linux/drivers/net/ethernet/broadcom/sb1250-mac.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18 *
  19 *
  20 * This driver is designed for the Broadcom SiByte SOC built-in
  21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  22 *
  23 * Updated to the driver model and the PHY abstraction layer
  24 * by Maciej W. Rozycki.
  25 */
  26
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/string.h>
  31#include <linux/timer.h>
  32#include <linux/errno.h>
  33#include <linux/ioport.h>
  34#include <linux/slab.h>
  35#include <linux/interrupt.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/skbuff.h>
  39#include <linux/init.h>
  40#include <linux/bitops.h>
  41#include <linux/err.h>
  42#include <linux/ethtool.h>
  43#include <linux/mii.h>
  44#include <linux/phy.h>
  45#include <linux/platform_device.h>
  46#include <linux/prefetch.h>
  47
  48#include <asm/cache.h>
  49#include <asm/io.h>
  50#include <asm/processor.h>      /* Processor type for cache alignment. */
  51
  52/* Operational parameters that usually are not changed. */
  53
  54#define CONFIG_SBMAC_COALESCE
  55
  56/* Time in jiffies before concluding the transmitter is hung. */
  57#define TX_TIMEOUT  (2*HZ)
  58
  59
  60MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  61MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  62
  63/* A few user-configurable values which may be modified when a driver
  64   module is loaded. */
  65
  66/* 1 normal messages, 0 quiet .. 7 verbose. */
  67static int debug = 1;
  68module_param(debug, int, S_IRUGO);
  69MODULE_PARM_DESC(debug, "Debug messages");
  70
  71#ifdef CONFIG_SBMAC_COALESCE
  72static int int_pktcnt_tx = 255;
  73module_param(int_pktcnt_tx, int, S_IRUGO);
  74MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  75
  76static int int_timeout_tx = 255;
  77module_param(int_timeout_tx, int, S_IRUGO);
  78MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  79
  80static int int_pktcnt_rx = 64;
  81module_param(int_pktcnt_rx, int, S_IRUGO);
  82MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  83
  84static int int_timeout_rx = 64;
  85module_param(int_timeout_rx, int, S_IRUGO);
  86MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  87#endif
  88
  89#include <asm/sibyte/board.h>
  90#include <asm/sibyte/sb1250.h>
  91#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  92#include <asm/sibyte/bcm1480_regs.h>
  93#include <asm/sibyte/bcm1480_int.h>
  94#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
  95#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  96#include <asm/sibyte/sb1250_regs.h>
  97#include <asm/sibyte/sb1250_int.h>
  98#else
  99#error invalid SiByte MAC configuration
 100#endif
 101#include <asm/sibyte/sb1250_scd.h>
 102#include <asm/sibyte/sb1250_mac.h>
 103#include <asm/sibyte/sb1250_dma.h>
 104
 105#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 106#define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
 107#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 108#define UNIT_INT(n)             (K_INT_MAC_0 + (n))
 109#else
 110#error invalid SiByte MAC configuration
 111#endif
 112
 113#ifdef K_INT_PHY
 114#define SBMAC_PHY_INT                   K_INT_PHY
 115#else
 116#define SBMAC_PHY_INT                   PHY_POLL
 117#endif
 118
 119/**********************************************************************
 120 *  Simple types
 121 ********************************************************************* */
 122
 123enum sbmac_speed {
 124        sbmac_speed_none = 0,
 125        sbmac_speed_10 = SPEED_10,
 126        sbmac_speed_100 = SPEED_100,
 127        sbmac_speed_1000 = SPEED_1000,
 128};
 129
 130enum sbmac_duplex {
 131        sbmac_duplex_none = -1,
 132        sbmac_duplex_half = DUPLEX_HALF,
 133        sbmac_duplex_full = DUPLEX_FULL,
 134};
 135
 136enum sbmac_fc {
 137        sbmac_fc_none,
 138        sbmac_fc_disabled,
 139        sbmac_fc_frame,
 140        sbmac_fc_collision,
 141        sbmac_fc_carrier,
 142};
 143
 144enum sbmac_state {
 145        sbmac_state_uninit,
 146        sbmac_state_off,
 147        sbmac_state_on,
 148        sbmac_state_broken,
 149};
 150
 151
 152/**********************************************************************
 153 *  Macros
 154 ********************************************************************* */
 155
 156
 157#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 158                          (d)->sbdma_dscrtable : (d)->f+1)
 159
 160
 161#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 162
 163#define SBMAC_MAX_TXDESCR       256
 164#define SBMAC_MAX_RXDESCR       256
 165
 166#define ENET_PACKET_SIZE        1518
 167/*#define ENET_PACKET_SIZE      9216 */
 168
 169/**********************************************************************
 170 *  DMA Descriptor structure
 171 ********************************************************************* */
 172
 173struct sbdmadscr {
 174        uint64_t  dscr_a;
 175        uint64_t  dscr_b;
 176};
 177
 178/**********************************************************************
 179 *  DMA Controller structure
 180 ********************************************************************* */
 181
 182struct sbmacdma {
 183
 184        /*
 185         * This stuff is used to identify the channel and the registers
 186         * associated with it.
