linux/arch/powerpc/oprofile/op_model_cell.c
<<
>>
Prefs
   1/*
   2 * Cell Broadband Engine OProfile Support
   3 *
   4 * (C) Copyright IBM Corporation 2006
   5 *
   6 * Author: David Erb (djerb@us.ibm.com)
   7 * Modifications:
   8 *         Carl Love <carll@us.ibm.com>
   9 *         Maynard Johnson <maynardj@us.ibm.com>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License
  13 * as published by the Free Software Foundation; either version
  14 * 2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/cpufreq.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/jiffies.h>
  21#include <linux/kthread.h>
  22#include <linux/oprofile.h>
  23#include <linux/percpu.h>
  24#include <linux/smp.h>
  25#include <linux/spinlock.h>
  26#include <linux/timer.h>
  27#include <asm/cell-pmu.h>
  28#include <asm/cputable.h>
  29#include <asm/firmware.h>
  30#include <asm/io.h>
  31#include <asm/oprofile_impl.h>
  32#include <asm/processor.h>
  33#include <asm/prom.h>
  34#include <asm/ptrace.h>
  35#include <asm/reg.h>
  36#include <asm/rtas.h>
  37#include <asm/cell-regs.h>
  38
  39#include "../platforms/cell/interrupt.h"
  40#include "cell/pr_util.h"
  41
  42#define PPU_PROFILING            0
  43#define SPU_PROFILING_CYCLES     1
  44#define SPU_PROFILING_EVENTS     2
  45
  46#define SPU_EVENT_NUM_START      4100
  47#define SPU_EVENT_NUM_STOP       4399
  48#define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
  49#define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
  50#define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
  51
  52#define NUM_SPUS_PER_NODE    8
  53#define SPU_CYCLES_EVENT_NUM 2  /*  event number for SPU_CYCLES */
  54
  55#define PPU_CYCLES_EVENT_NUM 1  /*  event number for CYCLES */
  56#define PPU_CYCLES_GRP_NUM   1  /* special group number for identifying
  57                                 * PPU_CYCLES event
  58                                 */
  59#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
  60
  61#define NUM_THREADS 2         /* number of physical threads in
  62                               * physical processor
  63                               */
  64#define NUM_DEBUG_BUS_WORDS 4
  65#define NUM_INPUT_BUS_WORDS 2
  66
  67#define MAX_SPU_COUNT 0xFFFFFF  /* maximum 24 bit LFSR value */
  68
  69/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
  70 * To configure counter to send value every N cycles set counter to
  71 * 2^32 - 1 - N.
  72 */
  73#define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
  74
  75/*
  76 * spu_cycle_reset is the number of cycles between samples.
  77 * This variable is used for SPU profiling and should ONLY be set
  78 * at the beginning of cell_reg_setup; otherwise, it's read-only.
  79 */
  80static unsigned int spu_cycle_reset;
  81static unsigned int profiling_mode;
  82static int spu_evnt_phys_spu_indx;
  83
  84struct pmc_cntrl_data {
  85        unsigned long vcntr;
  86        unsigned long evnts;
  87        unsigned long masks;
  88        unsigned long enabled;
  89};
  90
  91/*
  92 * ibm,cbe-perftools rtas parameters
  93 */
  94struct pm_signal {
  95        u16 cpu;                /* Processor to modify */
  96        u16 sub_unit;           /* hw subunit this applies to (if applicable)*/
  97        short int signal_group; /* Signal Group to Enable/Disable */
  98        u8 bus_word;            /* Enable/Disable on this Trace/Trigger/Event
  99                                 * Bus Word(s) (bitmask)
 100                                 */
 101        u8 bit;                 /* Trigger/Event bit (if applicable) */
 102};
 103
 104/*
 105 * rtas call arguments
 106 */
 107enum {
 108        SUBFUNC_RESET = 1,
 109        SUBFUNC_ACTIVATE = 2,
 110        SUBFUNC_DEACTIVATE = 3,
 111
 112        PASSTHRU_IGNORE = 0,
 113        PASSTHRU_ENABLE = 1,
 114        PASSTHRU_DISABLE = 2,
 115};
 116
 117struct pm_cntrl {
 118        u16 enable;
 119        u16 stop_at_max;
 120        u16 trace_mode;
 121        u16 freeze;
 122        u16 count_mode;
 123        u16 spu_addr_trace;
 124        u8  trace_buf_ovflw;
 125};
 126
 127static struct {
 128        u32 group_control;
 129        u32 debug_bus_control;
 130        struct pm_cntrl pm_cntrl;
 131        u32 pm07_cntrl[NR_PHYS_CTRS];
 132} pm_regs;
 133
 134#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
 135#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
 136#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
 137#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
 138#define GET_COUNT_CYCLES(x) (x & 0x00000001)
 139#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
 140
 141static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
 142static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
 143static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
 144
 145/*
 146 * The CELL profiling code makes rtas calls to setup the debug bus to
 147 * route the performance signals.  Additionally, SPU profiling requires
 148 * a second rtas call to setup the hardware to capture the SPU PCs.
 149 * The EIO error value is returned if the token lookups or the rtas
 150 * call fail.  The EIO error number is the best choice of the existing
 151 * error numbers.  The probability of rtas related error is very low.  But
 152 * by returning EIO and printing additional information to dmsg the user
 153 * will know that OProfile did not start and dmesg will tell them why.
 154 * OProfile does not support returning errors on Stop.  Not a huge issue
 155 * since failure to reset the debug bus or stop the SPU PC collection is
 156 * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
 157 * either.
 158 */
 159
 160/*
 161 * Interpetation of hdw_thread:
 162 * 0 - even virtual cpus 0, 2, 4,...
 163 * 1 - odd virtual cpus 1, 3, 5, ...
 164 *
 165 * FIXME: this is strictly wrong, we need to clean this up in a number
 166 * of places. It works for now. -arnd
 167 */
 168static u32 hdw_thread;
 169
 170static u32 virt_cntr_inter_mask;
 171static struct timer_list timer_virt_cntr;
 172static struct timer_list timer_spu_event_swap;
 173
 174/*
 175 * pm_signal needs to be global since it is initialized in
 176 * cell_reg_setup at the time when the necessary information
 177 * is available.
 178 */
 179static struct pm_signal pm_signal[NR_PHYS_CTRS];
 180static int pm_rtas_token;    /* token for debug bus setup call */
 181static int spu_rtas_token;   /* token for SPU cycle profiling */
 182
 183static u32 reset_value[NR_PHYS_CTRS];
 184static int num_counters;
 185static int oprofile_running;
 186static DEFINE_SPINLOCK(cntr_lock);
 187
 188static u32 ctr_enabled;
 189
 190static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
 191
 192/*
 193 * Firmware interface functions
 194 */
 195static int
 196rtas_ibm_cbe_perftools(int subfunc, int passthru,
 197                       void *address, unsigned long length)
 198{
 199        u64 paddr = __pa(address);
 200
 201        return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
 202                         passthru, paddr >> 32, paddr & 0xffffffff, length);
 203}
 204
 205static void pm_rtas_reset_signals(u32 node)
 206{
 207        int ret;
 208        struct pm_signal pm_signal_local;
 209
 210        /*
 211         * The debug bus is being set to the passthru disable state.
