linux/tools/lguest/lguest.c
<<
>>
Prefs
   1/*P:100
   2 * This is the Launcher code, a simple program which lays out the "physical"
   3 * memory for the new Guest by mapping the kernel image and the virtual
   4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
   5 * control it.
   6:*/
   7#define _LARGEFILE64_SOURCE
   8#define _GNU_SOURCE
   9#include <stdio.h>
  10#include <string.h>
  11#include <unistd.h>
  12#include <err.h>
  13#include <stdint.h>
  14#include <stdlib.h>
  15#include <elf.h>
  16#include <sys/mman.h>
  17#include <sys/param.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <sys/wait.h>
  21#include <sys/eventfd.h>
  22#include <fcntl.h>
  23#include <stdbool.h>
  24#include <errno.h>
  25#include <ctype.h>
  26#include <sys/socket.h>
  27#include <sys/ioctl.h>
  28#include <sys/time.h>
  29#include <time.h>
  30#include <netinet/in.h>
  31#include <net/if.h>
  32#include <linux/sockios.h>
  33#include <linux/if_tun.h>
  34#include <sys/uio.h>
  35#include <termios.h>
  36#include <getopt.h>
  37#include <assert.h>
  38#include <sched.h>
  39#include <limits.h>
  40#include <stddef.h>
  41#include <signal.h>
  42#include <pwd.h>
  43#include <grp.h>
  44
  45#include <linux/virtio_config.h>
  46#include <linux/virtio_net.h>
  47#include <linux/virtio_blk.h>
  48#include <linux/virtio_console.h>
  49#include <linux/virtio_rng.h>
  50#include <linux/virtio_ring.h>
  51#include <asm/bootparam.h>
  52#include "../../include/linux/lguest_launcher.h"
  53/*L:110
  54 * We can ignore the 43 include files we need for this program, but I do want
  55 * to draw attention to the use of kernel-style types.
  56 *
  57 * As Linus said, "C is a Spartan language, and so should your naming be."  I
  58 * like these abbreviations, so we define them here.  Note that u64 is always
  59 * unsigned long long, which works on all Linux systems: this means that we can
  60 * use %llu in printf for any u64.
  61 */
  62typedef unsigned long long u64;
  63typedef uint32_t u32;
  64typedef uint16_t u16;
  65typedef uint8_t u8;
  66/*:*/
  67
  68#define BRIDGE_PFX "bridge:"
  69#ifndef SIOCBRADDIF
  70#define SIOCBRADDIF     0x89a2          /* add interface to bridge      */
  71#endif
  72/* We can have up to 256 pages for devices. */
  73#define DEVICE_PAGES 256
  74/* This will occupy 3 pages: it must be a power of 2. */
  75#define VIRTQUEUE_NUM 256
  76
  77/*L:120
  78 * verbose is both a global flag and a macro.  The C preprocessor allows
  79 * this, and although I wouldn't recommend it, it works quite nicely here.
  80 */
  81static bool verbose;
  82#define verbose(args...) \
  83        do { if (verbose) printf(args); } while(0)
  84/*:*/
  85
  86/* The pointer to the start of guest memory. */
  87static void *guest_base;
  88/* The maximum guest physical address allowed, and maximum possible. */
  89static unsigned long guest_limit, guest_max;
  90/* The /dev/lguest file descriptor. */
  91static int lguest_fd;
  92
  93/* a per-cpu variable indicating whose vcpu is currently running */
  94static unsigned int __thread cpu_id;
  95
  96/* This is our list of devices. */
  97struct device_list {
  98        /* Counter to assign interrupt numbers. */
  99        unsigned int next_irq;
 100
 101        /* Counter to print out convenient device numbers. */
 102        unsigned int device_num;
 103
 104        /* The descriptor page for the devices. */
 105        u8 *descpage;
 106
 107        /* A single linked list of devices. */
 108        struct device *dev;
 109        /* And a pointer to the last device for easy append. */
 110        struct device *lastdev;
 111};
 112
 113/* The list of Guest devices, based on command line arguments. */
 114static struct device_list devices;
 115
 116/* The device structure describes a single device. */
 117struct device {
 118        /* The linked-list pointer. */
 119        struct device *next;
 120
 121        /* The device's descriptor, as mapped into the Guest. */
 122        struct lguest_device_desc *desc;
 123
 124        /* We can't trust desc values once Guest has booted: we use these. */
 125        unsigned int feature_len;
 126        unsigned int num_vq;
 127
 128        /* The name of this device, for --verbose. */
 129        const char *name;
 130
 131        /* Any queues attached to this device */
 132        struct virtqueue *vq;
 133
 134        /* Is it operational */
 135        bool running;
 136
 137        /* Device-specific data. */
 138        void *priv;
 139};
 140
 141/* The virtqueue structure describes a queue attached to a device. */
 142struct virtqueue {
 143        struct virtqueue *next;
 144
 145        /* Which device owns me. */
 146        struct device *dev;
 147
 148        /* The configuration for this queue. */
 149        struct lguest_vqconfig config;
 150
 151        /* The actual ring of buffers. */
 152        struct vring vring;
 153
 154        /* Last available index we saw. */
 155        u16 last_avail_idx;
 156
 157        /* How many are used since we sent last irq? */
 158        unsigned int pending_used;
 159
 160        /* Eventfd where Guest notifications arrive. */
 161        int eventfd;
 162
 163        /* Function for the thread which is servicing this virtqueue. */
 164        void (*service)(struct virtqueue *vq);
 165        pid_t thread;
 166};
 167
 168/* Remember the arguments to the program so we can "reboot" */
 169static char **main_args;
 170
 171/* The original tty settings to restore on exit. */
 172static struct termios orig_term;
 173
 174/*
 175 * We have to be careful with barriers: our devices are all run in separate
 176 * threads and so we need to make sure that changes visible to the Guest happen
 177 * in precise order.
 178 */
 179#define wmb() __asm__ __volatile__("" : : : "memory")
 180#define mb() __asm__ __volatile__("" : : : "memory")
 181
 182/* Wrapper for the last available index.  Makes it easier to change. */
 183#define lg_last_avail(vq)       ((vq)->last_avail_idx)
 184
 185/*
 186 * The virtio configuration space is defined to be little-endian.  x86 is
 187 * little-endian too, but it's nice to be explicit so we have these helpers.
 188 */
 189#define cpu_to_le16(v16) (v16)
 190#define cpu_to_le32(v32) (v32)
 191#define cpu_to_le64(v64) (v64)
 192#define le16_to_cpu(v16) (v16)
 193#define le32_to_cpu(v32) (v32)
 194#define le64_to_cpu(v64) (v64)
 195
 196/* Is this iovec empty? */
 197static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
 198{
 199        unsigned int i;
 200
 201        for (i = 0; i < num_iov; i++)
 202                if (iov[i].iov_len)
 203                        return false;
 204        return true;
 205}
 206
 207/* Take len bytes from the front of this iovec. */
 208static void iov_consume(struct iovec iov[], unsigned num_iov,
 209                        void *dest, unsigned len)
 210{
 211        unsigned int i;
 212
 213        for (i = 0; i < num_iov; i++) {
 214                unsigned int used;
 215
 216                used = iov[i].iov_len < len ? iov[i].iov_len : len;
 217                if (dest) {
 218                        memcpy(dest, iov[i].iov_base, used);
 219                        dest += used;
 220                }
 221                iov[i].iov_base += used;
 222                iov[i].iov_len -= used;
 223                len -= used;
 224        }
 225        if (len != 0)
 226                errx(1, "iovec too short!");
 227}
 228
 229/* The device virtqueue descriptors are followed by feature bitmasks. */
 230static u8 *get_feature_bits(struct device *dev)
 231{
 232        return (u8 *)(dev->desc + 1)
 233                + dev->num_vq * sizeof(struct lguest_vqconfig);
 234}
 235
 236/*L:100
 237 * The Launcher code itself takes us out into userspace, that scary place where
 238 * pointers run wild and free!  Unfortunately, like most userspace programs,
 239 * it's quite boring (which is why everyone likes to hack on the kernel!).
 240 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
 241 * you through this section.  Or, maybe not.
 242 *
 243 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
 244 * memory and stores it in "guest_base".  In other words, Guest physical ==
 245 * Launcher virtual with an offset.
 246 *
 247 * This can be tough to get your head around, but usually it just means that we
 248 * use these trivial conversion functions when the Guest gives us its
 249 * "physical" addresses:
 250 */
 251static void *from_guest_phys(unsigned long addr)
 252{
 253        return guest_base + addr;
 254}
 255
 256static unsigned long to_guest_phys(const void *addr)
 257{
 258        return (addr - guest_base);
 259}
 260
 261/*L:130
 262 * Loading the Kernel.
