linux/drivers/dma/intel_mid_dma.c
<<
>>
Prefs
   1/*
   2 *  intel_mid_dma.c - Intel Langwell DMA Drivers
   3 *
   4 *  Copyright (C) 2008-10 Intel Corp
   5 *  Author: Vinod Koul <vinod.koul@intel.com>
   6 *  The driver design is based on dw_dmac driver
   7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   8 *
   9 *  This program is free software; you can redistribute it and/or modify
  10 *  it under the terms of the GNU General Public License as published by
  11 *  the Free Software Foundation; version 2 of the License.
  12 *
  13 *  This program is distributed in the hope that it will be useful, but
  14 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 *  General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License along
  19 *  with this program; if not, write to the Free Software Foundation, Inc.,
  20 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  21 *
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 *
  25 */
  26#include <linux/pci.h>
  27#include <linux/interrupt.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/intel_mid_dma.h>
  30#include <linux/module.h>
  31
  32#include "dmaengine.h"
  33
  34#define MAX_CHAN        4 /*max ch across controllers*/
  35#include "intel_mid_dma_regs.h"
  36
  37#define INTEL_MID_DMAC1_ID              0x0814
  38#define INTEL_MID_DMAC2_ID              0x0813
  39#define INTEL_MID_GP_DMAC2_ID           0x0827
  40#define INTEL_MFLD_DMAC1_ID             0x0830
  41#define LNW_PERIPHRAL_MASK_BASE         0xFFAE8008
  42#define LNW_PERIPHRAL_MASK_SIZE         0x10
  43#define LNW_PERIPHRAL_STATUS            0x0
  44#define LNW_PERIPHRAL_MASK              0x8
  45
  46struct intel_mid_dma_probe_info {
  47        u8 max_chan;
  48        u8 ch_base;
  49        u16 block_size;
  50        u32 pimr_mask;
  51};
  52
  53#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
  54        ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {   \
  55                .max_chan = (_max_chan),                        \
  56                .ch_base = (_ch_base),                          \
  57                .block_size = (_block_size),                    \
  58                .pimr_mask = (_pimr_mask),                      \
  59        })
  60
  61/*****************************************************************************
  62Utility Functions*/
  63/**
  64 * get_ch_index -       convert status to channel
  65 * @status: status mask
  66 * @base: dma ch base value
  67 *
  68 * Modify the status mask and return the channel index needing
  69 * attention (or -1 if neither)
  70 */
  71static int get_ch_index(int *status, unsigned int base)
  72{
  73        int i;
  74        for (i = 0; i < MAX_CHAN; i++) {
  75                if (*status & (1 << (i + base))) {
  76                        *status = *status & ~(1 << (i + base));
  77                        pr_debug("MDMA: index %d New status %x\n", i, *status);
  78                        return i;
  79                }
  80        }
  81        return -1;
  82}
  83
  84/**
  85 * get_block_ts -       calculates dma transaction length
  86 * @len: dma transfer length
  87 * @tx_width: dma transfer src width
  88 * @block_size: dma controller max block size
  89 *
  90 * Based on src width calculate the DMA trsaction length in data items
  91 * return data items or FFFF if exceeds max length for block
  92 */
  93static int get_block_ts(int len, int tx_width, int block_size)
  94{
  95        int byte_width = 0, block_ts = 0;
  96
  97        switch (tx_width) {
  98        case DMA_SLAVE_BUSWIDTH_1_BYTE:
  99                byte_width = 1;
 100                break;
 101        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 102                byte_width = 2;
 103                break;
 104        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 105        default:
 106                byte_width = 4;
 107                break;
 108        }
 109
 110        block_ts = len/byte_width;
 111        if (block_ts > block_size)
 112                block_ts = 0xFFFF;
 113        return block_ts;
 114}
 115
 116/*****************************************************************************
 117DMAC1 interrupt Functions*/
 118
 119/**
 120 * dmac1_mask_periphral_intr -  mask the periphral interrupt
 121 * @mid: dma device for which masking is required
 122 *
 123 * Masks the DMA periphral interrupt
 124 * this is valid for DMAC1 family controllers only
 125 * This controller should have periphral mask registers already mapped
 126 */
 127static void dmac1_mask_periphral_intr(struct middma_device *mid)
 128{
 129        u32 pimr;
 130
 131        if (mid->pimr_mask) {
 132                pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
 133                pimr |= mid->pimr_mask;
 134                writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
 135        }
 136        return;
 137}
 138
 139/**
 140 * dmac1_unmask_periphral_intr -        unmask the periphral interrupt
 141 * @midc: dma channel for which masking is required
 142 *
 143 * UnMasks the DMA periphral interrupt,
 144 * this is valid for DMAC1 family controllers only
 145 * This controller should have periphral mask registers already mapped
 146 */
 147static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
 148{
 149        u32 pimr;
 150        struct middma_device *mid = to_middma_device(midc->chan.device);
 151
 152        if (mid->pimr_mask) {
 153                pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
 154                pimr &= ~mid->pimr_mask;
 155                writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
 156        }
 157        return;
 158}
 159
 160/**
 161 * enable_dma_interrupt -       enable the periphral interrupt
 162 * @midc: dma channel for which enable interrupt is required
 163 *
 164 * Enable the DMA periphral interrupt,
 165 * this is valid for DMAC1 family controllers only
 166 * This controller should have periphral mask registers already mapped
 167 */
 168static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
 169{
 170        dmac1_unmask_periphral_intr(midc);
 171
 172        /*en ch interrupts*/
 173        iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
 174        iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
 175        return;
 176}
 177
 178/**
 179 * disable_dma_interrupt -      disable the periphral interrupt
 180 * @midc: dma channel for which disable interrupt is required
 181 *
 182 * Disable the DMA periphral interrupt,
 183 * this is valid for DMAC1 family controllers only
 184 * This controller should have periphral mask registers already mapped
 185 */
 186static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
 187{
 188        /*Check LPE PISR, make sure fwd is disabled*/
 189        iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
 190        iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
 191        iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
 192        return;
 193}
 194
 195/*****************************************************************************
 196DMA channel helper Functions*/
 197/**
 198 * mid_desc_get         -       get a descriptor
 199 * @midc: dma channel for which descriptor is required
 200 *
 201 * Obtain a descriptor for the channel. Returns NULL if none are free.
