linux/drivers/gpu/drm/i915/i915_gem.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/i915_drm.h>
  30#include "i915_drv.h"
  31#include "i915_trace.h"
  32#include "intel_drv.h"
  33#include <linux/shmem_fs.h>
  34#include <linux/slab.h>
  35#include <linux/swap.h>
  36#include <linux/pci.h>
  37#include <linux/dma-buf.h>
  38
  39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  42                                                    unsigned alignment,
  43                                                    bool map_and_fenceable,
  44                                                    bool nonblocking);
  45static int i915_gem_phys_pwrite(struct drm_device *dev,
  46                                struct drm_i915_gem_object *obj,
  47                                struct drm_i915_gem_pwrite *args,
  48                                struct drm_file *file);
  49
  50static void i915_gem_write_fence(struct drm_device *dev, int reg,
  51                                 struct drm_i915_gem_object *obj);
  52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  53                                         struct drm_i915_fence_reg *fence,
  54                                         bool enable);
  55
  56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57                                    struct shrink_control *sc);
  58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  61
  62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  63{
  64        if (obj->tiling_mode)
  65                i915_gem_release_mmap(obj);
  66
  67        /* As we do not have an associated fence register, we will force
  68         * a tiling change if we ever need to acquire one.
  69         */
  70        obj->fence_dirty = false;
  71        obj->fence_reg = I915_FENCE_REG_NONE;
  72}
  73
  74/* some bookkeeping */
  75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  76                                  size_t size)
  77{
  78        dev_priv->mm.object_count++;
  79        dev_priv->mm.object_memory += size;
  80}
  81
  82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  83                                     size_t size)
  84{
  85        dev_priv->mm.object_count--;
  86        dev_priv->mm.object_memory -= size;
  87}
  88
  89static int
  90i915_gem_wait_for_error(struct i915_gpu_error *error)
  91{
  92        int ret;
  93
  94#define EXIT_COND (!i915_reset_in_progress(error))
  95        if (EXIT_COND)
  96                return 0;
  97
  98        /* GPU is already declared terminally dead, give up. */
  99        if (i915_terminally_wedged(error))
 100                return -EIO;
 101
 102        /*
 103         * Only wait 10 seconds for the gpu reset to complete to avoid hanging
 104         * userspace. If it takes that long something really bad is going on and
 105         * we should simply try to bail out and fail as gracefully as possible.
 106         */
 107        ret = wait_event_interruptible_timeout(error->reset_queue,
 108                                               EXIT_COND,
 109                                               10*HZ);
 110        if (ret == 0) {
 111                DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 112                return -EIO;
 113        } else if (ret < 0) {
 114                return ret;
 115        }
 116#undef EXIT_COND
 117
 118        return 0;
 119}
 120
 121int i915_mutex_lock_interruptible(struct drm_device *dev)
 122{
 123        struct drm_i915_private *dev_priv = dev->dev_private;
 124        int ret;
 125
 126        ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 127        if (ret)
 128                return ret;
 129
 130        ret = mutex_lock_interruptible(&dev->struct_mutex);
 131        if (ret)
 132                return ret;
 133
 134        WARN_ON(i915_verify_lists(dev));
 135        return 0;
 136}
 137
 138static inline bool
 139i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 140{
 141        return obj->gtt_space && !obj->active;
 142}
 143
 144int
 145i915_gem_init_ioctl(struct drm_device *dev, void *data,
 146                    struct drm_file *file)
 147{
 148        struct drm_i915_private *dev_priv = dev->dev_private;
 149        struct drm_i915_gem_init *args = data;
 150
 151        if (drm_core_check_feature(dev, DRIVER_MODESET))
 152                return -ENODEV;
 153
 154        if (args->gtt_start >= args->gtt_end ||
 155            (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 156                return -EINVAL;
 157
 158        /* GEM with user mode setting was never supported on ilk and later. */
 159        if (INTEL_INFO(dev)->gen >= 5)
 160                return -ENODEV;
 161
 162        mutex_lock(&dev->struct_mutex);
 163        i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
 164                                  args->gtt_end);
 165        dev_priv->gtt.mappable_end = args->gtt_end;
 166        mutex_unlock(&dev->struct_mutex);
 167
 168        return 0;
 169}
 170
 171int
 172i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 173                            struct drm_file *file)
 174{
 175        struct drm_i915_private *dev_priv = dev->dev_private;
 176        struct drm_i915_gem_get_aperture *args = data;
 177        struct drm_i915_gem_object *obj;
 178        size_t pinned;
 179
 180        pinned = 0;
 181        mutex_lock(&dev->struct_mutex);
 182        list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
 183                if (obj->pin_count)
 184                        pinned += obj->gtt_space->size;
 185        mutex_unlock(&dev->struct_mutex);
 186
 187        args->aper_size = dev_priv->gtt.total;
 188        args->aper_available_size = args->aper_size - pinned;
 189
 190        return 0;
 191}
 192
 193void *i915_gem_object_alloc(struct drm_device *dev)
 194{
 195        struct drm_i915_private *dev_priv = dev->dev_private;
 196        return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
 197}
 198
 199void i915_gem_object_free(struct drm_i915_gem_object *obj)
 200{
 201        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 202        kmem_cache_free(dev_priv->slab, obj);
 203}
 204
 205static int
 206i915_gem_create(struct drm_file *file,
 207                struct drm_device *dev,
 208                uint64_t size,
 209                uint32_t *handle_p)
 210{
 211        struct drm_i915_gem_object *obj;
 212        int ret;
 213        u32 handle;
 214
 215        size = roundup(size, PAGE_SIZE);
 216        if (size == 0)
 217                return -EINVAL;
 218
 219        /* Allocate the new object */
 220        obj = i915_gem_alloc_object(dev, size);
 221        if (obj == NULL)
 222                return -ENOMEM;
 223
 224        ret = drm_gem_handle_create(file, &obj->base, &handle);
 225        if (ret) {
 226                drm_gem_object_release(&obj->base);
 227                i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
 228                i915_gem_object_free(obj);
 229                return ret;
 230        }
 231
 232        /* drop reference from allocate - handle holds it now */
 233        drm_gem_object_unreference(&obj->base);
 234        trace_i915_gem_object_create(obj);
 235
 236        *handle_p = handle;
 237        return 0;
 238}
 239
 240int
 241i915_gem_dumb_create(struct drm_file *file,
 242                     struct drm_device *dev,
 243                     struct drm_mode_create_dumb *args)
 244{
 245        /* have to work out size/pitch and return them */
 246        args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
 247        args->size = args->pitch * args->height;
 248        return i915_gem_create(file, dev,
 249                               args->size, &args->handle);
 250}
 251
 252int i915_gem_dumb_destroy(struct drm_file *file,
 253                          struct drm_device *dev,
 254                          uint32_t handle)
 255{
 256        return drm_gem_handle_delete(file, handle);
 257}
 258
 259/**
 260 * Creates a new mm object and returns a handle to it.
 261 */
 262int
 263i915_gem_create_ioctl(struct drm_device *dev, void *data,
 264                      struct drm_file *file)
 265{
 266        struct drm_i915_gem_create *args = data;
 267
 268        return i915_gem_create(file, dev,
 269                               args->size, &args->handle);
 270}
 271
 272static inline int
 273__copy_to_user_swizzled(char __user *cpu_vaddr,
 274                        const char *gpu_vaddr, int gpu_offset,
 275                        int length)
 276{
 277        int ret, cpu_offset = 0;
 278
 279        while (length > 0) {
 280                int cacheline_end = ALIGN(gpu_offset + 1, 64);
 281                int this_length = min(cacheline_end - gpu_offset, length);
 282                int swizzled_gpu_offset = gpu_offset ^ 64;
 283
 284                ret = __copy_to_user(cpu_vaddr + cpu_offset,
 285                                     gpu_vaddr + swizzled_gpu_offset,
 286                                     this_length);
 287                if (ret)
 288                        return ret + length;
 289
 290                cpu_offset += this_length;
 291                gpu_offset += this_length;
 292                length -= this_length;
 293        }
 294
 295        return 0;
 296}
 297
 298static inline int
 299__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 300                          const char __user *cpu_vaddr,
 301                          int length)
 302{
 303        int ret, cpu_offset = 0;
 304
 305        while (length > 0) {
 306                int cacheline_end = ALIGN(gpu_offset + 1, 64);
 307                int this_length = min(cacheline_end - gpu_offset, length);
 308                int swizzled_gpu_offset = gpu_offset ^ 64;
 309
 310                ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 311                                       cpu_vaddr + cpu_offset,
 312                                       this_length);
 313                if (ret)
 314                        return ret + length;
 315
 316                cpu_offset += this_length;
 317                gpu_offset += this_length;
 318                length -= this_length;
 319        }
 320
 321        return 0;
 322}
 323
 324/* Per-page copy function for the shmem pread fastpath.
 325 * Flushes invalid cachelines before reading the target if
 326 * needs_clflush is set. */
 327static int
 328shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 329                 char __user *user_data,
 330                 bool page_do_bit17_swizzling, bool needs_clflush)
 331{
 332        char *vaddr;
 333        int ret;
 334
 335        if (unlikely(page_do_bit17_swizzling))
 336                return -EINVAL;
 337
 338        vaddr = kmap_atomic(page);
 339        if (needs_clflush)
 340                drm_clflush_virt_range(vaddr + shmem_page_offset,
 341                                       page_length);
 342        ret = __copy_to_user_inatomic(user_data,
 343                                      vaddr + shmem_page_offset,
 344                                      page_length);
 345        kunmap_atomic(vaddr);
 346
 347        return ret ? -EFAULT : 0;
 348}
 349
 350static void
 351shmem_clflush_swizzled_range(char *addr, unsigned long length,
 352                             bool swizzled)
 353{
 354        if (unlikely(swizzled)) {
 355                unsigned long start = (unsigned long) addr;
 356                unsigned long end = (unsigned long) addr + length;
 357
 358                /* For swizzling simply ensure that we always flush both
 359                 * channels. Lame, but simple and it works. Swizzled
 360                 * pwrite/pread is far from a hotpath - current userspace
 361                 * doesn't use it at all. */
 362                start = round_down(start, 128);
 363                end = round_up(end, 128);
 364
 365                drm_clflush_virt_range((void *)start, end - start);
 366        } else {
 367                drm_clflush_virt_range(addr, length);
 368        }
 369
 370}
 371
 372/* Only difference to the fast-path function is that this can handle bit17
 373 * and uses non-atomic copy and kmap functions. */
 374static int
 375shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 376                 char __user *user_data,
 377                 bool page_do_bit17_swizzling, bool needs_clflush)
 378{
 379        char *vaddr;
 380        int ret;
 381
 382        vaddr = kmap(page);
 383        if (needs_clflush)
 384                shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 385                                             page_length,
 386                                             page_do_bit17_swizzling);
 387
 388        if (page_do_bit17_swizzling)
 389                ret = __copy_to_user_swizzled(user_data,
 390                                              vaddr, shmem_page_offset,
 391                                              page_length);
 392        else
 393                ret = __copy_to_user(user_data,
 394                                     vaddr + shmem_page_offset,
 395                                     page_length);
 396        kunmap(page);
 397
 398        return ret ? - EFAULT : 0;
 399}
 400
 401static int
 402i915_gem_shmem_pread(struct drm_device *dev,
 403                     struct drm_i915_gem_object *obj,
 404                     struct drm_i915_gem_pread *args,
 405                     struct drm_file *file)
 406{
 407        char __user *user_data;
 408        ssize_t remain;
 409        loff_t offset;
 410        int shmem_page_offset, page_length, ret = 0;
 411        int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 412        int prefaulted = 0;
 413        int needs_clflush = 0;
 414        struct scatterlist *sg;
 415        int i;
 416
 417        user_data = (char __user *) (uintptr_t) args->data_ptr;
 418        remain = args->size;
 419
 420        obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 421
 422        if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 423                /* If we're not in the cpu read domain, set ourself into the gtt
 424                 * read domain and manually flush cachelines (if required). This
 425                 * optimizes for the case when the gpu will dirty the data
 426                 * anyway again before the next pread happens. */
 427                if (obj->cache_level == I915_CACHE_NONE)
 428                        needs_clflush = 1;
 429                if (obj->gtt_space) {
 430                        ret = i915_gem_object_set_to_gtt_domain(obj, false);
 431                        if (ret)
 432                                return ret;
 433                }
 434        }
 435
 436        ret = i915_gem_object_get_pages(obj);
 437        if (ret)
 438                return ret;
 439
 440        i915_gem_object_pin_pages(obj);
 441
 442        offset = args->offset;
 443
 444        for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
 445                struct page *page;
 446
 447                if (i < offset >> PAGE_SHIFT)
 448                        continue;
 449
 450                if (remain <= 0)
 451                        break;
 452
 453                /* Operation in this page
 454                 *
 455                 * shmem_page_offset = offset within page in shmem file
 456                 * page_length = bytes to copy for this page
 457                 */
 458                shmem_page_offset = offset_in_page(offset);
 459                page_length = remain;
 460                if ((shmem_page_offset + page_length) > PAGE_SIZE)
 461                        page_length = PAGE_SIZE - shmem_page_offset;
 462
 463                page = sg_page(sg);
 464                page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 465                        (page_to_phys(page) & (1 << 17)) != 0;
 466
 467                ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 468                                       user_data, page_do_bit17_swizzling,
 469                                       needs_clflush);
 470                if (ret == 0)
 471                        goto next_page;
 472
 473                mutex_unlock(&dev->struct_mutex);
 474
 475                if (!prefaulted) {
 476                        ret = fault_in_multipages_writeable(user_data, remain);
 477                        /* Userspace is tricking us, but we've already clobbered
 478                         * its pages with the prefault and promised to write the
 479                         * data up to the first fault. Hence ignore any errors
 480                         * and just continue. */
 481                        (void)ret;
 482                        prefaulted = 1;
 483                }
 484
 485                ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 486                                       user_data, page_do_bit17_swizzling,
 487                                       needs_clflush);
 488
 489                mutex_lock(&dev->struct_mutex);
 490
 491next_page:
 492                mark_page_accessed(page);
 493
 494                if (ret)
 495                        goto out;
 496
 497                remain -= page_length;
 498                user_data += page_length;
 499                offset += page_length;
 500        }
 501
 502out:
 503        i915_gem_object_unpin_pages(obj);
 504
 505        return ret;
 506}
 507
 508/**
 509 * Reads data from the object referenced by handle.
 510 *
 511 * On error, the contents of *data are undefined.
 512 */
 513int
 514i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 515                     struct drm_file *file)
 516{
 517        struct drm_i915_gem_pread *args = data;
 518        struct drm_i915_gem_object *obj;
 519        int ret = 0;
 520
 521        if (args->size == 0)
 522                return 0;
 523
 524        if (!access_ok(VERIFY_WRITE,
 525                       (char __user *)(uintptr_t)args->data_ptr,
 526                       args->size))
 527                return -EFAULT;
 528
 529        ret = i915_mutex_lock_interruptible(dev);
 530        if (ret)
 531                return ret;
 532
 533        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 534        if (&obj->base == NULL) {
 535                ret = -ENOENT;
 536                goto unlock;
 537        }
 538
 539        /* Bounds check source.  */
 540        if (args->offset > obj->base.size ||
 541            args->size > obj->base.size - args->offset) {
 542                ret = -EINVAL;
 543                goto out;
 544        }
 545
 546        /* prime objects have no backing filp to GEM pread/pwrite
 547         * pages from.
 548         */
 549        if (!obj->base.filp) {
 550                ret = -EINVAL;
 551                goto out;
 552        }
 553
 554        trace_i915_gem_object_pread(obj, args->offset, args->size);
 555
 556        ret = i915_gem_shmem_pread(dev, obj, args, file);
 557
 558out:
 559        drm_gem_object_unreference(&obj->base);
 560unlock:
 561        mutex_unlock(&dev->struct_mutex);
 562        return ret;
 563}
 564
 565/* This is the fast write path which cannot handle
 566 * page faults in the source data
 567 */
 568
 569static inline int
 570fast_user_write(struct io_mapping *mapping,
 571                loff_t page_base, int page_offset,
 572                char __user *user_data,
 573                int length)
 574{
 575        void __iomem *vaddr_atomic;
 576        void *vaddr;
 577        unsigned long unwritten;
 578
 579        vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 580        /* We can use the cpu mem copy function because this is X86. */
 581        vaddr = (void __force*)vaddr_atomic + page_offset;
 582        unwritten = __copy_from_user_inatomic_nocache(vaddr,
 583                                                      user_data, length);
 584        io_mapping_unmap_atomic(vaddr_atomic);
 585        return unwritten;
 586}
 587
 588/**
 589 * This is the fast pwrite path, where we copy the data directly from the
 590 * user into the GTT, uncached.
