linux/arch/sparc/kernel/perf_event.c
<<
>>
Prefs
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
  28#include <asm/cacheflush.h>
  29
  30#include "kernel.h"
  31#include "kstack.h"
  32
  33/* Two classes of sparc64 chips currently exist.  All of which have
  34 * 32-bit counters which can generate overflow interrupts on the
  35 * transition from 0xffffffff to 0.
  36 *
  37 * All chips upto and including SPARC-T3 have two performance
  38 * counters.  The two 32-bit counters are accessed in one go using a
  39 * single 64-bit register.
  40 *
  41 * On these older chips both counters are controlled using a single
  42 * control register.  The only way to stop all sampling is to clear
  43 * all of the context (user, supervisor, hypervisor) sampling enable
  44 * bits.  But these bits apply to both counters, thus the two counters
  45 * can't be enabled/disabled individually.
  46 *
  47 * Furthermore, the control register on these older chips have two
  48 * event fields, one for each of the two counters.  It's thus nearly
  49 * impossible to have one counter going while keeping the other one
  50 * stopped.  Therefore it is possible to get overflow interrupts for
  51 * counters not currently "in use" and that condition must be checked
  52 * in the overflow interrupt handler.
  53 *
  54 * So we use a hack, in that we program inactive counters with the
  55 * "sw_count0" and "sw_count1" events.  These count how many times
  56 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  57 * unusual way to encode a NOP and therefore will not trigger in
  58 * normal code.
  59 *
  60 * Starting with SPARC-T4 we have one control register per counter.
  61 * And the counters are stored in individual registers.  The registers
  62 * for the counters are 64-bit but only a 32-bit counter is
  63 * implemented.  The event selections on SPARC-T4 lack any
  64 * restrictions, therefore we can elide all of the complicated
  65 * conflict resolution code we have for SPARC-T3 and earlier chips.
  66 */
  67
  68#define MAX_HWEVENTS                    4
  69#define MAX_PCRS                        4
  70#define MAX_PERIOD                      ((1UL << 32) - 1)
  71
  72#define PIC_UPPER_INDEX                 0
  73#define PIC_LOWER_INDEX                 1
  74#define PIC_NO_INDEX                    -1
  75
  76struct cpu_hw_events {
  77        /* Number of events currently scheduled onto this cpu.
  78         * This tells how many entries in the arrays below
  79         * are valid.
  80         */
  81        int                     n_events;
  82
  83        /* Number of new events added since the last hw_perf_disable().
  84         * This works because the perf event layer always adds new
  85         * events inside of a perf_{disable,enable}() sequence.
  86         */
  87        int                     n_added;
  88
  89        /* Array of events current scheduled on this cpu.  */
  90        struct perf_event       *event[MAX_HWEVENTS];
  91
  92        /* Array of encoded longs, specifying the %pcr register
  93         * encoding and the mask of PIC counters this even can
  94         * be scheduled on.  See perf_event_encode() et al.
  95         */
  96        unsigned long           events[MAX_HWEVENTS];
  97
  98        /* The current counter index assigned to an event.  When the
  99         * event hasn't been programmed into the cpu yet, this will
 100         * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 101         * we ought to schedule the event.
 102         */
 103        int                     current_idx[MAX_HWEVENTS];
 104
 105        /* Software copy of %pcr register(s) on this cpu.  */
 106        u64                     pcr[MAX_HWEVENTS];
 107
 108        /* Enabled/disable state.  */
 109        int                     enabled;
 110
 111        unsigned int            group_flag;
 112};
 113DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 114
 115/* An event map describes the characteristics of a performance
 116 * counter event.  In particular it gives the encoding as well as
 117 * a mask telling which counters the event can be measured on.
 118 *
 119 * The mask is unused on SPARC-T4 and later.
 120 */
 121struct perf_event_map {
 122        u16     encoding;
 123        u8      pic_mask;
 124#define PIC_NONE        0x00
 125#define PIC_UPPER       0x01
 126#define PIC_LOWER       0x02
 127};
 128
 129/* Encode a perf_event_map entry into a long.  */
 130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 131{
 132        return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 133}
 134
 135static u8 perf_event_get_msk(unsigned long val)
 136{
 137        return val & 0xff;
 138}
 139
 140static u64 perf_event_get_enc(unsigned long val)
 141{
 142        return val >> 16;
 143}
 144
 145#define C(x) PERF_COUNT_HW_CACHE_##x
 146
 147#define CACHE_OP_UNSUPPORTED    0xfffe
 148#define CACHE_OP_NONSENSE       0xffff
 149
 150typedef struct perf_event_map cache_map_t
 151                                [PERF_COUNT_HW_CACHE_MAX]
 152                                [PERF_COUNT_HW_CACHE_OP_MAX]
 153                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
 154
 155struct sparc_pmu {
 156        const struct perf_event_map     *(*event_map)(int);
 157        const cache_map_t               *cache_map;
 158        int                             max_events;
 159        u32                             (*read_pmc)(int);
 160        void                            (*write_pmc)(int, u64);
 161        int                             upper_shift;
 162        int                             lower_shift;
 163        int                             event_mask;
 164        int                             user_bit;
 165        int                             priv_bit;
 166        int                             hv_bit;
 167        int                             irq_bit;
 168        int                             upper_nop;
 169        int                             lower_nop;
 170        unsigned int                    flags;
 171#define SPARC_PMU_ALL_EXCLUDES_SAME     0x00000001
 172#define SPARC_PMU_HAS_CONFLICTS         0x00000002
 173        int                             max_hw_events;
 174        int                             num_pcrs;
 175        int                             num_pic_regs;
 176};
 177
 178static u32 sparc_default_read_pmc(int idx)
 179{
 180        u64 val;
 181
 182        val = pcr_ops->read_pic(0);
 183        if (idx == PIC_UPPER_INDEX)
 184                val >>= 32;
 185
 186        return val & 0xffffffff;
 187}
 188
 189static void sparc_default_write_pmc(int idx, u64 val)
 190{
 191        u64 shift, mask, pic;
 192
 193        shift = 0;
 194        if (idx == PIC_UPPER_INDEX)
 195                shift = 32;
 196
 197        mask = ((u64) 0xffffffff) << shift;
 198        val <<= shift;
 199
 200        pic = pcr_ops->read_pic(0);
 201        pic &= ~mask;
 202        pic |= val;
 203        pcr_ops->write_pic(0, pic);
 204}
 205
 206static const struct perf_event_map ultra3_perfmon_event_map[] = {
 207        [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 208        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 209        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 210        [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 211};
 212
 213static const struct perf_event_map *ultra3_event_map(int event_id)
 214{
 215        return &ultra3_perfmon_event_map[event_id];
 216}
 217
 218static const cache_map_t ultra3_cache_map = {
 219[C(L1D)] = {
 220        [C(OP_READ)] = {
 221                [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 222                [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 223        },
 224        [C(OP_WRITE)] = {
 225                [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 226                [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 227        },
 228        [C(OP_PREFETCH)] = {
 229                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 230                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 231        },
 232},
 233[C(L1I)] = {
 234        [C(OP_READ)] = {
 235                [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 236                [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 237        },
 238        [ C(OP_WRITE) ] = {
 239                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 240                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 241        },
 242        [ C(OP_PREFETCH) ] = {
 243                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245        },
 246},
 247[C(LL)] = {
 248        [C(OP_READ)] = {
 249                [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 250                [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 251        },
 252        [C(OP_WRITE)] = {
 253                [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 254                [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 255        },
 256        [C(OP_PREFETCH)] = {
 257                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 258                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 259        },
 260},
 261[C(DTLB)] = {
 262        [C(OP_READ)] = {
 263                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 264                [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 265        },
 266        [ C(OP_WRITE) ] = {
 267                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 268                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 269        },
 270        [ C(OP_PREFETCH) ] = {
 271                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 272                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 273        },
 274},
 275[C(ITLB)] = {
 276        [C(OP_READ)] = {
