linux/arch/powerpc/kernel/rtas-proc.c
<<
>>
Prefs
   1/*
   2 *   Copyright (C) 2000 Tilmann Bitterberg
   3 *   (tilmann@bitterberg.de)
   4 *
   5 *   RTAS (Runtime Abstraction Services) stuff
   6 *   Intention is to provide a clean user interface
   7 *   to use the RTAS.
   8 *
   9 *   TODO:
  10 *   Split off a header file and maybe move it to a different
  11 *   location. Write Documentation on what the /proc/rtas/ entries
  12 *   actually do.
  13 */
  14
  15#include <linux/errno.h>
  16#include <linux/sched.h>
  17#include <linux/proc_fs.h>
  18#include <linux/stat.h>
  19#include <linux/ctype.h>
  20#include <linux/time.h>
  21#include <linux/string.h>
  22#include <linux/init.h>
  23#include <linux/seq_file.h>
  24#include <linux/bitops.h>
  25#include <linux/rtc.h>
  26
  27#include <asm/uaccess.h>
  28#include <asm/processor.h>
  29#include <asm/io.h>
  30#include <asm/prom.h>
  31#include <asm/rtas.h>
  32#include <asm/machdep.h> /* for ppc_md */
  33#include <asm/time.h>
  34
  35/* Token for Sensors */
  36#define KEY_SWITCH              0x0001
  37#define ENCLOSURE_SWITCH        0x0002
  38#define THERMAL_SENSOR          0x0003
  39#define LID_STATUS              0x0004
  40#define POWER_SOURCE            0x0005
  41#define BATTERY_VOLTAGE         0x0006
  42#define BATTERY_REMAINING       0x0007
  43#define BATTERY_PERCENTAGE      0x0008
  44#define EPOW_SENSOR             0x0009
  45#define BATTERY_CYCLESTATE      0x000a
  46#define BATTERY_CHARGING        0x000b
  47
  48/* IBM specific sensors */
  49#define IBM_SURVEILLANCE        0x2328 /* 9000 */
  50#define IBM_FANRPM              0x2329 /* 9001 */
  51#define IBM_VOLTAGE             0x232a /* 9002 */
  52#define IBM_DRCONNECTOR         0x232b /* 9003 */
  53#define IBM_POWERSUPPLY         0x232c /* 9004 */
  54
  55/* Status return values */
  56#define SENSOR_CRITICAL_HIGH    13
  57#define SENSOR_WARNING_HIGH     12
  58#define SENSOR_NORMAL           11
  59#define SENSOR_WARNING_LOW      10
  60#define SENSOR_CRITICAL_LOW      9
  61#define SENSOR_SUCCESS           0
  62#define SENSOR_HW_ERROR         -1
  63#define SENSOR_BUSY             -2
  64#define SENSOR_NOT_EXIST        -3
  65#define SENSOR_DR_ENTITY        -9000
  66
  67/* Location Codes */
  68#define LOC_SCSI_DEV_ADDR       'A'
  69#define LOC_SCSI_DEV_LOC        'B'
  70#define LOC_CPU                 'C'
  71#define LOC_DISKETTE            'D'
  72#define LOC_ETHERNET            'E'
  73#define LOC_FAN                 'F'
  74#define LOC_GRAPHICS            'G'
  75/* reserved / not used          'H' */
  76#define LOC_IO_ADAPTER          'I'
  77/* reserved / not used          'J' */
  78#define LOC_KEYBOARD            'K'
  79#define LOC_LCD                 'L'
  80#define LOC_MEMORY              'M'
  81#define LOC_NV_MEMORY           'N'
  82#define LOC_MOUSE               'O'
  83#define LOC_PLANAR              'P'
  84#define LOC_OTHER_IO            'Q'
  85#define LOC_PARALLEL            'R'
  86#define LOC_SERIAL              'S'
  87#define LOC_DEAD_RING           'T'
  88#define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
  89#define LOC_VOLTAGE             'V'
  90#define LOC_SWITCH_ADAPTER      'W'
  91#define LOC_OTHER               'X'
  92#define LOC_FIRMWARE            'Y'
  93#define LOC_SCSI                'Z'
  94
  95/* Tokens for indicators */
  96#define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
  97#define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
  98#define SYSTEM_POWER_STATE      0x0003 
  99#define WARNING_LIGHT           0x0004
 100#define DISK_ACTIVITY_LIGHT     0x0005
 101#define HEX_DISPLAY_UNIT        0x0006
 102#define BATTERY_WARNING_TIME    0x0007
 103#define CONDITION_CYCLE_REQUEST 0x0008
 104#define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
 105#define DR_ACTION               0x2329 /* 9001 */
 106#define DR_INDICATOR            0x232a /* 9002 */
 107/* 9003 - 9004: Vendor specific */
 108/* 9006 - 9999: Vendor specific */
 109
 110/* other */
 111#define MAX_SENSORS              17  /* I only know of 17 sensors */    
 112#define MAX_LINELENGTH          256
 113#define SENSOR_PREFIX           "ibm,sensor-"
 114#define cel_to_fahr(x)          ((x*9/5)+32)
 115
 116
 117/* Globals */
 118static struct rtas_sensors sensors;
 119static struct device_node *rtas_node = NULL;
 120static unsigned long power_on_time = 0; /* Save the time the user set */
 121static char progress_led[MAX_LINELENGTH];
 122
 123static unsigned long rtas_tone_frequency = 1000;
 124static unsigned long rtas_tone_volume = 0;
 125
 126/* ****************STRUCTS******************************************* */