 212         * However, the FW still expects atleast one legal signal routing
 213         * entry or it will return an error on the arguments.   If we don't
 214         * supply a valid entry, we must ignore all return values.  Ignoring
 215         * all return values means we might miss an error we should be
 216         * concerned about.
 217         */
 218
 219        /*  fw expects physical cpu #. */
 220        pm_signal_local.cpu = node;
 221        pm_signal_local.signal_group = 21;
 222        pm_signal_local.bus_word = 1;
 223        pm_signal_local.sub_unit = 0;
 224        pm_signal_local.bit = 0;
 225
 226        ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
 227                                     &pm_signal_local,
 228                                     sizeof(struct pm_signal));
 229
 230        if (unlikely(ret))
 231                /*
 232                 * Not a fatal error. For Oprofile stop, the oprofile
 233                 * functions do not support returning an error for
 234                 * failure to stop OProfile.
 235                 */
 236                printk(KERN_WARNING "%s: rtas returned: %d\n",
 237                       __func__, ret);
 238}
 239
 240static int pm_rtas_activate_signals(u32 node, u32 count)
 241{
 242        int ret;
 243        int i, j;
 244        struct pm_signal pm_signal_local[NR_PHYS_CTRS];
 245
 246        /*
 247         * There is no debug setup required for the cycles event.
 248         * Note that only events in the same group can be used.
 249         * Otherwise, there will be conflicts in correctly routing
 250         * the signals on the debug bus.  It is the responsibility
 251         * of the OProfile user tool to check the events are in
 252         * the same group.
 253         */
 254        i = 0;
 255        for (j = 0; j < count; j++) {
 256                if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
 257
 258                        /* fw expects physical cpu # */
 259                        pm_signal_local[i].cpu = node;
 260                        pm_signal_local[i].signal_group
 261                                = pm_signal[j].signal_group;
 262                        pm_signal_local[i].bus_word = pm_signal[j].bus_word;
 263                        pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
 264                        pm_signal_local[i].bit = pm_signal[j].bit;
 265                        i++;
 266                }
 267        }
 268
 269        if (i != 0) {
 270                ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
 271                                             pm_signal_local,
 272                                             i * sizeof(struct pm_signal));
 273
 274                if (unlikely(ret)) {
 275                        printk(KERN_WARNING "%s: rtas returned: %d\n",
 276                               __func__, ret);
 277                        return -EIO;
 278                }
 279        }
 280
 281        return 0;
 282}
 283
 284/*
 285 * PM Signal functions
 286 */
 287static void set_pm_event(u32 ctr, int event, u32 unit_mask)
 288{
 289        struct pm_signal *p;
 290        u32 signal_bit;
 291        u32 bus_word, bus_type, count_cycles, polarity, input_control;
 292        int j, i;
 293
 294        if (event == PPU_CYCLES_EVENT_NUM) {
 295                /* Special Event: Count all cpu cycles */
 296                pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
 297                p = &(pm_signal[ctr]);
 298                p->signal_group = PPU_CYCLES_GRP_NUM;
 299                p->bus_word = 1;
 300                p->sub_unit = 0;
 301                p->bit = 0;
 302                goto out;
 303        } else {
 304                pm_regs.pm07_cntrl[ctr] = 0;
 305        }
 306
 307        bus_word = GET_BUS_WORD(unit_mask);
 308        bus_type = GET_BUS_TYPE(unit_mask);
 309        count_cycles = GET_COUNT_CYCLES(unit_mask);
 310        polarity = GET_POLARITY(unit_mask);
 311        input_control = GET_INPUT_CONTROL(unit_mask);
 312        signal_bit = (event % 100);
 313
 314        p = &(pm_signal[ctr]);
 315
 316        p->signal_group = event / 100;
 317        p->bus_word = bus_word;
 318        p->sub_unit = GET_SUB_UNIT(unit_mask);
 319
 320        pm_regs.pm07_cntrl[ctr] = 0;
 321        pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
 322        pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
 323        pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
 324
 325        /*
 326         * Some of the islands signal selection is based on 64 bit words.
 327         * The debug bus words are 32 bits, the input words to the performance
 328         * counters are defined as 32 bits.  Need to convert the 64 bit island
 329         * specification to the appropriate 32 input bit and bus word for the
 330         * performance counter event selection.  See the CELL Performance
 331         * monitoring signals manual and the Perf cntr hardware descriptions
 332         * for the details.
 333         */
 334        if (input_control == 0) {
 335                if (signal_bit > 31) {
 336                        signal_bit -= 32;
 337                        if (bus_word == 0x3)
 338                                bus_word = 0x2;
 339                        else if (bus_word == 0xc)
 340                                bus_word = 0x8;
 341                }
 342
 343                if ((bus_type == 0) && p->signal_group >= 60)
 344                        bus_type = 2;
 345                if ((bus_type == 1) && p->signal_group >= 50)
 346                        bus_type = 0;
 347
 348                pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
 349        } else {
 350                pm_regs.pm07_cntrl[ctr] = 0;
 351                p->bit = signal_bit;
 352        }
 353
 354        for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
 355                if (bus_word & (1 << i)) {
 356                        pm_regs.debug_bus_control |=
 357                                (bus_type << (30 - (2 * i)));
 358
 359                        for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
 360                                if (input_bus[j] == 0xff) {
 361                                        input_bus[j] = i;
 362                                        pm_regs.group_control |=
 363                                                (i << (30 - (2 * j)));
 364
 365                                        break;
 366                                }
 367                        }
 368                }
 369        }
 370out:
 371        ;
 372}
 373
 374static void write_pm_cntrl(int cpu)
 375{
 376        /*
 377         * Oprofile will use 32 bit counters, set bits 7:10 to 0
 378         * pmregs.pm_cntrl is a global
 379         */
 380
 381        u32 val = 0;
 382        if (pm_regs.pm_cntrl.enable == 1)
 383                val |= CBE_PM_ENABLE_PERF_MON;
 384
 385        if (pm_regs.pm_cntrl.stop_at_max == 1)
 386                val |= CBE_PM_STOP_AT_MAX;
 387
 388        if (pm_regs.pm_cntrl.trace_mode != 0)
 389                val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
 390
 391        if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
 392                val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
 393        if (pm_regs.pm_cntrl.freeze == 1)
 394                val |= CBE_PM_FREEZE_ALL_CTRS;
 395
 396        val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
 397
 398        /*
 399         * Routine set_count_mode must be called previously to set
 400         * the count mode based on the user selection of user and kernel.
 401         */
 402        val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
 403        cbe_write_pm(cpu, pm_control, val);
 404}
 405
 406static inline void
 407set_count_mode(u32 kernel, u32 user)
 408{
 409        /*
 410         * The user must specify user and kernel if they want them. If
 411         *  neither is specified, OProfile will count in hypervisor mode.
 412         *  pm_regs.pm_cntrl is a global
 413         */
 414        if (kernel) {
 415                if (user)
 416                        pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
 417                else
 418                        pm_regs.pm_cntrl.count_mode =
 419                                CBE_COUNT_SUPERVISOR_MODE;
 420        } else {
 421                if (user)
 422                        pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
 423                else
 424                        pm_regs.pm_cntrl.count_mode =
 425                                CBE_COUNT_HYPERVISOR_MODE;
 426        }
 427}
 428
 429static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
 430{
 431
 432        pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
 433        cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
 434}
 435
 436/*
 437 * Oprofile is expected to collect data on all CPUs simultaneously.