 277                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 278                [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 279        },
 280        [ C(OP_WRITE) ] = {
 281                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 282                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 283        },
 284        [ C(OP_PREFETCH) ] = {
 285                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 286                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 287        },
 288},
 289[C(BPU)] = {
 290        [C(OP_READ)] = {
 291                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 292                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 293        },
 294        [ C(OP_WRITE) ] = {
 295                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 296                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 297        },
 298        [ C(OP_PREFETCH) ] = {
 299                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 300                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 301        },
 302},
 303[C(NODE)] = {
 304        [C(OP_READ)] = {
 305                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 306                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 307        },
 308        [ C(OP_WRITE) ] = {
 309                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 310                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 311        },
 312        [ C(OP_PREFETCH) ] = {
 313                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 314                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 315        },
 316},
 317};
 318
 319static const struct sparc_pmu ultra3_pmu = {
 320        .event_map      = ultra3_event_map,
 321        .cache_map      = &ultra3_cache_map,
 322        .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
 323        .read_pmc       = sparc_default_read_pmc,
 324        .write_pmc      = sparc_default_write_pmc,
 325        .upper_shift    = 11,
 326        .lower_shift    = 4,
 327        .event_mask     = 0x3f,
 328        .user_bit       = PCR_UTRACE,
 329        .priv_bit       = PCR_STRACE,
 330        .upper_nop      = 0x1c,
 331        .lower_nop      = 0x14,
 332        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 333                           SPARC_PMU_HAS_CONFLICTS),
 334        .max_hw_events  = 2,
 335        .num_pcrs       = 1,
 336        .num_pic_regs   = 1,
 337};
 338
 339/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 340 * only instructions, so it is free running which creates all kinds of
 341 * problems.  Some hardware designs make one wonder if the creator
 342 * even looked at how this stuff gets used by software.
 343 */
 344static const struct perf_event_map niagara1_perfmon_event_map[] = {
 345        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 346        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 347        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 348        [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 349};
 350
 351static const struct perf_event_map *niagara1_event_map(int event_id)
 352{
 353        return &niagara1_perfmon_event_map[event_id];
 354}
 355
 356static const cache_map_t niagara1_cache_map = {
 357[C(L1D)] = {
 358        [C(OP_READ)] = {
 359                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 360                [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 361        },
 362        [C(OP_WRITE)] = {
 363                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 364                [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 365        },
 366        [C(OP_PREFETCH)] = {
 367                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 368                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 369        },
 370},
 371[C(L1I)] = {
 372        [C(OP_READ)] = {
 373                [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 374                [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 375        },
 376        [ C(OP_WRITE) ] = {
 377                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 378                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 379        },
 380        [ C(OP_PREFETCH) ] = {
 381                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 382                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 383        },
 384},
 385[C(LL)] = {
 386        [C(OP_READ)] = {
 387                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 388                [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 389        },
 390        [C(OP_WRITE)] = {
 391                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 392                [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 393        },
 394        [C(OP_PREFETCH)] = {
 395                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 396                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 397        },
 398},
 399[C(DTLB)] = {
 400        [C(OP_READ)] = {
 401                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 402                [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 403        },
 404        [ C(OP_WRITE) ] = {
 405                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 406                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 407        },
 408        [ C(OP_PREFETCH) ] = {
 409                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 410                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 411        },
 412},
 413[C(ITLB)] = {
 414        [C(OP_READ)] = {
 415                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 416                [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 417        },
 418        [ C(OP_WRITE) ] = {
 419                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 420                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 421        },
 422        [ C(OP_PREFETCH) ] = {
 423                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 424                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 425        },
 426},
 427[C(BPU)] = {
 428        [C(OP_READ)] = {
 429                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 430                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 431        },
 432        [ C(OP_WRITE) ] = {
 433                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 434                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 435        },
 436        [ C(OP_PREFETCH) ] = {
 437                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 438                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 439        },
 440},
 441[C(NODE)] = {
 442        [C(OP_READ)] = {
 443                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 444                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 445        },
 446        [ C(OP_WRITE) ] = {
 447                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 448                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 449        },
 450        [ C(OP_PREFETCH) ] = {
 451                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 452                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 453        },
 454},
 455};
 456
 457static const struct sparc_pmu niagara1_pmu = {
 458        .event_map      = niagara1_event_map,
 459        .cache_map      = &niagara1_cache_map,
 460        .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
 461        .read_pmc       = sparc_default_read_pmc,
 462        .write_pmc      = sparc_default_write_pmc,
 463        .upper_shift    = 0,
 464        .lower_shift    = 4,
 465        .event_mask     = 0x7,
 466        .user_bit       = PCR_UTRACE,
 467        .priv_bit       = PCR_STRACE,
 468        .upper_nop      = 0x0,
 469        .lower_nop      = 0x0,
 470        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 471                           SPARC_PMU_HAS_CONFLICTS),
 472        .max_hw_events  = 2,
 473        .num_pcrs       = 1,
 474        .num_pic_regs   = 1,
 475};
 476
 477static const struct perf_event_map niagara2_perfmon_event_map[] = {
 478        [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 479        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 481        [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 482        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 483        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 484};
 485
 486static const struct perf_event_map *niagara2_event_map(int event_id)
 487{
 488        return &niagara2_perfmon_event_map[event_id];
 489}
 490
 491static const cache_map_t niagara2_cache_map = {
 492[C(L1D)] = {
 493        [C(OP_READ)] = {
 494                [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 495                [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 496        },
 497        [C(OP_WRITE)] = {
 498                [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 499                [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 500        },
 501        [C(OP_PREFETCH)] = {
 502                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 503                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 504        },
 505},
 506[C(L1I)] = {
 507        [C(OP_READ)] = {
 508                [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 509                [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 510        },
 511        [ C(OP_WRITE) ] = {
 512                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 513                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 514        },