 127struct individual_sensor {
 128        unsigned int token;
 129        unsigned int quant;
 130};
 131
 132struct rtas_sensors {
 133        struct individual_sensor sensor[MAX_SENSORS];
 134        unsigned int quant;
 135};
 136
 137/* ****************************************************************** */
 138/* Declarations */
 139static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
 140static int ppc_rtas_clock_show(struct seq_file *m, void *v);
 141static ssize_t ppc_rtas_clock_write(struct file *file,
 142                const char __user *buf, size_t count, loff_t *ppos);
 143static int ppc_rtas_progress_show(struct seq_file *m, void *v);
 144static ssize_t ppc_rtas_progress_write(struct file *file,
 145                const char __user *buf, size_t count, loff_t *ppos);
 146static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
 147static ssize_t ppc_rtas_poweron_write(struct file *file,
 148                const char __user *buf, size_t count, loff_t *ppos);
 149
 150static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 151                const char __user *buf, size_t count, loff_t *ppos);
 152static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
 153static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 154                const char __user *buf, size_t count, loff_t *ppos);
 155static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
 156static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
 157
 158static int sensors_open(struct inode *inode, struct file *file)
 159{
 160        return single_open(file, ppc_rtas_sensors_show, NULL);
 161}
 162
 163static const struct file_operations ppc_rtas_sensors_operations = {
 164        .open           = sensors_open,
 165        .read           = seq_read,
 166        .llseek         = seq_lseek,
 167        .release        = single_release,
 168};
 169
 170static int poweron_open(struct inode *inode, struct file *file)
 171{
 172        return single_open(file, ppc_rtas_poweron_show, NULL);
 173}
 174
 175static const struct file_operations ppc_rtas_poweron_operations = {
 176        .open           = poweron_open,
 177        .read           = seq_read,
 178        .llseek         = seq_lseek,
 179        .write          = ppc_rtas_poweron_write,
 180        .release        = single_release,
 181};
 182
 183static int progress_open(struct inode *inode, struct file *file)
 184{
 185        return single_open(file, ppc_rtas_progress_show, NULL);
 186}
 187
 188static const struct file_operations ppc_rtas_progress_operations = {
 189        .open           = progress_open,
 190        .read           = seq_read,
 191        .llseek         = seq_lseek,
 192        .write          = ppc_rtas_progress_write,
 193        .release        = single_release,
 194};
 195
 196static int clock_open(struct inode *inode, struct file *file)
 197{
 198        return single_open(file, ppc_rtas_clock_show, NULL);
 199}
 200
 201static const struct file_operations ppc_rtas_clock_operations = {
 202        .open           = clock_open,
 203        .read           = seq_read,
 204        .llseek         = seq_lseek,
 205        .write          = ppc_rtas_clock_write,
 206        .release        = single_release,
 207};
 208
 209static int tone_freq_open(struct inode *inode, struct file *file)
 210{
 211        return single_open(file, ppc_rtas_tone_freq_show, NULL);
 212}
 213
 214static const struct file_operations ppc_rtas_tone_freq_operations = {
 215        .open           = tone_freq_open,
 216        .read           = seq_read,
 217        .llseek         = seq_lseek,
 218        .write          = ppc_rtas_tone_freq_write,
 219        .release        = single_release,
 220};
 221
 222static int tone_volume_open(struct inode *inode, struct file *file)
 223{
 224        return single_open(file, ppc_rtas_tone_volume_show, NULL);
 225}
 226
 227static const struct file_operations ppc_rtas_tone_volume_operations = {
 228        .open           = tone_volume_open,
 229        .read           = seq_read,
 230        .llseek         = seq_lseek,
 231        .write          = ppc_rtas_tone_volume_write,
 232        .release        = single_release,
 233};
 234
 235static int rmo_buf_open(struct inode *inode, struct file *file)
 236{
 237        return single_open(file, ppc_rtas_rmo_buf_show, NULL);
 238}
 239
 240static const struct file_operations ppc_rtas_rmo_buf_ops = {
 241        .open           = rmo_buf_open,
 242        .read           = seq_read,
 243        .llseek         = seq_lseek,
 244        .release        = single_release,
 245};
 246
 247static int ppc_rtas_find_all_sensors(void);