 438 * However, there is one set of performance counters per node.  There are
 439 * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
 440 * multiplex in time the performance counter collection on the two virtual
 441 * CPUs.  The multiplexing of the performance counters is done by this
 442 * virtual counter routine.
 443 *
 444 * The pmc_values used below is defined as 'per-cpu' but its use is
 445 * more akin to 'per-node'.  We need to store two sets of counter
 446 * values per node -- one for the previous run and one for the next.
 447 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
 448 * pair of per-cpu arrays is used for storing the previous and next
 449 * pmc values for a given node.
 450 * NOTE: We use the per-cpu variable to improve cache performance.
 451 *
 452 * This routine will alternate loading the virtual counters for
 453 * virtual CPUs
 454 */
 455static void cell_virtual_cntr(unsigned long data)
 456{
 457        int i, prev_hdw_thread, next_hdw_thread;
 458        u32 cpu;
 459        unsigned long flags;
 460
 461        /*
 462         * Make sure that the interrupt_hander and the virt counter are
 463         * not both playing with the counters on the same node.
 464         */
 465
 466        spin_lock_irqsave(&cntr_lock, flags);
 467
 468        prev_hdw_thread = hdw_thread;
 469
 470        /* switch the cpu handling the interrupts */
 471        hdw_thread = 1 ^ hdw_thread;
 472        next_hdw_thread = hdw_thread;
 473
 474        pm_regs.group_control = 0;
 475        pm_regs.debug_bus_control = 0;
 476
 477        for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
 478                input_bus[i] = 0xff;
 479
 480        /*
 481         * There are some per thread events.  Must do the
 482         * set event, for the thread that is being started
 483         */
 484        for (i = 0; i < num_counters; i++)
 485                set_pm_event(i,
 486                        pmc_cntrl[next_hdw_thread][i].evnts,
 487                        pmc_cntrl[next_hdw_thread][i].masks);
 488
 489        /*
 490         * The following is done only once per each node, but
 491         * we need cpu #, not node #, to pass to the cbe_xxx functions.
 492         */
 493        for_each_online_cpu(cpu) {
 494                if (cbe_get_hw_thread_id(cpu))
 495                        continue;
 496
 497                /*
 498                 * stop counters, save counter values, restore counts
 499                 * for previous thread
 500                 */
 501                cbe_disable_pm(cpu);
 502                cbe_disable_pm_interrupts(cpu);
 503                for (i = 0; i < num_counters; i++) {
 504                        per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
 505                                = cbe_read_ctr(cpu, i);
 506
 507                        if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
 508                            == 0xFFFFFFFF)
 509                                /* If the cntr value is 0xffffffff, we must
 510                                 * reset that to 0xfffffff0 when the current
 511                                 * thread is restarted.  This will generate a
 512                                 * new interrupt and make sure that we never
 513                                 * restore the counters to the max value.  If
 514                                 * the counters were restored to the max value,
 515                                 * they do not increment and no interrupts are
 516                                 * generated.  Hence no more samples will be
 517                                 * collected on that cpu.
 518                                 */
 519                                cbe_write_ctr(cpu, i, 0xFFFFFFF0);
 520                        else
 521                                cbe_write_ctr(cpu, i,
 522                                              per_cpu(pmc_values,
 523                                                      cpu +
 524                                                      next_hdw_thread)[i]);
 525                }
 526
 527                /*
 528                 * Switch to the other thread. Change the interrupt
 529                 * and control regs to be scheduled on the CPU
 530                 * corresponding to the thread to execute.
 531                 */
 532                for (i = 0; i < num_counters; i++) {
 533                        if (pmc_cntrl[next_hdw_thread][i].enabled) {
 534                                /*
 535                                 * There are some per thread events.
 536                                 * Must do the set event, enable_cntr
 537                                 * for each cpu.
 538                                 */
 539                                enable_ctr(cpu, i,
 540                                           pm_regs.pm07_cntrl);
 541                        } else {
 542                                cbe_write_pm07_control(cpu, i, 0);
 543                        }
 544                }
 545
 546                /* Enable interrupts on the CPU thread that is starting */
 547                cbe_enable_pm_interrupts(cpu, next_hdw_thread,
 548                                         virt_cntr_inter_mask);
 549                cbe_enable_pm(cpu);
 550        }
 551
 552        spin_unlock_irqrestore(&cntr_lock, flags);
 553
 554        mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
 555}
 556
 557static void start_virt_cntrs(void)
 558{
 559        init_timer(&timer_virt_cntr);
 560        timer_virt_cntr.function = cell_virtual_cntr;
 561        timer_virt_cntr.data = 0UL;
 562        timer_virt_cntr.expires = jiffies + HZ / 10;
 563        add_timer(&timer_virt_cntr);
 564}
 565
 566static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
 567                        struct op_system_config *sys, int num_ctrs)
 568{
 569        spu_cycle_reset = ctr[0].count;
 570
 571        /*
 572         * Each node will need to make the rtas call to start
 573         * and stop SPU profiling.  Get the token once and store it.
 574         */
 575        spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
 576
 577        if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 578                printk(KERN_ERR
 579                       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
 580                       __func__);
 581                return -EIO;
 582        }
 583        return 0;
 584}
 585
 586/* Unfortunately, the hardware will only support event profiling
 587 * on one SPU per node at a time.  Therefore, we must time slice
 588 * the profiling across all SPUs in the node.  Note, we do this
 589 * in parallel for each node.  The following routine is called
 590 * periodically based on kernel timer to switch which SPU is
 591 * being monitored in a round robbin fashion.
 592 */
 593static void spu_evnt_swap(unsigned long data)
 594{
 595        int node;
 596        int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
 597        unsigned long flags;
 598        int cpu;
 599        int ret;
 600        u32 interrupt_mask;
 601
 602
 603        /* enable interrupts on cntr 0 */
 604        interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
 605
 606        hdw_thread = 0;
 607
 608        /* Make sure spu event interrupt handler and spu event swap
 609         * don't access the counters simultaneously.
 610         */
 611        spin_lock_irqsave(&cntr_lock, flags);
 612
 613        cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
 614
 615        if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
 616                spu_evnt_phys_spu_indx = 0;
 617
 618        pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
 619        pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
 620        pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
 621
 622        /* switch the SPU being profiled on each node */
 623        for_each_online_cpu(cpu) {
 624                if (cbe_get_hw_thread_id(cpu))
 625                        continue;
 626
 627                node = cbe_cpu_to_node(cpu);
 628                cur_phys_spu = (node * NUM_SPUS_PER_NODE)
 629                        + cur_spu_evnt_phys_spu_indx;
 630                nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
 631                        + spu_evnt_phys_spu_indx;
 632
 633                /*
 634                 * stop counters, save counter values, restore counts
 635                 * for previous physical SPU
 636                 */
 637                cbe_disable_pm(cpu);
 638                cbe_disable_pm_interrupts(cpu);
 639
 640                spu_pm_cnt[cur_phys_spu]
 641                        = cbe_read_ctr(cpu, 0);
 642
 643                /* restore previous count for the next spu to sample */
 644                /* NOTE, hardware issue, counter will not start if the
 645                 * counter value is at max (0xFFFFFFFF).