 202 * Once the descriptor is returned it is private until put on another
 203 * list or freed
 204 */
 205static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
 206{
 207        struct intel_mid_dma_desc *desc, *_desc;
 208        struct intel_mid_dma_desc *ret = NULL;
 209
 210        spin_lock_bh(&midc->lock);
 211        list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
 212                if (async_tx_test_ack(&desc->txd)) {
 213                        list_del(&desc->desc_node);
 214                        ret = desc;
 215                        break;
 216                }
 217        }
 218        spin_unlock_bh(&midc->lock);
 219        return ret;
 220}
 221
 222/**
 223 * mid_desc_put         -       put a descriptor
 224 * @midc: dma channel for which descriptor is required
 225 * @desc: descriptor to put
 226 *
 227 * Return a descriptor from lwn_desc_get back to the free pool
 228 */
 229static void midc_desc_put(struct intel_mid_dma_chan *midc,
 230                        struct intel_mid_dma_desc *desc)
 231{
 232        if (desc) {
 233                spin_lock_bh(&midc->lock);
 234                list_add_tail(&desc->desc_node, &midc->free_list);
 235                spin_unlock_bh(&midc->lock);
 236        }
 237}
 238/**
 239 * midc_dostart         -               begin a DMA transaction
 240 * @midc: channel for which txn is to be started
 241 * @first: first descriptor of series
 242 *
 243 * Load a transaction into the engine. This must be called with midc->lock
 244 * held and bh disabled.
 245 */
 246static void midc_dostart(struct intel_mid_dma_chan *midc,
 247                        struct intel_mid_dma_desc *first)
 248{
 249        struct middma_device *mid = to_middma_device(midc->chan.device);
 250
 251        /*  channel is idle */
 252        if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
 253                /*error*/
 254                pr_err("ERR_MDMA: channel is busy in start\n");
 255                /* The tasklet will hopefully advance the queue... */
 256                return;
 257        }
 258        midc->busy = true;
 259        /*write registers and en*/
 260        iowrite32(first->sar, midc->ch_regs + SAR);
 261        iowrite32(first->dar, midc->ch_regs + DAR);
 262        iowrite32(first->lli_phys, midc->ch_regs + LLP);
 263        iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
 264        iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
 265        iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
 266        iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
 267        pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
 268                (int)first->sar, (int)first->dar, first->cfg_hi,
 269                first->cfg_lo, first->ctl_hi, first->ctl_lo);
 270        first->status = DMA_IN_PROGRESS;
 271
 272        iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
 273}
 274
 275/**
 276 * midc_descriptor_complete     -       process completed descriptor
 277 * @midc: channel owning the descriptor
 278 * @desc: the descriptor itself
 279 *
 280 * Process a completed descriptor and perform any callbacks upon
 281 * the completion. The completion handling drops the lock during the
 282 * callbacks but must be called with the lock held.
 283 */
 284static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
 285                struct intel_mid_dma_desc *desc)
 286                __releases(&midc->lock) __acquires(&midc->lock)
 287{
 288        struct dma_async_tx_descriptor  *txd = &desc->txd;
 289        dma_async_tx_callback callback_txd = NULL;
 290        struct intel_mid_dma_lli        *llitem;
 291        void *param_txd = NULL;
 292
 293        dma_cookie_complete(txd);
 294        callback_txd = txd->callback;
 295        param_txd = txd->callback_param;
 296
 297        if (desc->lli != NULL) {
 298                /*clear the DONE bit of completed LLI in memory*/
 299                llitem = desc->lli + desc->current_lli;
 300                llitem->ctl_hi &= CLEAR_DONE;
 301                if (desc->current_lli < desc->lli_length-1)
 302                        (desc->current_lli)++;
 303                else
 304                        desc->current_lli = 0;
 305        }
 306        spin_unlock_bh(&midc->lock);
 307        if (callback_txd) {
 308                pr_debug("MDMA: TXD callback set ... calling\n");
 309                callback_txd(param_txd);
 310        }
 311        if (midc->raw_tfr) {
 312                desc->status = DMA_SUCCESS;
 313                if (desc->lli != NULL) {
 314                        pci_pool_free(desc->lli_pool, desc->lli,
 315                                                desc->lli_phys);
 316                        pci_pool_destroy(desc->lli_pool);
 317                        desc->lli = NULL;
 318                }
 319                list_move(&desc->desc_node, &midc->free_list);
 320                midc->busy = false;
 321        }
 322        spin_lock_bh(&midc->lock);
 323
 324}
 325/**
 326 * midc_scan_descriptors -              check the descriptors in channel
 327 *                                      mark completed when tx is completete
 328 * @mid: device
 329 * @midc: channel to scan
 330 *
 331 * Walk the descriptor chain for the device and process any entries
 332 * that are complete.
 333 */
 334static void midc_scan_descriptors(struct middma_device *mid,
 335                                struct intel_mid_dma_chan *midc)
 336{
 337        struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
 338
 339        /*tx is complete*/
 340        list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
 341                if (desc->status == DMA_IN_PROGRESS)
 342                        midc_descriptor_complete(midc, desc);
 343        }
 344        return;
 345        }
 346/**
 347 * midc_lli_fill_sg -           Helper function to convert
 348 *                              SG list to Linked List Items.
 349 *@midc: Channel
 350 *@desc: DMA descriptor
 351 *@sglist: Pointer to SG list
 352 *@sglen: SG list length
 353 *@flags: DMA transaction flags
 354 *
 355 * Walk through the SG list and convert the SG list into Linked
 356 * List Items (LLI).