 591 */
 592static int
 593i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 594                         struct drm_i915_gem_object *obj,
 595                         struct drm_i915_gem_pwrite *args,
 596                         struct drm_file *file)
 597{
 598        drm_i915_private_t *dev_priv = dev->dev_private;
 599        ssize_t remain;
 600        loff_t offset, page_base;
 601        char __user *user_data;
 602        int page_offset, page_length, ret;
 603
 604        ret = i915_gem_object_pin(obj, 0, true, true);
 605        if (ret)
 606                goto out;
 607
 608        ret = i915_gem_object_set_to_gtt_domain(obj, true);
 609        if (ret)
 610                goto out_unpin;
 611
 612        ret = i915_gem_object_put_fence(obj);
 613        if (ret)
 614                goto out_unpin;
 615
 616        user_data = (char __user *) (uintptr_t) args->data_ptr;
 617        remain = args->size;
 618
 619        offset = obj->gtt_offset + args->offset;
 620
 621        while (remain > 0) {
 622                /* Operation in this page
 623                 *
 624                 * page_base = page offset within aperture
 625                 * page_offset = offset within page
 626                 * page_length = bytes to copy for this page
 627                 */
 628                page_base = offset & PAGE_MASK;
 629                page_offset = offset_in_page(offset);
 630                page_length = remain;
 631                if ((page_offset + remain) > PAGE_SIZE)
 632                        page_length = PAGE_SIZE - page_offset;
 633
 634                /* If we get a fault while copying data, then (presumably) our
 635                 * source page isn't available.  Return the error and we'll
 636                 * retry in the slow path.
 637                 */
 638                if (fast_user_write(dev_priv->gtt.mappable, page_base,
 639                                    page_offset, user_data, page_length)) {
 640                        ret = -EFAULT;
 641                        goto out_unpin;
 642                }
 643
 644                remain -= page_length;
 645                user_data += page_length;
 646                offset += page_length;
 647        }
 648
 649out_unpin:
 650        i915_gem_object_unpin(obj);
 651out:
 652        return ret;
 653}
 654
 655/* Per-page copy function for the shmem pwrite fastpath.
 656 * Flushes invalid cachelines before writing to the target if
 657 * needs_clflush_before is set and flushes out any written cachelines after
 658 * writing if needs_clflush is set. */
 659static int
 660shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 661                  char __user *user_data,
 662                  bool page_do_bit17_swizzling,
 663                  bool needs_clflush_before,
 664                  bool needs_clflush_after)
 665{
 666        char *vaddr;
 667        int ret;
 668
 669        if (unlikely(page_do_bit17_swizzling))
 670                return -EINVAL;
 671
 672        vaddr = kmap_atomic(page);
 673        if (needs_clflush_before)
 674                drm_clflush_virt_range(vaddr + shmem_page_offset,
 675                                       page_length);
 676        ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
 677                                                user_data,
 678                                                page_length);
 679        if (needs_clflush_after)
 680                drm_clflush_virt_range(vaddr + shmem_page_offset,
 681                                       page_length);
 682        kunmap_atomic(vaddr);
 683
 684        return ret ? -EFAULT : 0;
 685}
 686
 687/* Only difference to the fast-path function is that this can handle bit17
 688 * and uses non-atomic copy and kmap functions. */
 689static int
 690shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 691                  char __user *user_data,
 692                  bool page_do_bit17_swizzling,
 693                  bool needs_clflush_before,
 694                  bool needs_clflush_after)
 695{
 696        char *vaddr;
 697        int ret;
 698
 699        vaddr = kmap(page);
 700        if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 701                shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 702                                             page_length,
 703                                             page_do_bit17_swizzling);
 704        if (page_do_bit17_swizzling)
 705                ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 706                                                user_data,
 707                                                page_length);
 708        else
 709                ret = __copy_from_user(vaddr + shmem_page_offset,
 710                                       user_data,
 711                                       page_length);
 712        if (needs_clflush_after)
 713                shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 714                                             page_length,
 715                                             page_do_bit17_swizzling);
 716        kunmap(page);
 717
 718        return ret ? -EFAULT : 0;
 719}
 720
 721static int
 722i915_gem_shmem_pwrite(struct drm_device *dev,
 723                      struct drm_i915_gem_object *obj,
 724                      struct drm_i915_gem_pwrite *args,
 725                      struct drm_file *file)
 726{
 727        ssize_t remain;
 728        loff_t offset;
 729        char __user *user_data;
 730        int shmem_page_offset, page_length, ret = 0;
 731        int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 732        int hit_slowpath = 0;
 733        int needs_clflush_after = 0;
 734        int needs_clflush_before = 0;
 735        int i;
 736        struct scatterlist *sg;
 737
 738        user_data = (char __user *) (uintptr_t) args->data_ptr;
 739        remain = args->size;
 740
 741        obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 742
 743        if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 744                /* If we're not in the cpu write domain, set ourself into the gtt
 745                 * write domain and manually flush cachelines (if required). This
 746                 * optimizes for the case when the gpu will use the data
 747                 * right away and we therefore have to clflush anyway. */
 748                if (obj->cache_level == I915_CACHE_NONE)
 749                        needs_clflush_after = 1;
 750                if (obj->gtt_space) {
 751                        ret = i915_gem_object_set_to_gtt_domain(obj, true);
 752                        if (ret)
 753                                return ret;
 754                }
 755        }
 756        /* Same trick applies for invalidate partially written cachelines before
 757         * writing.  */
 758        if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
 759            && obj->cache_level == I915_CACHE_NONE)
 760                needs_clflush_before = 1;
 761
 762        ret = i915_gem_object_get_pages(obj);
 763        if (ret)
 764                return ret;
 765
 766        i915_gem_object_pin_pages(obj);
 767
 768        offset = args->offset;
 769        obj->dirty = 1;
 770
 771        for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
 772                struct page *page;
 773                int partial_cacheline_write;
 774
 775                if (i < offset >> PAGE_SHIFT)
 776                        continue;
 777
 778                if (remain <= 0)
 779                        break;
 780
 781                /* Operation in this page
 782                 *
 783                 * shmem_page_offset = offset within page in shmem file
 784                 * page_length = bytes to copy for this page
 785                 */
 786                shmem_page_offset = offset_in_page(offset);
 787
 788                page_length = remain;
 789                if ((shmem_page_offset + page_length) > PAGE_SIZE)
 790                        page_length = PAGE_SIZE - shmem_page_offset;
 791
 792                /* If we don't overwrite a cacheline completely we need to be
 793                 * careful to have up-to-date data by first clflushing. Don't
 794                 * overcomplicate things and flush the entire patch. */
 795                partial_cacheline_write = needs_clflush_before &&
 796                        ((shmem_page_offset | page_length)
 797                                & (boot_cpu_data.x86_clflush_size - 1));
 798
 799                page = sg_page(sg);
 800                page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 801                        (page_to_phys(page) & (1 << 17)) != 0;
 802
 803                ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 804                                        user_data, page_do_bit17_swizzling,
 805                                        partial_cacheline_write,
 806                                        needs_clflush_after);
 807                if (ret == 0)
 808                        goto next_page;
 809
 810                hit_slowpath = 1;
 811                mutex_unlock(&dev->struct_mutex);
 812                ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 813                                        user_data, page_do_bit17_swizzling,
 814                                        partial_cacheline_write,
 815                                        needs_clflush_after);
 816
 817                mutex_lock(&dev->struct_mutex);
 818
 819next_page:
 820                set_page_dirty(page);
 821                mark_page_accessed(page);
 822
 823                if (ret)
 824                        goto out;
 825
 826                remain -= page_length;
 827                user_data += page_length;
 828                offset += page_length;
 829        }
 830
 831out:
 832        i915_gem_object_unpin_pages(obj);
 833
 834        if (hit_slowpath) {
 835                /*
 836                 * Fixup: Flush cpu caches in case we didn't flush the dirty
 837                 * cachelines in-line while writing and the object moved
 838                 * out of the cpu write domain while we've dropped the lock.
 839                 */
 840                if (!needs_clflush_after &&
 841                    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 842                        i915_gem_clflush_object(obj);
 843                        i915_gem_chipset_flush(dev);
 844                }
 845        }
 846
 847        if (needs_clflush_after)
 848                i915_gem_chipset_flush(dev);
 849
 850        return ret;
 851}
 852
 853/**
 854 * Writes data to the object referenced by handle.
 855 *
 856 * On error, the contents of the buffer that were to be modified are undefined.
 857 */
 858int
 859i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 860                      struct drm_file *file)
 861{
 862        struct drm_i915_gem_pwrite *args = data;
 863        struct drm_i915_gem_object *obj;
 864        int ret;
 865
 866        if (args->size == 0)
 867                return 0;
 868
 869        if (!access_ok(VERIFY_READ,
 870                       (char __user *)(uintptr_t)args->data_ptr,
 871                       args->size))
 872                return -EFAULT;
 873
 874        ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
 875                                           args->size);
 876        if (ret)
 877                return -EFAULT;
 878
 879        ret = i915_mutex_lock_interruptible(dev);
 880        if (ret)
 881                return ret;
 882
 883        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 884        if (&obj->base == NULL) {
 885                ret = -ENOENT;
 886                goto unlock;
 887        }
 888
 889        /* Bounds check destination. */
 890        if (args->offset > obj->base.size ||
 891            args->size > obj->base.size - args->offset) {
 892                ret = -EINVAL;
 893                goto out;
 894        }
 895
 896        /* prime objects have no backing filp to GEM pread/pwrite
 897         * pages from.
 898         */
 899        if (!obj->base.filp) {
 900                ret = -EINVAL;
 901                goto out;
 902        }
 903
 904        trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 905
 906        ret = -EFAULT;
 907        /* We can only do the GTT pwrite on untiled buffers, as otherwise
 908         * it would end up going through the fenced access, and we'll get
 909         * different detiling behavior between reading and writing.
 910         * pread/pwrite currently are reading and writing from the CPU
 911         * perspective, requiring manual detiling by the client.
 912         */
 913        if (obj->phys_obj) {
 914                ret = i915_gem_phys_pwrite(dev, obj, args, file);
 915                goto out;
 916        }
 917
 918        if (obj->cache_level == I915_CACHE_NONE &&
 919            obj->tiling_mode == I915_TILING_NONE &&
 920            obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 921                ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
 922                /* Note that the gtt paths might fail with non-page-backed user
 923                 * pointers (e.g. gtt mappings when moving data between
 924                 * textures). Fallback to the shmem path in that case. */
 925        }
 926
 927        if (ret == -EFAULT || ret == -ENOSPC)
 928                ret = i915_gem_shmem_pwrite(dev, obj, args, file);
 929
 930out:
 931        drm_gem_object_unreference(&obj->base);
 932unlock:
 933        mutex_unlock(&dev->struct_mutex);
 934        return ret;
 935}
 936
 937int
 938i915_gem_check_wedge(struct i915_gpu_error *error,
 939                     bool interruptible)
 940{
 941        if (i915_reset_in_progress(error)) {
 942                /* Non-interruptible callers can't handle -EAGAIN, hence return
 943                 * -EIO unconditionally for these. */
 944                if (!interruptible)
 945                        return -EIO;
 946
 947                /* Recovery complete, but the reset failed ... */
 948                if (i915_terminally_wedged(error))
 949                        return -EIO;
 950
 951                return -EAGAIN;
 952        }
 953
 954        return 0;
 955}
 956
 957/*
 958 * Compare seqno against outstanding lazy request. Emit a request if they are
 959 * equal.
 960 */
 961static int
 962i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
 963{
 964        int ret;
 965
 966        BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 967
 968        ret = 0;
 969        if (seqno == ring->outstanding_lazy_request)
 970                ret = i915_add_request(ring, NULL, NULL);
 971
 972        return ret;
 973}
 974
 975/**
 976 * __wait_seqno - wait until execution of seqno has finished
 977 * @ring: the ring expected to report seqno
 978 * @seqno: duh!
 979 * @reset_counter: reset sequence associated with the given seqno
 980 * @interruptible: do an interruptible wait (normally yes)
 981 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 982 *
 983 * Note: It is of utmost importance that the passed in seqno and reset_counter
 984 * values have been read by the caller in an smp safe manner. Where read-side
 985 * locks are involved, it is sufficient to read the reset_counter before
 986 * unlocking the lock that protects the seqno. For lockless tricks, the
 987 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 988 * inserted.
 989 *
 990 * Returns 0 if the seqno was found within the alloted time. Else returns the
 991 * errno with remaining time filled in timeout argument.
 992 */
 993static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
 994                        unsigned reset_counter,
 995                        bool interruptible, struct timespec *timeout)
 996{
 997        drm_i915_private_t *dev_priv = ring->dev->dev_private;
 998        struct timespec before, now, wait_time={1,0};
 999        unsigned long timeout_jiffies;
1000        long end;
1001        bool wait_forever = true;
1002        int ret;
1003
1004        if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005                return 0;
1006
1007        trace_i915_gem_request_wait_begin(ring, seqno);
1008
1009        if (timeout != NULL) {
1010                wait_time = *timeout;
1011                wait_forever = false;
1012        }
1013
1014        timeout_jiffies = timespec_to_jiffies(&wait_time);
1015
1016        if (WARN_ON(!ring->irq_get(ring)))
1017                return -ENODEV;
1018
1019        /* Record current time in case interrupted by signal, or wedged * */
1020        getrawmonotonic(&before);
1021
1022#define EXIT_COND \
1023        (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1024         i915_reset_in_progress(&dev_priv->gpu_error) || \
1025         reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1026        do {
1027                if (interruptible)
1028                        end = wait_event_interruptible_timeout(ring->irq_queue,
1029                                                               EXIT_COND,
1030                                                               timeout_jiffies);
1031                else
1032                        end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033                                                 timeout_jiffies);
1034
1035                /* We need to check whether any gpu reset happened in between
1036                 * the caller grabbing the seqno and now ... */
1037                if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038                        end = -EAGAIN;
1039
1040                /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041                 * gone. */
1042                ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1043                if (ret)
1044                        end = ret;
1045        } while (end == 0 && wait_forever);
1046
1047        getrawmonotonic(&now);
1048
1049        ring->irq_put(ring);
1050        trace_i915_gem_request_wait_end(ring, seqno);
1051#undef EXIT_COND
1052
1053        if (timeout) {
1054                struct timespec sleep_time = timespec_sub(now, before);
1055                *timeout = timespec_sub(*timeout, sleep_time);
1056        }
1057
1058        switch (end) {
1059        case -EIO:
1060        case -EAGAIN: /* Wedged */
1061        case -ERESTARTSYS: /* Signal */
1062                return (int)end;
1063        case 0: /* Timeout */
1064                if (timeout)
1065                        set_normalized_timespec(timeout, 0, 0);
1066                return -ETIME;
1067        default: /* Completed */
1068                WARN_ON(end < 0); /* We're not aware of other errors */
1069                return 0;
1070        }
1071}
1072
1073/**
1074 * Waits for a sequence number to be signaled, and cleans up the
1075 * request and object lists appropriately for that event.
1076 */
1077int
1078i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079{
1080        struct drm_device *dev = ring->dev;
1081        struct drm_i915_private *dev_priv = dev->dev_private;
1082        bool interruptible = dev_priv->mm.interruptible;
1083        int ret;
1084
1085        BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086        BUG_ON(seqno == 0);
1087
1088        ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1089        if (ret)
1090                return ret;
1091
1092        ret = i915_gem_check_olr(ring, seqno);
1093        if (ret)
1094                return ret;
1095
1096        return __wait_seqno(ring, seqno,
1097                            atomic_read(&dev_priv->gpu_error.reset_counter),
1098                            interruptible, NULL);
1099}
1100
1101/**
1102 * Ensures that all rendering to the object has completed and the object is
1103 * safe to unbind from the GTT or access from the CPU.