 248static void ppc_rtas_process_sensor(struct seq_file *m,
 249        struct individual_sensor *s, int state, int error, const char *loc);
 250static char *ppc_rtas_process_error(int error);
 251static void get_location_code(struct seq_file *m,
 252        struct individual_sensor *s, const char *loc);
 253static void check_location_string(struct seq_file *m, const char *c);
 254static void check_location(struct seq_file *m, const char *c);
 255
 256static int __init proc_rtas_init(void)
 257{
 258        if (!machine_is(pseries))
 259                return -ENODEV;
 260
 261        rtas_node = of_find_node_by_name(NULL, "rtas");
 262        if (rtas_node == NULL)
 263                return -ENODEV;
 264
 265        proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
 266                    &ppc_rtas_progress_operations);
 267        proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
 268                    &ppc_rtas_clock_operations);
 269        proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
 270                    &ppc_rtas_poweron_operations);
 271        proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
 272                    &ppc_rtas_sensors_operations);
 273        proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
 274                    &ppc_rtas_tone_freq_operations);
 275        proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
 276                    &ppc_rtas_tone_volume_operations);
 277        proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
 278                    &ppc_rtas_rmo_buf_ops);
 279        return 0;
 280}
 281
 282__initcall(proc_rtas_init);
 283
 284static int parse_number(const char __user *p, size_t count, unsigned long *val)
 285{
 286        char buf[40];
 287        char *end;
 288
 289        if (count > 39)
 290                return -EINVAL;
 291
 292        if (copy_from_user(buf, p, count))
 293                return -EFAULT;
 294
 295        buf[count] = 0;
 296
 297        *val = simple_strtoul(buf, &end, 10);
 298        if (*end && *end != '\n')
 299                return -EINVAL;
 300
 301        return 0;
 302}
 303
 304/* ****************************************************************** */
 305/* POWER-ON-TIME                                                      */
 306/* ****************************************************************** */
 307static ssize_t ppc_rtas_poweron_write(struct file *file,
 308                const char __user *buf, size_t count, loff_t *ppos)
 309{
 310        struct rtc_time tm;
 311        unsigned long nowtime;
 312        int error = parse_number(buf, count, &nowtime);
 313        if (error)
 314                return error;
 315
 316        power_on_time = nowtime; /* save the time */
 317
 318        to_tm(nowtime, &tm);
 319
 320        error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
 321                        tm.tm_year, tm.tm_mon, tm.tm_mday, 
 322                        tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
 323        if (error)
 324                printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
 325                                ppc_rtas_process_error(error));
 326        return count;
 327}
 328/* ****************************************************************** */
 329static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
 330{
 331        if (power_on_time == 0)
 332                seq_printf(m, "Power on time not set\n");
 333        else
 334                seq_printf(m, "%lu\n",power_on_time);
 335        return 0;
 336}
 337
 338/* ****************************************************************** */
 339/* PROGRESS                                                           */
 340/* ****************************************************************** */
 341static ssize_t ppc_rtas_progress_write(struct file *file,
 342                const char __user *buf, size_t count, loff_t *ppos)
 343{
 344        unsigned long hex;
 345
 346        if (count >= MAX_LINELENGTH)
 347                count = MAX_LINELENGTH -1;
 348        if (copy_from_user(progress_led, buf, count)) { /* save the string */
 349                return -EFAULT;
 350        }
 351        progress_led[count] = 0;
 352
 353        /* Lets see if the user passed hexdigits */
 354        hex = simple_strtoul(progress_led, NULL, 10);
 355
 356        rtas_progress ((char *)progress_led, hex);
 357        return count;
 358
 359        /* clear the line */
 360        /* rtas_progress("                   ", 0xffff);*/
 361}
 362/* ****************************************************************** */
 363static int ppc_rtas_progress_show(struct seq_file *m, void *v)