 357 */
 358static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
 359                                struct intel_mid_dma_desc *desc,
 360                                struct scatterlist *sglist,
 361                                unsigned int sglen,
 362                                unsigned int flags)
 363{
 364        struct intel_mid_dma_slave *mids;
 365        struct scatterlist  *sg;
 366        dma_addr_t lli_next, sg_phy_addr;
 367        struct intel_mid_dma_lli *lli_bloc_desc;
 368        union intel_mid_dma_ctl_lo ctl_lo;
 369        union intel_mid_dma_ctl_hi ctl_hi;
 370        int i;
 371
 372        pr_debug("MDMA: Entered midc_lli_fill_sg\n");
 373        mids = midc->mid_slave;
 374
 375        lli_bloc_desc = desc->lli;
 376        lli_next = desc->lli_phys;
 377
 378        ctl_lo.ctl_lo = desc->ctl_lo;
 379        ctl_hi.ctl_hi = desc->ctl_hi;
 380        for_each_sg(sglist, sg, sglen, i) {
 381                /*Populate CTL_LOW and LLI values*/
 382                if (i != sglen - 1) {
 383                        lli_next = lli_next +
 384                                sizeof(struct intel_mid_dma_lli);
 385                } else {
 386                /*Check for circular list, otherwise terminate LLI to ZERO*/
 387                        if (flags & DMA_PREP_CIRCULAR_LIST) {
 388                                pr_debug("MDMA: LLI is configured in circular mode\n");
 389                                lli_next = desc->lli_phys;
 390                        } else {
 391                                lli_next = 0;
 392                                ctl_lo.ctlx.llp_dst_en = 0;
 393                                ctl_lo.ctlx.llp_src_en = 0;
 394                        }
 395                }
 396                /*Populate CTL_HI values*/
 397                ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
 398                                                        desc->width,
 399                                                        midc->dma->block_size);
 400                /*Populate SAR and DAR values*/
 401                sg_phy_addr = sg_dma_address(sg);
 402                if (desc->dirn ==  DMA_MEM_TO_DEV) {
 403                        lli_bloc_desc->sar  = sg_phy_addr;
 404                        lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
 405                } else if (desc->dirn ==  DMA_DEV_TO_MEM) {
 406                        lli_bloc_desc->sar  = mids->dma_slave.src_addr;
 407                        lli_bloc_desc->dar  = sg_phy_addr;
 408                }
 409                /*Copy values into block descriptor in system memroy*/
 410                lli_bloc_desc->llp = lli_next;
 411                lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
 412                lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
 413
 414                lli_bloc_desc++;
 415        }
 416        /*Copy very first LLI values to descriptor*/
 417        desc->ctl_lo = desc->lli->ctl_lo;
 418        desc->ctl_hi = desc->lli->ctl_hi;
 419        desc->sar = desc->lli->sar;
 420        desc->dar = desc->lli->dar;
 421
 422        return 0;
 423}
 424/*****************************************************************************
 425DMA engine callback Functions*/
 426/**
 427 * intel_mid_dma_tx_submit -    callback to submit DMA transaction
 428 * @tx: dma engine descriptor
 429 *
 430 * Submit the DMA transaction for this descriptor, start if ch idle
 431 */
 432static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 433{
 434        struct intel_mid_dma_desc       *desc = to_intel_mid_dma_desc(tx);
 435        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(tx->chan);
 436        dma_cookie_t            cookie;
 437
 438        spin_lock_bh(&midc->lock);
 439        cookie = dma_cookie_assign(tx);
 440
 441        if (list_empty(&midc->active_list))
 442                list_add_tail(&desc->desc_node, &midc->active_list);
 443        else
 444                list_add_tail(&desc->desc_node, &midc->queue);
 445
 446        midc_dostart(midc, desc);
 447        spin_unlock_bh(&midc->lock);
 448
 449        return cookie;
 450}
 451
 452/**
 453 * intel_mid_dma_issue_pending -        callback to issue pending txn
 454 * @chan: chan where pending trascation needs to be checked and submitted
 455 *
 456 * Call for scan to issue pending descriptors
 457 */
 458static void intel_mid_dma_issue_pending(struct dma_chan *chan)
 459{
 460        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 461
 462        spin_lock_bh(&midc->lock);
 463        if (!list_empty(&midc->queue))
 464                midc_scan_descriptors(to_middma_device(chan->device), midc);
 465        spin_unlock_bh(&midc->lock);
 466}
 467
 468/**
 469 * intel_mid_dma_tx_status -    Return status of txn
 470 * @chan: chan for where status needs to be checked
 471 * @cookie: cookie for txn
 472 * @txstate: DMA txn state
 473 *
 474 * Return status of DMA txn
 475 */
 476static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
 477                                                dma_cookie_t cookie,
 478                                                struct dma_tx_state *txstate)
 479{
 480        struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
 481        enum dma_status ret;
 482
 483        ret = dma_cookie_status(chan, cookie, txstate);
 484        if (ret != DMA_SUCCESS) {
 485                spin_lock_bh(&midc->lock);
 486                midc_scan_descriptors(to_middma_device(chan->device), midc);
 487                spin_unlock_bh(&midc->lock);
 488
 489                ret = dma_cookie_status(chan, cookie, txstate);
 490        }
 491
 492        return ret;
 493}
 494
 495static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
 496{
 497        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 498        struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
 499        struct intel_mid_dma_slave *mid_slave;
 500
 501        BUG_ON(!midc);
 502        BUG_ON(!slave);
 503        pr_debug("MDMA: slave control called\n");
 504
 505        mid_slave = to_intel_mid_dma_slave(slave);
 506
 507        BUG_ON(!mid_slave);
 508
 509        midc->mid_slave = mid_slave;
 510        return 0;
 511}
 512/**
 513 * intel_mid_dma_device_control -       DMA device control
 514 * @chan: chan for DMA control
 515 * @cmd: control cmd
 516 * @arg: cmd arg value
 517 *
 518 * Perform DMA control command
 519 */
 520static int intel_mid_dma_device_control(struct dma_chan *chan,
 521                        enum dma_ctrl_cmd cmd, unsigned long arg)
 522{
 523        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 524        struct middma_device    *mid = to_middma_device(chan->device);
 525        struct intel_mid_dma_desc       *desc, *_desc;
 526        union intel_mid_dma_cfg_lo cfg_lo;
 527
 528        if (cmd == DMA_SLAVE_CONFIG)
 529                return dma_slave_control(chan, arg);
 530
 531        if (cmd != DMA_TERMINATE_ALL)
 532                return -ENXIO;
 533
 534        spin_lock_bh(&midc->lock);
 535        if (midc->busy == false) {
 536                spin_unlock_bh(&midc->lock);