 515        [ C(OP_PREFETCH) ] = {
 516                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518        },
 519},
 520[C(LL)] = {
 521        [C(OP_READ)] = {
 522                [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 523                [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 524        },
 525        [C(OP_WRITE)] = {
 526                [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 527                [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 528        },
 529        [C(OP_PREFETCH)] = {
 530                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 531                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 532        },
 533},
 534[C(DTLB)] = {
 535        [C(OP_READ)] = {
 536                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 537                [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 538        },
 539        [ C(OP_WRITE) ] = {
 540                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 541                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 542        },
 543        [ C(OP_PREFETCH) ] = {
 544                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 545                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 546        },
 547},
 548[C(ITLB)] = {
 549        [C(OP_READ)] = {
 550                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 551                [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 552        },
 553        [ C(OP_WRITE) ] = {
 554                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 555                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 556        },
 557        [ C(OP_PREFETCH) ] = {
 558                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 559                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 560        },
 561},
 562[C(BPU)] = {
 563        [C(OP_READ)] = {
 564                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 565                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 566        },
 567        [ C(OP_WRITE) ] = {
 568                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 569                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 570        },
 571        [ C(OP_PREFETCH) ] = {
 572                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 573                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 574        },
 575},
 576[C(NODE)] = {
 577        [C(OP_READ)] = {
 578                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 579                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 580        },
 581        [ C(OP_WRITE) ] = {
 582                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 583                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 584        },
 585        [ C(OP_PREFETCH) ] = {
 586                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 587                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 588        },
 589},
 590};
 591
 592static const struct sparc_pmu niagara2_pmu = {
 593        .event_map      = niagara2_event_map,
 594        .cache_map      = &niagara2_cache_map,
 595        .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
 596        .read_pmc       = sparc_default_read_pmc,
 597        .write_pmc      = sparc_default_write_pmc,
 598        .upper_shift    = 19,
 599        .lower_shift    = 6,
 600        .event_mask     = 0xfff,
 601        .user_bit       = PCR_UTRACE,
 602        .priv_bit       = PCR_STRACE,
 603        .hv_bit         = PCR_N2_HTRACE,
 604        .irq_bit        = 0x30,
 605        .upper_nop      = 0x220,
 606        .lower_nop      = 0x220,
 607        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 608                           SPARC_PMU_HAS_CONFLICTS),
 609        .max_hw_events  = 2,
 610        .num_pcrs       = 1,
 611        .num_pic_regs   = 1,
 612};
 613
 614static const struct perf_event_map niagara4_perfmon_event_map[] = {
 615        [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 616        [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 617        [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 618        [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 619        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 620        [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 621};
 622
 623static const struct perf_event_map *niagara4_event_map(int event_id)
 624{
 625        return &niagara4_perfmon_event_map[event_id];
 626}
 627
 628static const cache_map_t niagara4_cache_map = {
 629[C(L1D)] = {
 630        [C(OP_READ)] = {
 631                [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 632                [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 633        },
 634        [C(OP_WRITE)] = {
 635                [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 636                [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 637        },
 638        [C(OP_PREFETCH)] = {
 639                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 640                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 641        },
 642},
 643[C(L1I)] = {
 644        [C(OP_READ)] = {
 645                [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 646                [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 647        },
 648        [ C(OP_WRITE) ] = {
 649                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 650                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 651        },
 652        [ C(OP_PREFETCH) ] = {
 653                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 654                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 655        },
 656},
 657[C(LL)] = {
 658        [C(OP_READ)] = {
 659                [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 660                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 661        },
 662        [C(OP_WRITE)] = {
 663                [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 664                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 665        },
 666        [C(OP_PREFETCH)] = {
 667                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 668                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 669        },
 670},
 671[C(DTLB)] = {
 672        [C(OP_READ)] = {
 673                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 674                [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 675        },
 676        [ C(OP_WRITE) ] = {
 677                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 678                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 679        },
 680        [ C(OP_PREFETCH) ] = {
 681                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 682                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 683        },
 684},
 685[C(ITLB)] = {
 686        [C(OP_READ)] = {
 687                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 688                [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 689        },
 690        [ C(OP_WRITE) ] = {
 691                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 692                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 693        },
 694        [ C(OP_PREFETCH) ] = {
 695                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 696                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 697        },
 698},
 699[C(BPU)] = {
 700        [C(OP_READ)] = {
 701                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 702                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 703        },
 704        [ C(OP_WRITE) ] = {
 705                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 706                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 707        },
 708        [ C(OP_PREFETCH) ] = {
 709                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 710                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 711        },
 712},
 713[C(NODE)] = {
 714        [C(OP_READ)] = {
 715                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 716                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 717        },
 718        [ C(OP_WRITE) ] = {
 719                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 720                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 721        },
 722        [ C(OP_PREFETCH) ] = {
 723                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 724                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 725        },
 726},
 727};
 728
 729static u32 sparc_vt_read_pmc(int idx)
 730{
 731        u64 val = pcr_ops->read_pic(idx);
 732
 733        return val & 0xffffffff;
 734}
 735
 736static void sparc_vt_write_pmc(int idx, u64 val)
 737{
 738        u64 pcr;
 739
 740        /* There seems to be an internal latch on the overflow event
 741         * on SPARC-T4 that prevents it from triggering unless you
 742         * update the PIC exactly as we do here.  The requirement
 743         * seems to be that you have to turn off event counting in the
 744         * PCR around the PIC update.
 745         *
 746         * For example, after the following sequence:
 747         *
 748         * 1) set PIC to -1
 749         * 2) enable event counting and overflow reporting in PCR
 750         * 3) overflow triggers, softint 15 handler invoked
 751         * 4) clear OV bit in PCR
 752         * 5) write PIC to -1
 753         *
 754         * a subsequent overflow event will not trigger.  This
 755         * sequence works on SPARC-T3 and previous chips.