 646                 */
 647                if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
 648                        cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
 649                 else
 650                         cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
 651
 652                pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
 653
 654                /* setup the debug bus measure the one event and
 655                 * the two events to route the next SPU's PC on
 656                 * the debug bus
 657                 */
 658                ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
 659                if (ret)
 660                        printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
 661                               "SPU event swap\n", __func__);
 662
 663                /* clear the trace buffer, don't want to take PC for
 664                 * previous SPU*/
 665                cbe_write_pm(cpu, trace_address, 0);
 666
 667                enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
 668
 669                /* Enable interrupts on the CPU thread that is starting */
 670                cbe_enable_pm_interrupts(cpu, hdw_thread,
 671                                         interrupt_mask);
 672                cbe_enable_pm(cpu);
 673        }
 674
 675        spin_unlock_irqrestore(&cntr_lock, flags);
 676
 677        /* swap approximately every 0.1 seconds */
 678        mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
 679}
 680
 681static void start_spu_event_swap(void)
 682{
 683        init_timer(&timer_spu_event_swap);
 684        timer_spu_event_swap.function = spu_evnt_swap;
 685        timer_spu_event_swap.data = 0UL;
 686        timer_spu_event_swap.expires = jiffies + HZ / 25;
 687        add_timer(&timer_spu_event_swap);
 688}
 689
 690static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
 691                        struct op_system_config *sys, int num_ctrs)
 692{
 693        int i;
 694
 695        /* routine is called once for all nodes */
 696
 697        spu_evnt_phys_spu_indx = 0;
 698        /*
 699         * For all events except PPU CYCLEs, each node will need to make
 700         * the rtas cbe-perftools call to setup and reset the debug bus.
 701         * Make the token lookup call once and store it in the global
 702         * variable pm_rtas_token.
 703         */
 704        pm_rtas_token = rtas_token("ibm,cbe-perftools");
 705
 706        if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 707                printk(KERN_ERR
 708                       "%s: rtas token ibm,cbe-perftools unknown\n",
 709                       __func__);
 710                return -EIO;
 711        }
 712
 713        /* setup the pm_control register settings,
 714         * settings will be written per node by the
 715         * cell_cpu_setup() function.
 716         */
 717        pm_regs.pm_cntrl.trace_buf_ovflw = 1;
 718
 719        /* Use the occurrence trace mode to have SPU PC saved
 720         * to the trace buffer.  Occurrence data in trace buffer
 721         * is not used.  Bit 2 must be set to store SPU addresses.
 722         */
 723        pm_regs.pm_cntrl.trace_mode = 2;
 724
 725        pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
 726                                                   event 2 & 3 */
 727
 728        /* setup the debug bus event array with the SPU PC routing events.
 729        *  Note, pm_signal[0] will be filled in by set_pm_event() call below.
 730        */
 731        pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
 732        pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
 733        pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
 734        pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
 735
 736        pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
 737        pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
 738        pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
 739        pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
 740
 741        /* Set the user selected spu event to profile on,
 742         * note, only one SPU profiling event is supported
 743         */
 744        num_counters = 1;  /* Only support one SPU event at a time */
 745        set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
 746
 747        reset_value[0] = 0xFFFFFFFF - ctr[0].count;
 748
 749        /* global, used by cell_cpu_setup */
 750        ctr_enabled |= 1;
 751
 752        /* Initialize the count for each SPU to the reset value */
 753        for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
 754                spu_pm_cnt[i] = reset_value[0];
 755
 756        return 0;
 757}
 758
 759static int cell_reg_setup_ppu(struct op_counter_config *ctr,
 760                        struct op_system_config *sys, int num_ctrs)
 761{
 762        /* routine is called once for all nodes */
 763        int i, j, cpu;
 764
 765        num_counters = num_ctrs;
 766
 767        if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
 768                printk(KERN_ERR
 769                       "%s: Oprofile, number of specified events " \
 770                       "exceeds number of physical counters\n",
 771                       __func__);
 772                return -EIO;
 773        }
 774
 775        set_count_mode(sys->enable_kernel, sys->enable_user);
 776
 777        /* Setup the thread 0 events */
 778        for (i = 0; i < num_ctrs; ++i) {
 779
 780                pmc_cntrl[0][i].evnts = ctr[i].event;
 781                pmc_cntrl[0][i].masks = ctr[i].unit_mask;
 782                pmc_cntrl[0][i].enabled = ctr[i].enabled;
 783                pmc_cntrl[0][i].vcntr = i;
 784
 785                for_each_possible_cpu(j)
 786                        per_cpu(pmc_values, j)[i] = 0;
 787        }
 788
 789        /*
 790         * Setup the thread 1 events, map the thread 0 event to the
 791         * equivalent thread 1 event.
 792         */
 793        for (i = 0; i < num_ctrs; ++i) {
 794                if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
 795                        pmc_cntrl[1][i].evnts = ctr[i].event + 19;
 796                else if (ctr[i].event == 2203)
 797                        pmc_cntrl[1][i].evnts = ctr[i].event;
 798                else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
 799                        pmc_cntrl[1][i].evnts = ctr[i].event + 16;
 800                else
 801                        pmc_cntrl[1][i].evnts = ctr[i].event;
 802
 803                pmc_cntrl[1][i].masks = ctr[i].unit_mask;
 804                pmc_cntrl[1][i].enabled = ctr[i].enabled;
 805                pmc_cntrl[1][i].vcntr = i;
 806        }
 807
 808        for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
 809                input_bus[i] = 0xff;
 810
 811        /*
 812         * Our counters count up, and "count" refers to
 813         * how much before the next interrupt, and we interrupt
 814         * on overflow.  So we calculate the starting value
 815         * which will give us "count" until overflow.
 816         * Then we set the events on the enabled counters.
 817         */
 818        for (i = 0; i < num_counters; ++i) {
 819                /* start with virtual counter set 0 */
 820                if (pmc_cntrl[0][i].enabled) {
 821                        /* Using 32bit counters, reset max - count */
 822                        reset_value[i] = 0xFFFFFFFF - ctr[i].count;
 823                        set_pm_event(i,
 824                                     pmc_cntrl[0][i].evnts,
 825                                     pmc_cntrl[0][i].masks);
 826
 827                        /* global, used by cell_cpu_setup */
 828                        ctr_enabled |= (1 << i);
 829                }
 830        }
 831
 832        /* initialize the previous counts for the virtual cntrs */
 833        for_each_online_cpu(cpu)
 834                for (i = 0; i < num_counters; ++i) {
 835                        per_cpu(pmc_values, cpu)[i] = reset_value[i];
 836                }
 837
 838        return 0;
 839}
 840
 841
 842/* This function is called once for all cpus combined */
 843static int cell_reg_setup(struct op_counter_config *ctr,
 844                        struct op_system_config *sys, int num_ctrs)
 845{
 846        int ret=0;
 847        spu_cycle_reset = 0;
 848
 849        /* initialize the spu_arr_trace value, will be reset if
 850         * doing spu event profiling.
