 682                                        rt6_set_expires(iter, rt->dst.expires);
 683                                return -EEXIST;
 684                        }
 685                        /* If we have the same destination and the same metric,
 686                         * but not the same gateway, then the route we try to
 687                         * add is sibling to this route, increment our counter
 688                         * of siblings, and later we will add our route to the
 689                         * list.
 690                         * Only static routes (which don't have flag
 691                         * RTF_EXPIRES) are used for ECMPv6.
 692                         *
 693                         * To avoid long list, we only had siblings if the
 694                         * route have a gateway.
 695                         */
 696                        if (rt->rt6i_flags & RTF_GATEWAY &&
 697                            !(rt->rt6i_flags & RTF_EXPIRES) &&
 698                            !(iter->rt6i_flags & RTF_EXPIRES))
 699                                rt->rt6i_nsiblings++;
 700                }
 701
 702                if (iter->rt6i_metric > rt->rt6i_metric)
 703                        break;
 704
 705                ins = &iter->dst.rt6_next;
 706        }
 707
 708        /* Reset round-robin state, if necessary */
 709        if (ins == &fn->leaf)
 710                fn->rr_ptr = NULL;
 711
 712        /* Link this route to others same route. */
 713        if (rt->rt6i_nsiblings) {
 714                unsigned int rt6i_nsiblings;
 715                struct rt6_info *sibling, *temp_sibling;
 716
 717                /* Find the first route that have the same metric */
 718                sibling = fn->leaf;
 719                while (sibling) {
 720                        if (sibling->rt6i_metric == rt->rt6i_metric) {
 721                                list_add_tail(&rt->rt6i_siblings,
 722                                              &sibling->rt6i_siblings);
 723                                break;
 724                        }
 725                        sibling = sibling->dst.rt6_next;
 726                }
 727                /* For each sibling in the list, increment the counter of
 728                 * siblings. BUG() if counters does not match, list of siblings
 729                 * is broken!
 730                 */
 731                rt6i_nsiblings = 0;
 732                list_for_each_entry_safe(sibling, temp_sibling,
 733                                         &rt->rt6i_siblings, rt6i_siblings) {
 734                        sibling->rt6i_nsiblings++;
 735                        BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
 736                        rt6i_nsiblings++;
 737                }
 738                BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
 739        }
 740
 741        /*
 742         *      insert node
 743         */
 744        if (!replace) {
 745                if (!add)
 746                        pr_warn("NLM_F_CREATE should be set when creating new route\n");
 747
 748add:
 749                rt->dst.rt6_next = iter;
 750                *ins = rt;
 751                rt->rt6i_node = fn;
 752                atomic_inc(&rt->rt6i_ref);
 753                inet6_rt_notify(RTM_NEWROUTE, rt, info);
 754                info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 755
 756                if (!(fn->fn_flags & RTN_RTINFO)) {
 757                        info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 758                        fn->fn_flags |= RTN_RTINFO;
 759                }
 760
 761        } else {
 762                if (!found) {
 763                        if (add)
 764                                goto add;
 765                        pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
 766                        return -ENOENT;
 767                }
 768                *ins = rt;
 769                rt->rt6i_node = fn;
 770                rt->dst.rt6_next = iter->dst.rt6_next;
 771                atomic_inc(&rt->rt6i_ref);
 772                inet6_rt_notify(RTM_NEWROUTE, rt, info);
 773                rt6_release(iter);
 774                if (!(fn->fn_flags & RTN_RTINFO)) {
 775                        info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 776                        fn->fn_flags |= RTN_RTINFO;
 777                }
 778        }
 779
 780        return 0;
 781}
 782
 783static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 784{
 785        if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 786            (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
 787                mod_timer(&net->ipv6.ip6_fib_timer,
 788                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 789}
 790
 791void fib6_force_start_gc(struct net *net)
 792{
 793        if (!timer_pending(&net->ipv6.ip6_fib_timer))
 794                mod_timer(&net->ipv6.ip6_fib_timer,
 795                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 796}
 797
 798/*
 799 *      Add routing information to the routing tree.