 537                return 0;
 538        }
 539        /*Suspend and disable the channel*/
 540        cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
 541        cfg_lo.cfgx.ch_susp = 1;
 542        iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
 543        iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
 544        midc->busy = false;
 545        /* Disable interrupts */
 546        disable_dma_interrupt(midc);
 547        midc->descs_allocated = 0;
 548
 549        spin_unlock_bh(&midc->lock);
 550        list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
 551                if (desc->lli != NULL) {
 552                        pci_pool_free(desc->lli_pool, desc->lli,
 553                                                desc->lli_phys);
 554                        pci_pool_destroy(desc->lli_pool);
 555                        desc->lli = NULL;
 556                }
 557                list_move(&desc->desc_node, &midc->free_list);
 558        }
 559        return 0;
 560}
 561
 562
 563/**
 564 * intel_mid_dma_prep_memcpy -  Prep memcpy txn
 565 * @chan: chan for DMA transfer
 566 * @dest: destn address
 567 * @src: src address
 568 * @len: DMA transfer len
 569 * @flags: DMA flags
 570 *
 571 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
 572 * The periphral txn details should be filled in slave structure properly
 573 * Returns the descriptor for this txn
 574 */
 575static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
 576                        struct dma_chan *chan, dma_addr_t dest,
 577                        dma_addr_t src, size_t len, unsigned long flags)
 578{
 579        struct intel_mid_dma_chan *midc;
 580        struct intel_mid_dma_desc *desc = NULL;
 581        struct intel_mid_dma_slave *mids;
 582        union intel_mid_dma_ctl_lo ctl_lo;
 583        union intel_mid_dma_ctl_hi ctl_hi;
 584        union intel_mid_dma_cfg_lo cfg_lo;
 585        union intel_mid_dma_cfg_hi cfg_hi;
 586        enum dma_slave_buswidth width;
 587
 588        pr_debug("MDMA: Prep for memcpy\n");
 589        BUG_ON(!chan);
 590        if (!len)
 591                return NULL;
 592
 593        midc = to_intel_mid_dma_chan(chan);
 594        BUG_ON(!midc);
 595
 596        mids = midc->mid_slave;
 597        BUG_ON(!mids);
 598
 599        pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
 600                                midc->dma->pci_id, midc->ch_id, len);
 601        pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
 602                        mids->cfg_mode, mids->dma_slave.direction,
 603                        mids->hs_mode, mids->dma_slave.src_addr_width);
 604
 605        /*calculate CFG_LO*/
 606        if (mids->hs_mode == LNW_DMA_SW_HS) {
 607                cfg_lo.cfg_lo = 0;
 608                cfg_lo.cfgx.hs_sel_dst = 1;
 609                cfg_lo.cfgx.hs_sel_src = 1;
 610        } else if (mids->hs_mode == LNW_DMA_HW_HS)
 611                cfg_lo.cfg_lo = 0x00000;
 612
 613        /*calculate CFG_HI*/
 614        if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
 615                /*SW HS only*/
 616                cfg_hi.cfg_hi = 0;
 617        } else {
 618                cfg_hi.cfg_hi = 0;
 619                if (midc->dma->pimr_mask) {
 620                        cfg_hi.cfgx.protctl = 0x0; /*default value*/
 621                        cfg_hi.cfgx.fifo_mode = 1;
 622                        if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
 623                                cfg_hi.cfgx.src_per = 0;
 624                                if (mids->device_instance == 0)
 625                                        cfg_hi.cfgx.dst_per = 3;
 626                                if (mids->device_instance == 1)
 627                                        cfg_hi.cfgx.dst_per = 1;
 628                        } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
 629                                if (mids->device_instance == 0)
 630                                        cfg_hi.cfgx.src_per = 2;
 631                                if (mids->device_instance == 1)
 632                                        cfg_hi.cfgx.src_per = 0;
 633                                cfg_hi.cfgx.dst_per = 0;
 634                        }
 635                } else {
 636                        cfg_hi.cfgx.protctl = 0x1; /*default value*/
 637                        cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
 638                                        midc->ch_id - midc->dma->chan_base;
 639                }
 640        }
 641
 642        /*calculate CTL_HI*/
 643        ctl_hi.ctlx.reser = 0;
 644        ctl_hi.ctlx.done  = 0;
 645        width = mids->dma_slave.src_addr_width;
 646
 647        ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
 648        pr_debug("MDMA:calc len %d for block size %d\n",
 649                                ctl_hi.ctlx.block_ts, midc->dma->block_size);
 650        /*calculate CTL_LO*/
 651        ctl_lo.ctl_lo = 0;
 652        ctl_lo.ctlx.int_en = 1;
 653        ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
 654        ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
 655
 656        /*
 657         * Here we need some translation from "enum dma_slave_buswidth"
 658         * to the format for our dma controller
 659         *              standard        intel_mid_dmac's format
 660         *               1 Byte                 0b000
 661         *               2 Bytes                0b001
 662         *               4 Bytes                0b010
 663         */
 664        ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
 665        ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
 666
 667        if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
 668                ctl_lo.ctlx.tt_fc = 0;
 669                ctl_lo.ctlx.sinc = 0;
 670                ctl_lo.ctlx.dinc = 0;
 671        } else {
 672                if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
 673                        ctl_lo.ctlx.sinc = 0;
 674                        ctl_lo.ctlx.dinc = 2;
 675                        ctl_lo.ctlx.tt_fc = 1;
 676                } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
 677                        ctl_lo.ctlx.sinc = 2;
 678                        ctl_lo.ctlx.dinc = 0;
 679                        ctl_lo.ctlx.tt_fc = 2;
 680                }
 681        }
 682
 683        pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
 684                ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
 685
 686        enable_dma_interrupt(midc);
 687
 688        desc = midc_desc_get(midc);
 689        if (desc == NULL)
 690                goto err_desc_get;
 691        desc->sar = src;
 692        desc->dar = dest ;
 693        desc->len = len;
 694        desc->cfg_hi = cfg_hi.cfg_hi;
 695        desc->cfg_lo = cfg_lo.cfg_lo;
 696        desc->ctl_lo = ctl_lo.ctl_lo;
 697        desc->ctl_hi = ctl_hi.ctl_hi;
 698        desc->width = width;
 699        desc->dirn = mids->dma_slave.direction;
 700        desc->lli_phys = 0;
 701        desc->lli = NULL;
 702        desc->lli_pool = NULL;