 187         */
 188        struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
 189                                                   MAC */
 190        int                     sbdma_channel;  /* channel number */
 191        int                     sbdma_txdir;    /* direction (1=transmit) */
 192        int                     sbdma_maxdescr; /* total # of descriptors
 193                                                   in ring */
 194#ifdef CONFIG_SBMAC_COALESCE
 195        int                     sbdma_int_pktcnt;
 196                                                /* # descriptors rx/tx
 197                                                   before interrupt */
 198        int                     sbdma_int_timeout;
 199                                                /* # usec rx/tx interrupt */
 200#endif
 201        void __iomem            *sbdma_config0; /* DMA config register 0 */
 202        void __iomem            *sbdma_config1; /* DMA config register 1 */
 203        void __iomem            *sbdma_dscrbase;
 204                                                /* descriptor base address */
 205        void __iomem            *sbdma_dscrcnt; /* descriptor count register */
 206        void __iomem            *sbdma_curdscr; /* current descriptor
 207                                                   address */
 208        void __iomem            *sbdma_oodpktlost;
 209                                                /* pkt drop (rx only) */
 210
 211        /*
 212         * This stuff is for maintenance of the ring
 213         */
 214        void                    *sbdma_dscrtable_unaligned;
 215        struct sbdmadscr        *sbdma_dscrtable;
 216                                                /* base of descriptor table */
 217        struct sbdmadscr        *sbdma_dscrtable_end;
 218                                                /* end of descriptor table */
 219        struct sk_buff          **sbdma_ctxtable;
 220                                                /* context table, one
 221                                                   per descr */
 222        dma_addr_t              sbdma_dscrtable_phys;
 223                                                /* and also the phys addr */
 224        struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
 225        struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
 226                                                   to remove */
 227};
 228
 229
 230/**********************************************************************
 231 *  Ethernet softc structure
 232 ********************************************************************* */
 233
 234struct sbmac_softc {
 235
 236        /*
 237         * Linux-specific things
 238         */
 239        struct net_device       *sbm_dev;       /* pointer to linux device */
 240        struct napi_struct      napi;
 241        struct phy_device       *phy_dev;       /* the associated PHY device */
 242        struct mii_bus          *mii_bus;       /* the MII bus */
 243        int                     phy_irq[PHY_MAX_ADDR];
 244        spinlock_t              sbm_lock;       /* spin lock */
 245        int                     sbm_devflags;   /* current device flags */
 246
 247        /*
 248         * Controller-specific things
 249         */
 250        void __iomem            *sbm_base;      /* MAC's base address */
 251        enum sbmac_state        sbm_state;      /* current state */
 252
 253        void __iomem            *sbm_macenable; /* MAC Enable Register */
 254        void __iomem            *sbm_maccfg;    /* MAC Config Register */
 255        void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
 256        void __iomem            *sbm_framecfg;  /* Frame Config Register */
 257        void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
 258        void __iomem            *sbm_isr;       /* Interrupt Status Register */
 259        void __iomem            *sbm_imr;       /* Interrupt Mask Register */
 260        void __iomem            *sbm_mdio;      /* MDIO Register */
 261
 262        enum sbmac_speed        sbm_speed;      /* current speed */
 263        enum sbmac_duplex       sbm_duplex;     /* current duplex */
 264        enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
 265        int                     sbm_pause;      /* current pause setting */
 266        int                     sbm_link;       /* current link state */
 267
 268        unsigned char           sbm_hwaddr[ETH_ALEN];
 269
 270        struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
 271        struct sbmacdma         sbm_rxdma;
 272        int                     rx_hw_checksum;
 273        int                     sbe_idx;
 274};
 275
 276