 800 *      <destination addr>/<source addr>
 801 *      with source addr info in sub-trees
 802 */
 803
 804int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 805{
 806        struct fib6_node *fn, *pn = NULL;
 807        int err = -ENOMEM;
 808        int allow_create = 1;
 809        int replace_required = 0;
 810
 811        if (info->nlh) {
 812                if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
 813                        allow_create = 0;
 814                if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
 815                        replace_required = 1;
 816        }
 817        if (!allow_create && !replace_required)
 818                pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
 819
 820        fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 821                        rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
 822                        allow_create, replace_required);
 823
 824        if (IS_ERR(fn)) {
 825                err = PTR_ERR(fn);
 826                goto out;
 827        }
 828
 829        pn = fn;
 830
 831#ifdef CONFIG_IPV6_SUBTREES
 832        if (rt->rt6i_src.plen) {
 833                struct fib6_node *sn;
 834
 835                if (!fn->subtree) {
 836                        struct fib6_node *sfn;
 837
 838                        /*
 839                         * Create subtree.
 840                         *
 841                         *              fn[main tree]
 842                         *              |
 843                         *              sfn[subtree root]
 844                         *                 \
 845                         *                  sn[new leaf node]
 846                         */
 847
 848                        /* Create subtree root node */
 849                        sfn = node_alloc();
 850                        if (!sfn)
 851                                goto st_failure;
 852
 853                        sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 854                        atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 855                        sfn->fn_flags = RTN_ROOT;
 856                        sfn->fn_sernum = fib6_new_sernum();
 857
 858                        /* Now add the first leaf node to new subtree */
 859
 860                        sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 861                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
 862                                        offsetof(struct rt6_info, rt6i_src),
 863                                        allow_create, replace_required);
 864
 865                        if (IS_ERR(sn)) {
 866                                /* If it is failed, discard just allocated
 867                                   root, and then (in st_failure) stale node
 868                                   in main tree.
 869                                 */
 870                                node_free(sfn);
 871                                err = PTR_ERR(sn);
 872                                goto st_failure;
 873                        }
 874
 875                        /* Now link new subtree to main tree */
 876                        sfn->parent = fn;
 877                        fn->subtree = sfn;
 878                } else {
 879                        sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 880                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
 881                                        offsetof(struct rt6_info, rt6i_src),
 882                                        allow_create, replace_required);
 883
 884                        if (IS_ERR(sn)) {
 885                                err = PTR_ERR(sn);
 886                                goto st_failure;
 887                        }
 888                }
 889
 890                if (!fn->leaf) {
 891                        fn->leaf = rt;
 892                        atomic_inc(&rt->rt6i_ref);
 893                }
 894                fn = sn;
 895        }
 896#endif
 897
 898        err = fib6_add_rt2node(fn, rt, info);
 899        if (!err) {
 900                fib6_start_gc(info->nl_net, rt);
 901                if (!(rt->rt6i_flags & RTF_CACHE))
 902                        fib6_prune_clones(info->nl_net, pn, rt);
 903        }
 904
 905out:
 906        if (err) {
 907#ifdef CONFIG_IPV6_SUBTREES
 908                /*
 909                 * If fib6_add_1 has cleared the old leaf pointer in the
 910                 * super-tree leaf node we have to find a new one for it.
 911                 */
 912                if (pn != fn && pn->leaf == rt) {
 913                        pn->leaf = NULL;
 914                        atomic_dec(&rt->rt6i_ref);
 915                }
 916                if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 917                        pn->leaf = fib6_find_prefix(info->nl_net, pn);
 918#if RT6_DEBUG >= 2
 919                        if (!pn->leaf) {
 920                                WARN_ON(pn->leaf == NULL);
 921                                pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 922                        }
 923#endif
 924                        atomic_inc(&pn->leaf->rt6i_ref);
 925                }
 926#endif
 927                dst_free(&rt->dst);
 928        }
 929        return err;
 930
 931#ifdef CONFIG_IPV6_SUBTREES
 932        /* Subtree creation failed, probably main tree node
 933           is orphan. If it is, shoot it.