 703        return &desc->txd;
 704
 705err_desc_get:
 706        pr_err("ERR_MDMA: Failed to get desc\n");
 707        midc_desc_put(midc, desc);
 708        return NULL;
 709}
 710/**
 711 * intel_mid_dma_prep_slave_sg -        Prep slave sg txn
 712 * @chan: chan for DMA transfer
 713 * @sgl: scatter gather list
 714 * @sg_len: length of sg txn
 715 * @direction: DMA transfer dirtn
 716 * @flags: DMA flags
 717 * @context: transfer context (ignored)
 718 *
 719 * Prepares LLI based periphral transfer
 720 */
 721static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
 722                        struct dma_chan *chan, struct scatterlist *sgl,
 723                        unsigned int sg_len, enum dma_transfer_direction direction,
 724                        unsigned long flags, void *context)
 725{
 726        struct intel_mid_dma_chan *midc = NULL;
 727        struct intel_mid_dma_slave *mids = NULL;
 728        struct intel_mid_dma_desc *desc = NULL;
 729        struct dma_async_tx_descriptor *txd = NULL;
 730        union intel_mid_dma_ctl_lo ctl_lo;
 731
 732        pr_debug("MDMA: Prep for slave SG\n");
 733
 734        if (!sg_len) {
 735                pr_err("MDMA: Invalid SG length\n");
 736                return NULL;
 737        }
 738        midc = to_intel_mid_dma_chan(chan);
 739        BUG_ON(!midc);
 740
 741        mids = midc->mid_slave;
 742        BUG_ON(!mids);
 743
 744        if (!midc->dma->pimr_mask) {
 745                /* We can still handle sg list with only one item */
 746                if (sg_len == 1) {
 747                        txd = intel_mid_dma_prep_memcpy(chan,
 748                                                mids->dma_slave.dst_addr,
 749                                                mids->dma_slave.src_addr,
 750                                                sg_dma_len(sgl),
 751                                                flags);
 752                        return txd;
 753                } else {
 754                        pr_warn("MDMA: SG list is not supported by this controller\n");
 755                        return  NULL;
 756                }
 757        }
 758
 759        pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
 760                        sg_len, direction, flags);
 761
 762        txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
 763        if (NULL == txd) {
 764                pr_err("MDMA: Prep memcpy failed\n");
 765                return NULL;
 766        }
 767
 768        desc = to_intel_mid_dma_desc(txd);
 769        desc->dirn = direction;
 770        ctl_lo.ctl_lo = desc->ctl_lo;
 771        ctl_lo.ctlx.llp_dst_en = 1;
 772        ctl_lo.ctlx.llp_src_en = 1;
 773        desc->ctl_lo = ctl_lo.ctl_lo;
 774        desc->lli_length = sg_len;
 775        desc->current_lli = 0;
 776        /* DMA coherent memory pool for LLI descriptors*/
 777        desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
 778                                midc->dma->pdev,
 779                                (sizeof(struct intel_mid_dma_lli)*sg_len),
 780                                32, 0);
 781        if (NULL == desc->lli_pool) {
 782                pr_err("MID_DMA:LLI pool create failed\n");
 783                return NULL;
 784        }
 785
 786        desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
 787        if (!desc->lli) {
 788                pr_err("MID_DMA: LLI alloc failed\n");
 789                pci_pool_destroy(desc->lli_pool);
 790                return NULL;
 791        }
 792
 793        midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
 794        if (flags & DMA_PREP_INTERRUPT) {
 795                iowrite32(UNMASK_INTR_REG(midc->ch_id),
 796                                midc->dma_base + MASK_BLOCK);
 797                pr_debug("MDMA:Enabled Block interrupt\n");
 798        }
 799        return &desc->txd;
 800}
 801
 802/**
 803 * intel_mid_dma_free_chan_resources -  Frees dma resources
 804 * @chan: chan requiring attention
 805 *
 806 * Frees the allocated resources on this DMA chan
 807 */
 808static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
 809{
 810        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 811        struct middma_device    *mid = to_middma_device(chan->device);
 812        struct intel_mid_dma_desc       *desc, *_desc;
 813
 814        if (true == midc->busy) {
 815                /*trying to free ch in use!!!!!*/
 816                pr_err("ERR_MDMA: trying to free ch in use\n");
 817        }
 818        spin_lock_bh(&midc->lock);
 819        midc->descs_allocated = 0;
 820        list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
 821                list_del(&desc->desc_node);
 822                pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
 823        }
 824        list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
 825                list_del(&desc->desc_node);
 826                pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
 827        }
 828        list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
 829                list_del(&desc->desc_node);
 830                pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
 831        }
 832        spin_unlock_bh(&midc->lock);
 833        midc->in_use = false;
 834        midc->busy = false;
 835        /* Disable CH interrupts */
 836        iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
 837        iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
 838        pm_runtime_put(&mid->pdev->dev);
 839}
 840
 841/**
 842 * intel_mid_dma_alloc_chan_resources - Allocate dma resources
 843 * @chan: chan requiring attention
 844 *
 845 * Allocates DMA resources on this chan
 846 * Return the descriptors allocated
 847 */
 848static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
 849{
 850        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 851        struct middma_device    *mid = to_middma_device(chan->device);
 852        struct intel_mid_dma_desc       *desc;
 853        dma_addr_t              phys;
 854        int     i = 0;
 855
 856        pm_runtime_get_sync(&mid->pdev->dev);
 857
 858        if (mid->state == SUSPENDED) {
 859                if (dma_resume(&mid->pdev->dev)) {
 860                        pr_err("ERR_MDMA: resume failed");
 861                        return -EFAULT;
 862                }
 863        }
 864
 865        /* ASSERT:  channel is idle */
 866        if (test_ch_en(mid->dma_base, midc->ch_id)) {
 867                /*ch is not idle*/
 868                pr_err("ERR_MDMA: ch not idle\n");
 869                pm_runtime_put(&mid->pdev->dev);
 870                return -EIO;
 871        }
 872        dma_cookie_init(chan);
 873
 874        spin_lock_bh(&midc->lock);
 875        while (midc->descs_allocated < DESCS_PER_CHANNEL) {
 876                spin_unlock_bh(&midc->lock);
 877                desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
 878                if (!desc) {
 879                        pr_err("ERR_MDMA: desc failed\n");
 880                        pm_runtime_put(&mid->pdev->dev);