 277/**********************************************************************
 278 *  Externs
 279 ********************************************************************* */
 280
 281/**********************************************************************
 282 *  Prototypes
 283 ********************************************************************* */
 284
 285static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 286                          int txrx, int maxdescr);
 287static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 288static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 289                               struct sk_buff *m);
 290static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 291static void sbdma_emptyring(struct sbmacdma *d);
 292static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 293static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 294                            int work_to_do, int poll);
 295static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 296                             int poll);
 297static int sbmac_initctx(struct sbmac_softc *s);
 298static void sbmac_channel_start(struct sbmac_softc *s);
 299static void sbmac_channel_stop(struct sbmac_softc *s);
 300static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 301                                                enum sbmac_state);
 302static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 303static uint64_t sbmac_addr2reg(unsigned char *ptr);
 304static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 305static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 306static void sbmac_setmulti(struct sbmac_softc *sc);
 307static int sbmac_init(struct platform_device *pldev, long long base);
 308static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 309static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 310                            enum sbmac_fc fc);
 311
 312static int sbmac_open(struct net_device *dev);
 313static void sbmac_tx_timeout (struct net_device *dev);
 314static void sbmac_set_rx_mode(struct net_device *dev);
 315static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 316static int sbmac_close(struct net_device *dev);
 317static int sbmac_poll(struct napi_struct *napi, int budget);
 318
 319static void sbmac_mii_poll(struct net_device *dev);
 320static int sbmac_mii_probe(struct net_device *dev);
 321
 322static void sbmac_mii_sync(void __iomem *sbm_mdio);
 323static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 324                               int bitcnt);
 325static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 326static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 327                           u16 val);
 328
 329
 330/**********************************************************************
 331 *  Globals
 332 ********************************************************************* */
 333
 334static char sbmac_string[] = "sb1250-mac";
 335
 336static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 337
 338
 339/**********************************************************************
 340 *  MDIO constants
 341 ********************************************************************* */
 342
 343#define MII_COMMAND_START       0x01
 344#define MII_COMMAND_READ        0x02
 345#define MII_COMMAND_WRITE       0x01
 346#define MII_COMMAND_ACK         0x02
 347
 348#define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
 349
 350#define ENABLE          1
 351#define DISABLE         0
 352
 353/**********************************************************************
 354 *  SBMAC_MII_SYNC(sbm_mdio)
 355 *
 356 *  Synchronize with the MII - send a pattern of bits to the MII
 357 *  that will guarantee that it is ready to accept a command.
 358 *
 359 *  Input parameters:
 360 *         sbm_mdio - address of the MAC's MDIO register
 361 *
 362 *  Return value:
 363 *         nothing
 364 ********************************************************************* */
 365
 366static void sbmac_mii_sync(void __iomem *sbm_mdio)
 367{
 368        int cnt;
 369        uint64_t bits;
 370        int mac_mdio_genc;
 371
 372        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 373
 374        bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 375
 376        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 377
 378        for (cnt = 0; cnt < 32; cnt++) {
 379                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 380                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 381        }
 382}
 383
 384/**********************************************************************
 385 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 386 *
 387 *  Send some bits to the MII.  The bits to be sent are right-
 388 *  justified in the 'data' parameter.