 851         */
 852        pm_regs.group_control = 0;
 853        pm_regs.debug_bus_control = 0;
 854        pm_regs.pm_cntrl.stop_at_max = 1;
 855        pm_regs.pm_cntrl.trace_mode = 0;
 856        pm_regs.pm_cntrl.freeze = 1;
 857        pm_regs.pm_cntrl.trace_buf_ovflw = 0;
 858        pm_regs.pm_cntrl.spu_addr_trace = 0;
 859
 860        /*
 861         * For all events except PPU CYCLEs, each node will need to make
 862         * the rtas cbe-perftools call to setup and reset the debug bus.
 863         * Make the token lookup call once and store it in the global
 864         * variable pm_rtas_token.
 865         */
 866        pm_rtas_token = rtas_token("ibm,cbe-perftools");
 867
 868        if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 869                printk(KERN_ERR
 870                       "%s: rtas token ibm,cbe-perftools unknown\n",
 871                       __func__);
 872                return -EIO;
 873        }
 874
 875        if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
 876                profiling_mode = SPU_PROFILING_CYCLES;
 877                ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
 878        } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
 879                   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
 880                profiling_mode = SPU_PROFILING_EVENTS;
 881                spu_cycle_reset = ctr[0].count;
 882
 883                /* for SPU event profiling, need to setup the
 884                 * pm_signal array with the events to route the
 885                 * SPU PC before making the FW call.  Note, only
 886                 * one SPU event for profiling can be specified
 887                 * at a time.
 888                 */
 889                cell_reg_setup_spu_events(ctr, sys, num_ctrs);
 890        } else {
 891                profiling_mode = PPU_PROFILING;
 892                ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
 893        }
 894
 895        return ret;
 896}
 897
 898
 899
 900/* This function is called once for each cpu */
 901static int cell_cpu_setup(struct op_counter_config *cntr)
 902{
 903        u32 cpu = smp_processor_id();
 904        u32 num_enabled = 0;
 905        int i;
 906        int ret;
 907
 908        /* Cycle based SPU profiling does not use the performance
 909         * counters.  The trace array is configured to collect
 910         * the data.
 911         */
 912        if (profiling_mode == SPU_PROFILING_CYCLES)
 913                return 0;
 914
 915        /* There is one performance monitor per processor chip (i.e. node),
 916         * so we only need to perform this function once per node.
 917         */
 918        if (cbe_get_hw_thread_id(cpu))
 919                return 0;
 920
 921        /* Stop all counters */
 922        cbe_disable_pm(cpu);
 923        cbe_disable_pm_interrupts(cpu);
 924
 925        cbe_write_pm(cpu, pm_start_stop, 0);
 926        cbe_write_pm(cpu, group_control, pm_regs.group_control);
 927        cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
 928        write_pm_cntrl(cpu);
 929
 930        for (i = 0; i < num_counters; ++i) {
 931                if (ctr_enabled & (1 << i)) {
 932                        pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
 933                        num_enabled++;
 934                }
 935        }
 936
 937        /*
 938         * The pm_rtas_activate_signals will return -EIO if the FW
 939         * call failed.
 940         */
 941        if (profiling_mode == SPU_PROFILING_EVENTS) {
 942                /* For SPU event profiling also need to setup the
 943                 * pm interval timer
 944                 */
 945                ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
 946                                               num_enabled+2);
 947                /* store PC from debug bus to Trace buffer as often
 948                 * as possible (every 10 cycles)
 949                 */
 950                cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
 951                return ret;
 952        } else
 953                return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
 954                                                num_enabled);
 955}
 956
 957#define ENTRIES  303
 958#define MAXLFSR  0xFFFFFF
 959
 960/* precomputed table of 24 bit LFSR values */
 961static int initial_lfsr[] = {
 962 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
 963 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
 964 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
 965 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
 966 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
 967 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
 968 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
 969 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
 970 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
 971 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
 972 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
 973 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
 974 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
 975 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
 976 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
 977 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
 978 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
 979 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
 980 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
 981 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
 982 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
 983 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
 984 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
 985 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
 986 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
 987 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
 988 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
 989 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
 990 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
 991 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
 992 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
 993 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
 994 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
 995 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
 996 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
 997 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
 998 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
 999 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1000};
1001
1002/*
1003 * The hardware uses an LFSR counting sequence to determine when to capture
1004 * the SPU PCs.  An LFSR sequence is like a puesdo random number sequence
1005 * where each number occurs once in the sequence but the sequence is not in
1006 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1007 * the last value in the sequence.  Hence the user specified value N
1008 * corresponds to the LFSR number that is N from the end of the sequence.
1009 *
1010 * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1011 * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1012 * values is adjusted in each range so the error between the user specifed
1013 * number (N) of events between samples and the actual number of events based
1014 * on the precomputed value will be les then about 6.2%.  Note, if the user
1015 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1016 * This is to prevent the loss of samples because the trace buffer is full.
1017 *
1018 *         User specified N                  Step between          Index in
1019 *                                       precomputed values      precomputed
1020 *                                                                  table
1021 * 0                to  2^16-1                  ----                  0
1022 * 2^16     to  2^16+2^19-1             2^12                1 to 128
1023 * 2^16+2^19        to  2^16+2^19+2^22-1        2^15              129 to 256
1024 * 2^16+2^19+2^22  to   2^24-1                  2^18              257 to 302
1025 *
1026 *
1027 * For example, the LFSR values in the second range are computed for 2^16,
1028 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1029 * 1, 2,..., 127, 128.
1030 *
1031 * The 24 bit LFSR value for the nth number in the sequence can be
1032 * calculated using the following code:
1033 *
1034 * #define size 24
1035 * int calculate_lfsr(int n)
1036 * {
1037 *      int i;
1038 *      unsigned int newlfsr0;
1039 *      unsigned int lfsr = 0xFFFFFF;
1040 *      unsigned int howmany = n;
1041 *
1042 *      for (i = 2; i < howmany + 2; i++) {
1043 *              newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1044 *              ((lfsr >> (size - 1 - 1)) & 1) ^
1045 *              (((lfsr >> (size - 1 - 6)) & 1) ^
1046 *              ((lfsr >> (size - 1 - 23)) & 1)));
1047 *
1048 *              lfsr >>= 1;
1049 *              lfsr = lfsr | (newlfsr0 << (size - 1));
1050 *      }
1051 *      return lfsr;
1052 * }
1053 */
1054
1055#define V2_16  (0x1 << 16)
1056#define V2_19  (0x1 << 19)
1057#define V2_22  (0x1 << 22)
1058
1059static int calculate_lfsr(int n)
1060{
1061        /*
1062         * The ranges and steps are in powers of 2 so the calculations
1063         * can be done using shifts rather then divide.
