linux/arch/tile/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/preempt.h>
  17#include <linux/module.h>
  18#include <linux/fs.h>
  19#include <linux/kprobes.h>
  20#include <linux/elfcore.h>
  21#include <linux/tick.h>
  22#include <linux/init.h>
  23#include <linux/mm.h>
  24#include <linux/compat.h>
  25#include <linux/hardirq.h>
  26#include <linux/syscalls.h>
  27#include <linux/kernel.h>
  28#include <linux/tracehook.h>
  29#include <linux/signal.h>
  30#include <asm/stack.h>
  31#include <asm/switch_to.h>
  32#include <asm/homecache.h>
  33#include <asm/syscalls.h>
  34#include <asm/traps.h>
  35#include <asm/setup.h>
  36#ifdef CONFIG_HARDWALL
  37#include <asm/hardwall.h>
  38#endif
  39#include <arch/chip.h>
  40#include <arch/abi.h>
  41#include <arch/sim_def.h>
  42
  43
  44/*
  45 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
  46 * idle loop over low power while in the idle loop, e.g. if we have
  47 * one thread per core and we want to get threads out of futex waits fast.
  48 */
  49static int no_idle_nap;
  50static int __init idle_setup(char *str)
  51{
  52        if (!str)
  53                return -EINVAL;
  54
  55        if (!strcmp(str, "poll")) {
  56                pr_info("using polling idle threads.\n");
  57                no_idle_nap = 1;
  58        } else if (!strcmp(str, "halt"))
  59                no_idle_nap = 0;
  60        else
  61                return -1;
  62
  63        return 0;
  64}
  65early_param("idle", idle_setup);
  66
  67/*
  68 * The idle thread. There's no useful work to be
  69 * done, so just try to conserve power and have a
  70 * low exit latency (ie sit in a loop waiting for
  71 * somebody to say that they'd like to reschedule)
  72 */
  73void cpu_idle(void)
  74{
  75        int cpu = smp_processor_id();
  76
  77
  78        current_thread_info()->status |= TS_POLLING;
  79
  80        if (no_idle_nap) {
  81                while (1) {
  82                        while (!need_resched())
  83                                cpu_relax();
  84                        schedule();
  85                }
  86        }
  87
  88        /* endless idle loop with no priority at all */
  89        while (1) {
  90                tick_nohz_idle_enter();
  91                rcu_idle_enter();
  92                while (!need_resched()) {
  93                        if (cpu_is_offline(cpu))
  94                                BUG();  /* no HOTPLUG_CPU */
  95
  96                        local_irq_disable();
  97                        __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  98                        current_thread_info()->status &= ~TS_POLLING;
  99                        /*
 100                         * TS_POLLING-cleared state must be visible before we
 101                         * test NEED_RESCHED:
 102                         */
 103                        smp_mb();
 104
 105                        if (!need_resched())
 106                                _cpu_idle();
 107                        else
 108                                local_irq_enable();
 109                        current_thread_info()->status |= TS_POLLING;
 110                }
 111                rcu_idle_exit();
 112                tick_nohz_idle_exit();
 113                schedule_preempt_disabled();
 114        }
 115}
 116
 117/*
 118 * Release a thread_info structure
 119 */
 120void arch_release_thread_info(struct thread_info *info)
 121{
 122        struct single_step_state *step_state = info->step_state;
 123
 124#ifdef CONFIG_HARDWALL
 125        /*
 126         * We free a thread_info from the context of the task that has
 127         * been scheduled next, so the original task is already dead.
 128         * Calling deactivate here just frees up the data structures.
 129         * If the task we're freeing held the last reference to a
 130         * hardwall fd, it would have been released prior to this point
 131         * anyway via exit_files(), and the hardwall_task.info pointers
 132         * would be NULL by now.