 934         */
 935st_failure:
 936        if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 937                fib6_repair_tree(info->nl_net, fn);
 938        dst_free(&rt->dst);
 939        return err;
 940#endif
 941}
 942
 943/*
 944 *      Routing tree lookup
 945 *
 946 */
 947
 948struct lookup_args {
 949        int                     offset;         /* key offset on rt6_info       */
 950        const struct in6_addr   *addr;          /* search key                   */
 951};
 952
 953static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 954                                        struct lookup_args *args)
 955{
 956        struct fib6_node *fn;
 957        __be32 dir;
 958
 959        if (unlikely(args->offset == 0))
 960                return NULL;
 961
 962        /*
 963         *      Descend on a tree
 964         */
 965
 966        fn = root;
 967
 968        for (;;) {
 969                struct fib6_node *next;
 970
 971                dir = addr_bit_set(args->addr, fn->fn_bit);
 972
 973                next = dir ? fn->right : fn->left;
 974
 975                if (next) {
 976                        fn = next;
 977                        continue;
 978                }
 979                break;
 980        }
 981
 982        while (fn) {
 983                if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 984                        struct rt6key *key;
 985
 986                        key = (struct rt6key *) ((u8 *) fn->leaf +
 987                                                 args->offset);
 988
 989                        if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 990#ifdef CONFIG_IPV6_SUBTREES
 991                                if (fn->subtree)
 992                                        fn = fib6_lookup_1(fn->subtree, args + 1);
 993#endif
 994                                if (!fn || fn->fn_flags & RTN_RTINFO)
 995                                        return fn;
 996                        }
 997                }
 998
 999                if (fn->fn_flags & RTN_ROOT)
1000                        break;
1001
1002                fn = fn->parent;
1003        }
1004
1005        return NULL;
1006}
1007
1008struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1009                               const struct in6_addr *saddr)
1010{
1011        struct fib6_node *fn;
1012        struct lookup_args args[] = {
1013                {
1014                        .offset = offsetof(struct rt6_info, rt6i_dst),
1015                        .addr = daddr,
1016                },
1017#ifdef CONFIG_IPV6_SUBTREES
1018                {
1019                        .offset = offsetof(struct rt6_info, rt6i_src),
1020                        .addr = saddr,
1021                },
1022#endif
1023                {
1024                        .offset = 0,    /* sentinel */
1025                }
1026        };
1027
1028        fn = fib6_lookup_1(root, daddr ? args : args + 1);
1029        if (!fn || fn->fn_flags & RTN_TL_ROOT)
1030                fn = root;
1031
1032        return fn;
1033}
1034
1035/*
1036 *      Get node with specified destination prefix (and source prefix,
1037 *      if subtrees are used)
1038 */
1039
1040
1041static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1042                                        const struct in6_addr *addr,
1043                                        int plen, int offset)
1044{
1045        struct fib6_node *fn;
1046
1047        for (fn = root; fn ; ) {
1048                struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1049
1050                /*
1051                 *      Prefix match
1052                 */
1053                if (plen < fn->fn_bit ||
1054                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1055                        return NULL;
1056
1057                if (plen == fn->fn_bit)
1058                        return fn;
1059
1060                /*
1061                 *      We have more bits to go
1062                 */
1063                if (addr_bit_set(addr, fn->fn_bit))
1064                        fn = fn->right;
1065                else
1066                        fn = fn->left;
1067        }
1068        return NULL;
1069}
1070
1071struct fib6_node * fib6_locate(struct fib6_node *root,
1072                               const struct in6_addr *daddr, int dst_len,
1073                               const struct in6_addr *saddr, int src_len)
1074{
1075        struct fib6_node *fn;
1076
1077        fn = fib6_locate_1(root, daddr, dst_len,
1078                           offsetof(struct rt6_info, rt6i_dst));
1079
1080#ifdef CONFIG_IPV6_SUBTREES
1081        if (src_len) {
1082                WARN_ON(saddr == NULL);
1083                if (fn && fn->subtree)
1084                        fn = fib6_locate_1(fn->subtree, saddr, src_len,
1085                                           offsetof(struct rt6_info, rt6i_src));
1086        }
1087#endif
1088
1089        if (fn && fn->fn_flags & RTN_RTINFO)
1090                return fn;
1091
1092        return NULL;
1093}
1094
1095
1096/*
1097 *      Deletion
1098 *
1099 */
1100
1101static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1102{
1103        if (fn->fn_flags & RTN_ROOT)
1104                return net->ipv6.ip6_null_entry;
1105
1106        while (fn) {
1107                if (fn->left)
1108                        return fn->left->leaf;
1109                if (fn->right)
1110                        return fn->right->leaf;
1111
1112                fn = FIB6_SUBTREE(fn);
1113        }
1114        return NULL;
1115}
1116
1117/*
1118 *      Called to trim the tree of intermediate nodes when possible. "fn"
1119 *      is the node we want to try and remove.