 263 *
 264 * We start with couple of simple helper routines.  open_or_die() avoids
 265 * error-checking code cluttering the callers:
 266 */
 267static int open_or_die(const char *name, int flags)
 268{
 269        int fd = open(name, flags);
 270        if (fd < 0)
 271                err(1, "Failed to open %s", name);
 272        return fd;
 273}
 274
 275/* map_zeroed_pages() takes a number of pages. */
 276static void *map_zeroed_pages(unsigned int num)
 277{
 278        int fd = open_or_die("/dev/zero", O_RDONLY);
 279        void *addr;
 280
 281        /*
 282         * We use a private mapping (ie. if we write to the page, it will be
 283         * copied). We allocate an extra two pages PROT_NONE to act as guard
 284         * pages against read/write attempts that exceed allocated space.
 285         */
 286        addr = mmap(NULL, getpagesize() * (num+2),
 287                    PROT_NONE, MAP_PRIVATE, fd, 0);
 288
 289        if (addr == MAP_FAILED)
 290                err(1, "Mmapping %u pages of /dev/zero", num);
 291
 292        if (mprotect(addr + getpagesize(), getpagesize() * num,
 293                     PROT_READ|PROT_WRITE) == -1)
 294                err(1, "mprotect rw %u pages failed", num);
 295
 296        /*
 297         * One neat mmap feature is that you can close the fd, and it
 298         * stays mapped.
 299         */
 300        close(fd);
 301
 302        /* Return address after PROT_NONE page */
 303        return addr + getpagesize();
 304}
 305
 306/* Get some more pages for a device. */
 307static void *get_pages(unsigned int num)
 308{
 309        void *addr = from_guest_phys(guest_limit);
 310
 311        guest_limit += num * getpagesize();
 312        if (guest_limit > guest_max)
 313                errx(1, "Not enough memory for devices");
 314        return addr;
 315}
 316
 317/*
 318 * This routine is used to load the kernel or initrd.  It tries mmap, but if
 319 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
 320 * it falls back to reading the memory in.
 321 */
 322static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
 323{
 324        ssize_t r;
 325
 326        /*
 327         * We map writable even though for some segments are marked read-only.
 328         * The kernel really wants to be writable: it patches its own
 329         * instructions.
 330         *
 331         * MAP_PRIVATE means that the page won't be copied until a write is
 332         * done to it.  This allows us to share untouched memory between
 333         * Guests.
 334         */
 335        if (mmap(addr, len, PROT_READ|PROT_WRITE,
 336                 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
 337                return;
 338
 339        /* pread does a seek and a read in one shot: saves a few lines. */
 340        r = pread(fd, addr, len, offset);
 341        if (r != len)
 342                err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
 343}
 344
 345/*
 346 * This routine takes an open vmlinux image, which is in ELF, and maps it into
 347 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
 348 * by all modern binaries on Linux including the kernel.
 349 *
 350 * The ELF headers give *two* addresses: a physical address, and a virtual
 351 * address.  We use the physical address; the Guest will map itself to the
 352 * virtual address.
 353 *
 354 * We return the starting address.
 355 */
 356static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
 357{
 358        Elf32_Phdr phdr[ehdr->e_phnum];
 359        unsigned int i;
 360
 361        /*
 362         * Sanity checks on the main ELF header: an x86 executable with a
 363         * reasonable number of correctly-sized program headers.
 364         */
 365        if (ehdr->e_type != ET_EXEC
 366            || ehdr->e_machine != EM_386
 367            || ehdr->e_phentsize != sizeof(Elf32_Phdr)
 368            || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
 369                errx(1, "Malformed elf header");
 370
 371        /*
 372         * An ELF executable contains an ELF header and a number of "program"
 373         * headers which indicate which parts ("segments") of the program to
 374         * load where.
 375         */
 376
 377        /* We read in all the program headers at once: */
 378        if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
 379                err(1, "Seeking to program headers");
 380        if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
 381                err(1, "Reading program headers");
 382
 383        /*
 384         * Try all the headers: there are usually only three.  A read-only one,
 385         * a read-write one, and a "note" section which we don't load.
 386         */
 387        for (i = 0; i < ehdr->e_phnum; i++) {
 388                /* If this isn't a loadable segment, we ignore it */
 389                if (phdr[i].p_type != PT_LOAD)
 390                        continue;
 391
 392                verbose("Section %i: size %i addr %p\n",
 393                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 394
 395                /* We map this section of the file at its physical address. */
 396                map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
 397                       phdr[i].p_offset, phdr[i].p_filesz);
 398        }
 399
 400        /* The entry point is given in the ELF header. */
 401        return ehdr->e_entry;
 402}
 403
 404/*L:150
 405 * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
 406 * to jump into it and it will unpack itself.  We used to have to perform some
 407 * hairy magic because the unpacking code scared me.
 408 *
 409 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
 410 * a small patch to jump over the tricky bits in the Guest, so now we just read
 411 * the funky header so we know where in the file to load, and away we go!
 412 */
 413static unsigned long load_bzimage(int fd)
 414{
 415        struct boot_params boot;
 416        int r;
 417        /* Modern bzImages get loaded at 1M. */
 418        void *p = from_guest_phys(0x100000);
 419
 420        /*
 421         * Go back to the start of the file and read the header.  It should be
 422         * a Linux boot header (see Documentation/x86/boot.txt)
 423         */
 424        lseek(fd, 0, SEEK_SET);
 425        read(fd, &boot, sizeof(boot));
 426
 427        /* Inside the setup_hdr, we expect the magic "HdrS" */
 428        if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
 429                errx(1, "This doesn't look like a bzImage to me");
 430
 431        /* Skip over the extra sectors of the header. */
 432        lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
 433
 434        /* Now read everything into memory. in nice big chunks. */
 435        while ((r = read(fd, p, 65536)) > 0)
 436                p += r;
 437
 438        /* Finally, code32_start tells us where to enter the kernel. */
 439        return boot.hdr.code32_start;
 440}
 441
 442/*L:140
 443 * Loading the kernel is easy when it's a "vmlinux", but most kernels
 444 * come wrapped up in the self-decompressing "bzImage" format.  With a little
 445 * work, we can load those, too.
 446 */
 447static unsigned long load_kernel(int fd)
 448{
 449        Elf32_Ehdr hdr;
 450
 451        /* Read in the first few bytes. */
 452        if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
 453                err(1, "Reading kernel");
 454
 455        /* If it's an ELF file, it starts with "\177ELF" */
 456        if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
 457                return map_elf(fd, &hdr);
 458
 459        /* Otherwise we assume it's a bzImage, and try to load it. */
 460        return load_bzimage(fd);
 461}
 462
 463/*
 464 * This is a trivial little helper to align pages.  Andi Kleen hated it because
 465 * it calls getpagesize() twice: "it's dumb code."
 466 *
 467 * Kernel guys get really het up about optimization, even when it's not
 468 * necessary.  I leave this code as a reaction against that.
 469 */
 470static inline unsigned long page_align(unsigned long addr)
 471{
 472        /* Add upwards and truncate downwards. */
 473        return ((addr + getpagesize()-1) & ~(getpagesize()-1));
 474}
 475
 476/*L:180
 477 * An "initial ram disk" is a disk image loaded into memory along with the
 478 * kernel which the kernel can use to boot from without needing any drivers.
 479 * Most distributions now use this as standard: the initrd contains the code to
 480 * load the appropriate driver modules for the current machine.
 481 *
 482 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
 483 * kernels.  He sent me this (and tells me when I break it).
 484 */
 485static unsigned long load_initrd(const char *name, unsigned long mem)
 486{
 487        int ifd;
 488        struct stat st;
 489        unsigned long len;
 490
 491        ifd = open_or_die(name, O_RDONLY);
 492        /* fstat() is needed to get the file size. */
 493        if (fstat(ifd, &st) < 0)
 494                err(1, "fstat() on initrd '%s'", name);
 495
 496        /*
 497         * We map the initrd at the top of memory, but mmap wants it to be
 498         * page-aligned, so we round the size up for that.
 499         */
 500        len = page_align(st.st_size);
 501        map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
 502        /*
 503         * Once a file is mapped, you can close the file descriptor.  It's a
 504         * little odd, but quite useful.