1104 */
1105static __must_check int
1106i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1107                               bool readonly)
1108{
1109        struct intel_ring_buffer *ring = obj->ring;
1110        u32 seqno;
1111        int ret;
1112
1113        seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1114        if (seqno == 0)
1115                return 0;
1116
1117        ret = i915_wait_seqno(ring, seqno);
1118        if (ret)
1119                return ret;
1120
1121        i915_gem_retire_requests_ring(ring);
1122
1123        /* Manually manage the write flush as we may have not yet
1124         * retired the buffer.
1125         */
1126        if (obj->last_write_seqno &&
1127            i915_seqno_passed(seqno, obj->last_write_seqno)) {
1128                obj->last_write_seqno = 0;
1129                obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1130        }
1131
1132        return 0;
1133}
1134
1135/* A nonblocking variant of the above wait. This is a highly dangerous routine
1136 * as the object state may change during this call.
1137 */
1138static __must_check int
1139i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1140                                            bool readonly)
1141{
1142        struct drm_device *dev = obj->base.dev;
1143        struct drm_i915_private *dev_priv = dev->dev_private;
1144        struct intel_ring_buffer *ring = obj->ring;
1145        unsigned reset_counter;
1146        u32 seqno;
1147        int ret;
1148
1149        BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1150        BUG_ON(!dev_priv->mm.interruptible);
1151
1152        seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1153        if (seqno == 0)
1154                return 0;
1155
1156        ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1157        if (ret)
1158                return ret;
1159
1160        ret = i915_gem_check_olr(ring, seqno);
1161        if (ret)
1162                return ret;
1163
1164        reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1165        mutex_unlock(&dev->struct_mutex);
1166        ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1167        mutex_lock(&dev->struct_mutex);
1168
1169        i915_gem_retire_requests_ring(ring);
1170
1171        /* Manually manage the write flush as we may have not yet
1172         * retired the buffer.
1173         */
1174        if (obj->last_write_seqno &&
1175            i915_seqno_passed(seqno, obj->last_write_seqno)) {
1176                obj->last_write_seqno = 0;
1177                obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1178        }
1179
1180        return ret;
1181}
1182
1183/**
1184 * Called when user space prepares to use an object with the CPU, either
1185 * through the mmap ioctl's mapping or a GTT mapping.
1186 */
1187int
1188i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1189                          struct drm_file *file)
1190{
1191        struct drm_i915_gem_set_domain *args = data;
1192        struct drm_i915_gem_object *obj;
1193        uint32_t read_domains = args->read_domains;
1194        uint32_t write_domain = args->write_domain;
1195        int ret;
1196
1197        /* Only handle setting domains to types used by the CPU. */
1198        if (write_domain & I915_GEM_GPU_DOMAINS)
1199                return -EINVAL;
1200
1201        if (read_domains & I915_GEM_GPU_DOMAINS)
1202                return -EINVAL;
1203
1204        /* Having something in the write domain implies it's in the read
1205         * domain, and only that read domain.  Enforce that in the request.
1206         */
1207        if (write_domain != 0 && read_domains != write_domain)
1208                return -EINVAL;
1209
1210        ret = i915_mutex_lock_interruptible(dev);
1211        if (ret)
1212                return ret;
1213
1214        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1215        if (&obj->base == NULL) {
1216                ret = -ENOENT;
1217                goto unlock;
1218        }
1219
1220        /* Try to flush the object off the GPU without holding the lock.
1221         * We will repeat the flush holding the lock in the normal manner
1222         * to catch cases where we are gazumped.
1223         */
1224        ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1225        if (ret)
1226                goto unref;
1227
1228        if (read_domains & I915_GEM_DOMAIN_GTT) {
1229                ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1230
1231                /* Silently promote "you're not bound, there was nothing to do"
1232                 * to success, since the client was just asking us to
1233                 * make sure everything was done.
1234                 */
1235                if (ret == -EINVAL)
1236                        ret = 0;
1237        } else {
1238                ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1239        }
1240
1241unref:
1242        drm_gem_object_unreference(&obj->base);
1243unlock:
1244        mutex_unlock(&dev->struct_mutex);
1245        return ret;
1246}
1247
1248/**
1249 * Called when user space has done writes to this buffer
1250 */
1251int
1252i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1253                         struct drm_file *file)
1254{
1255        struct drm_i915_gem_sw_finish *args = data;
1256        struct drm_i915_gem_object *obj;
1257        int ret = 0;
1258
1259        ret = i915_mutex_lock_interruptible(dev);
1260        if (ret)
1261                return ret;
1262
1263        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1264        if (&obj->base == NULL) {
1265                ret = -ENOENT;
1266                goto unlock;
1267        }
1268
1269        /* Pinned buffers may be scanout, so flush the cache */
1270        if (obj->pin_count)
1271                i915_gem_object_flush_cpu_write_domain(obj);
1272
1273        drm_gem_object_unreference(&obj->base);
1274unlock:
1275        mutex_unlock(&dev->struct_mutex);
1276        return ret;
1277}
1278
1279/**
1280 * Maps the contents of an object, returning the address it is mapped
1281 * into.
1282 *
1283 * While the mapping holds a reference on the contents of the object, it doesn't
1284 * imply a ref on the object itself.
1285 */
1286int
1287i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1288                    struct drm_file *file)
1289{
1290        struct drm_i915_gem_mmap *args = data;
1291        struct drm_gem_object *obj;
1292        unsigned long addr;
1293
1294        obj = drm_gem_object_lookup(dev, file, args->handle);
1295        if (obj == NULL)
1296                return -ENOENT;
1297
1298        /* prime objects have no backing filp to GEM mmap
1299         * pages from.
1300         */
1301        if (!obj->filp) {
1302                drm_gem_object_unreference_unlocked(obj);
1303                return -EINVAL;
1304        }
1305
1306        addr = vm_mmap(obj->filp, 0, args->size,
1307                       PROT_READ | PROT_WRITE, MAP_SHARED,
1308                       args->offset);
1309        drm_gem_object_unreference_unlocked(obj);
1310        if (IS_ERR((void *)addr))
1311                return addr;
1312
1313        args->addr_ptr = (uint64_t) addr;
1314
1315        return 0;
1316}
1317
1318/**
1319 * i915_gem_fault - fault a page into the GTT
1320 * vma: VMA in question
1321 * vmf: fault info
1322 *
1323 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1324 * from userspace.  The fault handler takes care of binding the object to
1325 * the GTT (if needed), allocating and programming a fence register (again,
1326 * only if needed based on whether the old reg is still valid or the object
1327 * is tiled) and inserting a new PTE into the faulting process.
1328 *
1329 * Note that the faulting process may involve evicting existing objects
1330 * from the GTT and/or fence registers to make room.  So performance may
1331 * suffer if the GTT working set is large or there are few fence registers
1332 * left.
1333 */
1334int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1335{
1336        struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1337        struct drm_device *dev = obj->base.dev;
1338        drm_i915_private_t *dev_priv = dev->dev_private;
1339        pgoff_t page_offset;
1340        unsigned long pfn;
1341        int ret = 0;
1342        bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1343
1344        /* We don't use vmf->pgoff since that has the fake offset */
1345        page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1346                PAGE_SHIFT;
1347
1348        ret = i915_mutex_lock_interruptible(dev);
1349        if (ret)
1350                goto out;
1351
1352        trace_i915_gem_object_fault(obj, page_offset, true, write);
1353
1354        /* Access to snoopable pages through the GTT is incoherent. */
1355        if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1356                ret = -EINVAL;
1357                goto unlock;
1358        }
1359
1360        /* Now bind it into the GTT if needed */
1361        ret = i915_gem_object_pin(obj, 0, true, false);
1362        if (ret)
1363                goto unlock;
1364
1365        ret = i915_gem_object_set_to_gtt_domain(obj, write);
1366        if (ret)
1367                goto unpin;
1368
1369        ret = i915_gem_object_get_fence(obj);
1370        if (ret)
1371                goto unpin;
1372
1373        obj->fault_mappable = true;
1374
1375        pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1376                page_offset;
1377
1378        /* Finally, remap it using the new GTT offset */
1379        ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380unpin:
1381        i915_gem_object_unpin(obj);
1382unlock:
1383        mutex_unlock(&dev->struct_mutex);
1384out:
1385        switch (ret) {
1386        case -EIO:
1387                /* If this -EIO is due to a gpu hang, give the reset code a
1388                 * chance to clean up the mess. Otherwise return the proper
1389                 * SIGBUS. */
1390                if (i915_terminally_wedged(&dev_priv->gpu_error))
1391                        return VM_FAULT_SIGBUS;
1392        case -EAGAIN:
1393                /* Give the error handler a chance to run and move the
1394                 * objects off the GPU active list. Next time we service the
1395                 * fault, we should be able to transition the page into the
1396                 * GTT without touching the GPU (and so avoid further
1397                 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398                 * with coherency, just lost writes.
1399                 */
1400                set_need_resched();
1401        case 0:
1402        case -ERESTARTSYS:
1403        case -EINTR:
1404        case -EBUSY:
1405                /*
1406                 * EBUSY is ok: this just means that another thread
1407                 * already did the job.
1408                 */
1409                return VM_FAULT_NOPAGE;
1410        case -ENOMEM:
1411                return VM_FAULT_OOM;
1412        case -ENOSPC:
1413                return VM_FAULT_SIGBUS;
1414        default:
1415                WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1416                return VM_FAULT_SIGBUS;
1417        }
1418}
1419
1420/**
1421 * i915_gem_release_mmap - remove physical page mappings
1422 * @obj: obj in question
1423 *
1424 * Preserve the reservation of the mmapping with the DRM core code, but
1425 * relinquish ownership of the pages back to the system.
1426 *
1427 * It is vital that we remove the page mapping if we have mapped a tiled
1428 * object through the GTT and then lose the fence register due to
1429 * resource pressure. Similarly if the object has been moved out of the
1430 * aperture, than pages mapped into userspace must be revoked. Removing the
1431 * mapping will then trigger a page fault on the next user access, allowing
1432 * fixup by i915_gem_fault().
1433 */
1434void
1435i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1436{
1437        if (!obj->fault_mappable)
1438                return;
1439
1440        if (obj->base.dev->dev_mapping)
1441                unmap_mapping_range(obj->base.dev->dev_mapping,
1442                                    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1443                                    obj->base.size, 1);
1444
1445        obj->fault_mappable = false;
1446}
1447
1448uint32_t
1449i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1450{
1451        uint32_t gtt_size;
1452
1453        if (INTEL_INFO(dev)->gen >= 4 ||
1454            tiling_mode == I915_TILING_NONE)
1455                return size;
1456
1457        /* Previous chips need a power-of-two fence region when tiling */
1458        if (INTEL_INFO(dev)->gen == 3)
1459                gtt_size = 1024*1024;
1460        else
1461                gtt_size = 512*1024;
1462
1463        while (gtt_size < size)
1464                gtt_size <<= 1;
1465
1466        return gtt_size;
1467}
1468
1469/**
1470 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1471 * @obj: object to check
1472 *
1473 * Return the required GTT alignment for an object, taking into account
1474 * potential fence register mapping.
1475 */
1476uint32_t
1477i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1478                           int tiling_mode, bool fenced)
1479{
1480        /*
1481         * Minimum alignment is 4k (GTT page size), but might be greater
1482         * if a fence register is needed for the object.
1483         */
1484        if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1485            tiling_mode == I915_TILING_NONE)
1486                return 4096;
1487
1488        /*
1489         * Previous chips need to be aligned to the size of the smallest
1490         * fence register that can contain the object.
1491         */
1492        return i915_gem_get_gtt_size(dev, size, tiling_mode);
1493}
1494
1495static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1496{
1497        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1498        int ret;
1499
1500        if (obj->base.map_list.map)
1501                return 0;
1502
1503        dev_priv->mm.shrinker_no_lock_stealing = true;
1504
1505        ret = drm_gem_create_mmap_offset(&obj->base);
1506        if (ret != -ENOSPC)
1507                goto out;
1508
1509        /* Badly fragmented mmap space? The only way we can recover
1510         * space is by destroying unwanted objects. We can't randomly release
1511         * mmap_offsets as userspace expects them to be persistent for the
1512         * lifetime of the objects. The closest we can is to release the
1513         * offsets on purgeable objects by truncating it and marking it purged,
1514         * which prevents userspace from ever using that object again.
1515         */
1516        i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1517        ret = drm_gem_create_mmap_offset(&obj->base);
1518        if (ret != -ENOSPC)
1519                goto out;
1520
1521        i915_gem_shrink_all(dev_priv);
1522        ret = drm_gem_create_mmap_offset(&obj->base);
1523out:
1524        dev_priv->mm.shrinker_no_lock_stealing = false;
1525
1526        return ret;
1527}
1528
1529static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1530{
1531        if (!obj->base.map_list.map)
1532                return;
1533
1534        drm_gem_free_mmap_offset(&obj->base);
1535}
1536
1537int
1538i915_gem_mmap_gtt(struct drm_file *file,
1539                  struct drm_device *dev,
1540                  uint32_t handle,
1541                  uint64_t *offset)
1542{
1543        struct drm_i915_private *dev_priv = dev->dev_private;
1544        struct drm_i915_gem_object *obj;
1545        int ret;
1546
1547        ret = i915_mutex_lock_interruptible(dev);
1548        if (ret)
1549                return ret;
1550
1551        obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1552        if (&obj->base == NULL) {
1553                ret = -ENOENT;
1554                goto unlock;
1555        }
1556
1557        if (obj->base.size > dev_priv->gtt.mappable_end) {
1558                ret = -E2BIG;
1559                goto out;
1560        }
1561
1562        if (obj->madv != I915_MADV_WILLNEED) {
1563                DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1564                ret = -EINVAL;
1565                goto out;
1566        }
1567
1568        ret = i915_gem_object_create_mmap_offset(obj);
1569        if (ret)
1570                goto out;
1571
1572        *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1573
1574out:
1575        drm_gem_object_unreference(&obj->base);
1576unlock:
1577        mutex_unlock(&dev->struct_mutex);
1578        return ret;
1579}
1580
1581/**
1582 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1583 * @dev: DRM device
1584 * @data: GTT mapping ioctl data
1585 * @file: GEM object info
1586 *
1587 * Simply returns the fake offset to userspace so it can mmap it.
1588 * The mmap call will end up in drm_gem_mmap(), which will set things
1589 * up so we can get faults in the handler above.
1590 *
1591 * The fault handler will take care of binding the object into the GTT
1592 * (since it may have been evicted to make room for something), allocating
1593 * a fence register, and mapping the appropriate aperture address into
1594 * userspace.
1595 */
1596int
1597i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1598                        struct drm_file *file)
1599{
1600        struct drm_i915_gem_mmap_gtt *args = data;
1601
1602        return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1603}
1604
1605/* Immediately discard the backing storage */
1606static void
1607i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1608{
1609        struct inode *inode;
1610
1611        i915_gem_object_free_mmap_offset(obj);
1612
1613        if (obj->base.filp == NULL)
1614                return;
1615
1616        /* Our goal here is to return as much of the memory as
1617         * is possible back to the system as we are called from OOM.
1618         * To do this we must instruct the shmfs to drop all of its
1619         * backing pages, *now*.
1620         */
1621        inode = file_inode(obj->base.filp);
1622        shmem_truncate_range(inode, 0, (loff_t)-1);
1623
1624        obj->madv = __I915_MADV_PURGED;
1625}
1626
1627static inline int
1628i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1629{
1630        return obj->madv == I915_MADV_DONTNEED;
1631}
1632
1633static void
1634i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1635{
1636        int page_count = obj->base.size / PAGE_SIZE;
1637        struct scatterlist *sg;
1638        int ret, i;
1639
1640        BUG_ON(obj->madv == __I915_MADV_PURGED);
1641
1642        ret = i915_gem_object_set_to_cpu_domain(obj, true);
1643        if (ret) {
1644                /* In the event of a disaster, abandon all caches and
1645                 * hope for the best.