 881                        return -ENOMEM;
 882                        /*check*/
 883                }
 884                dma_async_tx_descriptor_init(&desc->txd, chan);
 885                desc->txd.tx_submit = intel_mid_dma_tx_submit;
 886                desc->txd.flags = DMA_CTRL_ACK;
 887                desc->txd.phys = phys;
 888                spin_lock_bh(&midc->lock);
 889                i = ++midc->descs_allocated;
 890                list_add_tail(&desc->desc_node, &midc->free_list);
 891        }
 892        spin_unlock_bh(&midc->lock);
 893        midc->in_use = true;
 894        midc->busy = false;
 895        pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
 896        return i;
 897}
 898
 899/**
 900 * midc_handle_error -  Handle DMA txn error
 901 * @mid: controller where error occurred
 902 * @midc: chan where error occurred
 903 *
 904 * Scan the descriptor for error
 905 */
 906static void midc_handle_error(struct middma_device *mid,
 907                struct intel_mid_dma_chan *midc)
 908{
 909        midc_scan_descriptors(mid, midc);
 910}
 911
 912/**
 913 * dma_tasklet -        DMA interrupt tasklet
 914 * @data: tasklet arg (the controller structure)
 915 *
 916 * Scan the controller for interrupts for completion/error
 917 * Clear the interrupt and call for handling completion/error
 918 */
 919static void dma_tasklet(unsigned long data)
 920{
 921        struct middma_device *mid = NULL;
 922        struct intel_mid_dma_chan *midc = NULL;
 923        u32 status, raw_tfr, raw_block;
 924        int i;
 925
 926        mid = (struct middma_device *)data;
 927        if (mid == NULL) {
 928                pr_err("ERR_MDMA: tasklet Null param\n");
 929                return;
 930        }
 931        pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
 932        raw_tfr = ioread32(mid->dma_base + RAW_TFR);
 933        raw_block = ioread32(mid->dma_base + RAW_BLOCK);
 934        status = raw_tfr | raw_block;
 935        status &= mid->intr_mask;
 936        while (status) {
 937                /*txn interrupt*/
 938                i = get_ch_index(&status, mid->chan_base);
 939                if (i < 0) {
 940                        pr_err("ERR_MDMA:Invalid ch index %x\n", i);
 941                        return;
 942                }
 943                midc = &mid->ch[i];
 944                if (midc == NULL) {
 945                        pr_err("ERR_MDMA:Null param midc\n");
 946                        return;
 947                }
 948                pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
 949                                status, midc->ch_id, i);
 950                midc->raw_tfr = raw_tfr;
 951                midc->raw_block = raw_block;
 952                spin_lock_bh(&midc->lock);
 953                /*clearing this interrupts first*/
 954                iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
 955                if (raw_block) {
 956                        iowrite32((1 << midc->ch_id),
 957                                mid->dma_base + CLEAR_BLOCK);
 958                }
 959                midc_scan_descriptors(mid, midc);
 960                pr_debug("MDMA:Scan of desc... complete, unmasking\n");
 961                iowrite32(UNMASK_INTR_REG(midc->ch_id),
 962                                mid->dma_base + MASK_TFR);
 963                if (raw_block) {
 964                        iowrite32(UNMASK_INTR_REG(midc->ch_id),
 965                                mid->dma_base + MASK_BLOCK);
 966                }
 967                spin_unlock_bh(&midc->lock);
 968        }
 969
 970        status = ioread32(mid->dma_base + RAW_ERR);
 971        status &= mid->intr_mask;
 972        while (status) {
 973                /*err interrupt*/
 974                i = get_ch_index(&status, mid->chan_base);
 975                if (i < 0) {
 976                        pr_err("ERR_MDMA:Invalid ch index %x\n", i);
 977                        return;
 978                }
 979                midc = &mid->ch[i];
 980                if (midc == NULL) {
 981                        pr_err("ERR_MDMA:Null param midc\n");
 982                        return;
 983                }
 984                pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
 985                                status, midc->ch_id, i);
 986
 987                iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
 988                spin_lock_bh(&midc->lock);
 989                midc_handle_error(mid, midc);
 990                iowrite32(UNMASK_INTR_REG(midc->ch_id),
 991                                mid->dma_base + MASK_ERR);
 992                spin_unlock_bh(&midc->lock);
 993        }
 994        pr_debug("MDMA:Exiting takslet...\n");
 995        return;
 996}
 997
 998static void dma_tasklet1(unsigned long data)
 999{
1000        pr_debug("MDMA:in takslet1...\n");
1001        return dma_tasklet(data);
1002}
1003
1004static void dma_tasklet2(unsigned long data)
1005{
1006        pr_debug("MDMA:in takslet2...\n");
1007        return dma_tasklet(data);
1008}
1009
1010/**
1011 * intel_mid_dma_interrupt -    DMA ISR
1012 * @irq: IRQ where interrupt occurred
1013 * @data: ISR cllback data (the controller structure)
1014 *
1015 * See if this is our interrupt if so then schedule the tasklet
1016 * otherwise ignore
1017 */
1018static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1019{
1020        struct middma_device *mid = data;
1021        u32 tfr_status, err_status;
1022        int call_tasklet = 0;
1023
1024        tfr_status = ioread32(mid->dma_base + RAW_TFR);
1025        err_status = ioread32(mid->dma_base + RAW_ERR);
1026        if (!tfr_status && !err_status)
1027                return IRQ_NONE;
1028
1029        /*DMA Interrupt*/
1030        pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1031        pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1032        tfr_status &= mid->intr_mask;
1033        if (tfr_status) {
1034                /*need to disable intr*/
1035                iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1036                iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1037                pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1038                call_tasklet = 1;
1039        }
1040        err_status &= mid->intr_mask;
1041        if (err_status) {
1042                iowrite32((err_status << INT_MASK_WE),
1043                          mid->dma_base + MASK_ERR);
1044                call_tasklet = 1;
1045        }
1046        if (call_tasklet)
1047                tasklet_schedule(&mid->tasklet);
1048
1049        return IRQ_HANDLED;
1050}
1051
1052static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1053{
1054        return intel_mid_dma_interrupt(irq, data);
1055}
1056
1057static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1058{
1059        return intel_mid_dma_interrupt(irq, data);
1060}
1061
1062/**
1063 * mid_setup_dma -      Setup the DMA controller
1064 * @pdev: Controller PCI device structure
1065 *
1066 * Initialize the DMA controller, channels, registers with DMA engine,
1067 * ISR. Initialize DMA controller channels.