1120 */
1121
1122static struct fib6_node *fib6_repair_tree(struct net *net,
1123                                           struct fib6_node *fn)
1124{
1125        int children;
1126        int nstate;
1127        struct fib6_node *child, *pn;
1128        struct fib6_walker_t *w;
1129        int iter = 0;
1130
1131        for (;;) {
1132                RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1133                iter++;
1134
1135                WARN_ON(fn->fn_flags & RTN_RTINFO);
1136                WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1137                WARN_ON(fn->leaf != NULL);
1138
1139                children = 0;
1140                child = NULL;
1141                if (fn->right) child = fn->right, children |= 1;
1142                if (fn->left) child = fn->left, children |= 2;
1143
1144                if (children == 3 || FIB6_SUBTREE(fn)
1145#ifdef CONFIG_IPV6_SUBTREES
1146                    /* Subtree root (i.e. fn) may have one child */
1147                    || (children && fn->fn_flags & RTN_ROOT)
1148#endif
1149                    ) {
1150                        fn->leaf = fib6_find_prefix(net, fn);
1151#if RT6_DEBUG >= 2
1152                        if (!fn->leaf) {
1153                                WARN_ON(!fn->leaf);
1154                                fn->leaf = net->ipv6.ip6_null_entry;
1155                        }
1156#endif
1157                        atomic_inc(&fn->leaf->rt6i_ref);
1158                        return fn->parent;
1159                }
1160
1161                pn = fn->parent;
1162#ifdef CONFIG_IPV6_SUBTREES
1163                if (FIB6_SUBTREE(pn) == fn) {
1164                        WARN_ON(!(fn->fn_flags & RTN_ROOT));
1165                        FIB6_SUBTREE(pn) = NULL;
1166                        nstate = FWS_L;
1167                } else {
1168                        WARN_ON(fn->fn_flags & RTN_ROOT);
1169#endif
1170                        if (pn->right == fn) pn->right = child;
1171                        else if (pn->left == fn) pn->left = child;
1172#if RT6_DEBUG >= 2
1173                        else
1174                                WARN_ON(1);
1175#endif
1176                        if (child)
1177                                child->parent = pn;
1178                        nstate = FWS_R;
1179#ifdef CONFIG_IPV6_SUBTREES
1180                }
1181#endif
1182
1183                read_lock(&fib6_walker_lock);
1184                FOR_WALKERS(w) {
1185                        if (!child) {
1186                                if (w->root == fn) {
1187                                        w->root = w->node = NULL;
1188                                        RT6_TRACE("W %p adjusted by delroot 1\n", w);
1189                                } else if (w->node == fn) {
1190                                        RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1191                                        w->node = pn;
1192                                        w->state = nstate;
1193                                }
1194                        } else {
1195                                if (w->root == fn) {
1196                                        w->root = child;
1197                                        RT6_TRACE("W %p adjusted by delroot 2\n", w);
1198                                }
1199                                if (w->node == fn) {
1200                                        w->node = child;
1201                                        if (children&2) {
1202                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1203                                                w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1204                                        } else {
1205                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1206                                                w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1207                                        }
1208                                }
1209                        }
1210                }
1211                read_unlock(&fib6_walker_lock);
1212
1213                node_free(fn);
1214                if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1215                        return pn;
1216
1217                rt6_release(pn->leaf);
1218                pn->leaf = NULL;
1219                fn = pn;
1220        }
1221}
1222
1223static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1224                           struct nl_info *info)
1225{
1226        struct fib6_walker_t *w;
1227        struct rt6_info *rt = *rtp;