1646                 */
1647                WARN_ON(ret != -EIO);
1648                i915_gem_clflush_object(obj);
1649                obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1650        }
1651
1652        if (i915_gem_object_needs_bit17_swizzle(obj))
1653                i915_gem_object_save_bit_17_swizzle(obj);
1654
1655        if (obj->madv == I915_MADV_DONTNEED)
1656                obj->dirty = 0;
1657
1658        for_each_sg(obj->pages->sgl, sg, page_count, i) {
1659                struct page *page = sg_page(sg);
1660
1661                if (obj->dirty)
1662                        set_page_dirty(page);
1663
1664                if (obj->madv == I915_MADV_WILLNEED)
1665                        mark_page_accessed(page);
1666
1667                page_cache_release(page);
1668        }
1669        obj->dirty = 0;
1670
1671        sg_free_table(obj->pages);
1672        kfree(obj->pages);
1673}
1674
1675int
1676i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1677{
1678        const struct drm_i915_gem_object_ops *ops = obj->ops;
1679
1680        if (obj->pages == NULL)
1681                return 0;
1682
1683        BUG_ON(obj->gtt_space);
1684
1685        if (obj->pages_pin_count)
1686                return -EBUSY;
1687
1688        /* ->put_pages might need to allocate memory for the bit17 swizzle
1689         * array, hence protect them from being reaped by removing them from gtt
1690         * lists early. */
1691        list_del(&obj->gtt_list);
1692
1693        ops->put_pages(obj);
1694        obj->pages = NULL;
1695
1696        if (i915_gem_object_is_purgeable(obj))
1697                i915_gem_object_truncate(obj);
1698
1699        return 0;
1700}
1701
1702static long
1703__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1704                  bool purgeable_only)
1705{
1706        struct drm_i915_gem_object *obj, *next;
1707        long count = 0;
1708
1709        list_for_each_entry_safe(obj, next,
1710                                 &dev_priv->mm.unbound_list,
1711                                 gtt_list) {
1712                if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1713                    i915_gem_object_put_pages(obj) == 0) {
1714                        count += obj->base.size >> PAGE_SHIFT;
1715                        if (count >= target)
1716                                return count;
1717                }
1718        }
1719
1720        list_for_each_entry_safe(obj, next,
1721                                 &dev_priv->mm.inactive_list,
1722                                 mm_list) {
1723                if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1724                    i915_gem_object_unbind(obj) == 0 &&
1725                    i915_gem_object_put_pages(obj) == 0) {
1726                        count += obj->base.size >> PAGE_SHIFT;
1727                        if (count >= target)
1728                                return count;
1729                }
1730        }
1731
1732        return count;
1733}
1734
1735static long
1736i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1737{
1738        return __i915_gem_shrink(dev_priv, target, true);
1739}
1740
1741static void
1742i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1743{
1744        struct drm_i915_gem_object *obj, *next;
1745
1746        i915_gem_evict_everything(dev_priv->dev);
1747
1748        list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1749                i915_gem_object_put_pages(obj);
1750}
1751
1752static int
1753i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1754{
1755        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1756        int page_count, i;
1757        struct address_space *mapping;
1758        struct sg_table *st;
1759        struct scatterlist *sg;
1760        struct page *page;
1761        gfp_t gfp;
1762
1763        /* Assert that the object is not currently in any GPU domain. As it
1764         * wasn't in the GTT, there shouldn't be any way it could have been in
1765         * a GPU cache
1766         */
1767        BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1768        BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1769
1770        st = kmalloc(sizeof(*st), GFP_KERNEL);
1771        if (st == NULL)
1772                return -ENOMEM;
1773
1774        page_count = obj->base.size / PAGE_SIZE;
1775        if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1776                sg_free_table(st);
1777                kfree(st);
1778                return -ENOMEM;
1779        }
1780
1781        /* Get the list of pages out of our struct file.  They'll be pinned
1782         * at this point until we release them.
1783         *
1784         * Fail silently without starting the shrinker
1785         */
1786        mapping = file_inode(obj->base.filp)->i_mapping;
1787        gfp = mapping_gfp_mask(mapping);
1788        gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1789        gfp &= ~(__GFP_IO | __GFP_WAIT);
1790        for_each_sg(st->sgl, sg, page_count, i) {
1791                page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792                if (IS_ERR(page)) {
1793                        i915_gem_purge(dev_priv, page_count);
1794                        page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795                }
1796                if (IS_ERR(page)) {
1797                        /* We've tried hard to allocate the memory by reaping
1798                         * our own buffer, now let the real VM do its job and
1799                         * go down in flames if truly OOM.
1800                         */
1801                        gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1802                        gfp |= __GFP_IO | __GFP_WAIT;
1803
1804                        i915_gem_shrink_all(dev_priv);
1805                        page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806                        if (IS_ERR(page))
1807                                goto err_pages;
1808
1809                        gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1810                        gfp &= ~(__GFP_IO | __GFP_WAIT);
1811                }
1812
1813                sg_set_page(sg, page, PAGE_SIZE, 0);
1814        }
1815
1816        obj->pages = st;
1817
1818        if (i915_gem_object_needs_bit17_swizzle(obj))
1819                i915_gem_object_do_bit_17_swizzle(obj);
1820
1821        return 0;
1822
1823err_pages:
1824        for_each_sg(st->sgl, sg, i, page_count)
1825                page_cache_release(sg_page(sg));
1826        sg_free_table(st);
1827        kfree(st);
1828        return PTR_ERR(page);
1829}
1830
1831/* Ensure that the associated pages are gathered from the backing storage
1832 * and pinned into our object. i915_gem_object_get_pages() may be called
1833 * multiple times before they are released by a single call to
1834 * i915_gem_object_put_pages() - once the pages are no longer referenced
1835 * either as a result of memory pressure (reaping pages under the shrinker)
1836 * or as the object is itself released.
1837 */
1838int
1839i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1840{
1841        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1842        const struct drm_i915_gem_object_ops *ops = obj->ops;
1843        int ret;
1844
1845        if (obj->pages)
1846                return 0;
1847
1848        if (obj->madv != I915_MADV_WILLNEED) {
1849                DRM_ERROR("Attempting to obtain a purgeable object\n");
1850                return -EINVAL;
1851        }
1852
1853        BUG_ON(obj->pages_pin_count);
1854
1855        ret = ops->get_pages(obj);
1856        if (ret)
1857                return ret;
1858
1859        list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1860        return 0;
1861}
1862
1863void
1864i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1865                               struct intel_ring_buffer *ring)
1866{
1867        struct drm_device *dev = obj->base.dev;
1868        struct drm_i915_private *dev_priv = dev->dev_private;
1869        u32 seqno = intel_ring_get_seqno(ring);
1870
1871        BUG_ON(ring == NULL);
1872        obj->ring = ring;
1873
1874        /* Add a reference if we're newly entering the active list. */
1875        if (!obj->active) {
1876                drm_gem_object_reference(&obj->base);
1877                obj->active = 1;
1878        }
1879
1880        /* Move from whatever list we were on to the tail of execution. */
1881        list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1882        list_move_tail(&obj->ring_list, &ring->active_list);
1883
1884        obj->last_read_seqno = seqno;
1885
1886        if (obj->fenced_gpu_access) {
1887                obj->last_fenced_seqno = seqno;
1888
1889                /* Bump MRU to take account of the delayed flush */
1890                if (obj->fence_reg != I915_FENCE_REG_NONE) {
1891                        struct drm_i915_fence_reg *reg;
1892
1893                        reg = &dev_priv->fence_regs[obj->fence_reg];
1894                        list_move_tail(&reg->lru_list,
1895                                       &dev_priv->mm.fence_list);
1896                }
1897        }
1898}
1899
1900static void
1901i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1902{
1903        struct drm_device *dev = obj->base.dev;
1904        struct drm_i915_private *dev_priv = dev->dev_private;
1905
1906        BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1907        BUG_ON(!obj->active);
1908
1909        list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1910
1911        list_del_init(&obj->ring_list);
1912        obj->ring = NULL;
1913
1914        obj->last_read_seqno = 0;
1915        obj->last_write_seqno = 0;
1916        obj->base.write_domain = 0;
1917
1918        obj->last_fenced_seqno = 0;
1919        obj->fenced_gpu_access = false;
1920
1921        obj->active = 0;
1922        drm_gem_object_unreference(&obj->base);
1923
1924        WARN_ON(i915_verify_lists(dev));
1925}
1926
1927static int
1928i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1929{
1930        struct drm_i915_private *dev_priv = dev->dev_private;
1931        struct intel_ring_buffer *ring;
1932        int ret, i, j;
1933
1934        /* Carefully retire all requests without writing to the rings */
1935        for_each_ring(ring, dev_priv, i) {
1936                ret = intel_ring_idle(ring);
1937                if (ret)
1938                        return ret;
1939        }
1940        i915_gem_retire_requests(dev);
1941
1942        /* Finally reset hw state */
1943        for_each_ring(ring, dev_priv, i) {
1944                intel_ring_init_seqno(ring, seqno);
1945
1946                for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1947                        ring->sync_seqno[j] = 0;
1948        }
1949
1950        return 0;
1951}
1952
1953int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1954{
1955        struct drm_i915_private *dev_priv = dev->dev_private;
1956        int ret;
1957
1958        if (seqno == 0)
1959                return -EINVAL;
1960
1961        /* HWS page needs to be set less than what we
1962         * will inject to ring
1963         */
1964        ret = i915_gem_init_seqno(dev, seqno - 1);
1965        if (ret)
1966                return ret;
1967
1968        /* Carefully set the last_seqno value so that wrap
1969         * detection still works
1970         */
1971        dev_priv->next_seqno = seqno;
1972        dev_priv->last_seqno = seqno - 1;
1973        if (dev_priv->last_seqno == 0)
1974                dev_priv->last_seqno--;
1975
1976        return 0;
1977}
1978
1979int
1980i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1981{
1982        struct drm_i915_private *dev_priv = dev->dev_private;
1983
1984        /* reserve 0 for non-seqno */
1985        if (dev_priv->next_seqno == 0) {
1986                int ret = i915_gem_init_seqno(dev, 0);
1987                if (ret)
1988                        return ret;
1989
1990                dev_priv->next_seqno = 1;
1991        }
1992
1993        *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1994        return 0;
1995}
1996
1997int
1998i915_add_request(struct intel_ring_buffer *ring,
1999                 struct drm_file *file,
2000                 u32 *out_seqno)
2001{
2002        drm_i915_private_t *dev_priv = ring->dev->dev_private;
2003        struct drm_i915_gem_request *request;
2004        u32 request_ring_position;
2005        int was_empty;
2006        int ret;
2007
2008        /*
2009         * Emit any outstanding flushes - execbuf can fail to emit the flush
2010         * after having emitted the batchbuffer command. Hence we need to fix
2011         * things up similar to emitting the lazy request. The difference here
2012         * is that the flush _must_ happen before the next request, no matter
2013         * what.
2014         */
2015        ret = intel_ring_flush_all_caches(ring);
2016        if (ret)
2017                return ret;
2018
2019        request = kmalloc(sizeof(*request), GFP_KERNEL);
2020        if (request == NULL)
2021                return -ENOMEM;
2022
2023
2024        /* Record the position of the start of the request so that
2025         * should we detect the updated seqno part-way through the
2026         * GPU processing the request, we never over-estimate the
2027         * position of the head.
2028         */
2029        request_ring_position = intel_ring_get_tail(ring);
2030
2031        ret = ring->add_request(ring);
2032        if (ret) {
2033                kfree(request);
2034                return ret;
2035        }
2036
2037        request->seqno = intel_ring_get_seqno(ring);
2038        request->ring = ring;
2039        request->tail = request_ring_position;
2040        request->emitted_jiffies = jiffies;
2041        was_empty = list_empty(&ring->request_list);
2042        list_add_tail(&request->list, &ring->request_list);
2043        request->file_priv = NULL;
2044
2045        if (file) {
2046                struct drm_i915_file_private *file_priv = file->driver_priv;
2047
2048                spin_lock(&file_priv->mm.lock);
2049                request->file_priv = file_priv;
2050                list_add_tail(&request->client_list,
2051                              &file_priv->mm.request_list);
2052                spin_unlock(&file_priv->mm.lock);
2053        }
2054
2055        trace_i915_gem_request_add(ring, request->seqno);
2056        ring->outstanding_lazy_request = 0;
2057
2058        if (!dev_priv->mm.suspended) {
2059                if (i915_enable_hangcheck) {
2060                        mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2061                                  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2062                }
2063                if (was_empty) {
2064                        queue_delayed_work(dev_priv->wq,
2065                                           &dev_priv->mm.retire_work,
2066                                           round_jiffies_up_relative(HZ));
2067                        intel_mark_busy(dev_priv->dev);
2068                }
2069        }
2070
2071        if (out_seqno)
2072                *out_seqno = request->seqno;
2073        return 0;
2074}
2075
2076static inline void
2077i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2078{
2079        struct drm_i915_file_private *file_priv = request->file_priv;
2080
2081        if (!file_priv)
2082                return;
2083
2084        spin_lock(&file_priv->mm.lock);
2085        if (request->file_priv) {
2086                list_del(&request->client_list);
2087                request->file_priv = NULL;
2088        }
2089        spin_unlock(&file_priv->mm.lock);
2090}
2091
2092static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2093                                      struct intel_ring_buffer *ring)
2094{
2095        while (!list_empty(&ring->request_list)) {
2096                struct drm_i915_gem_request *request;
2097
2098                request = list_first_entry(&ring->request_list,
2099                                           struct drm_i915_gem_request,
2100                                           list);
2101
2102                list_del(&request->list);
2103                i915_gem_request_remove_from_client(request);
2104                kfree(request);
2105        }
2106
2107        while (!list_empty(&ring->active_list)) {
2108                struct drm_i915_gem_object *obj;
2109
2110                obj = list_first_entry(&ring->active_list,
2111                                       struct drm_i915_gem_object,
2112                                       ring_list);
2113
2114                i915_gem_object_move_to_inactive(obj);
2115        }
2116}
2117
2118static void i915_gem_reset_fences(struct drm_device *dev)
2119{
2120        struct drm_i915_private *dev_priv = dev->dev_private;
2121        int i;
2122
2123        for (i = 0; i < dev_priv->num_fence_regs; i++) {
2124                struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2125
2126                i915_gem_write_fence(dev, i, NULL);
2127
2128                if (reg->obj)
2129                        i915_gem_object_fence_lost(reg->obj);
2130
2131                reg->pin_count = 0;
2132                reg->obj = NULL;
2133                INIT_LIST_HEAD(&reg->lru_list);
2134        }
2135
2136        INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2137}
2138
2139void i915_gem_reset(struct drm_device *dev)
2140{
2141        struct drm_i915_private *dev_priv = dev->dev_private;
2142        struct drm_i915_gem_object *obj;
2143        struct intel_ring_buffer *ring;
2144        int i;
2145
2146        for_each_ring(ring, dev_priv, i)
2147                i915_gem_reset_ring_lists(dev_priv, ring);
2148
2149        /* Move everything out of the GPU domains to ensure we do any
2150         * necessary invalidation upon reuse.
2151         */
2152        list_for_each_entry(obj,
2153                            &dev_priv->mm.inactive_list,
2154                            mm_list)
2155        {
2156                obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2157        }
2158
2159        /* The fence registers are invalidated so clear them out */
2160        i915_gem_reset_fences(dev);
2161}
2162
2163/**
2164 * This function clears the request list as sequence numbers are passed.
2165 */
2166void
2167i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2168{
2169        uint32_t seqno;
2170
2171        if (list_empty(&ring->request_list))
2172                return;
2173
2174        WARN_ON(i915_verify_lists(ring->dev));
2175
2176        seqno = ring->get_seqno(ring, true);
2177
2178        while (!list_empty(&ring->request_list)) {
2179                struct drm_i915_gem_request *request;
2180
2181                request = list_first_entry(&ring->request_list,
2182                                           struct drm_i915_gem_request,
2183                                           list);
2184
2185                if (!i915_seqno_passed(seqno, request->seqno))
2186                        break;
2187
2188                trace_i915_gem_request_retire(ring, request->seqno);
2189                /* We know the GPU must have read the request to have
2190                 * sent us the seqno + interrupt, so use the position
2191                 * of tail of the request to update the last known position
2192                 * of the GPU head.
2193                 */
2194                ring->last_retired_head = request->tail;
2195
2196                list_del(&request->list);
2197                i915_gem_request_remove_from_client(request);
2198                kfree(request);
2199        }
2200
2201        /* Move any buffers on the active list that are no longer referenced
2202         * by the ringbuffer to the flushing/inactive lists as appropriate.