 756         */
 757        pcr = pcr_ops->read_pcr(idx);
 758        pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
 759
 760        pcr_ops->write_pic(idx, val & 0xffffffff);
 761
 762        pcr_ops->write_pcr(idx, pcr);
 763}
 764
 765static const struct sparc_pmu niagara4_pmu = {
 766        .event_map      = niagara4_event_map,
 767        .cache_map      = &niagara4_cache_map,
 768        .max_events     = ARRAY_SIZE(niagara4_perfmon_event_map),
 769        .read_pmc       = sparc_vt_read_pmc,
 770        .write_pmc      = sparc_vt_write_pmc,
 771        .upper_shift    = 5,
 772        .lower_shift    = 5,
 773        .event_mask     = 0x7ff,
 774        .user_bit       = PCR_N4_UTRACE,
 775        .priv_bit       = PCR_N4_STRACE,
 776
 777        /* We explicitly don't support hypervisor tracing.  The T4
 778         * generates the overflow event for precise events via a trap
 779         * which will not be generated (ie. it's completely lost) if
 780         * we happen to be in the hypervisor when the event triggers.
 781         * Essentially, the overflow event reporting is completely
 782         * unusable when you have hypervisor mode tracing enabled.
 783         */
 784        .hv_bit         = 0,
 785
 786        .irq_bit        = PCR_N4_TOE,
 787        .upper_nop      = 0,
 788        .lower_nop      = 0,
 789        .flags          = 0,
 790        .max_hw_events  = 4,
 791        .num_pcrs       = 4,
 792        .num_pic_regs   = 4,
 793};
 794
 795static const struct sparc_pmu *sparc_pmu __read_mostly;
 796
 797static u64 event_encoding(u64 event_id, int idx)
 798{
 799        if (idx == PIC_UPPER_INDEX)
 800                event_id <<= sparc_pmu->upper_shift;
 801        else
 802                event_id <<= sparc_pmu->lower_shift;
 803        return event_id;
 804}
 805
 806static u64 mask_for_index(int idx)
 807{
 808        return event_encoding(sparc_pmu->event_mask, idx);
 809}
 810
 811static u64 nop_for_index(int idx)
 812{
 813        return event_encoding(idx == PIC_UPPER_INDEX ?
 814                              sparc_pmu->upper_nop :
 815                              sparc_pmu->lower_nop, idx);
 816}
 817
 818static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 819{
 820        u64 enc, val, mask = mask_for_index(idx);
 821        int pcr_index = 0;
 822
 823        if (sparc_pmu->num_pcrs > 1)
 824                pcr_index = idx;
 825
 826        enc = perf_event_get_enc(cpuc->events[idx]);
 827
 828        val = cpuc->pcr[pcr_index];
 829        val &= ~mask;
 830        val |= event_encoding(enc, idx);
 831        cpuc->pcr[pcr_index] = val;
 832
 833        pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 834}
 835
 836static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 837{
 838        u64 mask = mask_for_index(idx);
 839        u64 nop = nop_for_index(idx);
 840        int pcr_index = 0;
 841        u64 val;
 842
 843        if (sparc_pmu->num_pcrs > 1)
 844                pcr_index = idx;
 845
 846        val = cpuc->pcr[pcr_index];
 847        val &= ~mask;
 848        val |= nop;
 849        cpuc->pcr[pcr_index] = val;
 850
 851        pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 852}
 853
 854static u64 sparc_perf_event_update(struct perf_event *event,
 855                                   struct hw_perf_event *hwc, int idx)
 856{
 857        int shift = 64 - 32;
 858        u64 prev_raw_count, new_raw_count;
 859        s64 delta;
 860
 861again:
 862        prev_raw_count = local64_read(&hwc->prev_count);
 863        new_raw_count = sparc_pmu->read_pmc(idx);
 864
 865        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 866                             new_raw_count) != prev_raw_count)
 867                goto again;
 868
 869        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 870        delta >>= shift;
 871
 872        local64_add(delta, &event->count);
 873        local64_sub(delta, &hwc->period_left);
 874
 875        return new_raw_count;
 876}
 877
 878static int sparc_perf_event_set_period(struct perf_event *event,
 879                                       struct hw_perf_event *hwc, int idx)
 880{
 881        s64 left = local64_read(&hwc->period_left);
 882        s64 period = hwc->sample_period;
 883        int ret = 0;
 884
 885        if (unlikely(left <= -period)) {
 886                left = period;
 887                local64_set(&hwc->period_left, left);
 888                hwc->last_period = period;
 889                ret = 1;
 890        }
 891
 892        if (unlikely(left <= 0)) {
 893                left += period;
 894                local64_set(&hwc->period_left, left);
 895                hwc->last_period = period;
 896                ret = 1;
 897        }
 898        if (left > MAX_PERIOD)
 899                left = MAX_PERIOD;
 900
 901        local64_set(&hwc->prev_count, (u64)-left);
 902
 903        sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 904
 905        perf_event_update_userpage(event);
 906
 907        return ret;
 908}
 909
 910static void read_in_all_counters(struct cpu_hw_events *cpuc)
 911{
 912        int i;
 913
 914        for (i = 0; i < cpuc->n_events; i++) {
 915                struct perf_event *cp = cpuc->event[i];
 916
 917                if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 918                    cpuc->current_idx[i] != cp->hw.idx) {
 919                        sparc_perf_event_update(cp, &cp->hw,
 920                                                cpuc->current_idx[i]);
 921                        cpuc->current_idx[i] = PIC_NO_INDEX;
 922                }
 923        }
 924}
 925
 926/* On this PMU all PICs are programmed using a single PCR.  Calculate
 927 * the combined control register value.
 928 *
 929 * For such chips we require that all of the events have the same
 930 * configuration, so just fetch the settings from the first entry.