 505         */
 506        close(ifd);
 507        verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
 508
 509        /* We return the initrd size. */
 510        return len;
 511}
 512/*:*/
 513
 514/*
 515 * Simple routine to roll all the commandline arguments together with spaces
 516 * between them.
 517 */
 518static void concat(char *dst, char *args[])
 519{
 520        unsigned int i, len = 0;
 521
 522        for (i = 0; args[i]; i++) {
 523                if (i) {
 524                        strcat(dst+len, " ");
 525                        len++;
 526                }
 527                strcpy(dst+len, args[i]);
 528                len += strlen(args[i]);
 529        }
 530        /* In case it's empty. */
 531        dst[len] = '\0';
 532}
 533
 534/*L:185
 535 * This is where we actually tell the kernel to initialize the Guest.  We
 536 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
 537 * the base of Guest "physical" memory, the top physical page to allow and the
 538 * entry point for the Guest.
 539 */
 540static void tell_kernel(unsigned long start)
 541{
 542        unsigned long args[] = { LHREQ_INITIALIZE,
 543                                 (unsigned long)guest_base,
 544                                 guest_limit / getpagesize(), start };
 545        verbose("Guest: %p - %p (%#lx)\n",
 546                guest_base, guest_base + guest_limit, guest_limit);
 547        lguest_fd = open_or_die("/dev/lguest", O_RDWR);
 548        if (write(lguest_fd, args, sizeof(args)) < 0)
 549                err(1, "Writing to /dev/lguest");
 550}
 551/*:*/
 552
 553/*L:200
 554 * Device Handling.
 555 *
 556 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
 557 * We need to make sure it's not trying to reach into the Launcher itself, so
 558 * we have a convenient routine which checks it and exits with an error message
 559 * if something funny is going on:
 560 */
 561static void *_check_pointer(unsigned long addr, unsigned int size,
 562                            unsigned int line)
 563{
 564        /*
 565         * Check if the requested address and size exceeds the allocated memory,
 566         * or addr + size wraps around.
 567         */
 568        if ((addr + size) > guest_limit || (addr + size) < addr)
 569                errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
 570        /*
 571         * We return a pointer for the caller's convenience, now we know it's
 572         * safe to use.
 573         */
 574        return from_guest_phys(addr);
 575}
 576/* A macro which transparently hands the line number to the real function. */
 577#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 578
 579/*
 580 * Each buffer in the virtqueues is actually a chain of descriptors.  This
 581 * function returns the next descriptor in the chain, or vq->vring.num if we're
 582 * at the end.
 583 */
 584static unsigned next_desc(struct vring_desc *desc,
 585                          unsigned int i, unsigned int max)
 586{
 587        unsigned int next;
 588
 589        /* If this descriptor says it doesn't chain, we're done. */
 590        if (!(desc[i].flags & VRING_DESC_F_NEXT))
 591                return max;
 592
 593        /* Check they're not leading us off end of descriptors. */
 594        next = desc[i].next;
 595        /* Make sure compiler knows to grab that: we don't want it changing! */
 596        wmb();
 597
 598        if (next >= max)
 599                errx(1, "Desc next is %u", next);
 600
 601        return next;
 602}
 603
 604/*
 605 * This actually sends the interrupt for this virtqueue, if we've used a
 606 * buffer.
 607 */
 608static void trigger_irq(struct virtqueue *vq)
 609{
 610        unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
 611
 612        /* Don't inform them if nothing used. */
 613        if (!vq->pending_used)
 614                return;
 615        vq->pending_used = 0;
 616
 617        /* If they don't want an interrupt, don't send one... */
 618        if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
 619                return;
 620        }
 621
 622        /* Send the Guest an interrupt tell them we used something up. */
 623        if (write(lguest_fd, buf, sizeof(buf)) != 0)
 624                err(1, "Triggering irq %i", vq->config.irq);
 625}
 626
 627/*
 628 * This looks in the virtqueue for the first available buffer, and converts
 629 * it to an iovec for convenient access.  Since descriptors consist of some
 630 * number of output then some number of input descriptors, it's actually two
 631 * iovecs, but we pack them into one and note how many of each there were.
 632 *
 633 * This function waits if necessary, and returns the descriptor number found.
 634 */
 635static unsigned wait_for_vq_desc(struct virtqueue *vq,
 636                                 struct iovec iov[],
 637                                 unsigned int *out_num, unsigned int *in_num)
 638{
 639        unsigned int i, head, max;
 640        struct vring_desc *desc;
 641        u16 last_avail = lg_last_avail(vq);
 642
 643        /* There's nothing available? */
 644        while (last_avail == vq->vring.avail->idx) {
 645                u64 event;
 646
 647                /*
 648                 * Since we're about to sleep, now is a good time to tell the
 649                 * Guest about what we've used up to now.
 650                 */
 651                trigger_irq(vq);
 652
 653                /* OK, now we need to know about added descriptors. */
 654                vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
 655
 656                /*
 657                 * They could have slipped one in as we were doing that: make
 658                 * sure it's written, then check again.
 659                 */
 660                mb();
 661                if (last_avail != vq->vring.avail->idx) {
 662                        vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 663                        break;
 664                }
 665
 666                /* Nothing new?  Wait for eventfd to tell us they refilled. */
 667                if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
 668                        errx(1, "Event read failed?");
 669
 670                /* We don't need to be notified again. */
 671                vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 672        }
 673
 674        /* Check it isn't doing very strange things with descriptor numbers. */
 675        if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
 676                errx(1, "Guest moved used index from %u to %u",
 677                     last_avail, vq->vring.avail->idx);
 678
 679        /*
 680         * Grab the next descriptor number they're advertising, and increment
 681         * the index we've seen.
 682         */
 683        head = vq->vring.avail->ring[last_avail % vq->vring.num];
 684        lg_last_avail(vq)++;
 685
 686        /* If their number is silly, that's a fatal mistake. */
 687        if (head >= vq->vring.num)
 688                errx(1, "Guest says index %u is available", head);
 689
 690        /* When we start there are none of either input nor output. */
 691        *out_num = *in_num = 0;
 692
 693        max = vq->vring.num;
 694        desc = vq->vring.desc;
 695        i = head;
 696
 697        /*
 698         * If this is an indirect entry, then this buffer contains a descriptor
 699         * table which we handle as if it's any normal descriptor chain.
 700         */
 701        if (desc[i].flags & VRING_DESC_F_INDIRECT) {
 702                if (desc[i].len % sizeof(struct vring_desc))
 703                        errx(1, "Invalid size for indirect buffer table");
 704
 705                max = desc[i].len / sizeof(struct vring_desc);
 706                desc = check_pointer(desc[i].addr, desc[i].len);
 707                i = 0;
 708        }
 709
 710        do {
 711                /* Grab the first descriptor, and check it's OK. */
 712                iov[*out_num + *in_num].iov_len = desc[i].len;
 713                iov[*out_num + *in_num].iov_base
 714                        = check_pointer(desc[i].addr, desc[i].len);
 715                /* If this is an input descriptor, increment that count. */
 716                if (desc[i].flags & VRING_DESC_F_WRITE)
 717                        (*in_num)++;
 718                else {
 719                        /*
 720                         * If it's an output descriptor, they're all supposed
 721                         * to come before any input descriptors.
 722                         */
 723                        if (*in_num)
 724                                errx(1, "Descriptor has out after in");
 725                        (*out_num)++;
 726                }
 727
 728                /* If we've got too many, that implies a descriptor loop. */
 729                if (*out_num + *in_num > max)
 730                        errx(1, "Looped descriptor");
 731        } while ((i = next_desc(desc, i, max)) != max);
 732
 733        return head;
 734}
 735
 736/*
 737 * After we've used one of their buffers, we tell the Guest about it.  Sometime
 738 * later we'll want to send them an interrupt using trigger_irq(); note that
 739 * wait_for_vq_desc() does that for us if it has to wait.
 740 */
 741static void add_used(struct virtqueue *vq, unsigned int head, int len)
 742{
 743        struct vring_used_elem *used;
 744
 745        /*
 746         * The virtqueue contains a ring of used buffers.  Get a pointer to the
 747         * next entry in that used ring.
 748         */
 749        used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
 750        used->id = head;
 751        used->len = len;
 752        /* Make sure buffer is written before we update index. */
 753        wmb();
 754        vq->vring.used->idx++;
 755        vq->pending_used++;
 756}
 757
 758/* And here's the combo meal deal.  Supersize me! */
 759static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
 760{
 761        add_used(vq, head, len);
 762        trigger_irq(vq);
 763}
 764
 765/*
 766 * The Console
 767 *
 768 * We associate some data with the console for our exit hack.