2203         */
2204        while (!list_empty(&ring->active_list)) {
2205                struct drm_i915_gem_object *obj;
2206
2207                obj = list_first_entry(&ring->active_list,
2208                                      struct drm_i915_gem_object,
2209                                      ring_list);
2210
2211                if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2212                        break;
2213
2214                i915_gem_object_move_to_inactive(obj);
2215        }
2216
2217        if (unlikely(ring->trace_irq_seqno &&
2218                     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2219                ring->irq_put(ring);
2220                ring->trace_irq_seqno = 0;
2221        }
2222
2223        WARN_ON(i915_verify_lists(ring->dev));
2224}
2225
2226void
2227i915_gem_retire_requests(struct drm_device *dev)
2228{
2229        drm_i915_private_t *dev_priv = dev->dev_private;
2230        struct intel_ring_buffer *ring;
2231        int i;
2232
2233        for_each_ring(ring, dev_priv, i)
2234                i915_gem_retire_requests_ring(ring);
2235}
2236
2237static void
2238i915_gem_retire_work_handler(struct work_struct *work)
2239{
2240        drm_i915_private_t *dev_priv;
2241        struct drm_device *dev;
2242        struct intel_ring_buffer *ring;
2243        bool idle;
2244        int i;
2245
2246        dev_priv = container_of(work, drm_i915_private_t,
2247                                mm.retire_work.work);
2248        dev = dev_priv->dev;
2249
2250        /* Come back later if the device is busy... */
2251        if (!mutex_trylock(&dev->struct_mutex)) {
2252                queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253                                   round_jiffies_up_relative(HZ));
2254                return;
2255        }
2256
2257        i915_gem_retire_requests(dev);
2258
2259        /* Send a periodic flush down the ring so we don't hold onto GEM
2260         * objects indefinitely.
2261         */
2262        idle = true;
2263        for_each_ring(ring, dev_priv, i) {
2264                if (ring->gpu_caches_dirty)
2265                        i915_add_request(ring, NULL, NULL);
2266
2267                idle &= list_empty(&ring->request_list);
2268        }
2269
2270        if (!dev_priv->mm.suspended && !idle)
2271                queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2272                                   round_jiffies_up_relative(HZ));
2273        if (idle)
2274                intel_mark_idle(dev);
2275
2276        mutex_unlock(&dev->struct_mutex);
2277}
2278
2279/**
2280 * Ensures that an object will eventually get non-busy by flushing any required
2281 * write domains, emitting any outstanding lazy request and retiring and
2282 * completed requests.
2283 */
2284static int
2285i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2286{
2287        int ret;
2288
2289        if (obj->active) {
2290                ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2291                if (ret)
2292                        return ret;
2293
2294                i915_gem_retire_requests_ring(obj->ring);
2295        }
2296
2297        return 0;
2298}
2299
2300/**
2301 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2302 * @DRM_IOCTL_ARGS: standard ioctl arguments
2303 *
2304 * Returns 0 if successful, else an error is returned with the remaining time in
2305 * the timeout parameter.
2306 *  -ETIME: object is still busy after timeout
2307 *  -ERESTARTSYS: signal interrupted the wait
2308 *  -ENONENT: object doesn't exist
2309 * Also possible, but rare:
2310 *  -EAGAIN: GPU wedged
2311 *  -ENOMEM: damn
2312 *  -ENODEV: Internal IRQ fail
2313 *  -E?: The add request failed
2314 *
2315 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2316 * non-zero timeout parameter the wait ioctl will wait for the given number of
2317 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2318 * without holding struct_mutex the object may become re-busied before this
2319 * function completes. A similar but shorter * race condition exists in the busy
2320 * ioctl
2321 */
2322int
2323i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2324{
2325        drm_i915_private_t *dev_priv = dev->dev_private;
2326        struct drm_i915_gem_wait *args = data;
2327        struct drm_i915_gem_object *obj;
2328        struct intel_ring_buffer *ring = NULL;
2329        struct timespec timeout_stack, *timeout = NULL;
2330        unsigned reset_counter;
2331        u32 seqno = 0;
2332        int ret = 0;
2333
2334        if (args->timeout_ns >= 0) {
2335                timeout_stack = ns_to_timespec(args->timeout_ns);
2336                timeout = &timeout_stack;
2337        }
2338
2339        ret = i915_mutex_lock_interruptible(dev);
2340        if (ret)
2341                return ret;
2342
2343        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2344        if (&obj->base == NULL) {
2345                mutex_unlock(&dev->struct_mutex);
2346                return -ENOENT;
2347        }
2348
2349        /* Need to make sure the object gets inactive eventually. */
2350        ret = i915_gem_object_flush_active(obj);
2351        if (ret)
2352                goto out;
2353
2354        if (obj->active) {
2355                seqno = obj->last_read_seqno;
2356                ring = obj->ring;
2357        }
2358
2359        if (seqno == 0)
2360                 goto out;
2361
2362        /* Do this after OLR check to make sure we make forward progress polling
2363         * on this IOCTL with a 0 timeout (like busy ioctl)
2364         */
2365        if (!args->timeout_ns) {
2366                ret = -ETIME;
2367                goto out;
2368        }
2369
2370        drm_gem_object_unreference(&obj->base);
2371        reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2372        mutex_unlock(&dev->struct_mutex);
2373
2374        ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2375        if (timeout) {
2376                WARN_ON(!timespec_valid(timeout));
2377                args->timeout_ns = timespec_to_ns(timeout);
2378        }
2379        return ret;
2380
2381out:
2382        drm_gem_object_unreference(&obj->base);
2383        mutex_unlock(&dev->struct_mutex);
2384        return ret;
2385}
2386
2387/**
2388 * i915_gem_object_sync - sync an object to a ring.
2389 *
2390 * @obj: object which may be in use on another ring.
2391 * @to: ring we wish to use the object on. May be NULL.
2392 *
2393 * This code is meant to abstract object synchronization with the GPU.
2394 * Calling with NULL implies synchronizing the object with the CPU
2395 * rather than a particular GPU ring.
2396 *
2397 * Returns 0 if successful, else propagates up the lower layer error.
2398 */
2399int
2400i915_gem_object_sync(struct drm_i915_gem_object *obj,
2401                     struct intel_ring_buffer *to)
2402{
2403        struct intel_ring_buffer *from = obj->ring;
2404        u32 seqno;
2405        int ret, idx;
2406
2407        if (from == NULL || to == from)
2408                return 0;
2409
2410        if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2411                return i915_gem_object_wait_rendering(obj, false);
2412
2413        idx = intel_ring_sync_index(from, to);
2414
2415        seqno = obj->last_read_seqno;
2416        if (seqno <= from->sync_seqno[idx])
2417                return 0;
2418
2419        ret = i915_gem_check_olr(obj->ring, seqno);
2420        if (ret)
2421                return ret;
2422
2423        ret = to->sync_to(to, from, seqno);
2424        if (!ret)
2425                /* We use last_read_seqno because sync_to()
2426                 * might have just caused seqno wrap under
2427                 * the radar.
2428                 */
2429                from->sync_seqno[idx] = obj->last_read_seqno;
2430
2431        return ret;
2432}
2433
2434static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2435{
2436        u32 old_write_domain, old_read_domains;
2437
2438        /* Force a pagefault for domain tracking on next user access */
2439        i915_gem_release_mmap(obj);
2440
2441        if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2442                return;
2443
2444        /* Wait for any direct GTT access to complete */
2445        mb();
2446
2447        old_read_domains = obj->base.read_domains;
2448        old_write_domain = obj->base.write_domain;
2449
2450        obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2451        obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2452
2453        trace_i915_gem_object_change_domain(obj,
2454                                            old_read_domains,
2455                                            old_write_domain);
2456}
2457
2458/**
2459 * Unbinds an object from the GTT aperture.
2460 */
2461int
2462i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2463{
2464        drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2465        int ret;
2466
2467        if (obj->gtt_space == NULL)
2468                return 0;
2469
2470        if (obj->pin_count)
2471                return -EBUSY;
2472
2473        BUG_ON(obj->pages == NULL);
2474
2475        ret = i915_gem_object_finish_gpu(obj);
2476        if (ret)
2477                return ret;
2478        /* Continue on if we fail due to EIO, the GPU is hung so we
2479         * should be safe and we need to cleanup or else we might
2480         * cause memory corruption through use-after-free.
2481         */
2482
2483        i915_gem_object_finish_gtt(obj);
2484
2485        /* release the fence reg _after_ flushing */
2486        ret = i915_gem_object_put_fence(obj);
2487        if (ret)
2488                return ret;
2489
2490        trace_i915_gem_object_unbind(obj);
2491
2492        if (obj->has_global_gtt_mapping)
2493                i915_gem_gtt_unbind_object(obj);
2494        if (obj->has_aliasing_ppgtt_mapping) {
2495                i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2496                obj->has_aliasing_ppgtt_mapping = 0;
2497        }
2498        i915_gem_gtt_finish_object(obj);
2499
2500        list_del(&obj->mm_list);
2501        list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2502        /* Avoid an unnecessary call to unbind on rebind. */
2503        obj->map_and_fenceable = true;
2504
2505        drm_mm_put_block(obj->gtt_space);
2506        obj->gtt_space = NULL;
2507        obj->gtt_offset = 0;
2508
2509        return 0;
2510}
2511
2512int i915_gpu_idle(struct drm_device *dev)
2513{
2514        drm_i915_private_t *dev_priv = dev->dev_private;
2515        struct intel_ring_buffer *ring;
2516        int ret, i;
2517
2518        /* Flush everything onto the inactive list. */
2519        for_each_ring(ring, dev_priv, i) {
2520                ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2521                if (ret)
2522                        return ret;
2523
2524                ret = intel_ring_idle(ring);
2525                if (ret)
2526                        return ret;
2527        }
2528
2529        return 0;
2530}
2531
2532static void i965_write_fence_reg(struct drm_device *dev, int reg,
2533                                 struct drm_i915_gem_object *obj)
2534{
2535        drm_i915_private_t *dev_priv = dev->dev_private;
2536        int fence_reg;
2537        int fence_pitch_shift;
2538        uint64_t val;
2539
2540        if (INTEL_INFO(dev)->gen >= 6) {
2541                fence_reg = FENCE_REG_SANDYBRIDGE_0;
2542                fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2543        } else {
2544                fence_reg = FENCE_REG_965_0;
2545                fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2546        }
2547
2548        if (obj) {
2549                u32 size = obj->gtt_space->size;
2550
2551                val = (uint64_t)((obj->gtt_offset + size - 4096) &
2552                                 0xfffff000) << 32;
2553                val |= obj->gtt_offset & 0xfffff000;
2554                val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2555                if (obj->tiling_mode == I915_TILING_Y)
2556                        val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2557                val |= I965_FENCE_REG_VALID;
2558        } else
2559                val = 0;
2560
2561        fence_reg += reg * 8;
2562        I915_WRITE64(fence_reg, val);
2563        POSTING_READ(fence_reg);
2564}
2565
2566static void i915_write_fence_reg(struct drm_device *dev, int reg,
2567                                 struct drm_i915_gem_object *obj)
2568{
2569        drm_i915_private_t *dev_priv = dev->dev_private;
2570        u32 val;
2571
2572        if (obj) {
2573                u32 size = obj->gtt_space->size;
2574                int pitch_val;
2575                int tile_width;
2576
2577                WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2578                     (size & -size) != size ||
2579                     (obj->gtt_offset & (size - 1)),
2580                     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2581                     obj->gtt_offset, obj->map_and_fenceable, size);
2582
2583                if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2584                        tile_width = 128;
2585                else
2586                        tile_width = 512;
2587
2588                /* Note: pitch better be a power of two tile widths */
2589                pitch_val = obj->stride / tile_width;
2590                pitch_val = ffs(pitch_val) - 1;
2591
2592                val = obj->gtt_offset;
2593                if (obj->tiling_mode == I915_TILING_Y)
2594                        val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2595                val |= I915_FENCE_SIZE_BITS(size);
2596                val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2597                val |= I830_FENCE_REG_VALID;
2598        } else
2599                val = 0;
2600
2601        if (reg < 8)
2602                reg = FENCE_REG_830_0 + reg * 4;
2603        else
2604                reg = FENCE_REG_945_8 + (reg - 8) * 4;
2605
2606        I915_WRITE(reg, val);
2607        POSTING_READ(reg);
2608}
2609
2610static void i830_write_fence_reg(struct drm_device *dev, int reg,
2611                                struct drm_i915_gem_object *obj)
2612{
2613        drm_i915_private_t *dev_priv = dev->dev_private;
2614        uint32_t val;
2615
2616        if (obj) {
2617                u32 size = obj->gtt_space->size;
2618                uint32_t pitch_val;
2619
2620                WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2621                     (size & -size) != size ||
2622                     (obj->gtt_offset & (size - 1)),
2623                     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2624                     obj->gtt_offset, size);
2625
2626                pitch_val = obj->stride / 128;
2627                pitch_val = ffs(pitch_val) - 1;
2628
2629                val = obj->gtt_offset;
2630                if (obj->tiling_mode == I915_TILING_Y)
2631                        val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2632                val |= I830_FENCE_SIZE_BITS(size);
2633                val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2634                val |= I830_FENCE_REG_VALID;
2635        } else
2636                val = 0;
2637
2638        I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2639        POSTING_READ(FENCE_REG_830_0 + reg * 4);
2640}
2641
2642inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2643{
2644        return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2645}
2646
2647static void i915_gem_write_fence(struct drm_device *dev, int reg,
2648                                 struct drm_i915_gem_object *obj)
2649{
2650        struct drm_i915_private *dev_priv = dev->dev_private;
2651
2652        /* Ensure that all CPU reads are completed before installing a fence
2653         * and all writes before removing the fence.
2654         */
2655        if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2656                mb();
2657
2658        switch (INTEL_INFO(dev)->gen) {
2659        case 7:
2660        case 6:
2661        case 5:
2662        case 4: i965_write_fence_reg(dev, reg, obj); break;
2663        case 3: i915_write_fence_reg(dev, reg, obj); break;
2664        case 2: i830_write_fence_reg(dev, reg, obj); break;
2665        default: BUG();
2666        }
2667
2668        /* And similarly be paranoid that no direct access to this region
2669         * is reordered to before the fence is installed.
2670         */
2671        if (i915_gem_object_needs_mb(obj))
2672                mb();
2673}
2674
2675static inline int fence_number(struct drm_i915_private *dev_priv,
2676                               struct drm_i915_fence_reg *fence)
2677{
2678        return fence - dev_priv->fence_regs;
2679}
2680
2681static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2682                                         struct drm_i915_fence_reg *fence,
2683                                         bool enable)
2684{
2685        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2686        int reg = fence_number(dev_priv, fence);
2687
2688        i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2689
2690        if (enable) {
2691                obj->fence_reg = reg;
2692                fence->obj = obj;
2693                list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2694        } else {
2695                obj->fence_reg = I915_FENCE_REG_NONE;
2696                fence->obj = NULL;
2697                list_del_init(&fence->lru_list);
2698        }
2699}
2700
2701static int
2702i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2703{
2704        if (obj->last_fenced_seqno) {
2705                int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2706                if (ret)
2707                        return ret;
2708
2709                obj->last_fenced_seqno = 0;
2710        }
2711
2712        obj->fenced_gpu_access = false;
2713        return 0;
2714}
2715
2716int
2717i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2718{
2719        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2720        int ret;
2721
2722        ret = i915_gem_object_wait_fence(obj);
2723        if (ret)
2724                return ret;
2725
2726        if (obj->fence_reg == I915_FENCE_REG_NONE)
2727                return 0;
2728
2729        i915_gem_object_update_fence(obj,
2730                                     &dev_priv->fence_regs[obj->fence_reg],
2731                                     false);
2732        i915_gem_object_fence_lost(obj);
2733
2734        return 0;
2735}
2736
2737static struct drm_i915_fence_reg *
2738i915_find_fence_reg(struct drm_device *dev)
2739{
2740        struct drm_i915_private *dev_priv = dev->dev_private;
2741        struct drm_i915_fence_reg *reg, *avail;
2742        int i;
2743
2744        /* First try to find a free reg */
2745        avail = NULL;
2746        for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2747                reg = &dev_priv->fence_regs[i];
2748                if (!reg->obj)
2749                        return reg;
2750
2751                if (!reg->pin_count)
2752                        avail = reg;
2753        }
2754
2755        if (avail == NULL)
2756                return NULL;
2757
2758        /* None available, try to steal one or wait for a user to finish */
2759        list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2760                if (reg->pin_count)
2761                        continue;
2762
2763                return reg;
2764        }
2765
2766        return NULL;
2767}
2768
2769/**
2770 * i915_gem_object_get_fence - set up fencing for an object
2771 * @obj: object to map through a fence reg
2772 *
2773 * When mapping objects through the GTT, userspace wants to be able to write
2774 * to them without having to worry about swizzling if the object is tiled.