 931 */
 932static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 933{
 934        int i;
 935
 936        if (!cpuc->n_added)
 937                goto out;
 938
 939        /* Assign to counters all unassigned events.  */
 940        for (i = 0; i < cpuc->n_events; i++) {
 941                struct perf_event *cp = cpuc->event[i];
 942                struct hw_perf_event *hwc = &cp->hw;
 943                int idx = hwc->idx;
 944                u64 enc;
 945
 946                if (cpuc->current_idx[i] != PIC_NO_INDEX)
 947                        continue;
 948
 949                sparc_perf_event_set_period(cp, hwc, idx);
 950                cpuc->current_idx[i] = idx;
 951
 952                enc = perf_event_get_enc(cpuc->events[i]);
 953                cpuc->pcr[0] &= ~mask_for_index(idx);
 954                if (hwc->state & PERF_HES_STOPPED)
 955                        cpuc->pcr[0] |= nop_for_index(idx);
 956                else
 957                        cpuc->pcr[0] |= event_encoding(enc, idx);
 958        }
 959out:
 960        cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 961}
 962
 963/* On this PMU each PIC has it's own PCR control register.  */
 964static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 965{
 966        int i;
 967
 968        if (!cpuc->n_added)
 969                goto out;
 970
 971        for (i = 0; i < cpuc->n_events; i++) {
 972                struct perf_event *cp = cpuc->event[i];
 973                struct hw_perf_event *hwc = &cp->hw;
 974                int idx = hwc->idx;
 975                u64 enc;
 976
 977                if (cpuc->current_idx[i] != PIC_NO_INDEX)
 978                        continue;
 979
 980                sparc_perf_event_set_period(cp, hwc, idx);
 981                cpuc->current_idx[i] = idx;
 982
 983                enc = perf_event_get_enc(cpuc->events[i]);
 984                cpuc->pcr[idx] &= ~mask_for_index(idx);
 985                if (hwc->state & PERF_HES_STOPPED)
 986                        cpuc->pcr[idx] |= nop_for_index(idx);
 987                else
 988                        cpuc->pcr[idx] |= event_encoding(enc, idx);
 989        }
 990out:
 991        for (i = 0; i < cpuc->n_events; i++) {
 992                struct perf_event *cp = cpuc->event[i];
 993                int idx = cp->hw.idx;
 994
 995                cpuc->pcr[idx] |= cp->hw.config_base;
 996        }
 997}
 998
 999/* If performance event entries have been added, move existing events
1000 * around (if necessary) and then assign new entries to counters.
1001 */
1002static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003{
1004        if (cpuc->n_added)
1005                read_in_all_counters(cpuc);
1006
1007        if (sparc_pmu->num_pcrs == 1) {
1008                calculate_single_pcr(cpuc);
1009        } else {
1010                calculate_multiple_pcrs(cpuc);
1011        }
1012}
1013
1014static void sparc_pmu_enable(struct pmu *pmu)
1015{
1016        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1017        int i;
1018
1019        if (cpuc->enabled)
1020                return;
1021
1022        cpuc->enabled = 1;
1023        barrier();
1024
1025        if (cpuc->n_events)
1026                update_pcrs_for_enable(cpuc);
1027
1028        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1029                pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030}
1031
1032static void sparc_pmu_disable(struct pmu *pmu)
1033{
1034        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035        int i;
1036
1037        if (!cpuc->enabled)
1038                return;
1039
1040        cpuc->enabled = 0;
1041        cpuc->n_added = 0;
1042
1043        for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1044                u64 val = cpuc->pcr[i];
1045
1046                val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1047                         sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1048                cpuc->pcr[i] = val;
1049                pcr_ops->write_pcr(i, cpuc->pcr[i]);
1050        }
1051}
1052
1053static int active_event_index(struct cpu_hw_events *cpuc,
1054                              struct perf_event *event)
1055{
1056        int i;
1057
1058        for (i = 0; i < cpuc->n_events; i++) {
1059                if (cpuc->event[i] == event)
1060                        break;
1061        }
1062        BUG_ON(i == cpuc->n_events);
1063        return cpuc->current_idx[i];
1064}
1065
1066static void sparc_pmu_start(struct perf_event *event, int flags)
1067{
1068        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1069        int idx = active_event_index(cpuc, event);
1070
1071        if (flags & PERF_EF_RELOAD) {
1072                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1073                sparc_perf_event_set_period(event, &event->hw, idx);
1074        }
1075
1076        event->hw.state = 0;
1077
1078        sparc_pmu_enable_event(cpuc, &event->hw, idx);
1079}
1080
1081static void sparc_pmu_stop(struct perf_event *event, int flags)
1082{
1083        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1084        int idx = active_event_index(cpuc, event);
1085
1086        if (!(event->hw.state & PERF_HES_STOPPED)) {
1087                sparc_pmu_disable_event(cpuc, &event->hw, idx);
1088                event->hw.state |= PERF_HES_STOPPED;
1089        }
1090
1091        if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1092                sparc_perf_event_update(event, &event->hw, idx);
1093                event->hw.state |= PERF_HES_UPTODATE;
1094        }
1095}
1096
1097static void sparc_pmu_del(struct perf_event *event, int _flags)
1098{
1099        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100        unsigned long flags;
1101        int i;
1102
1103        local_irq_save(flags);
1104        perf_pmu_disable(event->pmu);
1105
1106        for (i = 0; i < cpuc->n_events; i++) {
1107                if (event == cpuc->event[i]) {
1108                        /* Absorb the final count and turn off the
1109                         * event.
1110                         */
1111                        sparc_pmu_stop(event, PERF_EF_UPDATE);
1112
1113                        /* Shift remaining entries down into
1114                         * the existing slot.