 769 */
 770struct console_abort {
 771        /* How many times have they hit ^C? */
 772        int count;
 773        /* When did they start? */
 774        struct timeval start;
 775};
 776
 777/* This is the routine which handles console input (ie. stdin). */
 778static void console_input(struct virtqueue *vq)
 779{
 780        int len;
 781        unsigned int head, in_num, out_num;
 782        struct console_abort *abort = vq->dev->priv;
 783        struct iovec iov[vq->vring.num];
 784
 785        /* Make sure there's a descriptor available. */
 786        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
 787        if (out_num)
 788                errx(1, "Output buffers in console in queue?");
 789
 790        /* Read into it.  This is where we usually wait. */
 791        len = readv(STDIN_FILENO, iov, in_num);
 792        if (len <= 0) {
 793                /* Ran out of input? */
 794                warnx("Failed to get console input, ignoring console.");
 795                /*
 796                 * For simplicity, dying threads kill the whole Launcher.  So
 797                 * just nap here.
 798                 */
 799                for (;;)
 800                        pause();
 801        }
 802
 803        /* Tell the Guest we used a buffer. */
 804        add_used_and_trigger(vq, head, len);
 805
 806        /*
 807         * Three ^C within one second?  Exit.
 808         *
 809         * This is such a hack, but works surprisingly well.  Each ^C has to
 810         * be in a buffer by itself, so they can't be too fast.  But we check
 811         * that we get three within about a second, so they can't be too
 812         * slow.
 813         */
 814        if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
 815                abort->count = 0;
 816                return;
 817        }
 818
 819        abort->count++;
 820        if (abort->count == 1)
 821                gettimeofday(&abort->start, NULL);
 822        else if (abort->count == 3) {
 823                struct timeval now;
 824                gettimeofday(&now, NULL);
 825                /* Kill all Launcher processes with SIGINT, like normal ^C */
 826                if (now.tv_sec <= abort->start.tv_sec+1)
 827                        kill(0, SIGINT);
 828                abort->count = 0;
 829        }
 830}
 831
 832/* This is the routine which handles console output (ie. stdout). */
 833static void console_output(struct virtqueue *vq)
 834{
 835        unsigned int head, out, in;
 836        struct iovec iov[vq->vring.num];
 837
 838        /* We usually wait in here, for the Guest to give us something. */
 839        head = wait_for_vq_desc(vq, iov, &out, &in);
 840        if (in)
 841                errx(1, "Input buffers in console output queue?");
 842
 843        /* writev can return a partial write, so we loop here. */
 844        while (!iov_empty(iov, out)) {
 845                int len = writev(STDOUT_FILENO, iov, out);
 846                if (len <= 0) {
 847                        warn("Write to stdout gave %i (%d)", len, errno);
 848                        break;
 849                }
 850                iov_consume(iov, out, NULL, len);
 851        }
 852
 853        /*
 854         * We're finished with that buffer: if we're going to sleep,
 855         * wait_for_vq_desc() will prod the Guest with an interrupt.
 856         */
 857        add_used(vq, head, 0);
 858}
 859
 860/*
 861 * The Network
 862 *
 863 * Handling output for network is also simple: we get all the output buffers
 864 * and write them to /dev/net/tun.
 865 */
 866struct net_info {
 867        int tunfd;
 868};
 869
 870static void net_output(struct virtqueue *vq)
 871{
 872        struct net_info *net_info = vq->dev->priv;
 873        unsigned int head, out, in;
 874        struct iovec iov[vq->vring.num];
 875
 876        /* We usually wait in here for the Guest to give us a packet. */
 877        head = wait_for_vq_desc(vq, iov, &out, &in);
 878        if (in)
 879                errx(1, "Input buffers in net output queue?");
 880        /*
 881         * Send the whole thing through to /dev/net/tun.  It expects the exact
 882         * same format: what a coincidence!
 883         */
 884        if (writev(net_info->tunfd, iov, out) < 0)
 885                warnx("Write to tun failed (%d)?", errno);
 886
 887        /*
 888         * Done with that one; wait_for_vq_desc() will send the interrupt if
 889         * all packets are processed.
 890         */
 891        add_used(vq, head, 0);
 892}
 893
 894/*
 895 * Handling network input is a bit trickier, because I've tried to optimize it.
 896 *
 897 * First we have a helper routine which tells is if from this file descriptor
 898 * (ie. the /dev/net/tun device) will block:
 899 */
 900static bool will_block(int fd)
 901{
 902        fd_set fdset;
 903        struct timeval zero = { 0, 0 };
 904        FD_ZERO(&fdset);
 905        FD_SET(fd, &fdset);
 906        return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
 907}
 908
 909/*
 910 * This handles packets coming in from the tun device to our Guest.  Like all
 911 * service routines, it gets called again as soon as it returns, so you don't
 912 * see a while(1) loop here.
 913 */
 914static void net_input(struct virtqueue *vq)
 915{
 916        int len;
 917        unsigned int head, out, in;
 918        struct iovec iov[vq->vring.num];
 919        struct net_info *net_info = vq->dev->priv;
 920
 921        /*
 922         * Get a descriptor to write an incoming packet into.  This will also
 923         * send an interrupt if they're out of descriptors.
 924         */
 925        head = wait_for_vq_desc(vq, iov, &out, &in);
 926        if (out)
 927                errx(1, "Output buffers in net input queue?");
 928
 929        /*
 930         * If it looks like we'll block reading from the tun device, send them
 931         * an interrupt.
 932         */
 933        if (vq->pending_used && will_block(net_info->tunfd))
 934                trigger_irq(vq);
 935
 936        /*
 937         * Read in the packet.  This is where we normally wait (when there's no
 938         * incoming network traffic).
 939         */
 940        len = readv(net_info->tunfd, iov, in);
 941        if (len <= 0)
 942                warn("Failed to read from tun (%d).", errno);
 943
 944        /*
 945         * Mark that packet buffer as used, but don't interrupt here.  We want
 946         * to wait until we've done as much work as we can.
 947         */
 948        add_used(vq, head, len);
 949}
 950/*:*/
 951
 952/* This is the helper to create threads: run the service routine in a loop. */
 953static int do_thread(void *_vq)
 954{
 955        struct virtqueue *vq = _vq;
 956
 957        for (;;)
 958                vq->service(vq);
 959        return 0;
 960}
 961
 962/*
 963 * When a child dies, we kill our entire process group with SIGTERM.  This
 964 * also has the side effect that the shell restores the console for us!
 965 */
 966static void kill_launcher(int signal)
 967{
 968        kill(0, SIGTERM);
 969}
 970
 971static void reset_device(struct device *dev)
 972{
 973        struct virtqueue *vq;
 974
 975        verbose("Resetting device %s\n", dev->name);
 976
 977        /* Clear any features they've acked. */
 978        memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
 979
 980        /* We're going to be explicitly killing threads, so ignore them. */
 981        signal(SIGCHLD, SIG_IGN);
 982
 983        /* Zero out the virtqueues, get rid of their threads */
 984        for (vq = dev->vq; vq; vq = vq->next) {
 985                if (vq->thread != (pid_t)-1) {
 986                        kill(vq->thread, SIGTERM);
 987                        waitpid(vq->thread, NULL, 0);
 988                        vq->thread = (pid_t)-1;
 989                }
 990                memset(vq->vring.desc, 0,
 991                       vring_size(vq->config.num, LGUEST_VRING_ALIGN));
 992                lg_last_avail(vq) = 0;
 993        }
 994        dev->running = false;
 995
 996        /* Now we care if threads die. */
 997        signal(SIGCHLD, (void *)kill_launcher);
 998}
 999
1000/*L:216
1001 * This actually creates the thread which services the virtqueue for a device.
1002 */
1003static void create_thread(struct virtqueue *vq)
1004{
1005        /*
1006         * Create stack for thread.  Since the stack grows upwards, we point
1007         * the stack pointer to the end of this region.
1008         */
1009        char *stack = malloc(32768);
1010        unsigned long args[] = { LHREQ_EVENTFD,
1011                                 vq->config.pfn*getpagesize(), 0 };
1012
1013        /* Create a zero-initialized eventfd. */
1014        vq->eventfd = eventfd(0, 0);
1015        if (vq->eventfd < 0)
1016                err(1, "Creating eventfd");
1017        args[2] = vq->eventfd;
1018
1019        /*
1020         * Attach an eventfd to this virtqueue: it will go off when the Guest
1021         * does an LHCALL_NOTIFY for this vq.