 389 *
 390 *  Input parameters:
 391 *         sbm_mdio - address of the MAC's MDIO register
 392 *         data     - data to send
 393 *         bitcnt   - number of bits to send
 394 ********************************************************************* */
 395
 396static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 397                               int bitcnt)
 398{
 399        int i;
 400        uint64_t bits;
 401        unsigned int curmask;
 402        int mac_mdio_genc;
 403
 404        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 405
 406        bits = M_MAC_MDIO_DIR_OUTPUT;
 407        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 408
 409        curmask = 1 << (bitcnt - 1);
 410
 411        for (i = 0; i < bitcnt; i++) {
 412                if (data & curmask)
 413                        bits |= M_MAC_MDIO_OUT;
 414                else bits &= ~M_MAC_MDIO_OUT;
 415                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 416                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 417                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 418                curmask >>= 1;
 419        }
 420}
 421
 422
 423
 424/**********************************************************************
 425 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 426 *  Read a PHY register.
 427 *
 428 *  Input parameters:
 429 *         bus     - MDIO bus handle
 430 *         phyaddr - PHY's address
 431 *         regnum  - index of register to read
 432 *
 433 *  Return value:
 434 *         value read, or 0xffff if an error occurred.
 435 ********************************************************************* */
 436
 437static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 438{
 439        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 440        void __iomem *sbm_mdio = sc->sbm_mdio;
 441        int idx;
 442        int error;
 443        int regval;
 444        int mac_mdio_genc;
 445
 446        /*
 447         * Synchronize ourselves so that the PHY knows the next
 448         * thing coming down is a command
 449         */
 450        sbmac_mii_sync(sbm_mdio);
 451
 452        /*
 453         * Send the data to the PHY.  The sequence is
 454         * a "start" command (2 bits)
 455         * a "read" command (2 bits)
 456         * the PHY addr (5 bits)
 457         * the register index (5 bits)
 458         */
 459        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 460        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 461        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 462        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 463
 464        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 465
 466        /*
 467         * Switch the port around without a clock transition.
 468         */
 469        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 470
 471        /*
 472         * Send out a clock pulse to signal we want the status
 473         */
 474        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 475                     sbm_mdio);
 476        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 477
 478        /*
 479         * If an error occurred, the PHY will signal '1' back
 480         */
 481        error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 482
 483        /*
 484         * Issue an 'idle' clock pulse, but keep the direction
 485         * the same.
 486         */
 487        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 488                     sbm_mdio);
 489        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 490
 491        regval = 0;
 492
 493        for (idx = 0; idx < 16; idx++) {
 494                regval <<= 1;
 495
 496                if (error == 0) {
 497                        if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 498                                regval |= 1;
 499                }
 500
 501                __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 502                             sbm_mdio);
 503                __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 504        }
 505
 506        /* Switch back to output */
 507        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 508
 509        if (error == 0)
 510                return regval;
 511        return 0xffff;
 512}
 513
 514
 515/**********************************************************************
 516 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 517 *
 518 *  Write a value to a PHY register.
 519 *
 520 *  Input parameters:
 521 *         bus     - MDIO bus handle
 522 *         phyaddr - PHY to use
 523 *         regidx  - register within the PHY
 524 *         regval  - data to write to register
 525 *
 526 *  Return value:
 527 *         0 for success
 528 ********************************************************************* */
 529
 530static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 531                           u16 regval)
 532{
 533        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 534        void __iomem *sbm_mdio = sc->sbm_mdio;
 535        int mac_mdio_genc;
 536
 537        sbmac_mii_sync(sbm_mdio);
 538
 539        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 540        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 541        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 542        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 543        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 544        sbmac_mii_senddata(sbm_mdio, regval, 16);
 545
 546        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 547
 548        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 549
 550        return 0;
 551}
 552
 553
 554
 555/**********************************************************************
 556 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 557 *
 558 *  Initialize a DMA channel context.  Since there are potentially
 559 *  eight DMA channels per MAC, it's nice to do this in a standard
 560 *  way.