1228        struct net *net = info->nl_net;
1229
1230        RT6_TRACE("fib6_del_route\n");
1231
1232        /* Unlink it */
1233        *rtp = rt->dst.rt6_next;
1234        rt->rt6i_node = NULL;
1235        net->ipv6.rt6_stats->fib_rt_entries--;
1236        net->ipv6.rt6_stats->fib_discarded_routes++;
1237
1238        /* Reset round-robin state, if necessary */
1239        if (fn->rr_ptr == rt)
1240                fn->rr_ptr = NULL;
1241
1242        /* Remove this entry from other siblings */
1243        if (rt->rt6i_nsiblings) {
1244                struct rt6_info *sibling, *next_sibling;
1245
1246                list_for_each_entry_safe(sibling, next_sibling,
1247                                         &rt->rt6i_siblings, rt6i_siblings)
1248                        sibling->rt6i_nsiblings--;
1249                rt->rt6i_nsiblings = 0;
1250                list_del_init(&rt->rt6i_siblings);
1251        }
1252
1253        /* Adjust walkers */
1254        read_lock(&fib6_walker_lock);
1255        FOR_WALKERS(w) {
1256                if (w->state == FWS_C && w->leaf == rt) {
1257                        RT6_TRACE("walker %p adjusted by delroute\n", w);
1258                        w->leaf = rt->dst.rt6_next;
1259                        if (!w->leaf)
1260                                w->state = FWS_U;
1261                }
1262        }
1263        read_unlock(&fib6_walker_lock);
1264
1265        rt->dst.rt6_next = NULL;
1266
1267        /* If it was last route, expunge its radix tree node */
1268        if (!fn->leaf) {
1269                fn->fn_flags &= ~RTN_RTINFO;
1270                net->ipv6.rt6_stats->fib_route_nodes--;
1271                fn = fib6_repair_tree(net, fn);
1272        }
1273
1274        if (atomic_read(&rt->rt6i_ref) != 1) {
1275                /* This route is used as dummy address holder in some split
1276                 * nodes. It is not leaked, but it still holds other resources,
1277                 * which must be released in time. So, scan ascendant nodes
1278                 * and replace dummy references to this route with references
1279                 * to still alive ones.
1280                 */
1281                while (fn) {
1282                        if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1283                                fn->leaf = fib6_find_prefix(net, fn);
1284                                atomic_inc(&fn->leaf->rt6i_ref);
1285                                rt6_release(rt);
1286                        }
1287                        fn = fn->parent;
1288                }
1289                /* No more references are possible at this point. */
1290                BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1291        }
1292
1293        inet6_rt_notify(RTM_DELROUTE, rt, info);
1294        rt6_release(rt);
1295}
1296
1297int fib6_del(struct rt6_info *rt, struct nl_info *info)
1298{
1299        struct net *net = info->nl_net;
1300        struct fib6_node *fn = rt->rt6i_node;
1301        struct rt6_info **rtp;
1302
1303#if RT6_DEBUG >= 2
1304        if (rt->dst.obsolete>0) {
1305                WARN_ON(fn != NULL);
1306                return -ENOENT;
1307        }
1308#endif
1309        if (!fn || rt == net->ipv6.ip6_null_entry)
1310                return -ENOENT;
1311
1312        WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1313
1314        if (!(rt->rt6i_flags & RTF_CACHE)) {
1315                struct fib6_node *pn = fn;
1316#ifdef CONFIG_IPV6_SUBTREES
1317                /* clones of this route might be in another subtree */
1318                if (rt->rt6i_src.plen) {
1319                        while (!(pn->fn_flags & RTN_ROOT))
1320                                pn = pn->parent;
1321                        pn = pn->parent;
1322                }
1323#endif
1324                fib6_prune_clones(info->nl_net, pn, rt);
1325        }
1326
1327        /*
1328         *      Walk the leaf entries looking for ourself
1329         */
1330
1331        for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1332                if (*rtp == rt) {
1333                        fib6_del_route(fn, rtp, info);
1334                        return 0;
1335                }
1336        }
1337        return -ENOENT;
1338}
1339
1340/*
1341 *      Tree traversal function.
1342 *
1343 *      Certainly, it is not interrupt safe.
1344 *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1345 *      It means, that we can modify tree during walking
1346 *      and use this function for garbage collection, clone pruning,
1347 *      cleaning tree when a device goes down etc. etc.