2775 * This function walks the fence regs looking for a free one for @obj,
2776 * stealing one if it can't find any.
2777 *
2778 * It then sets up the reg based on the object's properties: address, pitch
2779 * and tiling format.
2780 *
2781 * For an untiled surface, this removes any existing fence.
2782 */
2783int
2784i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2785{
2786        struct drm_device *dev = obj->base.dev;
2787        struct drm_i915_private *dev_priv = dev->dev_private;
2788        bool enable = obj->tiling_mode != I915_TILING_NONE;
2789        struct drm_i915_fence_reg *reg;
2790        int ret;
2791
2792        /* Have we updated the tiling parameters upon the object and so
2793         * will need to serialise the write to the associated fence register?
2794         */
2795        if (obj->fence_dirty) {
2796                ret = i915_gem_object_wait_fence(obj);
2797                if (ret)
2798                        return ret;
2799        }
2800
2801        /* Just update our place in the LRU if our fence is getting reused. */
2802        if (obj->fence_reg != I915_FENCE_REG_NONE) {
2803                reg = &dev_priv->fence_regs[obj->fence_reg];
2804                if (!obj->fence_dirty) {
2805                        list_move_tail(&reg->lru_list,
2806                                       &dev_priv->mm.fence_list);
2807                        return 0;
2808                }
2809        } else if (enable) {
2810                reg = i915_find_fence_reg(dev);
2811                if (reg == NULL)
2812                        return -EDEADLK;
2813
2814                if (reg->obj) {
2815                        struct drm_i915_gem_object *old = reg->obj;
2816
2817                        ret = i915_gem_object_wait_fence(old);
2818                        if (ret)
2819                                return ret;
2820
2821                        i915_gem_object_fence_lost(old);
2822                }
2823        } else
2824                return 0;
2825
2826        i915_gem_object_update_fence(obj, reg, enable);
2827        obj->fence_dirty = false;
2828
2829        return 0;
2830}
2831
2832static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2833                                     struct drm_mm_node *gtt_space,
2834                                     unsigned long cache_level)
2835{
2836        struct drm_mm_node *other;
2837
2838        /* On non-LLC machines we have to be careful when putting differing
2839         * types of snoopable memory together to avoid the prefetcher
2840         * crossing memory domains and dying.
2841         */
2842        if (HAS_LLC(dev))
2843                return true;
2844
2845        if (gtt_space == NULL)
2846                return true;
2847
2848        if (list_empty(&gtt_space->node_list))
2849                return true;
2850
2851        other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2852        if (other->allocated && !other->hole_follows && other->color != cache_level)
2853                return false;
2854
2855        other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2856        if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2857                return false;
2858
2859        return true;
2860}
2861
2862static void i915_gem_verify_gtt(struct drm_device *dev)
2863{
2864#if WATCH_GTT
2865        struct drm_i915_private *dev_priv = dev->dev_private;
2866        struct drm_i915_gem_object *obj;
2867        int err = 0;
2868
2869        list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2870                if (obj->gtt_space == NULL) {
2871                        printk(KERN_ERR "object found on GTT list with no space reserved\n");
2872                        err++;
2873                        continue;
2874                }
2875
2876                if (obj->cache_level != obj->gtt_space->color) {
2877                        printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2878                               obj->gtt_space->start,
2879                               obj->gtt_space->start + obj->gtt_space->size,
2880                               obj->cache_level,
2881                               obj->gtt_space->color);
2882                        err++;
2883                        continue;
2884                }
2885
2886                if (!i915_gem_valid_gtt_space(dev,
2887                                              obj->gtt_space,
2888                                              obj->cache_level)) {
2889                        printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2890                               obj->gtt_space->start,
2891                               obj->gtt_space->start + obj->gtt_space->size,
2892                               obj->cache_level);
2893                        err++;
2894                        continue;
2895                }
2896        }
2897
2898        WARN_ON(err);
2899#endif
2900}
2901
2902/**
2903 * Finds free space in the GTT aperture and binds the object there.
2904 */
2905static int
2906i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2907                            unsigned alignment,
2908                            bool map_and_fenceable,
2909                            bool nonblocking)
2910{
2911        struct drm_device *dev = obj->base.dev;
2912        drm_i915_private_t *dev_priv = dev->dev_private;
2913        struct drm_mm_node *node;
2914        u32 size, fence_size, fence_alignment, unfenced_alignment;
2915        bool mappable, fenceable;
2916        int ret;
2917
2918        fence_size = i915_gem_get_gtt_size(dev,
2919                                           obj->base.size,
2920                                           obj->tiling_mode);
2921        fence_alignment = i915_gem_get_gtt_alignment(dev,
2922                                                     obj->base.size,
2923                                                     obj->tiling_mode, true);
2924        unfenced_alignment =
2925                i915_gem_get_gtt_alignment(dev,
2926                                                    obj->base.size,
2927                                                    obj->tiling_mode, false);
2928
2929        if (alignment == 0)
2930                alignment = map_and_fenceable ? fence_alignment :
2931                                                unfenced_alignment;
2932        if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2933                DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2934                return -EINVAL;
2935        }
2936
2937        size = map_and_fenceable ? fence_size : obj->base.size;
2938
2939        /* If the object is bigger than the entire aperture, reject it early
2940         * before evicting everything in a vain attempt to find space.
2941         */
2942        if (obj->base.size >
2943            (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2944                DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2945                return -E2BIG;
2946        }
2947
2948        ret = i915_gem_object_get_pages(obj);
2949        if (ret)
2950                return ret;
2951
2952        i915_gem_object_pin_pages(obj);
2953
2954        node = kzalloc(sizeof(*node), GFP_KERNEL);
2955        if (node == NULL) {
2956                i915_gem_object_unpin_pages(obj);
2957                return -ENOMEM;
2958        }
2959
2960 search_free:
2961        if (map_and_fenceable)
2962                ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2963                                                          size, alignment, obj->cache_level,
2964                                                          0, dev_priv->gtt.mappable_end);
2965        else
2966                ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2967                                                 size, alignment, obj->cache_level);
2968        if (ret) {
2969                ret = i915_gem_evict_something(dev, size, alignment,
2970                                               obj->cache_level,
2971                                               map_and_fenceable,
2972                                               nonblocking);
2973                if (ret == 0)
2974                        goto search_free;
2975
2976                i915_gem_object_unpin_pages(obj);
2977                kfree(node);
2978                return ret;
2979        }
2980        if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2981                i915_gem_object_unpin_pages(obj);
2982                drm_mm_put_block(node);
2983                return -EINVAL;
2984        }
2985
2986        ret = i915_gem_gtt_prepare_object(obj);
2987        if (ret) {
2988                i915_gem_object_unpin_pages(obj);
2989                drm_mm_put_block(node);
2990                return ret;
2991        }
2992
2993        list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2994        list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2995
2996        obj->gtt_space = node;
2997        obj->gtt_offset = node->start;
2998
2999        fenceable =
3000                node->size == fence_size &&
3001                (node->start & (fence_alignment - 1)) == 0;
3002
3003        mappable =
3004                obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3005
3006        obj->map_and_fenceable = mappable && fenceable;
3007
3008        i915_gem_object_unpin_pages(obj);
3009        trace_i915_gem_object_bind(obj, map_and_fenceable);
3010        i915_gem_verify_gtt(dev);
3011        return 0;
3012}
3013
3014void
3015i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3016{
3017        /* If we don't have a page list set up, then we're not pinned
3018         * to GPU, and we can ignore the cache flush because it'll happen
3019         * again at bind time.
3020         */
3021        if (obj->pages == NULL)
3022                return;
3023
3024        /*
3025         * Stolen memory is always coherent with the GPU as it is explicitly
3026         * marked as wc by the system, or the system is cache-coherent.
3027         */
3028        if (obj->stolen)
3029                return;
3030
3031        /* If the GPU is snooping the contents of the CPU cache,
3032         * we do not need to manually clear the CPU cache lines.  However,
3033         * the caches are only snooped when the render cache is
3034         * flushed/invalidated.  As we always have to emit invalidations
3035         * and flushes when moving into and out of the RENDER domain, correct
3036         * snooping behaviour occurs naturally as the result of our domain
3037         * tracking.
3038         */
3039        if (obj->cache_level != I915_CACHE_NONE)
3040                return;
3041
3042        trace_i915_gem_object_clflush(obj);
3043
3044        drm_clflush_sg(obj->pages);
3045}
3046
3047/** Flushes the GTT write domain for the object if it's dirty. */
3048static void
3049i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3050{
3051        uint32_t old_write_domain;
3052
3053        if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3054                return;
3055
3056        /* No actual flushing is required for the GTT write domain.  Writes
3057         * to it immediately go to main memory as far as we know, so there's
3058         * no chipset flush.  It also doesn't land in render cache.
3059         *
3060         * However, we do have to enforce the order so that all writes through
3061         * the GTT land before any writes to the device, such as updates to
3062         * the GATT itself.
3063         */
3064        wmb();
3065
3066        old_write_domain = obj->base.write_domain;
3067        obj->base.write_domain = 0;
3068
3069        trace_i915_gem_object_change_domain(obj,
3070                                            obj->base.read_domains,
3071                                            old_write_domain);
3072}
3073
3074/** Flushes the CPU write domain for the object if it's dirty. */
3075static void
3076i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3077{
3078        uint32_t old_write_domain;
3079
3080        if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3081                return;
3082
3083        i915_gem_clflush_object(obj);
3084        i915_gem_chipset_flush(obj->base.dev);
3085        old_write_domain = obj->base.write_domain;
3086        obj->base.write_domain = 0;
3087
3088        trace_i915_gem_object_change_domain(obj,
3089                                            obj->base.read_domains,
3090                                            old_write_domain);
3091}
3092
3093/**
3094 * Moves a single object to the GTT read, and possibly write domain.
3095 *
3096 * This function returns when the move is complete, including waiting on
3097 * flushes to occur.
3098 */
3099int
3100i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3101{
3102        drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3103        uint32_t old_write_domain, old_read_domains;
3104        int ret;
3105
3106        /* Not valid to be called on unbound objects. */
3107        if (obj->gtt_space == NULL)
3108                return -EINVAL;
3109
3110        if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3111                return 0;
3112
3113        ret = i915_gem_object_wait_rendering(obj, !write);
3114        if (ret)
3115                return ret;
3116
3117        i915_gem_object_flush_cpu_write_domain(obj);
3118
3119        /* Serialise direct access to this object with the barriers for
3120         * coherent writes from the GPU, by effectively invalidating the
3121         * GTT domain upon first access.
3122         */
3123        if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3124                mb();
3125
3126        old_write_domain = obj->base.write_domain;
3127        old_read_domains = obj->base.read_domains;
3128
3129        /* It should now be out of any other write domains, and we can update
3130         * the domain values for our changes.
3131         */
3132        BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3133        obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3134        if (write) {
3135                obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3136                obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3137                obj->dirty = 1;
3138        }
3139
3140        trace_i915_gem_object_change_domain(obj,
3141                                            old_read_domains,
3142                                            old_write_domain);
3143
3144        /* And bump the LRU for this access */
3145        if (i915_gem_object_is_inactive(obj))
3146                list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3147
3148        return 0;
3149}
3150
3151int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3152                                    enum i915_cache_level cache_level)
3153{
3154        struct drm_device *dev = obj->base.dev;
3155        drm_i915_private_t *dev_priv = dev->dev_private;
3156        int ret;
3157
3158        if (obj->cache_level == cache_level)
3159                return 0;
3160
3161        if (obj->pin_count) {
3162                DRM_DEBUG("can not change the cache level of pinned objects\n");
3163                return -EBUSY;
3164        }
3165
3166        if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3167                ret = i915_gem_object_unbind(obj);
3168                if (ret)
3169                        return ret;
3170        }
3171
3172        if (obj->gtt_space) {
3173                ret = i915_gem_object_finish_gpu(obj);
3174                if (ret)
3175                        return ret;
3176
3177                i915_gem_object_finish_gtt(obj);
3178
3179                /* Before SandyBridge, you could not use tiling or fence
3180                 * registers with snooped memory, so relinquish any fences
3181                 * currently pointing to our region in the aperture.
3182                 */
3183                if (INTEL_INFO(dev)->gen < 6) {
3184                        ret = i915_gem_object_put_fence(obj);
3185                        if (ret)
3186                                return ret;
3187                }
3188
3189                if (obj->has_global_gtt_mapping)
3190                        i915_gem_gtt_bind_object(obj, cache_level);
3191                if (obj->has_aliasing_ppgtt_mapping)
3192                        i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3193                                               obj, cache_level);
3194
3195                obj->gtt_space->color = cache_level;
3196        }
3197
3198        if (cache_level == I915_CACHE_NONE) {
3199                u32 old_read_domains, old_write_domain;
3200
3201                /* If we're coming from LLC cached, then we haven't
3202                 * actually been tracking whether the data is in the
3203                 * CPU cache or not, since we only allow one bit set
3204                 * in obj->write_domain and have been skipping the clflushes.
3205                 * Just set it to the CPU cache for now.
3206                 */
3207                WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3208                WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3209
3210                old_read_domains = obj->base.read_domains;
3211                old_write_domain = obj->base.write_domain;
3212
3213                obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3214                obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3215
3216                trace_i915_gem_object_change_domain(obj,
3217                                                    old_read_domains,
3218                                                    old_write_domain);
3219        }
3220
3221        obj->cache_level = cache_level;
3222        i915_gem_verify_gtt(dev);
3223        return 0;
3224}
3225
3226int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3227                               struct drm_file *file)
3228{
3229        struct drm_i915_gem_caching *args = data;
3230        struct drm_i915_gem_object *obj;
3231        int ret;
3232
3233        ret = i915_mutex_lock_interruptible(dev);
3234        if (ret)
3235                return ret;
3236
3237        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3238        if (&obj->base == NULL) {
3239                ret = -ENOENT;
3240                goto unlock;
3241        }
3242
3243        args->caching = obj->cache_level != I915_CACHE_NONE;
3244
3245        drm_gem_object_unreference(&obj->base);
3246unlock:
3247        mutex_unlock(&dev->struct_mutex);
3248        return ret;
3249}
3250
3251int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3252                               struct drm_file *file)
3253{
3254        struct drm_i915_gem_caching *args = data;
3255        struct drm_i915_gem_object *obj;
3256        enum i915_cache_level level;
3257        int ret;
3258
3259        switch (args->caching) {
3260        case I915_CACHING_NONE:
3261                level = I915_CACHE_NONE;
3262                break;
3263        case I915_CACHING_CACHED:
3264                level = I915_CACHE_LLC;
3265                break;
3266        default:
3267                return -EINVAL;
3268        }
3269
3270        ret = i915_mutex_lock_interruptible(dev);
3271        if (ret)
3272                return ret;
3273
3274        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3275        if (&obj->base == NULL) {
3276                ret = -ENOENT;
3277                goto unlock;
3278        }
3279
3280        ret = i915_gem_object_set_cache_level(obj, level);
3281
3282        drm_gem_object_unreference(&obj->base);
3283unlock:
3284        mutex_unlock(&dev->struct_mutex);
3285        return ret;
3286}
3287
3288/*
3289 * Prepare buffer for display plane (scanout, cursors, etc).
3290 * Can be called from an uninterruptible phase (modesetting) and allows
3291 * any flushes to be pipelined (for pageflips).
3292 */
3293int
3294i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3295                                     u32 alignment,
3296                                     struct intel_ring_buffer *pipelined)
3297{
3298        u32 old_read_domains, old_write_domain;
3299        int ret;
3300
3301        if (pipelined != obj->ring) {
3302                ret = i915_gem_object_sync(obj, pipelined);
3303                if (ret)
3304                        return ret;
3305        }
3306
3307        /* The display engine is not coherent with the LLC cache on gen6.  As
3308         * a result, we make sure that the pinning that is about to occur is
3309         * done with uncached PTEs. This is lowest common denominator for all
3310         * chipsets.