1064         */
1065        int index;
1066
1067        if ((n >> 16) == 0)
1068                index = 0;
1069        else if (((n - V2_16) >> 19) == 0)
1070                index = ((n - V2_16) >> 12) + 1;
1071        else if (((n - V2_16 - V2_19) >> 22) == 0)
1072                index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1073        else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1074                index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1075        else
1076                index = ENTRIES-1;
1077
1078        /* make sure index is valid */
1079        if ((index >= ENTRIES) || (index < 0))
1080                index = ENTRIES-1;
1081
1082        return initial_lfsr[index];
1083}
1084
1085static int pm_rtas_activate_spu_profiling(u32 node)
1086{
1087        int ret, i;
1088        struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1089
1090        /*
1091         * Set up the rtas call to configure the debug bus to
1092         * route the SPU PCs.  Setup the pm_signal for each SPU
1093         */
1094        for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1095                pm_signal_local[i].cpu = node;
1096                pm_signal_local[i].signal_group = 41;
1097                /* spu i on word (i/2) */
1098                pm_signal_local[i].bus_word = 1 << i / 2;
1099                /* spu i */
1100                pm_signal_local[i].sub_unit = i;
1101                pm_signal_local[i].bit = 63;
1102        }
1103
1104        ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1105                                     PASSTHRU_ENABLE, pm_signal_local,
1106                                     (ARRAY_SIZE(pm_signal_local)
1107                                      * sizeof(struct pm_signal)));
1108
1109        if (unlikely(ret)) {
1110                printk(KERN_WARNING "%s: rtas returned: %d\n",
1111                       __func__, ret);
1112                return -EIO;
1113        }
1114
1115        return 0;
1116}
1117
1118#ifdef CONFIG_CPU_FREQ
1119static int
1120oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1121{
1122        int ret = 0;
1123        struct cpufreq_freqs *frq = data;
1124        if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1125            (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1126            (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1127                set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1128        return ret;
1129}
1130
1131static struct notifier_block cpu_freq_notifier_block = {
1132        .notifier_call  = oprof_cpufreq_notify
1133};
1134#endif
1135
1136/*
1137 * Note the generic OProfile stop calls do not support returning
1138 * an error on stop.  Hence, will not return an error if the FW
1139 * calls fail on stop.  Failure to reset the debug bus is not an issue.
1140 * Failure to disable the SPU profiling is not an issue.  The FW calls
1141 * to enable the performance counters and debug bus will work even if
1142 * the hardware was not cleanly reset.
1143 */
1144static void cell_global_stop_spu_cycles(void)
1145{
1146        int subfunc, rtn_value;
1147        unsigned int lfsr_value;
1148        int cpu;
1149
1150        oprofile_running = 0;
1151        smp_wmb();
1152
1153#ifdef CONFIG_CPU_FREQ
1154        cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1155                                    CPUFREQ_TRANSITION_NOTIFIER);
1156#endif
1157
1158        for_each_online_cpu(cpu) {
1159                if (cbe_get_hw_thread_id(cpu))
1160                        continue;
1161
1162                subfunc = 3;    /*
1163                                 * 2 - activate SPU tracing,
1164                                 * 3 - deactivate
1165                                 */
1166                lfsr_value = 0x8f100000;
1167
1168                rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1169                                      subfunc, cbe_cpu_to_node(cpu),
1170                                      lfsr_value);
1171
1172                if (unlikely(rtn_value != 0)) {
1173                        printk(KERN_ERR
1174                               "%s: rtas call ibm,cbe-spu-perftools " \
1175                               "failed, return = %d\n",
1176                               __func__, rtn_value);
1177                }
1178
1179                /* Deactivate the signals */
1180                pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1181        }
1182
1183        stop_spu_profiling_cycles();
1184}
1185
1186static void cell_global_stop_spu_events(void)
1187{
1188        int cpu;
1189        oprofile_running = 0;
1190
1191        stop_spu_profiling_events();
1192        smp_wmb();
1193
1194        for_each_online_cpu(cpu) {
1195                if (cbe_get_hw_thread_id(cpu))
1196                        continue;
1197
1198                cbe_sync_irq(cbe_cpu_to_node(cpu));
1199                /* Stop the counters */
1200                cbe_disable_pm(cpu);
1201                cbe_write_pm07_control(cpu, 0, 0);
1202
1203                /* Deactivate the signals */
1204                pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1205
1206                /* Deactivate interrupts */
1207                cbe_disable_pm_interrupts(cpu);
1208        }
1209        del_timer_sync(&timer_spu_event_swap);
1210}
1211
1212static void cell_global_stop_ppu(void)
1213{
1214        int cpu;
1215
1216        /*
1217         * This routine will be called once for the system.
1218         * There is one performance monitor per node, so we
1219         * only need to perform this function once per node.
1220         */
1221        del_timer_sync(&timer_virt_cntr);
1222        oprofile_running = 0;
1223        smp_wmb();
1224
1225        for_each_online_cpu(cpu) {
1226                if (cbe_get_hw_thread_id(cpu))
1227                        continue;
1228
1229                cbe_sync_irq(cbe_cpu_to_node(cpu));
1230                /* Stop the counters */
1231                cbe_disable_pm(cpu);
1232
1233                /* Deactivate the signals */
1234                pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1235
1236                /* Deactivate interrupts */
1237                cbe_disable_pm_interrupts(cpu);
1238        }
1239}
1240
1241static void cell_global_stop(void)
1242{
1243        if (profiling_mode == PPU_PROFILING)
1244                cell_global_stop_ppu();
1245        else if (profiling_mode == SPU_PROFILING_EVENTS)
1246                cell_global_stop_spu_events();
1247        else
1248                cell_global_stop_spu_cycles();
1249}
1250
1251static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1252{
1253        int subfunc;
1254        unsigned int lfsr_value;
1255        int cpu;
1256        int ret;
1257        int rtas_error;
1258        unsigned int cpu_khzfreq = 0;
1259
1260        /* The SPU profiling uses time-based profiling based on
1261         * cpu frequency, so if configured with the CPU_FREQ
1262         * option, we should detect frequency changes and react
1263         * accordingly.
1264         */
1265#ifdef CONFIG_CPU_FREQ
1266        ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1267                                        CPUFREQ_TRANSITION_NOTIFIER);
1268        if (ret < 0)
1269                /* this is not a fatal error */
1270                printk(KERN_ERR "CPU freq change registration failed: %d\n",
1271                       ret);
1272
1273        else
1274                cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1275#endif
1276
1277        set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1278
1279        for_each_online_cpu(cpu) {
1280                if (cbe_get_hw_thread_id(cpu))
1281                        continue;
1282
1283                /*
1284                 * Setup SPU cycle-based profiling.
1285                 * Set perf_mon_control bit 0 to a zero before
1286                 * enabling spu collection hardware.