1348 *
1349 *      It guarantees that every node will be traversed,
1350 *      and that it will be traversed only once.
1351 *
1352 *      Callback function w->func may return:
1353 *      0 -> continue walking.
1354 *      positive value -> walking is suspended (used by tree dumps,
1355 *      and probably by gc, if it will be split to several slices)
1356 *      negative value -> terminate walking.
1357 *
1358 *      The function itself returns:
1359 *      0   -> walk is complete.
1360 *      >0  -> walk is incomplete (i.e. suspended)
1361 *      <0  -> walk is terminated by an error.
1362 */
1363
1364static int fib6_walk_continue(struct fib6_walker_t *w)
1365{
1366        struct fib6_node *fn, *pn;
1367
1368        for (;;) {
1369                fn = w->node;
1370                if (!fn)
1371                        return 0;
1372
1373                if (w->prune && fn != w->root &&
1374                    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1375                        w->state = FWS_C;
1376                        w->leaf = fn->leaf;
1377                }
1378                switch (w->state) {
1379#ifdef CONFIG_IPV6_SUBTREES
1380                case FWS_S:
1381                        if (FIB6_SUBTREE(fn)) {
1382                                w->node = FIB6_SUBTREE(fn);
1383                                continue;
1384                        }
1385                        w->state = FWS_L;
1386#endif
1387                case FWS_L:
1388                        if (fn->left) {
1389                                w->node = fn->left;
1390                                w->state = FWS_INIT;
1391                                continue;
1392                        }
1393                        w->state = FWS_R;
1394                case FWS_R:
1395                        if (fn->right) {
1396                                w->node = fn->right;
1397                                w->state = FWS_INIT;
1398                                continue;
1399                        }
1400                        w->state = FWS_C;
1401                        w->leaf = fn->leaf;
1402                case FWS_C:
1403                        if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1404                                int err;
1405
1406                                if (w->skip) {
1407                                        w->skip--;
1408                                        continue;
1409                                }
1410
1411                                err = w->func(w);
1412                                if (err)
1413                                        return err;
1414
1415                                w->count++;
1416                                continue;
1417                        }
1418                        w->state = FWS_U;
1419                case FWS_U:
1420                        if (fn == w->root)
1421                                return 0;
1422                        pn = fn->parent;
1423                        w->node = pn;
1424#ifdef CONFIG_IPV6_SUBTREES
1425                        if (FIB6_SUBTREE(pn) == fn) {
1426                                WARN_ON(!(fn->fn_flags & RTN_ROOT));
1427                                w->state = FWS_L;
1428                                continue;
1429                        }
1430#endif
1431                        if (pn->left == fn) {
1432                                w->state = FWS_R;
1433                                continue;
1434                        }
1435                        if (pn->right == fn) {
1436                                w->state = FWS_C;
1437                                w->leaf = w->node->leaf;
1438                                continue;
1439                        }
1440#if RT6_DEBUG >= 2
1441                        WARN_ON(1);
1442#endif
1443                }
1444        }
1445}
1446
1447static int fib6_walk(struct fib6_walker_t *w)
1448{
1449        int res;
1450
1451        w->state = FWS_INIT;
1452        w->node = w->root;
1453
1454        fib6_walker_link(w);
1455        res = fib6_walk_continue(w);
1456        if (res <= 0)
1457                fib6_walker_unlink(w);
1458        return res;
1459}
1460
1461static int fib6_clean_node(struct fib6_walker_t *w)
1462{
1463        int res;
1464        struct rt6_info *rt;
1465        struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1466        struct nl_info info = {
1467                .nl_net = c->net,
1468        };
1469
1470        for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1471                res = c->func(rt, c->arg);
1472                if (res < 0) {
1473                        w->leaf = rt;
1474                        res = fib6_del(rt, &info);
1475                        if (res) {
1476#if RT6_DEBUG >= 2
1477                                pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1478                                         __func__, rt, rt->rt6i_node, res);
1479#endif
1480                                continue;
1481                        }
1482                        return 0;
1483                }
1484                WARN_ON(res != 0);
1485        }
1486        w->leaf = rt;
1487        return 0;
1488}
1489
1490/*
1491 *      Convenient frontend to tree walker.