3311         *
3312         * However for gen6+, we could do better by using the GFDT bit instead
3313         * of uncaching, which would allow us to flush all the LLC-cached data
3314         * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3315         */
3316        ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3317        if (ret)
3318                return ret;
3319
3320        /* As the user may map the buffer once pinned in the display plane
3321         * (e.g. libkms for the bootup splash), we have to ensure that we
3322         * always use map_and_fenceable for all scanout buffers.
3323         */
3324        ret = i915_gem_object_pin(obj, alignment, true, false);
3325        if (ret)
3326                return ret;
3327
3328        i915_gem_object_flush_cpu_write_domain(obj);
3329
3330        old_write_domain = obj->base.write_domain;
3331        old_read_domains = obj->base.read_domains;
3332
3333        /* It should now be out of any other write domains, and we can update
3334         * the domain values for our changes.
3335         */
3336        obj->base.write_domain = 0;
3337        obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3338
3339        trace_i915_gem_object_change_domain(obj,
3340                                            old_read_domains,
3341                                            old_write_domain);
3342
3343        return 0;
3344}
3345
3346int
3347i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3348{
3349        int ret;
3350
3351        if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3352                return 0;
3353
3354        ret = i915_gem_object_wait_rendering(obj, false);
3355        if (ret)
3356                return ret;
3357
3358        /* Ensure that we invalidate the GPU's caches and TLBs. */
3359        obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3360        return 0;
3361}
3362
3363/**
3364 * Moves a single object to the CPU read, and possibly write domain.
3365 *
3366 * This function returns when the move is complete, including waiting on
3367 * flushes to occur.
3368 */
3369int
3370i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3371{
3372        uint32_t old_write_domain, old_read_domains;
3373        int ret;
3374
3375        if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3376                return 0;
3377
3378        ret = i915_gem_object_wait_rendering(obj, !write);
3379        if (ret)
3380                return ret;
3381
3382        i915_gem_object_flush_gtt_write_domain(obj);
3383
3384        old_write_domain = obj->base.write_domain;
3385        old_read_domains = obj->base.read_domains;
3386
3387        /* Flush the CPU cache if it's still invalid. */
3388        if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3389                i915_gem_clflush_object(obj);
3390
3391                obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3392        }
3393
3394        /* It should now be out of any other write domains, and we can update
3395         * the domain values for our changes.
3396         */
3397        BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3398
3399        /* If we're writing through the CPU, then the GPU read domains will
3400         * need to be invalidated at next use.
3401         */
3402        if (write) {
3403                obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3404                obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3405        }
3406
3407        trace_i915_gem_object_change_domain(obj,
3408                                            old_read_domains,
3409                                            old_write_domain);
3410
3411        return 0;
3412}
3413
3414/* Throttle our rendering by waiting until the ring has completed our requests
3415 * emitted over 20 msec ago.
3416 *
3417 * Note that if we were to use the current jiffies each time around the loop,
3418 * we wouldn't escape the function with any frames outstanding if the time to
3419 * render a frame was over 20ms.
3420 *
3421 * This should get us reasonable parallelism between CPU and GPU but also
3422 * relatively low latency when blocking on a particular request to finish.
3423 */
3424static int
3425i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3426{
3427        struct drm_i915_private *dev_priv = dev->dev_private;
3428        struct drm_i915_file_private *file_priv = file->driver_priv;
3429        unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3430        struct drm_i915_gem_request *request;
3431        struct intel_ring_buffer *ring = NULL;
3432        unsigned reset_counter;
3433        u32 seqno = 0;
3434        int ret;
3435
3436        ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3437        if (ret)
3438                return ret;
3439
3440        ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3441        if (ret)
3442                return ret;
3443
3444        spin_lock(&file_priv->mm.lock);
3445        list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3446                if (time_after_eq(request->emitted_jiffies, recent_enough))
3447                        break;
3448
3449                ring = request->ring;
3450                seqno = request->seqno;
3451        }
3452        reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3453        spin_unlock(&file_priv->mm.lock);
3454
3455        if (seqno == 0)
3456                return 0;
3457
3458        ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3459        if (ret == 0)
3460                queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3461
3462        return ret;
3463}
3464
3465int
3466i915_gem_object_pin(struct drm_i915_gem_object *obj,
3467                    uint32_t alignment,
3468                    bool map_and_fenceable,
3469                    bool nonblocking)
3470{
3471        int ret;
3472
3473        if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3474                return -EBUSY;
3475
3476        if (obj->gtt_space != NULL) {
3477                if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3478                    (map_and_fenceable && !obj->map_and_fenceable)) {
3479                        WARN(obj->pin_count,
3480                             "bo is already pinned with incorrect alignment:"
3481                             " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3482                             " obj->map_and_fenceable=%d\n",
3483                             obj->gtt_offset, alignment,
3484                             map_and_fenceable,
3485                             obj->map_and_fenceable);
3486                        ret = i915_gem_object_unbind(obj);
3487                        if (ret)
3488                                return ret;
3489                }
3490        }
3491
3492        if (obj->gtt_space == NULL) {
3493                struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3494
3495                ret = i915_gem_object_bind_to_gtt(obj, alignment,
3496                                                  map_and_fenceable,
3497                                                  nonblocking);
3498                if (ret)
3499                        return ret;
3500
3501                if (!dev_priv->mm.aliasing_ppgtt)
3502                        i915_gem_gtt_bind_object(obj, obj->cache_level);
3503        }
3504
3505        if (!obj->has_global_gtt_mapping && map_and_fenceable)
3506                i915_gem_gtt_bind_object(obj, obj->cache_level);
3507
3508        obj->pin_count++;
3509        obj->pin_mappable |= map_and_fenceable;
3510
3511        return 0;
3512}
3513
3514void
3515i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3516{
3517        BUG_ON(obj->pin_count == 0);
3518        BUG_ON(obj->gtt_space == NULL);
3519
3520        if (--obj->pin_count == 0)
3521                obj->pin_mappable = false;
3522}
3523
3524int
3525i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3526                   struct drm_file *file)
3527{
3528        struct drm_i915_gem_pin *args = data;
3529        struct drm_i915_gem_object *obj;
3530        int ret;
3531
3532        ret = i915_mutex_lock_interruptible(dev);
3533        if (ret)
3534                return ret;
3535
3536        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3537        if (&obj->base == NULL) {
3538                ret = -ENOENT;
3539                goto unlock;
3540        }
3541
3542        if (obj->madv != I915_MADV_WILLNEED) {
3543                DRM_ERROR("Attempting to pin a purgeable buffer\n");
3544                ret = -EINVAL;
3545                goto out;
3546        }
3547
3548        if (obj->pin_filp != NULL && obj->pin_filp != file) {
3549                DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3550                          args->handle);
3551                ret = -EINVAL;
3552                goto out;
3553        }
3554
3555        if (obj->user_pin_count == 0) {
3556                ret = i915_gem_object_pin(obj, args->alignment, true, false);
3557                if (ret)
3558                        goto out;
3559        }
3560
3561        obj->user_pin_count++;
3562        obj->pin_filp = file;
3563
3564        /* XXX - flush the CPU caches for pinned objects
3565         * as the X server doesn't manage domains yet
3566         */
3567        i915_gem_object_flush_cpu_write_domain(obj);
3568        args->offset = obj->gtt_offset;
3569out:
3570        drm_gem_object_unreference(&obj->base);
3571unlock:
3572        mutex_unlock(&dev->struct_mutex);
3573        return ret;
3574}
3575
3576int
3577i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3578                     struct drm_file *file)
3579{
3580        struct drm_i915_gem_pin *args = data;
3581        struct drm_i915_gem_object *obj;
3582        int ret;
3583
3584        ret = i915_mutex_lock_interruptible(dev);
3585        if (ret)
3586                return ret;
3587
3588        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3589        if (&obj->base == NULL) {
3590                ret = -ENOENT;
3591                goto unlock;
3592        }
3593
3594        if (obj->pin_filp != file) {
3595                DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3596                          args->handle);
3597                ret = -EINVAL;
3598                goto out;
3599        }
3600        obj->user_pin_count--;
3601        if (obj->user_pin_count == 0) {
3602                obj->pin_filp = NULL;
3603                i915_gem_object_unpin(obj);
3604        }
3605
3606out:
3607        drm_gem_object_unreference(&obj->base);
3608unlock:
3609        mutex_unlock(&dev->struct_mutex);
3610        return ret;
3611}
3612
3613int
3614i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3615                    struct drm_file *file)
3616{
3617        struct drm_i915_gem_busy *args = data;
3618        struct drm_i915_gem_object *obj;
3619        int ret;
3620
3621        ret = i915_mutex_lock_interruptible(dev);
3622        if (ret)
3623                return ret;
3624
3625        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3626        if (&obj->base == NULL) {
3627                ret = -ENOENT;
3628                goto unlock;
3629        }
3630
3631        /* Count all active objects as busy, even if they are currently not used
3632         * by the gpu. Users of this interface expect objects to eventually
3633         * become non-busy without any further actions, therefore emit any
3634         * necessary flushes here.
3635         */
3636        ret = i915_gem_object_flush_active(obj);
3637
3638        args->busy = obj->active;
3639        if (obj->ring) {
3640                BUILD_BUG_ON(I915_NUM_RINGS > 16);
3641                args->busy |= intel_ring_flag(obj->ring) << 16;
3642        }
3643
3644        drm_gem_object_unreference(&obj->base);
3645unlock:
3646        mutex_unlock(&dev->struct_mutex);
3647        return ret;
3648}
3649
3650int
3651i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3652                        struct drm_file *file_priv)
3653{
3654        return i915_gem_ring_throttle(dev, file_priv);
3655}
3656
3657int
3658i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3659                       struct drm_file *file_priv)
3660{
3661        struct drm_i915_gem_madvise *args = data;
3662        struct drm_i915_gem_object *obj;
3663        int ret;
3664
3665        switch (args->madv) {
3666        case I915_MADV_DONTNEED:
3667        case I915_MADV_WILLNEED:
3668            break;
3669        default:
3670            return -EINVAL;
3671        }
3672
3673        ret = i915_mutex_lock_interruptible(dev);
3674        if (ret)
3675                return ret;
3676
3677        obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3678        if (&obj->base == NULL) {
3679                ret = -ENOENT;
3680                goto unlock;
3681        }
3682
3683        if (obj->pin_count) {
3684                ret = -EINVAL;
3685                goto out;
3686        }
3687
3688        if (obj->madv != __I915_MADV_PURGED)
3689                obj->madv = args->madv;
3690
3691        /* if the object is no longer attached, discard its backing storage */
3692        if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3693                i915_gem_object_truncate(obj);
3694
3695        args->retained = obj->madv != __I915_MADV_PURGED;
3696
3697out:
3698        drm_gem_object_unreference(&obj->base);
3699unlock:
3700        mutex_unlock(&dev->struct_mutex);
3701        return ret;
3702}
3703
3704void i915_gem_object_init(struct drm_i915_gem_object *obj,
3705                          const struct drm_i915_gem_object_ops *ops)
3706{
3707        INIT_LIST_HEAD(&obj->mm_list);
3708        INIT_LIST_HEAD(&obj->gtt_list);
3709        INIT_LIST_HEAD(&obj->ring_list);
3710        INIT_LIST_HEAD(&obj->exec_list);
3711
3712        obj->ops = ops;
3713
3714        obj->fence_reg = I915_FENCE_REG_NONE;
3715        obj->madv = I915_MADV_WILLNEED;
3716        /* Avoid an unnecessary call to unbind on the first bind. */
3717        obj->map_and_fenceable = true;
3718
3719        i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3720}
3721
3722static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3723        .get_pages = i915_gem_object_get_pages_gtt,
3724        .put_pages = i915_gem_object_put_pages_gtt,
3725};
3726
3727struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3728                                                  size_t size)
3729{
3730        struct drm_i915_gem_object *obj;
3731        struct address_space *mapping;
3732        gfp_t mask;
3733
3734        obj = i915_gem_object_alloc(dev);
3735        if (obj == NULL)
3736                return NULL;
3737
3738        if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3739                i915_gem_object_free(obj);
3740                return NULL;
3741        }
3742
3743        mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3744        if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3745                /* 965gm cannot relocate objects above 4GiB. */
3746                mask &= ~__GFP_HIGHMEM;
3747                mask |= __GFP_DMA32;
3748        }
3749
3750        mapping = file_inode(obj->base.filp)->i_mapping;
3751        mapping_set_gfp_mask(mapping, mask);
3752
3753        i915_gem_object_init(obj, &i915_gem_object_ops);
3754
3755        obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3756        obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3757
3758        if (HAS_LLC(dev)) {
3759                /* On some devices, we can have the GPU use the LLC (the CPU
3760                 * cache) for about a 10% performance improvement
3761                 * compared to uncached.  Graphics requests other than
3762                 * display scanout are coherent with the CPU in
3763                 * accessing this cache.  This means in this mode we
3764                 * don't need to clflush on the CPU side, and on the
3765                 * GPU side we only need to flush internal caches to
3766                 * get data visible to the CPU.
3767                 *
3768                 * However, we maintain the display planes as UC, and so
3769                 * need to rebind when first used as such.
3770                 */
3771                obj->cache_level = I915_CACHE_LLC;
3772        } else
3773                obj->cache_level = I915_CACHE_NONE;
3774
3775        return obj;
3776}
3777
3778int i915_gem_init_object(struct drm_gem_object *obj)
3779{
3780        BUG();
3781
3782        return 0;
3783}
3784
3785void i915_gem_free_object(struct drm_gem_object *gem_obj)
3786{
3787        struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3788        struct drm_device *dev = obj->base.dev;
3789        drm_i915_private_t *dev_priv = dev->dev_private;
3790
3791        trace_i915_gem_object_destroy(obj);
3792
3793        if (obj->phys_obj)
3794                i915_gem_detach_phys_object(dev, obj);
3795
3796        obj->pin_count = 0;
3797        if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3798                bool was_interruptible;
3799
3800                was_interruptible = dev_priv->mm.interruptible;
3801                dev_priv->mm.interruptible = false;
3802
3803                WARN_ON(i915_gem_object_unbind(obj));
3804
3805                dev_priv->mm.interruptible = was_interruptible;
3806        }
3807
3808        obj->pages_pin_count = 0;
3809        i915_gem_object_put_pages(obj);
3810        i915_gem_object_free_mmap_offset(obj);
3811        i915_gem_object_release_stolen(obj);
3812
3813        BUG_ON(obj->pages);
3814
3815        if (obj->base.import_attach)
3816                drm_prime_gem_destroy(&obj->base, NULL);
3817
3818        drm_gem_object_release(&obj->base);
3819        i915_gem_info_remove_obj(dev_priv, obj->base.size);
3820
3821        kfree(obj->bit_17);
3822        i915_gem_object_free(obj);
3823}
3824
3825int
3826i915_gem_idle(struct drm_device *dev)
3827{
3828        drm_i915_private_t *dev_priv = dev->dev_private;
3829        int ret;
3830
3831        mutex_lock(&dev->struct_mutex);
3832
3833        if (dev_priv->mm.suspended) {
3834                mutex_unlock(&dev->struct_mutex);
3835                return 0;
3836        }
3837
3838        ret = i915_gpu_idle(dev);
3839        if (ret) {
3840                mutex_unlock(&dev->struct_mutex);
3841                return ret;
3842        }
3843        i915_gem_retire_requests(dev);
3844
3845        /* Under UMS, be paranoid and evict. */
3846        if (!drm_core_check_feature(dev, DRIVER_MODESET))
3847                i915_gem_evict_everything(dev);
3848
3849        i915_gem_reset_fences(dev);
3850
3851        /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3852         * We need to replace this with a semaphore, or something.
3853         * And not confound mm.suspended!