1022         */
1023        if (write(lguest_fd, &args, sizeof(args)) != 0)
1024                err(1, "Attaching eventfd");
1025
1026        /*
1027         * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1028         * we get a signal if it dies.
1029         */
1030        vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1031        if (vq->thread == (pid_t)-1)
1032                err(1, "Creating clone");
1033
1034        /* We close our local copy now the child has it. */
1035        close(vq->eventfd);
1036}
1037
1038static void start_device(struct device *dev)
1039{
1040        unsigned int i;
1041        struct virtqueue *vq;
1042
1043        verbose("Device %s OK: offered", dev->name);
1044        for (i = 0; i < dev->feature_len; i++)
1045                verbose(" %02x", get_feature_bits(dev)[i]);
1046        verbose(", accepted");
1047        for (i = 0; i < dev->feature_len; i++)
1048                verbose(" %02x", get_feature_bits(dev)
1049                        [dev->feature_len+i]);
1050
1051        for (vq = dev->vq; vq; vq = vq->next) {
1052                if (vq->service)
1053                        create_thread(vq);
1054        }
1055        dev->running = true;
1056}
1057
1058static void cleanup_devices(void)
1059{
1060        struct device *dev;
1061
1062        for (dev = devices.dev; dev; dev = dev->next)
1063                reset_device(dev);
1064
1065        /* If we saved off the original terminal settings, restore them now. */
1066        if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1067                tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1068}
1069
1070/* When the Guest tells us they updated the status field, we handle it. */
1071static void update_device_status(struct device *dev)
1072{
1073        /* A zero status is a reset, otherwise it's a set of flags. */
1074        if (dev->desc->status == 0)
1075                reset_device(dev);
1076        else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1077                warnx("Device %s configuration FAILED", dev->name);
1078                if (dev->running)
1079                        reset_device(dev);
1080        } else {
1081                if (dev->running)
1082                        err(1, "Device %s features finalized twice", dev->name);
1083                start_device(dev);
1084        }
1085}
1086
1087/*L:215
1088 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY.  In
1089 * particular, it's used to notify us of device status changes during boot.
1090 */
1091static void handle_output(unsigned long addr)
1092{
1093        struct device *i;
1094
1095        /* Check each device. */
1096        for (i = devices.dev; i; i = i->next) {
1097                struct virtqueue *vq;
1098
1099                /*
1100                 * Notifications to device descriptors mean they updated the
1101                 * device status.
1102                 */
1103                if (from_guest_phys(addr) == i->desc) {
1104                        update_device_status(i);
1105                        return;
1106                }
1107
1108                /* Devices should not be used before features are finalized. */
1109                for (vq = i->vq; vq; vq = vq->next) {
1110                        if (addr != vq->config.pfn*getpagesize())
1111                                continue;
1112                        errx(1, "Notification on %s before setup!", i->name);
1113                }
1114        }
1115
1116        /*
1117         * Early console write is done using notify on a nul-terminated string
1118         * in Guest memory.  It's also great for hacking debugging messages
1119         * into a Guest.
1120         */
1121        if (addr >= guest_limit)
1122                errx(1, "Bad NOTIFY %#lx", addr);
1123
1124        write(STDOUT_FILENO, from_guest_phys(addr),
1125              strnlen(from_guest_phys(addr), guest_limit - addr));
1126}
1127
1128/*L:190
1129 * Device Setup
1130 *
1131 * All devices need a descriptor so the Guest knows it exists, and a "struct
1132 * device" so the Launcher can keep track of it.  We have common helper
1133 * routines to allocate and manage them.
1134 */
1135
1136/*
1137 * The layout of the device page is a "struct lguest_device_desc" followed by a
1138 * number of virtqueue descriptors, then two sets of feature bits, then an
1139 * array of configuration bytes.  This routine returns the configuration
1140 * pointer.
1141 */
1142static u8 *device_config(const struct device *dev)
1143{
1144        return (void *)(dev->desc + 1)
1145                + dev->num_vq * sizeof(struct lguest_vqconfig)
1146                + dev->feature_len * 2;
1147}
1148
1149/*
1150 * This routine allocates a new "struct lguest_device_desc" from descriptor
1151 * table page just above the Guest's normal memory.  It returns a pointer to
1152 * that descriptor.
1153 */
1154static struct lguest_device_desc *new_dev_desc(u16 type)
1155{
1156        struct lguest_device_desc d = { .type = type };
1157        void *p;
1158
1159        /* Figure out where the next device config is, based on the last one. */
1160        if (devices.lastdev)
1161                p = device_config(devices.lastdev)
1162                        + devices.lastdev->desc->config_len;
1163        else
1164                p = devices.descpage;
1165
1166        /* We only have one page for all the descriptors. */
1167        if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1168                errx(1, "Too many devices");
1169
1170        /* p might not be aligned, so we memcpy in. */
1171        return memcpy(p, &d, sizeof(d));
1172}
1173
1174/*
1175 * Each device descriptor is followed by the description of its virtqueues.  We
1176 * specify how many descriptors the virtqueue is to have.
1177 */
1178static void add_virtqueue(struct device *dev, unsigned int num_descs,
1179                          void (*service)(struct virtqueue *))
1180{
1181        unsigned int pages;
1182        struct virtqueue **i, *vq = malloc(sizeof(*vq));
1183        void *p;
1184
1185        /* First we need some memory for this virtqueue. */
1186        pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1187                / getpagesize();
1188        p = get_pages(pages);
1189
1190        /* Initialize the virtqueue */
1191        vq->next = NULL;
1192        vq->last_avail_idx = 0;
1193        vq->dev = dev;
1194
1195        /*
1196         * This is the routine the service thread will run, and its Process ID
1197         * once it's running.
1198         */
1199        vq->service = service;
1200        vq->thread = (pid_t)-1;
1201
1202        /* Initialize the configuration. */
1203        vq->config.num = num_descs;
1204        vq->config.irq = devices.next_irq++;
1205        vq->config.pfn = to_guest_phys(p) / getpagesize();
1206
1207        /* Initialize the vring. */
1208        vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1209
1210        /*
1211         * Append virtqueue to this device's descriptor.  We use
1212         * device_config() to get the end of the device's current virtqueues;
1213         * we check that we haven't added any config or feature information
1214         * yet, otherwise we'd be overwriting them.
1215         */
1216        assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1217        memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1218        dev->num_vq++;
1219        dev->desc->num_vq++;
1220
1221        verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1222
1223        /*
1224         * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1225         * second.
1226         */
1227        for (i = &dev->vq; *i; i = &(*i)->next);
1228        *i = vq;
1229}
1230
1231/*
1232 * The first half of the feature bitmask is for us to advertise features.  The
1233 * second half is for the Guest to accept features.
1234 */
1235static void add_feature(struct device *dev, unsigned bit)
1236{
1237        u8 *features = get_feature_bits(dev);
1238
1239        /* We can't extend the feature bits once we've added config bytes */
1240        if (dev->desc->feature_len <= bit / CHAR_BIT) {
1241                assert(dev->desc->config_len == 0);
1242                dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1243        }
1244
1245        features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1246}
1247
1248/*
1249 * This routine sets the configuration fields for an existing device's
1250 * descriptor.  It only works for the last device, but that's OK because that's
1251 * how we use it.
1252 */
1253static void set_config(struct device *dev, unsigned len, const void *conf)
1254{
1255        /* Check we haven't overflowed our single page. */
1256        if (device_config(dev) + len > devices.descpage + getpagesize())
1257                errx(1, "Too many devices");
1258
1259        /* Copy in the config information, and store the length. */
1260        memcpy(device_config(dev), conf, len);
1261        dev->desc->config_len = len;
1262
1263        /* Size must fit in config_len field (8 bits)! */
1264        assert(dev->desc->config_len == len);
1265}
1266
1267/*
1268 * This routine does all the creation and setup of a new device, including
1269 * calling new_dev_desc() to allocate the descriptor and device memory.  We
1270 * don't actually start the service threads until later.
1271 *
1272 * See what I mean about userspace being boring?
1273 */
1274static struct device *new_device(const char *name, u16 type)
1275{
1276        struct device *dev = malloc(sizeof(*dev));
1277
1278        /* Now we populate the fields one at a time. */
1279        dev->desc = new_dev_desc(type);
1280        dev->name = name;
1281        dev->vq = NULL;
1282        dev->feature_len = 0;
1283        dev->num_vq = 0;
1284        dev->running = false;
1285        dev->next = NULL;
1286
1287        /*
1288         * Append to device list.  Prepending to a single-linked list is
1289         * easier, but the user expects the devices to be arranged on the bus
1290         * in command-line order.  The first network device on the command line
1291         * is eth0, the first block device /dev/vda, etc.