 133         */
 134        hardwall_deactivate_all(info->task);
 135#endif
 136
 137        if (step_state) {
 138
 139                /*
 140                 * FIXME: we don't munmap step_state->buffer
 141                 * because the mm_struct for this process (info->task->mm)
 142                 * has already been zeroed in exit_mm().  Keeping a
 143                 * reference to it here seems like a bad move, so this
 144                 * means we can't munmap() the buffer, and therefore if we
 145                 * ptrace multiple threads in a process, we will slowly
 146                 * leak user memory.  (Note that as soon as the last
 147                 * thread in a process dies, we will reclaim all user
 148                 * memory including single-step buffers in the usual way.)
 149                 * We should either assign a kernel VA to this buffer
 150                 * somehow, or we should associate the buffer(s) with the
 151                 * mm itself so we can clean them up that way.
 152                 */
 153                kfree(step_state);
 154        }
 155}
 156
 157static void save_arch_state(struct thread_struct *t);
 158
 159int copy_thread(unsigned long clone_flags, unsigned long sp,
 160                unsigned long arg, struct task_struct *p)
 161{
 162        struct pt_regs *childregs = task_pt_regs(p);
 163        unsigned long ksp;
 164        unsigned long *callee_regs;
 165
 166        /*
 167         * Set up the stack and stack pointer appropriately for the
 168         * new child to find itself woken up in __switch_to().
 169         * The callee-saved registers must be on the stack to be read;
 170         * the new task will then jump to assembly support to handle
 171         * calling schedule_tail(), etc., and (for userspace tasks)
 172         * returning to the context set up in the pt_regs.
 173         */
 174        ksp = (unsigned long) childregs;
 175        ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
 176        ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
 177        ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
 178        callee_regs = (unsigned long *)ksp;
 179        ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
 180        ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
 181        p->thread.ksp = ksp;
 182
 183        /* Record the pid of the task that created this one. */
 184        p->thread.creator_pid = current->pid;
 185
 186        if (unlikely(p->flags & PF_KTHREAD)) {
 187                /* kernel thread */
 188                memset(childregs, 0, sizeof(struct pt_regs));
 189                memset(&callee_regs[2], 0,
 190                       (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
 191                callee_regs[0] = sp;   /* r30 = function */
 192                callee_regs[1] = arg;  /* r31 = arg */
 193                childregs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
 194                p->thread.pc = (unsigned long) ret_from_kernel_thread;
 195                return 0;
 196        }
 197
 198        /*
 199         * Start new thread in ret_from_fork so it schedules properly
 200         * and then return from interrupt like the parent.
 201         */
 202        p->thread.pc = (unsigned long) ret_from_fork;
 203
 204        /*
 205         * Do not clone step state from the parent; each thread
 206         * must make its own lazily.
 207         */
 208        task_thread_info(p)->step_state = NULL;
 209
 210        /*
 211         * Copy the registers onto the kernel stack so the
 212         * return-from-interrupt code will reload it into registers.
 213         */
 214        *childregs = *current_pt_regs();
 215        childregs->regs[0] = 0;         /* return value is zero */
 216        if (sp)
 217                childregs->sp = sp;  /* override with new user stack pointer */
 218        memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
 219               CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
 220
 221        /* Save user stack top pointer so we can ID the stack vm area later. */
 222        p->thread.usp0 = childregs->sp;
 223
 224        /*
 225         * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
 226         * which is passed in as arg #5 to sys_clone().
 227         */
 228        if (clone_flags & CLONE_SETTLS)
 229                childregs->tp = childregs->regs[4];
 230
 231
 232#if CHIP_HAS_TILE_DMA()
 233        /*
 234         * No DMA in the new thread.  We model this on the fact that
 235         * fork() clears the pending signals, alarms, and aio for the child.
 236         */
 237        memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
 238        memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
 239#endif
 240
 241#if CHIP_HAS_SN_PROC()
 242        /* Likewise, the new thread is not running static processor code. */
 243        p->thread.sn_proc_running = 0;
 244        memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
 245#endif
 246
 247#if CHIP_HAS_PROC_STATUS_SPR()
 248        /* New thread has its miscellaneous processor state bits clear. */
 249        p->thread.proc_status = 0;
 250#endif
 251
 252#ifdef CONFIG_HARDWALL
 253        /* New thread does not own any networks. */
 254        memset(&p->thread.hardwall[0], 0,
 255               sizeof(struct hardwall_task) * HARDWALL_TYPES);
 256#endif
 257
 258
 259        /*
 260         * Start the new thread with the current architecture state
 261         * (user interrupt masks, etc.).