1287                 */
1288                cbe_write_pm(cpu, pm_control, 0);
1289
1290                if (spu_cycle_reset > MAX_SPU_COUNT)
1291                        /* use largest possible value */
1292                        lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1293                else
1294                        lfsr_value = calculate_lfsr(spu_cycle_reset);
1295
1296                /* must use a non zero value. Zero disables data collection. */
1297                if (lfsr_value == 0)
1298                        lfsr_value = calculate_lfsr(1);
1299
1300                lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1301                                                * register location
1302                                                */
1303
1304                /* debug bus setup */
1305                ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1306
1307                if (unlikely(ret)) {
1308                        rtas_error = ret;
1309                        goto out;
1310                }
1311
1312
1313                subfunc = 2;    /* 2 - activate SPU tracing, 3 - deactivate */
1314
1315                /* start profiling */
1316                ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1317                                cbe_cpu_to_node(cpu), lfsr_value);
1318
1319                if (unlikely(ret != 0)) {
1320                        printk(KERN_ERR
1321                               "%s: rtas call ibm,cbe-spu-perftools failed, " \
1322                               "return = %d\n", __func__, ret);
1323                        rtas_error = -EIO;
1324                        goto out;
1325                }
1326        }
1327
1328        rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1329        if (rtas_error)
1330                goto out_stop;
1331
1332        oprofile_running = 1;
1333        return 0;
1334
1335out_stop:
1336        cell_global_stop_spu_cycles();  /* clean up the PMU/debug bus */
1337out:
1338        return rtas_error;
1339}
1340
1341static int cell_global_start_spu_events(struct op_counter_config *ctr)
1342{
1343        int cpu;
1344        u32 interrupt_mask = 0;
1345        int rtn = 0;
1346
1347        hdw_thread = 0;
1348
1349        /* spu event profiling, uses the performance counters to generate
1350         * an interrupt.  The hardware is setup to store the SPU program
1351         * counter into the trace array.  The occurrence mode is used to
1352         * enable storing data to the trace buffer.  The bits are set
1353         * to send/store the SPU address in the trace buffer.  The debug
1354         * bus must be setup to route the SPU program counter onto the
1355         * debug bus.  The occurrence data in the trace buffer is not used.
1356         */
1357
1358        /* This routine gets called once for the system.
1359         * There is one performance monitor per node, so we
1360         * only need to perform this function once per node.
1361         */
1362
1363        for_each_online_cpu(cpu) {
1364                if (cbe_get_hw_thread_id(cpu))
1365                        continue;
1366
1367                /*
1368                 * Setup SPU event-based profiling.
1369                 * Set perf_mon_control bit 0 to a zero before
1370                 * enabling spu collection hardware.
1371                 *
1372                 * Only support one SPU event on one SPU per node.
1373                 */
1374                if (ctr_enabled & 1) {
1375                        cbe_write_ctr(cpu, 0, reset_value[0]);
1376                        enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1377                        interrupt_mask |=
1378                                CBE_PM_CTR_OVERFLOW_INTR(0);
1379                } else {
1380                        /* Disable counter */
1381                        cbe_write_pm07_control(cpu, 0, 0);
1382                }
1383
1384                cbe_get_and_clear_pm_interrupts(cpu);
1385                cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1386                cbe_enable_pm(cpu);
1387
1388                /* clear the trace buffer */
1389                cbe_write_pm(cpu, trace_address, 0);
1390        }
1391
1392        /* Start the timer to time slice collecting the event profile
1393         * on each of the SPUs.  Note, can collect profile on one SPU
1394         * per node at a time.
1395         */
1396        start_spu_event_swap();
1397        start_spu_profiling_events();
1398        oprofile_running = 1;
1399        smp_wmb();
1400
1401        return rtn;
1402}
1403
1404static int cell_global_start_ppu(struct op_counter_config *ctr)
1405{
1406        u32 cpu, i;
1407        u32 interrupt_mask = 0;
1408
1409        /* This routine gets called once for the system.
1410         * There is one performance monitor per node, so we
1411         * only need to perform this function once per node.
1412         */
1413        for_each_online_cpu(cpu) {
1414                if (cbe_get_hw_thread_id(cpu))
1415                        continue;
1416
1417                interrupt_mask = 0;
1418
1419                for (i = 0; i < num_counters; ++i) {
1420                        if (ctr_enabled & (1 << i)) {
1421                                cbe_write_ctr(cpu, i, reset_value[i]);
1422                                enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1423                                interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1424                        } else {
1425                                /* Disable counter */
1426                                cbe_write_pm07_control(cpu, i, 0);
1427                        }
1428                }
1429
1430                cbe_get_and_clear_pm_interrupts(cpu);
1431                cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1432                cbe_enable_pm(cpu);
1433        }
1434
1435        virt_cntr_inter_mask = interrupt_mask;
1436        oprofile_running = 1;
1437        smp_wmb();
1438
1439        /*
1440         * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1441         * executed which manipulates the PMU.  We start the "virtual counter"
1442         * here so that we do not need to synchronize access to the PMU in
1443         * the above for-loop.
1444         */
1445        start_virt_cntrs();
1446
1447        return 0;
1448}
1449
1450static int cell_global_start(struct op_counter_config *ctr)
1451{
1452        if (profiling_mode == SPU_PROFILING_CYCLES)
1453                return cell_global_start_spu_cycles(ctr);
1454        else if (profiling_mode == SPU_PROFILING_EVENTS)
1455                return cell_global_start_spu_events(ctr);
1456        else
1457                return cell_global_start_ppu(ctr);
1458}
1459
1460
1461/* The SPU interrupt handler
1462 *
1463 * SPU event profiling works as follows:
1464 * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1465 * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1466 * pm_signal[2] contain the necessary events to route the SPU program
1467 * counter for the selected SPU onto the debug bus using words 2 and 3.
1468 * The pm_interval register is setup to write the SPU PC value into the
1469 * trace buffer at the maximum rate possible.  The trace buffer is configured
1470 * to store the PCs, wrapping when it is full.  The performance counter is
1471 * initialized to the max hardware count minus the number of events, N, between
1472 * samples.  Once the N events have occurred, a HW counter overflow occurs
1473 * causing the generation of a HW counter interrupt which also stops the
1474 * writing of the SPU PC values to the trace buffer.  Hence the last PC
1475 * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1476 * we have to read from the beginning of the trace buffer to get to the
1477 * last value written.  We just hope the PPU has nothing better to do then
1478 * service this interrupt. The PC for the specific SPU being profiled is
1479 * extracted from the trace buffer processed and stored.  The trace buffer
1480 * is cleared, interrupts are cleared, the counter is reset to max - N.
1481 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1482 * to switch to the next physical SPU in the node to profile in round robbin
1483 * order.  This way data is collected for all SPUs on the node. It does mean
1484 * that we need to use a relatively small value of N to ensure enough samples
1485 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1486 * It may also be necessary to use a longer sample collection period.
1487 */
1488static void cell_handle_interrupt_spu(struct pt_regs *regs,
1489                                      struct op_counter_config *ctr)
1490{
1491        u32 cpu, cpu_tmp;
1492        u64 trace_entry;
1493        u32 interrupt_mask;
1494        u64 trace_buffer[2];
1495        u64 last_trace_buffer;
1496        u32 sample;
1497        u32 trace_addr;
1498        unsigned long sample_array_lock_flags;
1499        int spu_num;
1500        unsigned long flags;
1501
1502        /* Make sure spu event interrupt handler and spu event swap
1503         * don't access the counters simultaneously.