1292         */
1293        if (devices.lastdev)
1294                devices.lastdev->next = dev;
1295        else
1296                devices.dev = dev;
1297        devices.lastdev = dev;
1298
1299        return dev;
1300}
1301
1302/*
1303 * Our first setup routine is the console.  It's a fairly simple device, but
1304 * UNIX tty handling makes it uglier than it could be.
1305 */
1306static void setup_console(void)
1307{
1308        struct device *dev;
1309
1310        /* If we can save the initial standard input settings... */
1311        if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1312                struct termios term = orig_term;
1313                /*
1314                 * Then we turn off echo, line buffering and ^C etc: We want a
1315                 * raw input stream to the Guest.
1316                 */
1317                term.c_lflag &= ~(ISIG|ICANON|ECHO);
1318                tcsetattr(STDIN_FILENO, TCSANOW, &term);
1319        }
1320
1321        dev = new_device("console", VIRTIO_ID_CONSOLE);
1322
1323        /* We store the console state in dev->priv, and initialize it. */
1324        dev->priv = malloc(sizeof(struct console_abort));
1325        ((struct console_abort *)dev->priv)->count = 0;
1326
1327        /*
1328         * The console needs two virtqueues: the input then the output.  When
1329         * they put something the input queue, we make sure we're listening to
1330         * stdin.  When they put something in the output queue, we write it to
1331         * stdout.
1332         */
1333        add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1334        add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1335
1336        verbose("device %u: console\n", ++devices.device_num);
1337}
1338/*:*/
1339
1340/*M:010
1341 * Inter-guest networking is an interesting area.  Simplest is to have a
1342 * --sharenet=<name> option which opens or creates a named pipe.  This can be
1343 * used to send packets to another guest in a 1:1 manner.
1344 *
1345 * More sophisticated is to use one of the tools developed for project like UML
1346 * to do networking.
1347 *
1348 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1349 * completely generic ("here's my vring, attach to your vring") and would work
1350 * for any traffic.  Of course, namespace and permissions issues need to be
1351 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1352 * multiple inter-guest channels behind one interface, although it would
1353 * require some manner of hotplugging new virtio channels.
1354 *
1355 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
1356:*/
1357
1358static u32 str2ip(const char *ipaddr)
1359{
1360        unsigned int b[4];
1361
1362        if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1363                errx(1, "Failed to parse IP address '%s'", ipaddr);
1364        return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1365}
1366
1367static void str2mac(const char *macaddr, unsigned char mac[6])
1368{
1369        unsigned int m[6];
1370        if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1371                   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1372                errx(1, "Failed to parse mac address '%s'", macaddr);
1373        mac[0] = m[0];
1374        mac[1] = m[1];
1375        mac[2] = m[2];
1376        mac[3] = m[3];
1377        mac[4] = m[4];
1378        mac[5] = m[5];
1379}
1380
1381/*
1382 * This code is "adapted" from libbridge: it attaches the Host end of the
1383 * network device to the bridge device specified by the command line.
1384 *
1385 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1386 * dislike bridging), and I just try not to break it.
1387 */
1388static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1389{
1390        int ifidx;
1391        struct ifreq ifr;
1392
1393        if (!*br_name)
1394                errx(1, "must specify bridge name");
1395
1396        ifidx = if_nametoindex(if_name);
1397        if (!ifidx)
1398                errx(1, "interface %s does not exist!", if_name);
1399
1400        strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1401        ifr.ifr_name[IFNAMSIZ-1] = '\0';
1402        ifr.ifr_ifindex = ifidx;
1403        if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1404                err(1, "can't add %s to bridge %s", if_name, br_name);
1405}
1406
1407/*
1408 * This sets up the Host end of the network device with an IP address, brings
1409 * it up so packets will flow, the copies the MAC address into the hwaddr
1410 * pointer.
1411 */
1412static void configure_device(int fd, const char *tapif, u32 ipaddr)
1413{
1414        struct ifreq ifr;
1415        struct sockaddr_in sin;
1416
1417        memset(&ifr, 0, sizeof(ifr));
1418        strcpy(ifr.ifr_name, tapif);
1419
1420        /* Don't read these incantations.  Just cut & paste them like I did! */
1421        sin.sin_family = AF_INET;
1422        sin.sin_addr.s_addr = htonl(ipaddr);
1423        memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
1424        if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1425                err(1, "Setting %s interface address", tapif);
1426        ifr.ifr_flags = IFF_UP;
1427        if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1428                err(1, "Bringing interface %s up", tapif);
1429}
1430
1431static int get_tun_device(char tapif[IFNAMSIZ])
1432{
1433        struct ifreq ifr;
1434        int netfd;
1435
1436        /* Start with this zeroed.  Messy but sure. */
1437        memset(&ifr, 0, sizeof(ifr));
1438
1439        /*
1440         * We open the /dev/net/tun device and tell it we want a tap device.  A
1441         * tap device is like a tun device, only somehow different.  To tell
1442         * the truth, I completely blundered my way through this code, but it
1443         * works now!
1444         */
1445        netfd = open_or_die("/dev/net/tun", O_RDWR);
1446        ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1447        strcpy(ifr.ifr_name, "tap%d");
1448        if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1449                err(1, "configuring /dev/net/tun");
1450
1451        if (ioctl(netfd, TUNSETOFFLOAD,
1452                  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1453                err(1, "Could not set features for tun device");
1454
1455        /*
1456         * We don't need checksums calculated for packets coming in this
1457         * device: trust us!
1458         */
1459        ioctl(netfd, TUNSETNOCSUM, 1);
1460
1461        memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1462        return netfd;
1463}
1464
1465/*L:195
1466 * Our network is a Host<->Guest network.  This can either use bridging or
1467 * routing, but the principle is the same: it uses the "tun" device to inject
1468 * packets into the Host as if they came in from a normal network card.  We
1469 * just shunt packets between the Guest and the tun device.
1470 */
1471static void setup_tun_net(char *arg)
1472{
1473        struct device *dev;
1474        struct net_info *net_info = malloc(sizeof(*net_info));
1475        int ipfd;
1476        u32 ip = INADDR_ANY;
1477        bool bridging = false;
1478        char tapif[IFNAMSIZ], *p;
1479        struct virtio_net_config conf;
1480
1481        net_info->tunfd = get_tun_device(tapif);
1482
1483        /* First we create a new network device. */
1484        dev = new_device("net", VIRTIO_ID_NET);
1485        dev->priv = net_info;
1486
1487        /* Network devices need a recv and a send queue, just like console. */
1488        add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1489        add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1490
1491        /*
1492         * We need a socket to perform the magic network ioctls to bring up the
1493         * tap interface, connect to the bridge etc.  Any socket will do!
1494         */
1495        ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1496        if (ipfd < 0)
1497                err(1, "opening IP socket");
1498
1499        /* If the command line was --tunnet=bridge:<name> do bridging. */
1500        if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1501                arg += strlen(BRIDGE_PFX);
1502                bridging = true;
1503        }
1504
1505        /* A mac address may follow the bridge name or IP address */
1506        p = strchr(arg, ':');
1507        if (p) {
1508                str2mac(p+1, conf.mac);
1509                add_feature(dev, VIRTIO_NET_F_MAC);
1510                *p = '\0';
1511        }
1512
1513        /* arg is now either an IP address or a bridge name */
1514        if (bridging)
1515                add_to_bridge(ipfd, tapif, arg);
1516        else
1517                ip = str2ip(arg);
1518
1519        /* Set up the tun device. */
1520        configure_device(ipfd, tapif, ip);
1521
1522        /* Expect Guest to handle everything except UFO */
1523        add_feature(dev, VIRTIO_NET_F_CSUM);
1524        add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1525        add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1526        add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1527        add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1528        add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1529        add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1530        add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1531        /* We handle indirect ring entries */
1532        add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1533        set_config(dev, sizeof(conf), &conf);
1534
1535        /* We don't need the socket any more; setup is done. */
1536        close(ipfd);
1537
1538        devices.device_num++;
1539
1540        if (bridging)
1541                verbose("device %u: tun %s attached to bridge: %s\n",
1542                        devices.device_num, tapif, arg);
1543        else
1544                verbose("device %u: tun %s: %s\n",
1545                        devices.device_num, tapif, arg);
1546}
1547/*:*/
1548
1549/* This hangs off device->priv. */
1550struct vblk_info {
1551        /* The size of the file. */
1552        off64_t len;
1553
1554        /* The file descriptor for the file. */
1555        int fd;
1556
1557};
1558
1559/*L:210
1560 * The Disk
1561 *
1562 * The disk only has one virtqueue, so it only has one thread.  It is really
1563 * simple: the Guest asks for a block number and we read or write that position
1564 * in the file.