1492 *
1493 *      func is called on each route.
1494 *              It may return -1 -> delete this route.
1495 *                            0  -> continue walking
1496 *
1497 *      prune==1 -> only immediate children of node (certainly,
1498 *      ignoring pure split nodes) will be scanned.
1499 */
1500
1501static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1502                            int (*func)(struct rt6_info *, void *arg),
1503                            int prune, void *arg)
1504{
1505        struct fib6_cleaner_t c;
1506
1507        c.w.root = root;
1508        c.w.func = fib6_clean_node;
1509        c.w.prune = prune;
1510        c.w.count = 0;
1511        c.w.skip = 0;
1512        c.func = func;
1513        c.arg = arg;
1514        c.net = net;
1515
1516        fib6_walk(&c.w);
1517}
1518
1519void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1520                    int prune, void *arg)
1521{
1522        struct fib6_table *table;
1523        struct hlist_node *node;
1524        struct hlist_head *head;
1525        unsigned int h;
1526
1527        rcu_read_lock();
1528        for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1529                head = &net->ipv6.fib_table_hash[h];
1530                hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1531                        read_lock_bh(&table->tb6_lock);
1532                        fib6_clean_tree(net, &table->tb6_root,
1533                                        func, prune, arg);
1534                        read_unlock_bh(&table->tb6_lock);
1535                }
1536        }
1537        rcu_read_unlock();
1538}
1539void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1540                    int prune, void *arg)
1541{
1542        struct fib6_table *table;
1543        struct hlist_node *node;
1544        struct hlist_head *head;
1545        unsigned int h;
1546
1547        rcu_read_lock();
1548        for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1549                head = &net->ipv6.fib_table_hash[h];
1550                hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1551                        write_lock_bh(&table->tb6_lock);
1552                        fib6_clean_tree(net, &table->tb6_root,
1553                                        func, prune, arg);
1554                        write_unlock_bh(&table->tb6_lock);
1555                }
1556        }
1557        rcu_read_unlock();
1558}
1559
1560static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1561{
1562        if (rt->rt6i_flags & RTF_CACHE) {
1563                RT6_TRACE("pruning clone %p\n", rt);
1564                return -1;
1565        }
1566
1567        return 0;
1568}
1569
1570static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1571                              struct rt6_info *rt)
1572{
1573        fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1574}
1575
1576/*
1577 *      Garbage collection
1578 */
1579
1580static struct fib6_gc_args
1581{
1582        int                     timeout;
1583        int                     more;
1584} gc_args;
1585
1586static int fib6_age(struct rt6_info *rt, void *arg)
1587{
1588        unsigned long now = jiffies;
1589
1590        /*
1591         *      check addrconf expiration here.
1592         *      Routes are expired even if they are in use.
1593         *
1594         *      Also age clones. Note, that clones are aged out
1595         *      only if they are not in use now.
1596         */
1597
1598        if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1599                if (time_after(now, rt->dst.expires)) {
1600                        RT6_TRACE("expiring %p\n", rt);
1601                        return -1;
1602                }
1603                gc_args.more++;
1604        } else if (rt->rt6i_flags & RTF_CACHE) {
1605                if (atomic_read(&rt->dst.__refcnt) == 0 &&
1606                    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1607                        RT6_TRACE("aging clone %p\n", rt);
1608                        return -1;
1609                } else if (rt->rt6i_flags & RTF_GATEWAY) {
1610                        struct neighbour *neigh;
1611                        __u8 neigh_flags = 0;
1612
1613                        neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1614                        if (neigh) {
1615                                neigh_flags = neigh->flags;
1616                                neigh_release(neigh);
1617                        }
1618                        if (!(neigh_flags & NTF_ROUTER)) {
1619                                RT6_TRACE("purging route %p via non-router but gateway\n",
1620                                          rt);
1621                                return -1;
1622                        }
1623                }
1624                gc_args.more++;
1625        }
1626
1627        return 0;
1628}
1629
1630static DEFINE_SPINLOCK(fib6_gc_lock);
1631
1632void fib6_run_gc(unsigned long expires, struct net *net)
1633{
1634        if (expires != ~0UL) {
