linux/arch/mips/sni/time.c
<<
>>
Prefs
   1#include <linux/types.h>
   2#include <linux/i8253.h>
   3#include <linux/interrupt.h>
   4#include <linux/irq.h>
   5#include <linux/smp.h>
   6#include <linux/time.h>
   7#include <linux/clockchips.h>
   8
   9#include <asm/sni.h>
  10#include <asm/time.h>
  11#include <asm-generic/rtc.h>
  12
  13#define SNI_CLOCK_TICK_RATE     3686400
  14#define SNI_COUNTER2_DIV        64
  15#define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
  16
  17static void a20r_set_mode(enum clock_event_mode mode,
  18                          struct clock_event_device *evt)
  19{
  20        switch (mode) {
  21        case CLOCK_EVT_MODE_PERIODIC:
  22                *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
  23                wmb();
  24                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
  25                wmb();
  26                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
  27                wmb();
  28
  29                *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
  30                wmb();
  31                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
  32                wmb();
  33                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
  34                wmb();
  35
  36                break;
  37        case CLOCK_EVT_MODE_ONESHOT:
  38        case CLOCK_EVT_MODE_UNUSED:
  39        case CLOCK_EVT_MODE_SHUTDOWN:
  40                break;
  41        case CLOCK_EVT_MODE_RESUME:
  42                break;
  43        }
  44}
  45
  46static struct clock_event_device a20r_clockevent_device = {
  47        .name           = "a20r-timer",
  48        .features       = CLOCK_EVT_FEAT_PERIODIC,
  49
  50        /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
  51
  52        .rating         = 300,
  53        .irq            = SNI_A20R_IRQ_TIMER,
  54        .set_mode       = a20r_set_mode,
  55};
  56
  57static irqreturn_t a20r_interrupt(int irq, void *dev_id)
  58{
  59        struct clock_event_device *cd = dev_id;
  60
  61        *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
  62        wmb();
  63
  64        cd->event_handler(cd);
  65
  66        return IRQ_HANDLED;
  67}
  68
  69static struct irqaction a20r_irqaction = {
  70        .handler        = a20r_interrupt,
  71        .flags          = IRQF_PERCPU | IRQF_TIMER,
  72        .name           = "a20r-timer",
  73};
  74
  75/*
  76 * a20r platform uses 2 counters to divide the input frequency.
  77 * Counter 2 output is connected to Counter 0 & 1 input.
  78 */
  79static void __init sni_a20r_timer_setup(void)
  80{
  81        struct clock_event_device *cd = &a20r_clockevent_device;
  82        struct irqaction *action = &a20r_irqaction;
  83        unsigned int cpu = smp_processor_id();
  84
  85        cd->cpumask             = cpumask_of(cpu);
  86        clockevents_register_device(cd);
  87        action->dev_id = cd;
  88        setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
  89}
  90
  91#define SNI_8254_TICK_RATE        1193182UL
  92
  93#define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
  94
  95static __init unsigned long dosample(void)
  96{
  97        u32 ct0, ct1;
  98        volatile u8 msb;
  99
 100        /* Start the counter. */
 101        outb_p(0x34, 0x43);
 102        outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
 103        outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
 104
 105        /* Get initial counter invariant */
 106        ct0 = read_c0_count();
 107
 108        /* Latch and spin until top byte of counter0 is zero */
 109        do {
 110                outb(0x00, 0x43);
 111                (void) inb(0x40);
 112                msb = inb(0x40);
 113                ct1 = read_c0_count();
 114        } while (msb);
 115
 116        /* Stop the counter. */
 117        outb(0x38, 0x43);
 118        /*
 119         * Return the difference, this is how far the r4k counter increments
 120         * for every 1/HZ seconds. We round off the nearest 1 MHz of master
 121         * clock (= 1000000 / HZ / 2).
 122         */
 123        /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
 124        return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
 125}
 126
 127/*
 128 * Here we need to calibrate the cycle counter to at least be close.
 129 */
 130void __init plat_time_init(void)
 131{
 132        unsigned long r4k_ticks[3];
 133        unsigned long r4k_tick;
 134
 135        /*
 136         * Figure out the r4k offset, the algorithm is very simple and works in
 137         * _all_ cases as long as the 8254 counter register itself works ok (as
 138         * an interrupt driving timer it does not because of bug, this is why
 139         * we are using the onchip r4k counter/compare register to serve this
 140         * purpose, but for r4k_offset calculation it will work ok for us).
 141         * There are other very complicated ways of performing this calculation
 142         * but this one works just fine so I am not going to futz around. ;-)
 143         */
 144        printk(KERN_INFO "Calibrating system timer... ");
 145        dosample();     /* Prime cache. */
 146        dosample();     /* Prime cache. */
 147        /* Zero is NOT an option. */
 148        do {
 149                r4k_ticks[0] = dosample();
 150        } while (!r4k_ticks[0]);
 151        do {
 152                r4k_ticks[1] = dosample();
 153        } while (!r4k_ticks[1]);
 154
 155        if (r4k_ticks[0] != r4k_ticks[1]) {
 156                printk("warning: timer counts differ, retrying... ");
 157                r4k_ticks[2] = dosample();
 158                if (r4k_ticks[2] == r4k_ticks[0]
 159                    || r4k_ticks[2] == r4k_ticks[1])
 160                        r4k_tick = r4k_ticks[2];
 161                else {
 162                        printk("disagreement, using average... ");
 163                        r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
 164                                   + r4k_ticks[2]) / 3;
 165                }
 166        } else
 167                r4k_tick = r4k_ticks[0];
 168
 169        printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
 170                (int) (r4k_tick / (500000 / HZ)),
 171                (int) (r4k_tick % (500000 / HZ)));
 172
 173        mips_hpt_frequency = r4k_tick * HZ;
 174
 175        switch (sni_brd_type) {
 176        case SNI_BRD_10:
 177        case SNI_BRD_10NEW:
 178        case SNI_BRD_TOWER_OASIC:
 179        case SNI_BRD_MINITOWER:
 180                sni_a20r_timer_setup();
 181                break;
 182        }
 183        setup_pit_timer();
 184}
 185
 186void read_persistent_clock(struct timespec *ts)
 187{
 188        ts->tv_sec = -1;
 189        ts->tv_nsec = 0;
 190}
 191