1565 *
1566 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1567 * slow: the Guest waits until the read is finished before running anything
1568 * else, even if it could have been doing useful work.
1569 *
1570 * We could have used async I/O, except it's reputed to suck so hard that
1571 * characters actually go missing from your code when you try to use it.
1572 */
1573static void blk_request(struct virtqueue *vq)
1574{
1575        struct vblk_info *vblk = vq->dev->priv;
1576        unsigned int head, out_num, in_num, wlen;
1577        int ret, i;
1578        u8 *in;
1579        struct virtio_blk_outhdr out;
1580        struct iovec iov[vq->vring.num];
1581        off64_t off;
1582
1583        /*
1584         * Get the next request, where we normally wait.  It triggers the
1585         * interrupt to acknowledge previously serviced requests (if any).
1586         */
1587        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1588
1589        /* Copy the output header from the front of the iov (adjusts iov) */
1590        iov_consume(iov, out_num, &out, sizeof(out));
1591
1592        /* Find and trim end of iov input array, for our status byte. */
1593        in = NULL;
1594        for (i = out_num + in_num - 1; i >= out_num; i--) {
1595                if (iov[i].iov_len > 0) {
1596                        in = iov[i].iov_base + iov[i].iov_len - 1;
1597                        iov[i].iov_len--;
1598                        break;
1599                }
1600        }
1601        if (!in)
1602                errx(1, "Bad virtblk cmd with no room for status");
1603
1604        /*
1605         * For historical reasons, block operations are expressed in 512 byte
1606         * "sectors".
1607         */
1608        off = out.sector * 512;
1609
1610        /*
1611         * In general the virtio block driver is allowed to try SCSI commands.
1612         * It'd be nice if we supported eject, for example, but we don't.
1613         */
1614        if (out.type & VIRTIO_BLK_T_SCSI_CMD) {
1615                fprintf(stderr, "Scsi commands unsupported\n");
1616                *in = VIRTIO_BLK_S_UNSUPP;
1617                wlen = sizeof(*in);
1618        } else if (out.type & VIRTIO_BLK_T_OUT) {
1619                /*
1620                 * Write
1621                 *
1622                 * Move to the right location in the block file.  This can fail
1623                 * if they try to write past end.
1624                 */
1625                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1626                        err(1, "Bad seek to sector %llu", out.sector);
1627
1628                ret = writev(vblk->fd, iov, out_num);
1629                verbose("WRITE to sector %llu: %i\n", out.sector, ret);
1630
1631                /*
1632                 * Grr... Now we know how long the descriptor they sent was, we
1633                 * make sure they didn't try to write over the end of the block
1634                 * file (possibly extending it).
1635                 */
1636                if (ret > 0 && off + ret > vblk->len) {
1637                        /* Trim it back to the correct length */
1638                        ftruncate64(vblk->fd, vblk->len);
1639                        /* Die, bad Guest, die. */
1640                        errx(1, "Write past end %llu+%u", off, ret);
1641                }
1642
1643                wlen = sizeof(*in);
1644                *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1645        } else if (out.type & VIRTIO_BLK_T_FLUSH) {
1646                /* Flush */
1647                ret = fdatasync(vblk->fd);
1648                verbose("FLUSH fdatasync: %i\n", ret);
1649                wlen = sizeof(*in);
1650                *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1651        } else {
1652                /*
1653                 * Read
1654                 *
1655                 * Move to the right location in the block file.  This can fail
1656                 * if they try to read past end.
1657                 */
1658                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1659                        err(1, "Bad seek to sector %llu", out.sector);
1660
1661                ret = readv(vblk->fd, iov + out_num, in_num);
1662                if (ret >= 0) {
1663                        wlen = sizeof(*in) + ret;
1664                        *in = VIRTIO_BLK_S_OK;
1665                } else {
1666                        wlen = sizeof(*in);
1667                        *in = VIRTIO_BLK_S_IOERR;
1668                }
1669        }
1670
1671        /* Finished that request. */
1672        add_used(vq, head, wlen);
1673}
1674
1675/*L:198 This actually sets up a virtual block device. */
1676static void setup_block_file(const char *filename)
1677{
1678        struct device *dev;
1679        struct vblk_info *vblk;
1680        struct virtio_blk_config conf;
1681
1682        /* Creat the device. */
1683        dev = new_device("block", VIRTIO_ID_BLOCK);
1684
1685        /* The device has one virtqueue, where the Guest places requests. */
1686        add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1687
1688        /* Allocate the room for our own bookkeeping */
1689        vblk = dev->priv = malloc(sizeof(*vblk));
1690
1691        /* First we open the file and store the length. */
1692        vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1693        vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1694
1695        /* We support FLUSH. */
1696        add_feature(dev, VIRTIO_BLK_F_FLUSH);
1697
1698        /* Tell Guest how many sectors this device has. */
1699        conf.capacity = cpu_to_le64(vblk->len / 512);
1700
1701        /*
1702         * Tell Guest not to put in too many descriptors at once: two are used
1703         * for the in and out elements.
1704         */
1705        add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1706        conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1707
1708        /* Don't try to put whole struct: we have 8 bit limit. */
1709        set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1710
1711        verbose("device %u: virtblock %llu sectors\n",
1712                ++devices.device_num, le64_to_cpu(conf.capacity));
1713}
1714
1715/*L:211
1716 * Our random number generator device reads from /dev/random into the Guest's
1717 * input buffers.  The usual case is that the Guest doesn't want random numbers
1718 * and so has no buffers although /dev/random is still readable, whereas
1719 * console is the reverse.
1720 *
1721 * The same logic applies, however.
1722 */
1723struct rng_info {
1724        int rfd;
1725};
1726
1727static void rng_input(struct virtqueue *vq)
1728{
1729        int len;
1730        unsigned int head, in_num, out_num, totlen = 0;
1731        struct rng_info *rng_info = vq->dev->priv;
1732        struct iovec iov[vq->vring.num];
1733
1734        /* First we need a buffer from the Guests's virtqueue. */
1735        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1736        if (out_num)
1737                errx(1, "Output buffers in rng?");
1738
1739        /*
1740         * Just like the console write, we loop to cover the whole iovec.
1741         * In this case, short reads actually happen quite a bit.
1742         */
1743        while (!iov_empty(iov, in_num)) {
1744                len = readv(rng_info->rfd, iov, in_num);
1745                if (len <= 0)
1746                        err(1, "Read from /dev/random gave %i", len);
1747                iov_consume(iov, in_num, NULL, len);
1748                totlen += len;
1749        }
1750
1751        /* Tell the Guest about the new input. */
1752        add_used(vq, head, totlen);
1753}
1754
1755/*L:199
1756 * This creates a "hardware" random number device for the Guest.
1757 */
1758static void setup_rng(void)
1759{
1760        struct device *dev;
1761        struct rng_info *rng_info = malloc(sizeof(*rng_info));
1762
1763        /* Our device's privat info simply contains the /dev/random fd. */
1764        rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1765
1766        /* Create the new device. */
1767        dev = new_device("rng", VIRTIO_ID_RNG);
1768        dev->priv = rng_info;
1769
1770        /* The device has one virtqueue, where the Guest places inbufs. */
1771        add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1772
1773        verbose("device %u: rng\n", devices.device_num++);
1774}
1775/* That's the end of device setup. */
1776
1777/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1778static void __attribute__((noreturn)) restart_guest(void)
1779{
1780        unsigned int i;
1781
1782        /*
1783         * Since we don't track all open fds, we simply close everything beyond
1784         * stderr.
1785         */
1786        for (i = 3; i < FD_SETSIZE; i++)
1787                close(i);
1788
1789        /* Reset all the devices (kills all threads). */
1790        cleanup_devices();
1791
1792        execv(main_args[0], main_args);
1793        err(1, "Could not exec %s", main_args[0]);
1794}
1795
1796/*L:220
1797 * Finally we reach the core of the Launcher which runs the Guest, serves
1798 * its input and output, and finally, lays it to rest.