1635                spin_lock_bh(&fib6_gc_lock);
1636                gc_args.timeout = expires ? (int)expires :
1637                        net->ipv6.sysctl.ip6_rt_gc_interval;
1638        } else {
1639                if (!spin_trylock_bh(&fib6_gc_lock)) {
1640                        mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1641                        return;
1642                }
1643                gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1644        }
1645
1646        gc_args.more = icmp6_dst_gc();
1647
1648        fib6_clean_all(net, fib6_age, 0, NULL);
1649
1650        if (gc_args.more)
1651                mod_timer(&net->ipv6.ip6_fib_timer,
1652                          round_jiffies(jiffies
1653                                        + net->ipv6.sysctl.ip6_rt_gc_interval));
1654        else
1655                del_timer(&net->ipv6.ip6_fib_timer);
1656        spin_unlock_bh(&fib6_gc_lock);
1657}
1658
1659static void fib6_gc_timer_cb(unsigned long arg)
1660{
1661        fib6_run_gc(0, (struct net *)arg);
1662}
1663
1664static int __net_init fib6_net_init(struct net *net)
1665{
1666        size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1667
1668        setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1669
1670        net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1671        if (!net->ipv6.rt6_stats)
1672                goto out_timer;
1673
1674        /* Avoid false sharing : Use at least a full cache line */
1675        size = max_t(size_t, size, L1_CACHE_BYTES);
1676
1677        net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1678        if (!net->ipv6.fib_table_hash)
1679                goto out_rt6_stats;
1680
1681        net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1682                                          GFP_KERNEL);
1683        if (!net->ipv6.fib6_main_tbl)
1684                goto out_fib_table_hash;
1685
1686        net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1687        net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1688        net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1689                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1690        inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1691
1692#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1693        net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1694                                           GFP_KERNEL);
1695        if (!net->ipv6.fib6_local_tbl)
1696                goto out_fib6_main_tbl;
1697        net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1698        net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1699        net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1700                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1701        inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1702#endif
1703        fib6_tables_init(net);
1704
1705        return 0;
1706
1707#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1708out_fib6_main_tbl:
1709        kfree(net->ipv6.fib6_main_tbl);
1710#endif
1711out_fib_table_hash:
1712        kfree(net->ipv6.fib_table_hash);
1713out_rt6_stats:
1714        kfree(net->ipv6.rt6_stats);
1715out_timer:
1716        return -ENOMEM;
1717 }
1718
1719static void fib6_net_exit(struct net *net)
1720{
1721        rt6_ifdown(net, NULL);
1722        del_timer_sync(&net->ipv6.ip6_fib_timer);
1723
1724#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1725        inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1726        kfree(net->ipv6.fib6_local_tbl);
1727#endif
1728        inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1729        kfree(net->ipv6.fib6_main_tbl);
1730        kfree(net->ipv6.fib_table_hash);
1731        kfree(net->ipv6.rt6_stats);
1732}
1733
1734static struct pernet_operations fib6_net_ops = {
1735        .init = fib6_net_init,
1736        .exit = fib6_net_exit,
1737};
1738
1739int __init fib6_init(void)
1740{
1741        int ret = -ENOMEM;
1742
1743        fib6_node_kmem = kmem_cache_create("fib6_nodes",
1744                                           sizeof(struct fib6_node),
1745                                           0, SLAB_HWCACHE_ALIGN,
1746                                           NULL);
1747        if (!fib6_node_kmem)
1748                goto out;
1749
1750        ret = register_pernet_subsys(&fib6_net_ops);
1751        if (ret)
1752                goto out_kmem_cache_create;
1753
1754        ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1755                              NULL);
1756        if (ret)
1757                goto out_unregister_subsys;
1758out:
1759        return ret;
1760
1761out_unregister_subsys:
1762        unregister_pernet_subsys(&fib6_net_ops);
1763out_kmem_cache_create:
1764        kmem_cache_destroy(fib6_node_kmem);
1765        goto out;
1766}
1767
1768void fib6_gc_cleanup(void)
1769{
1770        unregister_pernet_subsys(&fib6_net_ops);
1771        kmem_cache_destroy(fib6_node_kmem);
1772}
1773