1068 */
1069static int mid_setup_dma(struct pci_dev *pdev)
1070{
1071        struct middma_device *dma = pci_get_drvdata(pdev);
1072        int err, i;
1073
1074        /* DMA coherent memory pool for DMA descriptor allocations */
1075        dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1076                                        sizeof(struct intel_mid_dma_desc),
1077                                        32, 0);
1078        if (NULL == dma->dma_pool) {
1079                pr_err("ERR_MDMA:pci_pool_create failed\n");
1080                err = -ENOMEM;
1081                goto err_dma_pool;
1082        }
1083
1084        INIT_LIST_HEAD(&dma->common.channels);
1085        dma->pci_id = pdev->device;
1086        if (dma->pimr_mask) {
1087                dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1088                                        LNW_PERIPHRAL_MASK_SIZE);
1089                if (dma->mask_reg == NULL) {
1090                        pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1091                        err = -ENOMEM;
1092                        goto err_ioremap;
1093                }
1094        } else
1095                dma->mask_reg = NULL;
1096
1097        pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1098        /*init CH structures*/
1099        dma->intr_mask = 0;
1100        dma->state = RUNNING;
1101        for (i = 0; i < dma->max_chan; i++) {
1102                struct intel_mid_dma_chan *midch = &dma->ch[i];
1103
1104                midch->chan.device = &dma->common;
1105                dma_cookie_init(&midch->chan);
1106                midch->ch_id = dma->chan_base + i;
1107                pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1108
1109                midch->dma_base = dma->dma_base;
1110                midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1111                midch->dma = dma;
1112                dma->intr_mask |= 1 << (dma->chan_base + i);
1113                spin_lock_init(&midch->lock);
1114
1115                INIT_LIST_HEAD(&midch->active_list);
1116                INIT_LIST_HEAD(&midch->queue);
1117                INIT_LIST_HEAD(&midch->free_list);
1118                /*mask interrupts*/
1119                iowrite32(MASK_INTR_REG(midch->ch_id),
1120                        dma->dma_base + MASK_BLOCK);
1121                iowrite32(MASK_INTR_REG(midch->ch_id),
1122                        dma->dma_base + MASK_SRC_TRAN);
1123                iowrite32(MASK_INTR_REG(midch->ch_id),
1124                        dma->dma_base + MASK_DST_TRAN);
1125                iowrite32(MASK_INTR_REG(midch->ch_id),
1126                        dma->dma_base + MASK_ERR);
1127                iowrite32(MASK_INTR_REG(midch->ch_id),
1128                        dma->dma_base + MASK_TFR);
1129
1130                disable_dma_interrupt(midch);
1131                list_add_tail(&midch->chan.device_node, &dma->common.channels);
1132        }
1133        pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1134
1135        /*init dma structure*/
1136        dma_cap_zero(dma->common.cap_mask);
1137        dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1138        dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1139        dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1140        dma->common.dev = &pdev->dev;
1141
1142        dma->common.device_alloc_chan_resources =
1143                                        intel_mid_dma_alloc_chan_resources;
1144        dma->common.device_free_chan_resources =
1145                                        intel_mid_dma_free_chan_resources;
1146
1147        dma->common.device_tx_status = intel_mid_dma_tx_status;
1148        dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1149        dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1150        dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1151        dma->common.device_control = intel_mid_dma_device_control;
1152
1153        /*enable dma cntrl*/
1154        iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1155
1156        /*register irq */
1157        if (dma->pimr_mask) {
1158                pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1159                err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1160                        IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1161                if (0 != err)
1162                        goto err_irq;
1163        } else {
1164                dma->intr_mask = 0x03;
1165                pr_debug("MDMA:Requesting irq for DMAC2\n");
1166                err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1167                        IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1168                if (0 != err)
1169                        goto err_irq;
1170        }
1171        /*register device w/ engine*/
1172        err = dma_async_device_register(&dma->common);
1173        if (0 != err) {
1174                pr_err("ERR_MDMA:device_register failed: %d\n", err);
1175                goto err_engine;
1176        }
1177        if (dma->pimr_mask) {
1178                pr_debug("setting up tasklet1 for DMAC1\n");
1179                tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1180        } else {
1181                pr_debug("setting up tasklet2 for DMAC2\n");
1182                tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1183        }
1184        return 0;
1185
1186err_engine:
1187        free_irq(pdev->irq, dma);
1188err_irq:
1189        if (dma->mask_reg)
1190                iounmap(dma->mask_reg);
1191err_ioremap:
1192        pci_pool_destroy(dma->dma_pool);
1193err_dma_pool:
1194        pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1195        return err;
1196
1197}
1198
1199/**
1200 * middma_shutdown -    Shutdown the DMA controller
1201 * @pdev: Controller PCI device structure
1202 *
1203 * Called by remove
1204 * Unregister DMa controller, clear all structures and free interrupt
1205 */
1206static void middma_shutdown(struct pci_dev *pdev)
1207{
1208        struct middma_device *device = pci_get_drvdata(pdev);
1209
1210        dma_async_device_unregister(&device->common);
1211        pci_pool_destroy(device->dma_pool);
1212        if (device->mask_reg)
1213                iounmap(device->mask_reg);
1214        if (device->dma_base)
1215                iounmap(device->dma_base);
1216        free_irq(pdev->irq, device);
1217        return;
1218}
1219
1220/**
1221 * intel_mid_dma_probe -        PCI Probe
1222 * @pdev: Controller PCI device structure
1223 * @id: pci device id structure
1224 *
1225 * Initialize the PCI device, map BARs, query driver data.