1799 */
1800static void __attribute__((noreturn)) run_guest(void)
1801{
1802        for (;;) {
1803                unsigned long notify_addr;
1804                int readval;
1805
1806                /* We read from the /dev/lguest device to run the Guest. */
1807                readval = pread(lguest_fd, &notify_addr,
1808                                sizeof(notify_addr), cpu_id);
1809
1810                /* One unsigned long means the Guest did HCALL_NOTIFY */
1811                if (readval == sizeof(notify_addr)) {
1812                        verbose("Notify on address %#lx\n", notify_addr);
1813                        handle_output(notify_addr);
1814                /* ENOENT means the Guest died.  Reading tells us why. */
1815                } else if (errno == ENOENT) {
1816                        char reason[1024] = { 0 };
1817                        pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1818                        errx(1, "%s", reason);
1819                /* ERESTART means that we need to reboot the guest */
1820                } else if (errno == ERESTART) {
1821                        restart_guest();
1822                /* Anything else means a bug or incompatible change. */
1823                } else
1824                        err(1, "Running guest failed");
1825        }
1826}
1827/*L:240
1828 * This is the end of the Launcher.  The good news: we are over halfway
1829 * through!  The bad news: the most fiendish part of the code still lies ahead
1830 * of us.
1831 *
1832 * Are you ready?  Take a deep breath and join me in the core of the Host, in
1833 * "make Host".
1834:*/
1835
1836static struct option opts[] = {
1837        { "verbose", 0, NULL, 'v' },
1838        { "tunnet", 1, NULL, 't' },
1839        { "block", 1, NULL, 'b' },
1840        { "rng", 0, NULL, 'r' },
1841        { "initrd", 1, NULL, 'i' },
1842        { "username", 1, NULL, 'u' },
1843        { "chroot", 1, NULL, 'c' },
1844        { NULL },
1845};
1846static void usage(void)
1847{
1848        errx(1, "Usage: lguest [--verbose] "
1849             "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1850             "|--block=<filename>|--initrd=<filename>]...\n"
1851             "<mem-in-mb> vmlinux [args...]");
1852}
1853
1854/*L:105 The main routine is where the real work begins: */
1855int main(int argc, char *argv[])
1856{
1857        /* Memory, code startpoint and size of the (optional) initrd. */
1858        unsigned long mem = 0, start, initrd_size = 0;
1859        /* Two temporaries. */
1860        int i, c;
1861        /* The boot information for the Guest. */
1862        struct boot_params *boot;
1863        /* If they specify an initrd file to load. */
1864        const char *initrd_name = NULL;
1865
1866        /* Password structure for initgroups/setres[gu]id */
1867        struct passwd *user_details = NULL;
1868
1869        /* Directory to chroot to */
1870        char *chroot_path = NULL;
1871
1872        /* Save the args: we "reboot" by execing ourselves again. */
1873        main_args = argv;
1874
1875        /*
1876         * First we initialize the device list.  We keep a pointer to the last
1877         * device, and the next interrupt number to use for devices (1:
1878         * remember that 0 is used by the timer).
1879         */
1880        devices.lastdev = NULL;
1881        devices.next_irq = 1;
1882
1883        /* We're CPU 0.  In fact, that's the only CPU possible right now. */
1884        cpu_id = 0;
1885
1886        /*
1887         * We need to know how much memory so we can set up the device
1888         * descriptor and memory pages for the devices as we parse the command
1889         * line.  So we quickly look through the arguments to find the amount
1890         * of memory now.
1891         */
1892        for (i = 1; i < argc; i++) {
1893                if (argv[i][0] != '-') {
1894                        mem = atoi(argv[i]) * 1024 * 1024;
1895                        /*
1896                         * We start by mapping anonymous pages over all of
1897                         * guest-physical memory range.  This fills it with 0,
1898                         * and ensures that the Guest won't be killed when it
1899                         * tries to access it.
1900                         */
1901                        guest_base = map_zeroed_pages(mem / getpagesize()
1902                                                      + DEVICE_PAGES);
1903                        guest_limit = mem;
1904                        guest_max = mem + DEVICE_PAGES*getpagesize();
1905                        devices.descpage = get_pages(1);
1906                        break;
1907                }
1908        }
1909
1910        /* The options are fairly straight-forward */
1911        while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1912                switch (c) {
1913                case 'v':
1914                        verbose = true;
1915                        break;
1916                case 't':
1917                        setup_tun_net(optarg);
1918                        break;
1919                case 'b':
1920                        setup_block_file(optarg);
1921                        break;
1922                case 'r':
1923                        setup_rng();
1924                        break;
1925                case 'i':
1926                        initrd_name = optarg;
1927                        break;
1928                case 'u':
1929                        user_details = getpwnam(optarg);
1930                        if (!user_details)
1931                                err(1, "getpwnam failed, incorrect username?");
1932                        break;
1933                case 'c':
1934                        chroot_path = optarg;
1935                        break;
1936                default:
1937                        warnx("Unknown argument %s", argv[optind]);
1938                        usage();
1939                }
1940        }
1941        /*
1942         * After the other arguments we expect memory and kernel image name,
1943         * followed by command line arguments for the kernel.
1944         */
1945        if (optind + 2 > argc)
1946                usage();
1947
1948        verbose("Guest base is at %p\n", guest_base);
1949
1950        /* We always have a console device */
1951        setup_console();
1952
1953        /* Now we load the kernel */
1954        start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1955
1956        /* Boot information is stashed at physical address 0 */
1957        boot = from_guest_phys(0);
1958
1959        /* Map the initrd image if requested (at top of physical memory) */
1960        if (initrd_name) {
1961                initrd_size = load_initrd(initrd_name, mem);
1962                /*
1963                 * These are the location in the Linux boot header where the
1964                 * start and size of the initrd are expected to be found.
1965                 */
1966                boot->hdr.ramdisk_image = mem - initrd_size;
1967                boot->hdr.ramdisk_size = initrd_size;
1968                /* The bootloader type 0xFF means "unknown"; that's OK. */
1969                boot->hdr.type_of_loader = 0xFF;
1970        }
1971
1972        /*
1973         * The Linux boot header contains an "E820" memory map: ours is a
1974         * simple, single region.
1975         */
1976        boot->e820_entries = 1;
1977        boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1978        /*
1979         * The boot header contains a command line pointer: we put the command
1980         * line after the boot header.
1981         */
1982        boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1983        /* We use a simple helper to copy the arguments separated by spaces. */
1984        concat((char *)(boot + 1), argv+optind+2);
1985
1986        /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
1987        boot->hdr.kernel_alignment = 0x1000000;
1988
1989        /* Boot protocol version: 2.07 supports the fields for lguest. */
1990        boot->hdr.version = 0x207;
1991
1992        /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1993        boot->hdr.hardware_subarch = 1;
1994
1995        /* Tell the entry path not to try to reload segment registers. */
1996        boot->hdr.loadflags |= KEEP_SEGMENTS;
1997
1998        /* We tell the kernel to initialize the Guest. */
1999        tell_kernel(start);
2000
2001        /* Ensure that we terminate if a device-servicing child dies. */
2002        signal(SIGCHLD, kill_launcher);
2003
2004        /* If we exit via err(), this kills all the threads, restores tty. */
2005        atexit(cleanup_devices);
2006
2007        /* If requested, chroot to a directory */
2008        if (chroot_path) {
2009                if (chroot(chroot_path) != 0)
2010                        err(1, "chroot(\"%s\") failed", chroot_path);
2011
2012                if (chdir("/") != 0)
2013                        err(1, "chdir(\"/\") failed");
2014
2015                verbose("chroot done\n");
2016        }
2017
2018        /* If requested, drop privileges */
2019        if (user_details) {
2020                uid_t u;
2021                gid_t g;
2022
2023                u = user_details->pw_uid;
2024                g = user_details->pw_gid;
2025
2026                if (initgroups(user_details->pw_name, g) != 0)
2027                        err(1, "initgroups failed");
2028
2029                if (setresgid(g, g, g) != 0)
2030                        err(1, "setresgid failed");
2031
2032                if (setresuid(u, u, u) != 0)
2033                        err(1, "setresuid failed");
2034
2035                verbose("Dropping privileges completed\n");
2036        }
2037
2038        /* Finally, run the Guest.  This doesn't return. */
2039        run_guest();
2040}
2041/*:*/
2042
2043/*M:999
2044 * Mastery is done: you now know everything I do.
2045 *
2046 * But surely you have seen code, features and bugs in your wanderings which
2047 * you now yearn to attack?  That is the real game, and I look forward to you
2048 * patching and forking lguest into the Your-Name-Here-visor.
2049 *
2050 * Farewell, and good coding!
2051 * Rusty Russell.
2052 */
2053