1115                         */
1116                        while (++i < cpuc->n_events) {
1117                                cpuc->event[i - 1] = cpuc->event[i];
1118                                cpuc->events[i - 1] = cpuc->events[i];
1119                                cpuc->current_idx[i - 1] =
1120                                        cpuc->current_idx[i];
1121                        }
1122
1123                        perf_event_update_userpage(event);
1124
1125                        cpuc->n_events--;
1126                        break;
1127                }
1128        }
1129
1130        perf_pmu_enable(event->pmu);
1131        local_irq_restore(flags);
1132}
1133
1134static void sparc_pmu_read(struct perf_event *event)
1135{
1136        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1137        int idx = active_event_index(cpuc, event);
1138        struct hw_perf_event *hwc = &event->hw;
1139
1140        sparc_perf_event_update(event, hwc, idx);
1141}
1142
1143static atomic_t active_events = ATOMIC_INIT(0);
1144static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146static void perf_stop_nmi_watchdog(void *unused)
1147{
1148        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149        int i;
1150
1151        stop_nmi_watchdog(NULL);
1152        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153                cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154}
1155
1156void perf_event_grab_pmc(void)
1157{
1158        if (atomic_inc_not_zero(&active_events))
1159                return;
1160
1161        mutex_lock(&pmc_grab_mutex);
1162        if (atomic_read(&active_events) == 0) {
1163                if (atomic_read(&nmi_active) > 0) {
1164                        on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165                        BUG_ON(atomic_read(&nmi_active) != 0);
1166                }
1167                atomic_inc(&active_events);
1168        }
1169        mutex_unlock(&pmc_grab_mutex);
1170}
1171
1172void perf_event_release_pmc(void)
1173{
1174        if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175                if (atomic_read(&nmi_active) == 0)
1176                        on_each_cpu(start_nmi_watchdog, NULL, 1);
1177                mutex_unlock(&pmc_grab_mutex);
1178        }
1179}
1180
1181static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182{
1183        unsigned int cache_type, cache_op, cache_result;
1184        const struct perf_event_map *pmap;
1185
1186        if (!sparc_pmu->cache_map)
1187                return ERR_PTR(-ENOENT);
1188
1189        cache_type = (config >>  0) & 0xff;
1190        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191                return ERR_PTR(-EINVAL);
1192
1193        cache_op = (config >>  8) & 0xff;
1194        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195                return ERR_PTR(-EINVAL);
1196
1197        cache_result = (config >> 16) & 0xff;
1198        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199                return ERR_PTR(-EINVAL);
1200
1201        pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203        if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204                return ERR_PTR(-ENOENT);
1205
1206        if (pmap->encoding == CACHE_OP_NONSENSE)
1207                return ERR_PTR(-EINVAL);
1208
1209        return pmap;
1210}
1211
1212static void hw_perf_event_destroy(struct perf_event *event)
1213{
1214        perf_event_release_pmc();
1215}
1216
1217/* Make sure all events can be scheduled into the hardware at
1218 * the same time.  This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success.  These are pending indexes.  When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227static int sparc_check_constraints(struct perf_event **evts,
1228                                   unsigned long *events, int n_ev)
1229{
1230        u8 msk0 = 0, msk1 = 0;
1231        int idx0 = 0;
1232
1233        /* This case is possible when we are invoked from
1234         * hw_perf_group_sched_in().
1235         */
1236        if (!n_ev)
1237                return 0;
1238
1239        if (n_ev > sparc_pmu->max_hw_events)
1240                return -1;
1241
1242        if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243                int i;
1244
1245                for (i = 0; i < n_ev; i++)
1246                        evts[i]->hw.idx = i;
1247                return 0;
1248        }
1249
1250        msk0 = perf_event_get_msk(events[0]);
1251        if (n_ev == 1) {
1252                if (msk0 & PIC_LOWER)
1253                        idx0 = 1;
1254                goto success;
1255        }
1256        BUG_ON(n_ev != 2);
1257        msk1 = perf_event_get_msk(events[1]);
1258
1259        /* If both events can go on any counter, OK.  */
1260        if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261            msk1 == (PIC_UPPER | PIC_LOWER))
1262                goto success;
1263
1264        /* If one event is limited to a specific counter,
1265         * and the other can go on both, OK.
1266         */
1267        if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268            msk1 == (PIC_UPPER | PIC_LOWER)) {
1269                if (msk0 & PIC_LOWER)
1270                        idx0 = 1;
1271                goto success;
1272        }
1273
1274        if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275            msk0 == (PIC_UPPER | PIC_LOWER)) {
1276                if (msk1 & PIC_UPPER)
1277                        idx0 = 1;
1278                goto success;
1279        }
1280
1281        /* If the events are fixed to different counters, OK.  */
1282        if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283            (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284                if (msk0 & PIC_LOWER)
1285                        idx0 = 1;
1286                goto success;
1287        }
1288
1289        /* Otherwise, there is a conflict.  */
1290        return -1;
1291
1292success:
1293        evts[0]->hw.idx = idx0;
1294        if (n_ev == 2)
1295                evts[1]->hw.idx = idx0 ^ 1;
1296        return 0;
1297}
1298
1299static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300{
1301        int eu = 0, ek = 0, eh = 0;
1302        struct perf_event *event;
1303        int i, n, first;
1304
1305        if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306                return 0;
1307
1308        n = n_prev + n_new;
1309        if (n <= 1)
1310                return 0;
1311
1312        first = 1;
1313        for (i = 0; i < n; i++) {
1314                event = evts[i];
1315                if (first) {
1316                        eu = event->attr.exclude_user;
1317                        ek = event->attr.exclude_kernel;
1318                        eh = event->attr.exclude_hv;
1319                        first = 0;
1320                } else if (event->attr.exclude_user != eu ||
1321                           event->attr.exclude_kernel != ek ||
1322                           event->attr.exclude_hv != eh) {
1323                        return -EAGAIN;
1324                }
1325        }
1326
1327        return 0;
1328}
1329
1330static int collect_events(struct perf_event *group, int max_count,
1331                          struct perf_event *evts[], unsigned long *events,
1332                          int *current_idx)
1333{
1334        struct perf_event *event;
1335        int n = 0;
1336
1337        if (!is_software_event(group)) {
1338                if (n >= max_count)
1339                        return -1;
1340                evts[n] = group;
1341                events[n] = group->hw.event_base;
1342                current_idx[n++] = PIC_NO_INDEX;
1343        }
1344        list_for_each_entry(event, &group->sibling_list, group_entry) {
1345                if (!is_software_event(event) &&
1346                    event->state != PERF_EVENT_STATE_OFF) {
1347                        if (n >= max_count)
1348                                return -1;
1349                        evts[n] = event;
1350                        events[n] = event->hw.event_base;
1351                        current_idx[n++] = PIC_NO_INDEX;
1352                }
1353        }
1354        return n;
1355}
1356
1357static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358{
1359        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1360        int n0, ret = -EAGAIN;
1361        unsigned long flags;
1362
1363        local_irq_save(flags);
1364        perf_pmu_disable(event->pmu);
1365
1366        n0 = cpuc->n_events;
1367        if (n0 >= sparc_pmu->max_hw_events)
1368                goto out;
1369
1370        cpuc->event[n0] = event;
1371        cpuc->events[n0] = event->hw.event_base;
1372        cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374        event->hw.state = PERF_HES_UPTODATE;
1375        if (!(ef_flags & PERF_EF_START))
1376                event->hw.state |= PERF_HES_STOPPED;
1377
1378        /*
1379         * If group events scheduling transaction was started,
1380         * skip the schedulability test here, it will be performed
1381         * at commit time(->commit_txn) as a whole
1382         */
1383        if (cpuc->group_flag & PERF_EVENT_TXN)
1384                goto nocheck;
1385
1386        if (check_excludes(cpuc->event, n0, 1))
1387                goto out;
1388        if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389                goto out;
1390
1391nocheck:
1392        cpuc->n_events++;
1393        cpuc->n_added++;
1394
1395        ret = 0;
1396out:
1397        perf_pmu_enable(event->pmu);
1398        local_irq_restore(flags);
1399        return ret;
1400}
1401
1402static int sparc_pmu_event_init(struct perf_event *event)
1403{
1404        struct perf_event_attr *attr = &event->attr;
1405        struct perf_event *evts[MAX_HWEVENTS];
1406        struct hw_perf_event *hwc = &event->hw;
1407        unsigned long events[MAX_HWEVENTS];
1408        int current_idx_dmy[MAX_HWEVENTS];
1409        const struct perf_event_map *pmap;
1410        int n;
1411
1412        if (atomic_read(&nmi_active) < 0)
1413                return -ENODEV;
1414
1415        /* does not support taken branch sampling */
1416        if (has_branch_stack(event))
1417                return -EOPNOTSUPP;
1418
1419        switch (attr->type) {
1420        case PERF_TYPE_HARDWARE:
1421                if (attr->config >= sparc_pmu->max_events)
1422                        return -EINVAL;
1423                pmap = sparc_pmu->event_map(attr->config);
1424                break;
1425
1426        case PERF_TYPE_HW_CACHE:
1427                pmap = sparc_map_cache_event(attr->config);
1428                if (IS_ERR(pmap))
1429                        return PTR_ERR(pmap);
1430                break;
1431
1432        case PERF_TYPE_RAW:
1433                pmap = NULL;
1434                break;
1435
1436        default:
1437                return -ENOENT;
1438
1439        }
1440
1441        if (pmap) {
1442                hwc->event_base = perf_event_encode(pmap);
1443        } else {
1444                /*
1445                 * User gives us "(encoding << 16) | pic_mask" for
1446                 * PERF_TYPE_RAW events.