 561 *
 562 *  Input parameters:
 563 *         d - struct sbmacdma (DMA channel context)
 564 *         s - struct sbmac_softc (pointer to a MAC)
 565 *         chan - channel number (0..1 right now)
 566 *         txrx - Identifies DMA_TX or DMA_RX for channel direction
 567 *      maxdescr - number of descriptors
 568 *
 569 *  Return value:
 570 *         nothing
 571 ********************************************************************* */
 572
 573static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 574                          int txrx, int maxdescr)
 575{
 576#ifdef CONFIG_SBMAC_COALESCE
 577        int int_pktcnt, int_timeout;
 578#endif
 579
 580        /*
 581         * Save away interesting stuff in the structure
 582         */
 583
 584        d->sbdma_eth       = s;
 585        d->sbdma_channel   = chan;
 586        d->sbdma_txdir     = txrx;
 587
 588#if 0
 589        /* RMON clearing */
 590        s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 591#endif
 592
 593        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 594        __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 595        __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 596        __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 597        __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 598        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 599        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 600        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 601        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 602        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 603        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 604        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 605        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 606        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 607        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 608        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 609        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 610        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 611        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 612        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 613        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 614
 615        /*
 616         * initialize register pointers
 617         */
 618
 619        d->sbdma_config0 =
 620                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 621        d->sbdma_config1 =
 622                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 623        d->sbdma_dscrbase =
 624                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 625        d->sbdma_dscrcnt =
 626                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 627        d->sbdma_curdscr =
 628                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 629        if (d->sbdma_txdir)
 630                d->sbdma_oodpktlost = NULL;
 631        else
 632                d->sbdma_oodpktlost =
 633                        s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 634
 635        /*
 636         * Allocate memory for the ring
 637         */
 638
 639        d->sbdma_maxdescr = maxdescr;
 640
 641        d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 642                                               sizeof(*d->sbdma_dscrtable),
 643                                               GFP_KERNEL);
 644
 645        /*
 646         * The descriptor table must be aligned to at least 16 bytes or the
 647         * MAC will corrupt it.
 648         */
 649        d->sbdma_dscrtable = (struct sbdmadscr *)
 650                             ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 651                                   sizeof(*d->sbdma_dscrtable));
 652
 653        d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 654
 655        d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 656
 657        /*
 658         * And context table
 659         */
 660
 661        d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 662                                    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 663
 664#ifdef CONFIG_SBMAC_COALESCE
 665        /*
 666         * Setup Rx/Tx DMA coalescing defaults
 667         */
 668
 669        int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 670        if ( int_pktcnt ) {
 671                d->sbdma_int_pktcnt = int_pktcnt;
 672        } else {
 673                d->sbdma_int_pktcnt = 1;
 674        }
 675
 676        int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 677        if ( int_timeout ) {
 678                d->sbdma_int_timeout = int_timeout;
 679        } else {
 680                d->sbdma_int_timeout = 0;
 681        }
 682#endif
 683
 684}
 685
 686/**********************************************************************
 687 *  SBDMA_CHANNEL_START(d)
 688 *
 689 *  Initialize the hardware registers for a DMA channel.
 690 *
 691 *  Input parameters:
 692 *         d - DMA channel to init (context must be previously init'd
 693 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 694 *
 695 *  Return value:
 696 *         nothing
 697 ********************************************************************* */
 698
 699static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 700{
 701        /*
 702         * Turn on the DMA channel
 703         */
 704
 705#ifdef CONFIG_SBMAC_COALESCE
 706        __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 707                       0, d->sbdma_config1);
 708        __raw_writeq(M_DMA_EOP_INT_EN |
 709                       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 710                       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 711                       0, d->sbdma_config0);
 712#else
 713        __raw_writeq(0, d->sbdma_config1);
 714        __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 715                       0, d->sbdma_config0);
 716#endif
 717
 718        __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 719
 720        /*
 721         * Initialize ring pointers
 722         */
 723
 724        d->sbdma_addptr = d->sbdma_dscrtable;
 725        d->sbdma_remptr = d->sbdma_dscrtable;
 726}
 727
 728/**********************************************************************
 729 *  SBDMA_CHANNEL_STOP(d)
 730 *
 731 *  Initialize the hardware registers for a DMA channel.