1504         */
1505        cpu = smp_processor_id();
1506        spin_lock_irqsave(&cntr_lock, flags);
1507
1508        cpu_tmp = cpu;
1509        cbe_disable_pm(cpu);
1510
1511        interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1512
1513        sample = 0xABCDEF;
1514        trace_entry = 0xfedcba;
1515        last_trace_buffer = 0xdeadbeaf;
1516
1517        if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1518                /* disable writes to trace buff */
1519                cbe_write_pm(cpu, pm_interval, 0);
1520
1521                /* only have one perf cntr being used, cntr 0 */
1522                if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1523                    && ctr[0].enabled)
1524                        /* The SPU PC values will be read
1525                         * from the trace buffer, reset counter
1526                         */
1527
1528                        cbe_write_ctr(cpu, 0, reset_value[0]);
1529
1530                trace_addr = cbe_read_pm(cpu, trace_address);
1531
1532                while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1533                        /* There is data in the trace buffer to process
1534                         * Read the buffer until you get to the last
1535                         * entry.  This is the value we want.
1536                         */
1537
1538                        cbe_read_trace_buffer(cpu, trace_buffer);
1539                        trace_addr = cbe_read_pm(cpu, trace_address);
1540                }
1541
1542                /* SPU Address 16 bit count format for 128 bit
1543                 * HW trace buffer is used for the SPU PC storage
1544                 *    HDR bits          0:15
1545                 *    SPU Addr 0 bits   16:31
1546                 *    SPU Addr 1 bits   32:47
1547                 *    unused bits       48:127
1548                 *
1549                 * HDR: bit4 = 1 SPU Address 0 valid
1550                 * HDR: bit5 = 1 SPU Address 1 valid
1551                 *  - unfortunately, the valid bits don't seem to work
1552                 *
1553                 * Note trace_buffer[0] holds bits 0:63 of the HW
1554                 * trace buffer, trace_buffer[1] holds bits 64:127
1555                 */
1556
1557                trace_entry = trace_buffer[0]
1558                        & 0x00000000FFFF0000;
1559
1560                /* only top 16 of the 18 bit SPU PC address
1561                 * is stored in trace buffer, hence shift right
1562                 * by 16 -2 bits */
1563                sample = trace_entry >> 14;
1564                last_trace_buffer = trace_buffer[0];
1565
1566                spu_num = spu_evnt_phys_spu_indx
1567                        + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1568
1569                /* make sure only one process at a time is calling
1570                 * spu_sync_buffer()
1571                 */
1572                spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1573                                  sample_array_lock_flags);
1574                spu_sync_buffer(spu_num, &sample, 1);
1575                spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1576                                       sample_array_lock_flags);
1577
1578                smp_wmb();    /* insure spu event buffer updates are written
1579                               * don't want events intermingled... */
1580
1581                /* The counters were frozen by the interrupt.
1582                 * Reenable the interrupt and restart the counters.
1583                 */
1584                cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1585                cbe_enable_pm_interrupts(cpu, hdw_thread,
1586                                         virt_cntr_inter_mask);
1587
1588                /* clear the trace buffer, re-enable writes to trace buff */
1589                cbe_write_pm(cpu, trace_address, 0);
1590                cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1591
1592                /* The writes to the various performance counters only writes
1593                 * to a latch.  The new values (interrupt setting bits, reset
1594                 * counter value etc.) are not copied to the actual registers
1595                 * until the performance monitor is enabled.  In order to get
1596                 * this to work as desired, the performance monitor needs to
1597                 * be disabled while writing to the latches.  This is a
1598                 * HW design issue.
1599                 */
1600                write_pm_cntrl(cpu);
1601                cbe_enable_pm(cpu);
1602        }
1603        spin_unlock_irqrestore(&cntr_lock, flags);
1604}
1605
1606static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1607                                      struct op_counter_config *ctr)
1608{
1609        u32 cpu;
1610        u64 pc;
1611        int is_kernel;
1612        unsigned long flags = 0;
1613        u32 interrupt_mask;
1614        int i;
1615
1616        cpu = smp_processor_id();
1617
1618        /*
1619         * Need to make sure the interrupt handler and the virt counter
1620         * routine are not running at the same time. See the
1621         * cell_virtual_cntr() routine for additional comments.
1622         */
1623        spin_lock_irqsave(&cntr_lock, flags);
1624
1625        /*
1626         * Need to disable and reenable the performance counters
1627         * to get the desired behavior from the hardware.  This
1628         * is hardware specific.
1629         */
1630
1631        cbe_disable_pm(cpu);
1632
1633        interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1634
1635        /*
1636         * If the interrupt mask has been cleared, then the virt cntr
1637         * has cleared the interrupt.  When the thread that generated
1638         * the interrupt is restored, the data count will be restored to
1639         * 0xffffff0 to cause the interrupt to be regenerated.
1640         */
1641
1642        if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1643                pc = regs->nip;
1644                is_kernel = is_kernel_addr(pc);
1645
1646                for (i = 0; i < num_counters; ++i) {
1647                        if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1648                            && ctr[i].enabled) {
1649                                oprofile_add_ext_sample(pc, regs, i, is_kernel);
1650                                cbe_write_ctr(cpu, i, reset_value[i]);
1651                        }
1652                }
1653
1654                /*
1655                 * The counters were frozen by the interrupt.
1656                 * Reenable the interrupt and restart the counters.
1657                 * If there was a race between the interrupt handler and
1658                 * the virtual counter routine.  The virtual counter
1659                 * routine may have cleared the interrupts.  Hence must
1660                 * use the virt_cntr_inter_mask to re-enable the interrupts.
1661                 */
1662                cbe_enable_pm_interrupts(cpu, hdw_thread,
1663                                         virt_cntr_inter_mask);
1664
1665                /*
1666                 * The writes to the various performance counters only writes
1667                 * to a latch.  The new values (interrupt setting bits, reset
1668                 * counter value etc.) are not copied to the actual registers
1669                 * until the performance monitor is enabled.  In order to get
1670                 * this to work as desired, the performance monitor needs to
1671                 * be disabled while writing to the latches.  This is a
1672                 * HW design issue.
1673                 */
1674                cbe_enable_pm(cpu);
1675        }
1676        spin_unlock_irqrestore(&cntr_lock, flags);
1677}
1678
1679static void cell_handle_interrupt(struct pt_regs *regs,
1680                                  struct op_counter_config *ctr)
1681{
1682        if (profiling_mode == PPU_PROFILING)
1683                cell_handle_interrupt_ppu(regs, ctr);
1684        else
1685                cell_handle_interrupt_spu(regs, ctr);
1686}
1687
1688/*
1689 * This function is called from the generic OProfile
1690 * driver.  When profiling PPUs, we need to do the
1691 * generic sync start; otherwise, do spu_sync_start.
1692 */
1693static int cell_sync_start(void)
1694{
1695        if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1696            (profiling_mode == SPU_PROFILING_EVENTS))
1697                return spu_sync_start();
1698        else
1699                return DO_GENERIC_SYNC;
1700}
1701
1702static int cell_sync_stop(void)
1703{
1704        if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1705            (profiling_mode == SPU_PROFILING_EVENTS))
1706                return spu_sync_stop();
1707        else
1708                return 1;
1709}
1710
1711struct op_powerpc_model op_model_cell = {
1712        .reg_setup = cell_reg_setup,
1713        .cpu_setup = cell_cpu_setup,
1714        .global_start = cell_global_start,
1715        .global_stop = cell_global_stop,
1716        .sync_start = cell_sync_start,
1717        .sync_stop = cell_sync_stop,
1718        .handle_interrupt = cell_handle_interrupt,
1719};
1720