 364{
 365        if (progress_led[0])
 366                seq_printf(m, "%s\n", progress_led);
 367        return 0;
 368}
 369
 370/* ****************************************************************** */
 371/* CLOCK                                                              */
 372/* ****************************************************************** */
 373static ssize_t ppc_rtas_clock_write(struct file *file,
 374                const char __user *buf, size_t count, loff_t *ppos)
 375{
 376        struct rtc_time tm;
 377        unsigned long nowtime;
 378        int error = parse_number(buf, count, &nowtime);
 379        if (error)
 380                return error;
 381
 382        to_tm(nowtime, &tm);
 383        error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
 384                        tm.tm_year, tm.tm_mon, tm.tm_mday, 
 385                        tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
 386        if (error)
 387                printk(KERN_WARNING "error: setting the clock returned: %s\n", 
 388                                ppc_rtas_process_error(error));
 389        return count;
 390}
 391/* ****************************************************************** */
 392static int ppc_rtas_clock_show(struct seq_file *m, void *v)
 393{
 394        int ret[8];
 395        int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
 396
 397        if (error) {
 398                printk(KERN_WARNING "error: reading the clock returned: %s\n", 
 399                                ppc_rtas_process_error(error));
 400                seq_printf(m, "0");
 401        } else { 
 402                unsigned int year, mon, day, hour, min, sec;
 403                year = ret[0]; mon  = ret[1]; day  = ret[2];
 404                hour = ret[3]; min  = ret[4]; sec  = ret[5];
 405                seq_printf(m, "%lu\n",
 406                                mktime(year, mon, day, hour, min, sec));
 407        }
 408        return 0;
 409}
 410
 411/* ****************************************************************** */
 412/* SENSOR STUFF                                                       */
 413/* ****************************************************************** */
 414static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
 415{
 416        int i,j;
 417        int state, error;
 418        int get_sensor_state = rtas_token("get-sensor-state");
 419
 420        seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
 421        seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
 422        seq_printf(m, "********************************************************\n");
 423
 424        if (ppc_rtas_find_all_sensors() != 0) {
 425                seq_printf(m, "\nNo sensors are available\n");
 426                return 0;
 427        }
 428
 429        for (i=0; i<sensors.quant; i++) {
 430                struct individual_sensor *p = &sensors.sensor[i];
 431                char rstr[64];
 432                const char *loc;
 433                int llen, offs;
 434
 435                sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
 436                loc = of_get_property(rtas_node, rstr, &llen);
 437
 438                /* A sensor may have multiple instances */
 439                for (j = 0, offs = 0; j <= p->quant; j++) {
 440                        error = rtas_call(get_sensor_state, 2, 2, &state, 
 441                                          p->token, j);
 442
 443                        ppc_rtas_process_sensor(m, p, state, error, loc);
 444                        seq_putc(m, '\n');
 445                        if (loc) {
 446                                offs += strlen(loc) + 1;
 447                                loc += strlen(loc) + 1;
 448                                if (offs >= llen)
 449                                        loc = NULL;
 450                        }
 451                }
 452        }
 453        return 0;
 454}
 455
 456/* ****************************************************************** */
 457
 458static int ppc_rtas_find_all_sensors(void)
 459{
 460        const unsigned int *utmp;
 461        int len, i;
 462
 463        utmp = of_get_property(rtas_node, "rtas-sensors", &len);
 464        if (utmp == NULL) {
 465                printk (KERN_ERR "error: could not get rtas-sensors\n");
 466                return 1;
 467        }
 468
 469        sensors.quant = len / 8;      /* int + int */
 470
 471        for (i=0; i<sensors.quant; i++) {
 472                sensors.sensor[i].token = *utmp++;
 473                sensors.sensor[i].quant = *utmp++;
 474        }
 475        return 0;