 262         */
 263        save_arch_state(&p->thread);
 264
 265        return 0;
 266}
 267
 268/*
 269 * Return "current" if it looks plausible, or else a pointer to a dummy.
 270 * This can be helpful if we are just trying to emit a clean panic.
 271 */
 272struct task_struct *validate_current(void)
 273{
 274        static struct task_struct corrupt = { .comm = "<corrupt>" };
 275        struct task_struct *tsk = current;
 276        if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
 277                     (high_memory && (void *)tsk > high_memory) ||
 278                     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
 279                pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
 280                tsk = &corrupt;
 281        }
 282        return tsk;
 283}
 284
 285/* Take and return the pointer to the previous task, for schedule_tail(). */
 286struct task_struct *sim_notify_fork(struct task_struct *prev)
 287{
 288        struct task_struct *tsk = current;
 289        __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
 290                     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
 291        __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
 292                     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
 293        return prev;
 294}
 295
 296int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
 297{
 298        struct pt_regs *ptregs = task_pt_regs(tsk);
 299        elf_core_copy_regs(regs, ptregs);
 300        return 1;
 301}
 302
 303#if CHIP_HAS_TILE_DMA()
 304
 305/* Allow user processes to access the DMA SPRs */
 306void grant_dma_mpls(void)
 307{
 308#if CONFIG_KERNEL_PL == 2
 309        __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
 310        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
 311#else
 312        __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
 313        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
 314#endif
 315}
 316
 317/* Forbid user processes from accessing the DMA SPRs */
 318void restrict_dma_mpls(void)
 319{
 320#if CONFIG_KERNEL_PL == 2
 321        __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
 322        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
 323#else
 324        __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
 325        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
 326#endif
 327}
 328
 329/* Pause the DMA engine, then save off its state registers. */
 330static void save_tile_dma_state(struct tile_dma_state *dma)
 331{
 332        unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
 333        unsigned long post_suspend_state;
 334
 335        /* If we're running, suspend the engine. */
 336        if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
 337                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
 338
 339        /*
 340         * Wait for the engine to idle, then save regs.  Note that we
 341         * want to record the "running" bit from before suspension,
 342         * and the "done" bit from after, so that we can properly
 343         * distinguish a case where the user suspended the engine from
 344         * the case where the kernel suspended as part of the context
 345         * swap.
 346         */
 347        do {
 348                post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
 349        } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
 350
 351        dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
 352        dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
 353        dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
 354        dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
 355        dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
 356        dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
 357        dma->byte = __insn_mfspr(SPR_DMA_BYTE);
 358        dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
 359                (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
 360}
 361
 362/* Restart a DMA that was running before we were context-switched out. */
 363static void restore_tile_dma_state(struct thread_struct *t)
 364{
 365        const struct tile_dma_state *dma = &t->tile_dma_state;
 366
 367        /*
 368         * The only way to restore the done bit is to run a zero
 369         * length transaction.
 370         */
 371        if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
 372            !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
 373                __insn_mtspr(SPR_DMA_BYTE, 0);
 374                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 375                while (__insn_mfspr(SPR_DMA_USER_STATUS) &
 376                       SPR_DMA_STATUS__BUSY_MASK)
 377                        ;
 378        }
 379
 380        __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
 381        __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
 382        __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
 383        __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
 384        __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
 385        __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
 386        __insn_mtspr(SPR_DMA_BYTE, dma->byte);
 387
 388        /*
 389         * Restart the engine if we were running and not done.