1226 * Call setup_dma to complete contoller and chan initilzation
1227 */
1228static int intel_mid_dma_probe(struct pci_dev *pdev,
1229                                        const struct pci_device_id *id)
1230{
1231        struct middma_device *device;
1232        u32 base_addr, bar_size;
1233        struct intel_mid_dma_probe_info *info;
1234        int err;
1235
1236        pr_debug("MDMA: probe for %x\n", pdev->device);
1237        info = (void *)id->driver_data;
1238        pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1239                                info->max_chan, info->ch_base,
1240                                info->block_size, info->pimr_mask);
1241
1242        err = pci_enable_device(pdev);
1243        if (err)
1244                goto err_enable_device;
1245
1246        err = pci_request_regions(pdev, "intel_mid_dmac");
1247        if (err)
1248                goto err_request_regions;
1249
1250        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1251        if (err)
1252                goto err_set_dma_mask;
1253
1254        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1255        if (err)
1256                goto err_set_dma_mask;
1257
1258        device = kzalloc(sizeof(*device), GFP_KERNEL);
1259        if (!device) {
1260                pr_err("ERR_MDMA:kzalloc failed probe\n");
1261                err = -ENOMEM;
1262                goto err_kzalloc;
1263        }
1264        device->pdev = pci_dev_get(pdev);
1265
1266        base_addr = pci_resource_start(pdev, 0);
1267        bar_size  = pci_resource_len(pdev, 0);
1268        device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1269        if (!device->dma_base) {
1270                pr_err("ERR_MDMA:ioremap failed\n");
1271                err = -ENOMEM;
1272                goto err_ioremap;
1273        }
1274        pci_set_drvdata(pdev, device);
1275        pci_set_master(pdev);
1276        device->max_chan = info->max_chan;
1277        device->chan_base = info->ch_base;
1278        device->block_size = info->block_size;
1279        device->pimr_mask = info->pimr_mask;
1280
1281        err = mid_setup_dma(pdev);
1282        if (err)
1283                goto err_dma;
1284
1285        pm_runtime_put_noidle(&pdev->dev);
1286        pm_runtime_allow(&pdev->dev);
1287        return 0;
1288
1289err_dma:
1290        iounmap(device->dma_base);
1291err_ioremap:
1292        pci_dev_put(pdev);
1293        kfree(device);
1294err_kzalloc:
1295err_set_dma_mask:
1296        pci_release_regions(pdev);
1297        pci_disable_device(pdev);
1298err_request_regions:
1299err_enable_device:
1300        pr_err("ERR_MDMA:Probe failed %d\n", err);
1301        return err;
1302}
1303
1304/**
1305 * intel_mid_dma_remove -       PCI remove
1306 * @pdev: Controller PCI device structure
1307 *
1308 * Free up all resources and data
1309 * Call shutdown_dma to complete contoller and chan cleanup
1310 */
1311static void intel_mid_dma_remove(struct pci_dev *pdev)
1312{
1313        struct middma_device *device = pci_get_drvdata(pdev);
1314
1315        pm_runtime_get_noresume(&pdev->dev);
1316        pm_runtime_forbid(&pdev->dev);
1317        middma_shutdown(pdev);
1318        pci_dev_put(pdev);
1319        kfree(device);
1320        pci_release_regions(pdev);
1321        pci_disable_device(pdev);
1322}
1323
1324/* Power Management */
1325/*
1326* dma_suspend - PCI suspend function
1327*
1328* @pci: PCI device structure
1329* @state: PM message
1330*
1331* This function is called by OS when a power event occurs
1332*/
1333static int dma_suspend(struct device *dev)
1334{
1335        struct pci_dev *pci = to_pci_dev(dev);
1336        int i;
1337        struct middma_device *device = pci_get_drvdata(pci);
1338        pr_debug("MDMA: dma_suspend called\n");
1339
1340        for (i = 0; i < device->max_chan; i++) {
1341                if (device->ch[i].in_use)
1342                        return -EAGAIN;
1343        }
1344        dmac1_mask_periphral_intr(device);
1345        device->state = SUSPENDED;
1346        pci_save_state(pci);
1347        pci_disable_device(pci);
1348        pci_set_power_state(pci, PCI_D3hot);
1349        return 0;
1350}
1351
1352/**
1353* dma_resume - PCI resume function
1354*
1355* @pci: PCI device structure
1356*
1357* This function is called by OS when a power event occurs
1358*/
1359int dma_resume(struct device *dev)
1360{
1361        struct pci_dev *pci = to_pci_dev(dev);
1362        int ret;
1363        struct middma_device *device = pci_get_drvdata(pci);
1364
1365        pr_debug("MDMA: dma_resume called\n");
1366        pci_set_power_state(pci, PCI_D0);
1367        pci_restore_state(pci);
1368        ret = pci_enable_device(pci);
1369        if (ret) {
1370                pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1371                return ret;
1372        }
1373        device->state = RUNNING;
1374        iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1375        return 0;
1376}
1377
1378static int dma_runtime_suspend(struct device *dev)
1379{
1380        struct pci_dev *pci_dev = to_pci_dev(dev);
1381        struct middma_device *device = pci_get_drvdata(pci_dev);
1382
1383        device->state = SUSPENDED;
1384        return 0;
1385}
1386
1387static int dma_runtime_resume(struct device *dev)
1388{
1389        struct pci_dev *pci_dev = to_pci_dev(dev);
1390        struct middma_device *device = pci_get_drvdata(pci_dev);
1391
1392        device->state = RUNNING;
1393        iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1394        return 0;
1395}
1396
1397static int dma_runtime_idle(struct device *dev)
1398{
1399        struct pci_dev *pdev = to_pci_dev(dev);
1400        struct middma_device *device = pci_get_drvdata(pdev);
1401        int i;
1402
1403        for (i = 0; i < device->max_chan; i++) {
1404                if (device->ch[i].in_use)
1405                        return -EAGAIN;
1406        }
1407
1408        return pm_schedule_suspend(dev, 0);
1409}
1410
1411/******************************************************************************
1412* PCI stuff
1413*/
1414static struct pci_device_id intel_mid_dma_ids[] = {
1415        { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),       INFO(2, 6, 4095, 0x200020)},
1416        { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),       INFO(2, 0, 2047, 0)},
1417        { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),    INFO(2, 0, 2047, 0)},
1418        { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),      INFO(4, 0, 4095, 0x400040)},
1419        { 0, }
1420};
1421MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1422
1423static const struct dev_pm_ops intel_mid_dma_pm = {
1424        .runtime_suspend = dma_runtime_suspend,
1425        .runtime_resume = dma_runtime_resume,
1426        .runtime_idle = dma_runtime_idle,
1427        .suspend = dma_suspend,
1428        .resume = dma_resume,
1429};
1430
1431static struct pci_driver intel_mid_dma_pci_driver = {
1432        .name           =       "Intel MID DMA",
1433        .id_table       =       intel_mid_dma_ids,
1434        .probe          =       intel_mid_dma_probe,
1435        .remove         =       intel_mid_dma_remove,
1436#ifdef CONFIG_PM
1437        .driver = {
1438                .pm = &intel_mid_dma_pm,
1439        },
1440#endif
1441};
1442
1443static int __init intel_mid_dma_init(void)
1444{
1445        pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1446                        INTEL_MID_DMA_DRIVER_VERSION);
1447        return pci_register_driver(&intel_mid_dma_pci_driver);
1448}
1449fs_initcall(intel_mid_dma_init);
1450
1451static void __exit intel_mid_dma_exit(void)
1452{
1453        pci_unregister_driver(&intel_mid_dma_pci_driver);
1454}
1455module_exit(intel_mid_dma_exit);
1456
1457MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1458MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1459MODULE_LICENSE("GPL v2");
1460MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1461