 476}
 477
 478/* ****************************************************************** */
 479/*
 480 * Builds a string of what rtas returned
 481 */
 482static char *ppc_rtas_process_error(int error)
 483{
 484        switch (error) {
 485                case SENSOR_CRITICAL_HIGH:
 486                        return "(critical high)";
 487                case SENSOR_WARNING_HIGH:
 488                        return "(warning high)";
 489                case SENSOR_NORMAL:
 490                        return "(normal)";
 491                case SENSOR_WARNING_LOW:
 492                        return "(warning low)";
 493                case SENSOR_CRITICAL_LOW:
 494                        return "(critical low)";
 495                case SENSOR_SUCCESS:
 496                        return "(read ok)";
 497                case SENSOR_HW_ERROR:
 498                        return "(hardware error)";
 499                case SENSOR_BUSY:
 500                        return "(busy)";
 501                case SENSOR_NOT_EXIST:
 502                        return "(non existent)";
 503                case SENSOR_DR_ENTITY:
 504                        return "(dr entity removed)";
 505                default:
 506                        return "(UNKNOWN)";
 507        }
 508}
 509
 510/* ****************************************************************** */
 511/*
 512 * Builds a string out of what the sensor said
 513 */
 514
 515static void ppc_rtas_process_sensor(struct seq_file *m,
 516        struct individual_sensor *s, int state, int error, const char *loc)
 517{
 518        /* Defined return vales */
 519        const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
 520                                                "Maintenance" };
 521        const char * enclosure_switch[]  = { "Closed", "Open" };
 522        const char * lid_status[]        = { " ", "Open", "Closed" };
 523        const char * power_source[]      = { "AC\t", "Battery", 
 524                                                "AC & Battery" };
 525        const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
 526        const char * epow_sensor[]       = { 
 527                "EPOW Reset", "Cooling warning", "Power warning",
 528                "System shutdown", "System halt", "EPOW main enclosure",
 529                "EPOW power off" };
 530        const char * battery_cyclestate[]  = { "None", "In progress", 
 531                                                "Requested" };
 532        const char * battery_charging[]    = { "Charging", "Discharching", 
 533                                                "No current flow" };
 534        const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
 535                                                "Exchange" };
 536
 537        int have_strings = 0;
 538        int num_states = 0;
 539        int temperature = 0;
 540        int unknown = 0;
 541
 542        /* What kind of sensor do we have here? */
 543        
 544        switch (s->token) {
 545                case KEY_SWITCH:
 546                        seq_printf(m, "Key switch:\t");
 547                        num_states = sizeof(key_switch) / sizeof(char *);
 548                        if (state < num_states) {
 549                                seq_printf(m, "%s\t", key_switch[state]);
 550                                have_strings = 1;
 551                        }
 552                        break;
 553                case ENCLOSURE_SWITCH:
 554                        seq_printf(m, "Enclosure switch:\t");
 555                        num_states = sizeof(enclosure_switch) / sizeof(char *);
 556                        if (state < num_states) {
 557                                seq_printf(m, "%s\t", 
 558                                                enclosure_switch[state]);
 559                                have_strings = 1;
 560                        }
 561                        break;
 562                case THERMAL_SENSOR:
 563                        seq_printf(m, "Temp. (C/F):\t");
 564                        temperature = 1;
 565                        break;
 566                case LID_STATUS:
 567                        seq_printf(m, "Lid status:\t");
 568                        num_states = sizeof(lid_status) / sizeof(char *);
 569                        if (state < num_states) {
 570                                seq_printf(m, "%s\t", lid_status[state]);
 571                                have_strings = 1;
 572                        }
 573                        break;
 574                case POWER_SOURCE:
 575                        seq_printf(m, "Power source:\t");