 390         * Clear a pending async DMA fault that we were waiting on return
 391         * to user space to execute, since we expect the DMA engine
 392         * to regenerate those faults for us now.  Note that we don't
 393         * try to clear the TIF_ASYNC_TLB flag, since it's relatively
 394         * harmless if set, and it covers both DMA and the SN processor.
 395         */
 396        if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
 397                t->dma_async_tlb.fault_num = 0;
 398                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 399        }
 400}
 401
 402#endif
 403
 404static void save_arch_state(struct thread_struct *t)
 405{
 406#if CHIP_HAS_SPLIT_INTR_MASK()
 407        t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
 408                ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
 409#else
 410        t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
 411#endif
 412        t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
 413        t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
 414        t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
 415        t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
 416        t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
 417        t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
 418        t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
 419#if CHIP_HAS_PROC_STATUS_SPR()
 420        t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
 421#endif
 422#if !CHIP_HAS_FIXED_INTVEC_BASE()
 423        t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
 424#endif
 425#if CHIP_HAS_TILE_RTF_HWM()
 426        t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
 427#endif
 428#if CHIP_HAS_DSTREAM_PF()
 429        t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
 430#endif
 431}
 432
 433static void restore_arch_state(const struct thread_struct *t)
 434{
 435#if CHIP_HAS_SPLIT_INTR_MASK()
 436        __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
 437        __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
 438#else
 439        __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
 440#endif
 441        __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
 442        __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
 443        __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
 444        __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
 445        __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
 446        __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
 447        __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
 448#if CHIP_HAS_PROC_STATUS_SPR()
 449        __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
 450#endif
 451#if !CHIP_HAS_FIXED_INTVEC_BASE()
 452        __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
 453#endif
 454#if CHIP_HAS_TILE_RTF_HWM()
 455        __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
 456#endif
 457#if CHIP_HAS_DSTREAM_PF()
 458        __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
 459#endif
 460}
 461
 462
 463void _prepare_arch_switch(struct task_struct *next)
 464{
 465#if CHIP_HAS_SN_PROC()
 466        int snctl;
 467#endif
 468#if CHIP_HAS_TILE_DMA()
 469        struct tile_dma_state *dma = &current->thread.tile_dma_state;
 470        if (dma->enabled)
 471                save_tile_dma_state(dma);
 472#endif
 473#if CHIP_HAS_SN_PROC()
 474        /*
 475         * Suspend the static network processor if it was running.
 476         * We do not suspend the fabric itself, just like we don't
 477         * try to suspend the UDN.
 478         */
 479        snctl = __insn_mfspr(SPR_SNCTL);
 480        current->thread.sn_proc_running =
 481                (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
 482        if (current->thread.sn_proc_running)
 483                __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
 484#endif
 485}
 486
 487
 488struct task_struct *__sched _switch_to(struct task_struct *prev,
 489                                       struct task_struct *next)
 490{
 491        /* DMA state is already saved; save off other arch state. */
 492        save_arch_state(&prev->thread);
 493
 494#if CHIP_HAS_TILE_DMA()
 495        /*
 496         * Restore DMA in new task if desired.
 497         * Note that it is only safe to restart here since interrupts
 498         * are disabled, so we can't take any DMATLB miss or access
 499         * interrupts before we have finished switching stacks.
 500         */
 501        if (next->thread.tile_dma_state.enabled) {
 502                restore_tile_dma_state(&next->thread);
 503                grant_dma_mpls();
 504        } else {
 505                restrict_dma_mpls();
 506        }
 507#endif
 508
 509        /* Restore other arch state. */
 510        restore_arch_state(&next->thread);
 511
 512#if CHIP_HAS_SN_PROC()
 513        /*
 514         * Restart static network processor in the new process
 515         * if it was running before.
 516         */
 517        if (next->thread.sn_proc_running) {
 518                int snctl = __insn_mfspr(SPR_SNCTL);
 519                __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
 520        }
 521#endif
 522
 523#ifdef CONFIG_HARDWALL
 524        /* Enable or disable access to the network registers appropriately. */
 525        hardwall_switch_tasks(prev, next);
 526#endif
 527
 528        /*
 529         * Switch kernel SP, PC, and callee-saved registers.