3854         */
3855        dev_priv->mm.suspended = 1;
3856        del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3857
3858        i915_kernel_lost_context(dev);
3859        i915_gem_cleanup_ringbuffer(dev);
3860
3861        mutex_unlock(&dev->struct_mutex);
3862
3863        /* Cancel the retire work handler, which should be idle now. */
3864        cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3865
3866        return 0;
3867}
3868
3869void i915_gem_l3_remap(struct drm_device *dev)
3870{
3871        drm_i915_private_t *dev_priv = dev->dev_private;
3872        u32 misccpctl;
3873        int i;
3874
3875        if (!HAS_L3_GPU_CACHE(dev))
3876                return;
3877
3878        if (!dev_priv->l3_parity.remap_info)
3879                return;
3880
3881        misccpctl = I915_READ(GEN7_MISCCPCTL);
3882        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3883        POSTING_READ(GEN7_MISCCPCTL);
3884
3885        for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3886                u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3887                if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3888                        DRM_DEBUG("0x%x was already programmed to %x\n",
3889                                  GEN7_L3LOG_BASE + i, remap);
3890                if (remap && !dev_priv->l3_parity.remap_info[i/4])
3891                        DRM_DEBUG_DRIVER("Clearing remapped register\n");
3892                I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3893        }
3894
3895        /* Make sure all the writes land before disabling dop clock gating */
3896        POSTING_READ(GEN7_L3LOG_BASE);
3897
3898        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3899}
3900
3901void i915_gem_init_swizzling(struct drm_device *dev)
3902{
3903        drm_i915_private_t *dev_priv = dev->dev_private;
3904
3905        if (INTEL_INFO(dev)->gen < 5 ||
3906            dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3907                return;
3908
3909        I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3910                                 DISP_TILE_SURFACE_SWIZZLING);
3911
3912        if (IS_GEN5(dev))
3913                return;
3914
3915        I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3916        if (IS_GEN6(dev))
3917                I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3918        else if (IS_GEN7(dev))
3919                I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3920        else
3921                BUG();
3922}
3923
3924static bool
3925intel_enable_blt(struct drm_device *dev)
3926{
3927        if (!HAS_BLT(dev))
3928                return false;
3929
3930        /* The blitter was dysfunctional on early prototypes */
3931        if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3932                DRM_INFO("BLT not supported on this pre-production hardware;"
3933                         " graphics performance will be degraded.\n");
3934                return false;
3935        }
3936
3937        return true;
3938}
3939
3940static int i915_gem_init_rings(struct drm_device *dev)
3941{
3942        struct drm_i915_private *dev_priv = dev->dev_private;
3943        int ret;
3944
3945        ret = intel_init_render_ring_buffer(dev);
3946        if (ret)
3947                return ret;
3948
3949        if (HAS_BSD(dev)) {
3950                ret = intel_init_bsd_ring_buffer(dev);
3951                if (ret)
3952                        goto cleanup_render_ring;
3953        }
3954
3955        if (intel_enable_blt(dev)) {
3956                ret = intel_init_blt_ring_buffer(dev);
3957                if (ret)
3958                        goto cleanup_bsd_ring;
3959        }
3960
3961        ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3962        if (ret)
3963                goto cleanup_blt_ring;
3964
3965        return 0;
3966
3967cleanup_blt_ring:
3968        intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3969cleanup_bsd_ring:
3970        intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3971cleanup_render_ring:
3972        intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3973
3974        return ret;
3975}
3976
3977int
3978i915_gem_init_hw(struct drm_device *dev)
3979{
3980        drm_i915_private_t *dev_priv = dev->dev_private;
3981        int ret;
3982
3983        if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3984                return -EIO;
3985
3986        if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3987                I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3988
3989        i915_gem_l3_remap(dev);
3990
3991        i915_gem_init_swizzling(dev);
3992
3993        ret = i915_gem_init_rings(dev);
3994        if (ret)
3995                return ret;
3996
3997        /*
3998         * XXX: There was some w/a described somewhere suggesting loading
3999         * contexts before PPGTT.
4000         */
4001        i915_gem_context_init(dev);
4002        i915_gem_init_ppgtt(dev);
4003
4004        return 0;
4005}
4006
4007int i915_gem_init(struct drm_device *dev)
4008{
4009        struct drm_i915_private *dev_priv = dev->dev_private;
4010        int ret;
4011
4012        mutex_lock(&dev->struct_mutex);
4013        i915_gem_init_global_gtt(dev);
4014        ret = i915_gem_init_hw(dev);
4015        mutex_unlock(&dev->struct_mutex);
4016        if (ret) {
4017                i915_gem_cleanup_aliasing_ppgtt(dev);
4018                return ret;
4019        }
4020
4021        /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4022        if (!drm_core_check_feature(dev, DRIVER_MODESET))
4023                dev_priv->dri1.allow_batchbuffer = 1;
4024        return 0;
4025}
4026
4027void
4028i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4029{
4030        drm_i915_private_t *dev_priv = dev->dev_private;
4031        struct intel_ring_buffer *ring;
4032        int i;
4033
4034        for_each_ring(ring, dev_priv, i)
4035                intel_cleanup_ring_buffer(ring);
4036}
4037
4038int
4039i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4040                       struct drm_file *file_priv)
4041{
4042        drm_i915_private_t *dev_priv = dev->dev_private;
4043        int ret;
4044
4045        if (drm_core_check_feature(dev, DRIVER_MODESET))
4046                return 0;
4047
4048        if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4049                DRM_ERROR("Reenabling wedged hardware, good luck\n");
4050                atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4051        }
4052
4053        mutex_lock(&dev->struct_mutex);
4054        dev_priv->mm.suspended = 0;
4055
4056        ret = i915_gem_init_hw(dev);
4057        if (ret != 0) {
4058                mutex_unlock(&dev->struct_mutex);
4059                return ret;
4060        }
4061
4062        BUG_ON(!list_empty(&dev_priv->mm.active_list));
4063        mutex_unlock(&dev->struct_mutex);
4064
4065        ret = drm_irq_install(dev);
4066        if (ret)
4067                goto cleanup_ringbuffer;
4068
4069        return 0;
4070
4071cleanup_ringbuffer:
4072        mutex_lock(&dev->struct_mutex);
4073        i915_gem_cleanup_ringbuffer(dev);
4074        dev_priv->mm.suspended = 1;
4075        mutex_unlock(&dev->struct_mutex);
4076
4077        return ret;
4078}
4079
4080int
4081i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4082                       struct drm_file *file_priv)
4083{
4084        if (drm_core_check_feature(dev, DRIVER_MODESET))
4085                return 0;
4086
4087        drm_irq_uninstall(dev);
4088        return i915_gem_idle(dev);
4089}
4090
4091void
4092i915_gem_lastclose(struct drm_device *dev)
4093{
4094        int ret;
4095
4096        if (drm_core_check_feature(dev, DRIVER_MODESET))
4097                return;
4098
4099        ret = i915_gem_idle(dev);
4100        if (ret)
4101                DRM_ERROR("failed to idle hardware: %d\n", ret);
4102}
4103
4104static void
4105init_ring_lists(struct intel_ring_buffer *ring)
4106{
4107        INIT_LIST_HEAD(&ring->active_list);
4108        INIT_LIST_HEAD(&ring->request_list);
4109}
4110
4111void
4112i915_gem_load(struct drm_device *dev)
4113{
4114        drm_i915_private_t *dev_priv = dev->dev_private;
4115        int i;
4116
4117        dev_priv->slab =
4118                kmem_cache_create("i915_gem_object",
4119                                  sizeof(struct drm_i915_gem_object), 0,
4120                                  SLAB_HWCACHE_ALIGN,
4121                                  NULL);
4122
4123        INIT_LIST_HEAD(&dev_priv->mm.active_list);
4124        INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4125        INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4126        INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4127        INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4128        for (i = 0; i < I915_NUM_RINGS; i++)
4129                init_ring_lists(&dev_priv->ring[i]);
4130        for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4131                INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4132        INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4133                          i915_gem_retire_work_handler);
4134        init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4135
4136        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4137        if (IS_GEN3(dev)) {
4138                I915_WRITE(MI_ARB_STATE,
4139                           _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4140        }
4141
4142        dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4143
4144        /* Old X drivers will take 0-2 for front, back, depth buffers */
4145        if (!drm_core_check_feature(dev, DRIVER_MODESET))
4146                dev_priv->fence_reg_start = 3;
4147
4148        if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4149                dev_priv->num_fence_regs = 16;
4150        else
4151                dev_priv->num_fence_regs = 8;
4152
4153        /* Initialize fence registers to zero */
4154        i915_gem_reset_fences(dev);
4155
4156        i915_gem_detect_bit_6_swizzle(dev);
4157        init_waitqueue_head(&dev_priv->pending_flip_queue);
4158
4159        dev_priv->mm.interruptible = true;
4160
4161        dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4162        dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4163        register_shrinker(&dev_priv->mm.inactive_shrinker);
4164}
4165
4166/*
4167 * Create a physically contiguous memory object for this object
4168 * e.g. for cursor + overlay regs
4169 */
4170static int i915_gem_init_phys_object(struct drm_device *dev,
4171                                     int id, int size, int align)
4172{
4173        drm_i915_private_t *dev_priv = dev->dev_private;
4174        struct drm_i915_gem_phys_object *phys_obj;
4175        int ret;
4176
4177        if (dev_priv->mm.phys_objs[id - 1] || !size)
4178                return 0;
4179
4180        phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4181        if (!phys_obj)
4182                return -ENOMEM;
4183
4184        phys_obj->id = id;
4185
4186        phys_obj->handle = drm_pci_alloc(dev, size, align);
4187        if (!phys_obj->handle) {
4188                ret = -ENOMEM;
4189                goto kfree_obj;
4190        }
4191#ifdef CONFIG_X86
4192        set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4193#endif
4194
4195        dev_priv->mm.phys_objs[id - 1] = phys_obj;
4196
4197        return 0;
4198kfree_obj:
4199        kfree(phys_obj);
4200        return ret;
4201}
4202
4203static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4204{
4205        drm_i915_private_t *dev_priv = dev->dev_private;
4206        struct drm_i915_gem_phys_object *phys_obj;
4207
4208        if (!dev_priv->mm.phys_objs[id - 1])
4209                return;
4210
4211        phys_obj = dev_priv->mm.phys_objs[id - 1];
4212        if (phys_obj->cur_obj) {
4213                i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4214        }
4215
4216#ifdef CONFIG_X86
4217        set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4218#endif
4219        drm_pci_free(dev, phys_obj->handle);
4220        kfree(phys_obj);
4221        dev_priv->mm.phys_objs[id - 1] = NULL;
4222}
4223
4224void i915_gem_free_all_phys_object(struct drm_device *dev)
4225{
4226        int i;
4227
4228        for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4229                i915_gem_free_phys_object(dev, i);
4230}
4231
4232void i915_gem_detach_phys_object(struct drm_device *dev,
4233                                 struct drm_i915_gem_object *obj)
4234{
4235        struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4236        char *vaddr;
4237        int i;
4238        int page_count;
4239
4240        if (!obj->phys_obj)
4241                return;
4242        vaddr = obj->phys_obj->handle->vaddr;
4243
4244        page_count = obj->base.size / PAGE_SIZE;
4245        for (i = 0; i < page_count; i++) {
4246                struct page *page = shmem_read_mapping_page(mapping, i);
4247                if (!IS_ERR(page)) {
4248                        char *dst = kmap_atomic(page);
4249                        memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4250                        kunmap_atomic(dst);
4251
4252                        drm_clflush_pages(&page, 1);
4253
4254                        set_page_dirty(page);
4255                        mark_page_accessed(page);
4256                        page_cache_release(page);
4257                }
4258        }
4259        i915_gem_chipset_flush(dev);
4260
4261        obj->phys_obj->cur_obj = NULL;
4262        obj->phys_obj = NULL;
4263}
4264
4265int
4266i915_gem_attach_phys_object(struct drm_device *dev,
4267                            struct drm_i915_gem_object *obj,
4268                            int id,
4269                            int align)
4270{
4271        struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4272        drm_i915_private_t *dev_priv = dev->dev_private;
4273        int ret = 0;
4274        int page_count;
4275        int i;
4276
4277        if (id > I915_MAX_PHYS_OBJECT)
4278                return -EINVAL;
4279
4280        if (obj->phys_obj) {
4281                if (obj->phys_obj->id == id)
4282                        return 0;
4283                i915_gem_detach_phys_object(dev, obj);
4284        }
4285
4286        /* create a new object */
4287        if (!dev_priv->mm.phys_objs[id - 1]) {
4288                ret = i915_gem_init_phys_object(dev, id,
4289                                                obj->base.size, align);
4290                if (ret) {
4291                        DRM_ERROR("failed to init phys object %d size: %zu\n",
4292                                  id, obj->base.size);
4293                        return ret;
4294                }
4295        }
4296
4297        /* bind to the object */
4298        obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4299        obj->phys_obj->cur_obj = obj;
4300
4301        page_count = obj->base.size / PAGE_SIZE;
4302
4303        for (i = 0; i < page_count; i++) {
4304                struct page *page;
4305                char *dst, *src;
4306
4307                page = shmem_read_mapping_page(mapping, i);
4308                if (IS_ERR(page))
4309                        return PTR_ERR(page);
4310
4311                src = kmap_atomic(page);
4312                dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4313                memcpy(dst, src, PAGE_SIZE);
4314                kunmap_atomic(src);
4315
4316                mark_page_accessed(page);
4317                page_cache_release(page);
4318        }
4319
4320        return 0;
4321}
4322
4323static int
4324i915_gem_phys_pwrite(struct drm_device *dev,
4325                     struct drm_i915_gem_object *obj,
4326                     struct drm_i915_gem_pwrite *args,
4327                     struct drm_file *file_priv)
4328{
4329        void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4330        char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4331
4332        if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4333                unsigned long unwritten;
4334
4335                /* The physical object once assigned is fixed for the lifetime
4336                 * of the obj, so we can safely drop the lock and continue
4337                 * to access vaddr.
4338                 */
4339                mutex_unlock(&dev->struct_mutex);
4340                unwritten = copy_from_user(vaddr, user_data, args->size);
4341                mutex_lock(&dev->struct_mutex);
4342                if (unwritten)
4343                        return -EFAULT;
4344        }
4345
4346        i915_gem_chipset_flush(dev);
4347        return 0;
4348}
4349
4350void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4351{
4352        struct drm_i915_file_private *file_priv = file->driver_priv;
4353
4354        /* Clean up our request list when the client is going away, so that
4355         * later retire_requests won't dereference our soon-to-be-gone
4356         * file_priv.
4357         */
4358        spin_lock(&file_priv->mm.lock);
4359        while (!list_empty(&file_priv->mm.request_list)) {
4360                struct drm_i915_gem_request *request;
4361
4362                request = list_first_entry(&file_priv->mm.request_list,
4363                                           struct drm_i915_gem_request,
4364                                           client_list);
4365                list_del(&request->client_list);
4366                request->file_priv = NULL;
4367        }
4368        spin_unlock(&file_priv->mm.lock);
4369}
4370
4371static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4372{
4373        if (!mutex_is_locked(mutex))
4374                return false;
4375
4376#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4377        return mutex->owner == task;
4378#else
4379        /* Since UP may be pre-empted, we cannot assume that we own the lock */
4380        return false;
4381#endif
4382}
4383
4384static int
4385i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4386{
4387        struct drm_i915_private *dev_priv =
4388                container_of(shrinker,
4389                             struct drm_i915_private,
4390                             mm.inactive_shrinker);
4391        struct drm_device *dev = dev_priv->dev;
4392        struct drm_i915_gem_object *obj;
4393        int nr_to_scan = sc->nr_to_scan;
4394        bool unlock = true;
4395        int cnt;
4396
4397        if (!mutex_trylock(&dev->struct_mutex)) {
4398                if (!mutex_is_locked_by(&dev->struct_mutex, current))
4399                        return 0;
4400
4401                if (dev_priv->mm.shrinker_no_lock_stealing)
4402                        return 0;
4403
4404                unlock = false;
4405        }
4406
4407        if (nr_to_scan) {
4408                nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4409                if (nr_to_scan > 0)
4410                        nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4411                                                        false);
4412                if (nr_to_scan > 0)
4413                        i915_gem_shrink_all(dev_priv);
4414        }
4415
4416        cnt = 0;
4417        list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4418                if (obj->pages_pin_count == 0)
4419                        cnt += obj->base.size >> PAGE_SHIFT;
4420        list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4421                if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4422                        cnt += obj->base.size >> PAGE_SHIFT;
4423
4424        if (unlock)
4425                mutex_unlock(&dev->struct_mutex);
4426        return cnt;
4427}
4428