 576                        num_states = sizeof(power_source) / sizeof(char *);
 577                        if (state < num_states) {
 578                                seq_printf(m, "%s\t", 
 579                                                power_source[state]);
 580                                have_strings = 1;
 581                        }
 582                        break;
 583                case BATTERY_VOLTAGE:
 584                        seq_printf(m, "Battery voltage:\t");
 585                        break;
 586                case BATTERY_REMAINING:
 587                        seq_printf(m, "Battery remaining:\t");
 588                        num_states = sizeof(battery_remaining) / sizeof(char *);
 589                        if (state < num_states)
 590                        {
 591                                seq_printf(m, "%s\t", 
 592                                                battery_remaining[state]);
 593                                have_strings = 1;
 594                        }
 595                        break;
 596                case BATTERY_PERCENTAGE:
 597                        seq_printf(m, "Battery percentage:\t");
 598                        break;
 599                case EPOW_SENSOR:
 600                        seq_printf(m, "EPOW Sensor:\t");
 601                        num_states = sizeof(epow_sensor) / sizeof(char *);
 602                        if (state < num_states) {
 603                                seq_printf(m, "%s\t", epow_sensor[state]);
 604                                have_strings = 1;
 605                        }
 606                        break;
 607                case BATTERY_CYCLESTATE:
 608                        seq_printf(m, "Battery cyclestate:\t");
 609                        num_states = sizeof(battery_cyclestate) / 
 610                                        sizeof(char *);
 611                        if (state < num_states) {
 612                                seq_printf(m, "%s\t", 
 613                                                battery_cyclestate[state]);
 614                                have_strings = 1;
 615                        }
 616                        break;
 617                case BATTERY_CHARGING:
 618                        seq_printf(m, "Battery Charging:\t");
 619                        num_states = sizeof(battery_charging) / sizeof(char *);
 620                        if (state < num_states) {
 621                                seq_printf(m, "%s\t", 
 622                                                battery_charging[state]);
 623                                have_strings = 1;
 624                        }
 625                        break;
 626                case IBM_SURVEILLANCE:
 627                        seq_printf(m, "Surveillance:\t");
 628                        break;
 629                case IBM_FANRPM:
 630                        seq_printf(m, "Fan (rpm):\t");
 631                        break;
 632                case IBM_VOLTAGE:
 633                        seq_printf(m, "Voltage (mv):\t");
 634                        break;
 635                case IBM_DRCONNECTOR:
 636                        seq_printf(m, "DR connector:\t");
 637                        num_states = sizeof(ibm_drconnector) / sizeof(char *);
 638                        if (state < num_states) {
 639                                seq_printf(m, "%s\t", 
 640                                                ibm_drconnector[state]);
 641                                have_strings = 1;
 642                        }
 643                        break;
 644                case IBM_POWERSUPPLY:
 645                        seq_printf(m, "Powersupply:\t");
 646                        break;
 647                default:
 648                        seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
 649                                        s->token);
 650                        unknown = 1;
 651                        have_strings = 1;
 652                        break;
 653        }
 654        if (have_strings == 0) {
 655                if (temperature) {
 656                        seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
 657                } else
 658                        seq_printf(m, "%10d\t", state);
 659        }
 660        if (unknown == 0) {
 661                seq_printf(m, "%s\t", ppc_rtas_process_error(error));
 662                get_location_code(m, s, loc);
 663        }
 664}
 665
 666/* ****************************************************************** */
 667
 668static void check_location(struct seq_file *m, const char *c)
 669{
 670        switch (c[0]) {