 530         * In the context of the new task, return the old task pointer
 531         * (i.e. the task that actually called __switch_to).
 532         * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
 533         */
 534        return __switch_to(prev, next, next_current_ksp0(next));
 535}
 536
 537/*
 538 * This routine is called on return from interrupt if any of the
 539 * TIF_WORK_MASK flags are set in thread_info->flags.  It is
 540 * entered with interrupts disabled so we don't miss an event
 541 * that modified the thread_info flags.  If any flag is set, we
 542 * handle it and return, and the calling assembly code will
 543 * re-disable interrupts, reload the thread flags, and call back
 544 * if more flags need to be handled.
 545 *
 546 * We return whether we need to check the thread_info flags again
 547 * or not.  Note that we don't clear TIF_SINGLESTEP here, so it's
 548 * important that it be tested last, and then claim that we don't
 549 * need to recheck the flags.
 550 */
 551int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
 552{
 553        /* If we enter in kernel mode, do nothing and exit the caller loop. */
 554        if (!user_mode(regs))
 555                return 0;
 556
 557        /* Enable interrupts; they are disabled again on return to caller. */
 558        local_irq_enable();
 559
 560        if (thread_info_flags & _TIF_NEED_RESCHED) {
 561                schedule();
 562                return 1;
 563        }
 564#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
 565        if (thread_info_flags & _TIF_ASYNC_TLB) {
 566                do_async_page_fault(regs);
 567                return 1;
 568        }
 569#endif
 570        if (thread_info_flags & _TIF_SIGPENDING) {
 571                do_signal(regs);
 572                return 1;
 573        }
 574        if (thread_info_flags & _TIF_NOTIFY_RESUME) {
 575                clear_thread_flag(TIF_NOTIFY_RESUME);
 576                tracehook_notify_resume(regs);
 577                return 1;
 578        }
 579        if (thread_info_flags & _TIF_SINGLESTEP) {
 580                single_step_once(regs);
 581                return 0;
 582        }
 583        panic("work_pending: bad flags %#x\n", thread_info_flags);
 584}
 585
 586unsigned long get_wchan(struct task_struct *p)
 587{
 588        struct KBacktraceIterator kbt;
 589
 590        if (!p || p == current || p->state == TASK_RUNNING)
 591                return 0;
 592
 593        for (KBacktraceIterator_init(&kbt, p, NULL);
 594             !KBacktraceIterator_end(&kbt);
 595             KBacktraceIterator_next(&kbt)) {
 596                if (!in_sched_functions(kbt.it.pc))
 597                        return kbt.it.pc;
 598        }
 599
 600        return 0;
 601}
 602
 603/* Flush thread state. */
 604void flush_thread(void)
 605{
 606        /* Nothing */
 607}
 608
 609/*
 610 * Free current thread data structures etc..
 611 */
 612void exit_thread(void)
 613{
 614        /* Nothing */
 615}
 616
 617void show_regs(struct pt_regs *regs)
 618{
 619        struct task_struct *tsk = validate_current();
 620        int i;
 621
 622        pr_err("\n");
 623        pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
 624               tsk->pid, tsk->comm, smp_processor_id());
 625#ifdef __tilegx__
 626        for (i = 0; i < 51; i += 3)
 627                pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
 628                       i, regs->regs[i], i+1, regs->regs[i+1],
 629                       i+2, regs->regs[i+2]);
 630        pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
 631               regs->regs[51], regs->regs[52], regs->tp);
 632        pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
 633#else
 634        for (i = 0; i < 52; i += 4)
 635                pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
 636                       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
 637                       i, regs->regs[i], i+1, regs->regs[i+1],
 638                       i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
 639        pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
 640               regs->regs[52], regs->tp, regs->sp, regs->lr);
 641#endif
 642        pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld\n",
 643               regs->pc, regs->ex1, regs->faultnum);
 644
 645        dump_stack_regs(regs);
 646}
 647