1447                 */
1448                hwc->event_base = attr->config;
1449        }
1450
1451        /* We save the enable bits in the config_base.  */
1452        hwc->config_base = sparc_pmu->irq_bit;
1453        if (!attr->exclude_user)
1454                hwc->config_base |= sparc_pmu->user_bit;
1455        if (!attr->exclude_kernel)
1456                hwc->config_base |= sparc_pmu->priv_bit;
1457        if (!attr->exclude_hv)
1458                hwc->config_base |= sparc_pmu->hv_bit;
1459
1460        n = 0;
1461        if (event->group_leader != event) {
1462                n = collect_events(event->group_leader,
1463                                   sparc_pmu->max_hw_events - 1,
1464                                   evts, events, current_idx_dmy);
1465                if (n < 0)
1466                        return -EINVAL;
1467        }
1468        events[n] = hwc->event_base;
1469        evts[n] = event;
1470
1471        if (check_excludes(evts, n, 1))
1472                return -EINVAL;
1473
1474        if (sparc_check_constraints(evts, events, n + 1))
1475                return -EINVAL;
1476
1477        hwc->idx = PIC_NO_INDEX;
1478
1479        /* Try to do all error checking before this point, as unwinding
1480         * state after grabbing the PMC is difficult.
1481         */
1482        perf_event_grab_pmc();
1483        event->destroy = hw_perf_event_destroy;
1484
1485        if (!hwc->sample_period) {
1486                hwc->sample_period = MAX_PERIOD;
1487                hwc->last_period = hwc->sample_period;
1488                local64_set(&hwc->period_left, hwc->sample_period);
1489        }
1490
1491        return 0;
1492}
1493
1494/*
1495 * Start group events scheduling transaction
1496 * Set the flag to make pmu::enable() not perform the
1497 * schedulability test, it will be performed at commit time
1498 */
1499static void sparc_pmu_start_txn(struct pmu *pmu)
1500{
1501        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1502
1503        perf_pmu_disable(pmu);
1504        cpuhw->group_flag |= PERF_EVENT_TXN;
1505}
1506
1507/*
1508 * Stop group events scheduling transaction
1509 * Clear the flag and pmu::enable() will perform the
1510 * schedulability test.
1511 */
1512static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513{
1514        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1515
1516        cpuhw->group_flag &= ~PERF_EVENT_TXN;
1517        perf_pmu_enable(pmu);
1518}
1519
1520/*
1521 * Commit group events scheduling transaction
1522 * Perform the group schedulability test as a whole
1523 * Return 0 if success
1524 */
1525static int sparc_pmu_commit_txn(struct pmu *pmu)
1526{
1527        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1528        int n;
1529
1530        if (!sparc_pmu)
1531                return -EINVAL;
1532
1533        cpuc = &__get_cpu_var(cpu_hw_events);
1534        n = cpuc->n_events;
1535        if (check_excludes(cpuc->event, 0, n))
1536                return -EINVAL;
1537        if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538                return -EAGAIN;
1539
1540        cpuc->group_flag &= ~PERF_EVENT_TXN;
1541        perf_pmu_enable(pmu);
1542        return 0;
1543}
1544
1545static struct pmu pmu = {
1546        .pmu_enable     = sparc_pmu_enable,
1547        .pmu_disable    = sparc_pmu_disable,
1548        .event_init     = sparc_pmu_event_init,
1549        .add            = sparc_pmu_add,
1550        .del            = sparc_pmu_del,
1551        .start          = sparc_pmu_start,
1552        .stop           = sparc_pmu_stop,
1553        .read           = sparc_pmu_read,
1554        .start_txn      = sparc_pmu_start_txn,
1555        .cancel_txn     = sparc_pmu_cancel_txn,
1556        .commit_txn     = sparc_pmu_commit_txn,
1557};
1558
1559void perf_event_print_debug(void)
1560{
1561        unsigned long flags;
1562        int cpu, i;
1563
1564        if (!sparc_pmu)
1565                return;
1566
1567        local_irq_save(flags);
1568
1569        cpu = smp_processor_id();
1570
1571        pr_info("\n");
1572        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1573                pr_info("CPU#%d: PCR%d[%016llx]\n",
1574                        cpu, i, pcr_ops->read_pcr(i));
1575        for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1576                pr_info("CPU#%d: PIC%d[%016llx]\n",
1577                        cpu, i, pcr_ops->read_pic(i));
1578
1579        local_irq_restore(flags);
1580}
1581
1582static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583                                            unsigned long cmd, void *__args)
1584{
1585        struct die_args *args = __args;
1586        struct perf_sample_data data;
1587        struct cpu_hw_events *cpuc;
1588        struct pt_regs *regs;
1589        int i;
1590
1591        if (!atomic_read(&active_events))
1592                return NOTIFY_DONE;
1593
1594        switch (cmd) {
1595        case DIE_NMI:
1596                break;
1597
1598        default:
1599                return NOTIFY_DONE;
1600        }
1601
1602        regs = args->regs;
1603
1604        cpuc = &__get_cpu_var(cpu_hw_events);
1605
1606        /* If the PMU has the TOE IRQ enable bits, we need to do a
1607         * dummy write to the %pcr to clear the overflow bits and thus
1608         * the interrupt.