 671                case LOC_PLANAR:
 672                        seq_printf(m, "Planar #%c", c[1]);
 673                        break;
 674                case LOC_CPU:
 675                        seq_printf(m, "CPU #%c", c[1]);
 676                        break;
 677                case LOC_FAN:
 678                        seq_printf(m, "Fan #%c", c[1]);
 679                        break;
 680                case LOC_RACKMOUNTED:
 681                        seq_printf(m, "Rack #%c", c[1]);
 682                        break;
 683                case LOC_VOLTAGE:
 684                        seq_printf(m, "Voltage #%c", c[1]);
 685                        break;
 686                case LOC_LCD:
 687                        seq_printf(m, "LCD #%c", c[1]);
 688                        break;
 689                case '.':
 690                        seq_printf(m, "- %c", c[1]);
 691                        break;
 692                default:
 693                        seq_printf(m, "Unknown location");
 694                        break;
 695        }
 696}
 697
 698
 699/* ****************************************************************** */
 700/* 
 701 * Format: 
 702 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
 703 * the '.' may be an abbrevation
 704 */
 705static void check_location_string(struct seq_file *m, const char *c)
 706{
 707        while (*c) {
 708                if (isalpha(*c) || *c == '.')
 709                        check_location(m, c);
 710                else if (*c == '/' || *c == '-')
 711                        seq_printf(m, " at ");
 712                c++;
 713        }
 714}
 715
 716
 717/* ****************************************************************** */
 718
 719static void get_location_code(struct seq_file *m, struct individual_sensor *s,
 720                const char *loc)
 721{
 722        if (!loc || !*loc) {
 723                seq_printf(m, "---");/* does not have a location */
 724        } else {
 725                check_location_string(m, loc);
 726        }
 727        seq_putc(m, ' ');
 728}
 729/* ****************************************************************** */
 730/* INDICATORS - Tone Frequency                                        */
 731/* ****************************************************************** */
 732static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 733                const char __user *buf, size_t count, loff_t *ppos)
 734{
 735        unsigned long freq;
 736        int error = parse_number(buf, count, &freq);
 737        if (error)
 738                return error;
 739
 740        rtas_tone_frequency = freq; /* save it for later */
 741        error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 742                        TONE_FREQUENCY, 0, freq);
 743        if (error)
 744                printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
 745                                ppc_rtas_process_error(error));
 746        return count;
 747}
 748/* ****************************************************************** */
 749static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
 750{
 751        seq_printf(m, "%lu\n", rtas_tone_frequency);
 752        return 0;
 753}
 754/* ****************************************************************** */
 755/* INDICATORS - Tone Volume                                           */
 756/* ****************************************************************** */
 757static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 758                const char __user *buf, size_t count, loff_t *ppos)
 759{
 760        unsigned long volume;
 761        int error = parse_number(buf, count, &volume);
 762        if (error)
 763                return error;
 764
 765        if (volume > 100)
 766                volume = 100;
 767        
 768        rtas_tone_volume = volume; /* save it for later */
 769        error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 770                        TONE_VOLUME, 0, volume);
 771        if (error)
 772                printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
 773                                ppc_rtas_process_error(error));
 774        return count;
 775}
 776/* ****************************************************************** */
 777static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
 778{
 779        seq_printf(m, "%lu\n", rtas_tone_volume);
 780        return 0;
 781}
 782
 783#define RMO_READ_BUF_MAX 30
 784
 785/* RTAS Userspace access */
 786static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
 787{
 788        seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
 789        return 0;
 790}
 791