1609         *
1610         * Do this before we peek at the counters to determine
1611         * overflow so we don't lose any events.
1612         */
1613        if (sparc_pmu->irq_bit &&
1614            sparc_pmu->num_pcrs == 1)
1615                pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616
1617        for (i = 0; i < cpuc->n_events; i++) {
1618                struct perf_event *event = cpuc->event[i];
1619                int idx = cpuc->current_idx[i];
1620                struct hw_perf_event *hwc;
1621                u64 val;
1622
1623                if (sparc_pmu->irq_bit &&
1624                    sparc_pmu->num_pcrs > 1)
1625                        pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626
1627                hwc = &event->hw;
1628                val = sparc_perf_event_update(event, hwc, idx);
1629                if (val & (1ULL << 31))
1630                        continue;
1631
1632                perf_sample_data_init(&data, 0, hwc->last_period);
1633                if (!sparc_perf_event_set_period(event, hwc, idx))
1634                        continue;
1635
1636                if (perf_event_overflow(event, &data, regs))
1637                        sparc_pmu_stop(event, 0);
1638        }
1639
1640        return NOTIFY_STOP;
1641}
1642
1643static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1644        .notifier_call          = perf_event_nmi_handler,
1645};
1646
1647static bool __init supported_pmu(void)
1648{
1649        if (!strcmp(sparc_pmu_type, "ultra3") ||
1650            !strcmp(sparc_pmu_type, "ultra3+") ||
1651            !strcmp(sparc_pmu_type, "ultra3i") ||
1652            !strcmp(sparc_pmu_type, "ultra4+")) {
1653                sparc_pmu = &ultra3_pmu;
1654                return true;
1655        }
1656        if (!strcmp(sparc_pmu_type, "niagara")) {
1657                sparc_pmu = &niagara1_pmu;
1658                return true;
1659        }
1660        if (!strcmp(sparc_pmu_type, "niagara2") ||
1661            !strcmp(sparc_pmu_type, "niagara3")) {
1662                sparc_pmu = &niagara2_pmu;
1663                return true;
1664        }
1665        if (!strcmp(sparc_pmu_type, "niagara4")) {
1666                sparc_pmu = &niagara4_pmu;
1667                return true;
1668        }
1669        return false;
1670}
1671
1672int __init init_hw_perf_events(void)
1673{
1674        pr_info("Performance events: ");
1675
1676        if (!supported_pmu()) {
1677                pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1678                return 0;
1679        }
1680
1681        pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1682
1683        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1684        register_die_notifier(&perf_event_nmi_notifier);
1685
1686        return 0;
1687}
1688early_initcall(init_hw_perf_events);
1689
1690void perf_callchain_kernel(struct perf_callchain_entry *entry,
1691                           struct pt_regs *regs)
1692{
1693        unsigned long ksp, fp;
1694#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1695        int graph = 0;
1696#endif
1697
1698        stack_trace_flush();
1699
1700        perf_callchain_store(entry, regs->tpc);
1701
1702        ksp = regs->u_regs[UREG_I6];
1703        fp = ksp + STACK_BIAS;
1704        do {
1705                struct sparc_stackf *sf;
1706                struct pt_regs *regs;
1707                unsigned long pc;
1708
1709                if (!kstack_valid(current_thread_info(), fp))
1710                        break;
1711
1712                sf = (struct sparc_stackf *) fp;
1713                regs = (struct pt_regs *) (sf + 1);
1714
1715                if (kstack_is_trap_frame(current_thread_info(), regs)) {
1716                        if (user_mode(regs))
1717                                break;
1718                        pc = regs->tpc;
1719                        fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1720                } else {
1721                        pc = sf->callers_pc;
1722                        fp = (unsigned long)sf->fp + STACK_BIAS;
1723                }
1724                perf_callchain_store(entry, pc);
1725#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1726                if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1727                        int index = current->curr_ret_stack;
1728                        if (current->ret_stack && index >= graph) {
1729                                pc = current->ret_stack[index - graph].ret;
1730                                perf_callchain_store(entry, pc);
1731                                graph++;
1732                        }
1733                }
1734#endif
1735        } while (entry->nr < PERF_MAX_STACK_DEPTH);
1736}
1737
1738static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1739                                   struct pt_regs *regs)
1740{
1741        unsigned long ufp;
1742
1743        ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744        do {
1745                struct sparc_stackf *usf, sf;
1746                unsigned long pc;
1747
1748                usf = (struct sparc_stackf *) ufp;
1749                if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1750                        break;
1751
1752                pc = sf.callers_pc;
1753                ufp = (unsigned long)sf.fp + STACK_BIAS;
1754                perf_callchain_store(entry, pc);
1755        } while (entry->nr < PERF_MAX_STACK_DEPTH);
1756}
1757
1758static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1759                                   struct pt_regs *regs)
1760{
1761        unsigned long ufp;
1762
1763        ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1764        do {
1765                unsigned long pc;
1766
1767                if (thread32_stack_is_64bit(ufp)) {
1768                        struct sparc_stackf *usf, sf;
1769
1770                        ufp += STACK_BIAS;
1771                        usf = (struct sparc_stackf *) ufp;
1772                        if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1773                                break;
1774                        pc = sf.callers_pc & 0xffffffff;
1775                        ufp = ((unsigned long) sf.fp) & 0xffffffff;
1776                } else {
1777                        struct sparc_stackf32 *usf, sf;
1778                        usf = (struct sparc_stackf32 *) ufp;
1779                        if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1780                                break;
1781                        pc = sf.callers_pc;
1782                        ufp = (unsigned long)sf.fp;
1783                }
1784                perf_callchain_store(entry, pc);
1785        } while (entry->nr < PERF_MAX_STACK_DEPTH);
1786}
1787
1788void
1789perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1790{
1791        perf_callchain_store(entry, regs->tpc);
1792
1793        if (!current->mm)
1794                return;
1795
1796        flushw_user();
1797        if (test_thread_flag(TIF_32BIT))
1798                perf_callchain_user_32(entry, regs);
1799        else
1800                perf_callchain_user_64(entry, regs);
1801}
1802