 732 *
 733 *  Input parameters:
 734 *         d - DMA channel to init (context must be previously init'd
 735 *
 736 *  Return value:
 737 *         nothing
 738 ********************************************************************* */
 739
 740static void sbdma_channel_stop(struct sbmacdma *d)
 741{
 742        /*
 743         * Turn off the DMA channel
 744         */
 745
 746        __raw_writeq(0, d->sbdma_config1);
 747
 748        __raw_writeq(0, d->sbdma_dscrbase);
 749
 750        __raw_writeq(0, d->sbdma_config0);
 751
 752        /*
 753         * Zero ring pointers
 754         */
 755
 756        d->sbdma_addptr = NULL;
 757        d->sbdma_remptr = NULL;
 758}
 759
 760static inline void sbdma_align_skb(struct sk_buff *skb,
 761                                   unsigned int power2, unsigned int offset)
 762{
 763        unsigned char *addr = skb->data;
 764        unsigned char *newaddr = PTR_ALIGN(addr, power2);
 765
 766        skb_reserve(skb, newaddr - addr + offset);
 767}
 768
 769
 770/**********************************************************************
 771 *  SBDMA_ADD_RCVBUFFER(d,sb)
 772 *
 773 *  Add a buffer to the specified DMA channel.   For receive channels,
 774 *  this queues a buffer for inbound packets.
 775 *
 776 *  Input parameters:
 777 *         sc - softc structure
 778 *          d - DMA channel descriptor
 779 *         sb - sk_buff to add, or NULL if we should allocate one
 780 *
 781 *  Return value:
 782 *         0 if buffer could not be added (ring is full)
 783 *         1 if buffer added successfully
 784 ********************************************************************* */
 785
 786
 787static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 788                               struct sk_buff *sb)
 789{
 790        struct net_device *dev = sc->sbm_dev;
 791        struct sbdmadscr *dsc;
 792        struct sbdmadscr *nextdsc;
 793        struct sk_buff *sb_new = NULL;
 794        int pktsize = ENET_PACKET_SIZE;
 795
 796        /* get pointer to our current place in the ring */
 797
 798        dsc = d->sbdma_addptr;
 799        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 800
 801        /*
 802         * figure out if the ring is full - if the next descriptor
 803         * is the same as the one that we're going to remove from
 804         * the ring, the ring is full
 805         */
 806
 807        if (nextdsc == d->sbdma_remptr) {
 808                return -ENOSPC;
 809        }
 810
 811        /*
 812         * Allocate a sk_buff if we don't already have one.
 813         * If we do have an sk_buff, reset it so that it's empty.
 814         *
 815         * Note: sk_buffs don't seem to be guaranteed to have any sort
 816         * of alignment when they are allocated.  Therefore, allocate enough
 817         * extra space to make sure that:
 818         *
 819         *    1. the data does not start in the middle of a cache line.
 820         *    2. The data does not end in the middle of a cache line
 821         *    3. The buffer can be aligned such that the IP addresses are
 822         *       naturally aligned.
 823         *
 824         *  Remember, the SOCs MAC writes whole cache lines at a time,
 825         *  without reading the old contents first.  So, if the sk_buff's
 826         *  data portion starts in the middle of a cache line, the SOC
 827         *  DMA will trash the beginning (and ending) portions.
 828         */
 829
 830        if (sb == NULL) {
 831                sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 832                                               SMP_CACHE_BYTES * 2 +
 833                                               NET_IP_ALIGN);
 834                if (sb_new == NULL) {
 835                        pr_info("%s: sk_buff allocation failed\n",
 836                               d->sbdma_eth->sbm_dev->name);
 837                        return -ENOBUFS;
 838                }
 839
 840                sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 841        }
 842        else {
 843                sb_new = sb;
 844                /*
 845                 * nothing special to reinit buffer, it's already aligned
 846                 * and sb->data already points to a good place.
 847                 */
 848        }
 849
 850        /*
 851         * fill in the descriptor
 852         */
 853
 854#ifdef CONFIG_SBMAC_COALESCE
 855        /*
 856         * Do not interrupt per DMA transfer.
 857         */
 858        dsc->dscr_a = virt_to_phys(sb_new->data) |
 859                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 860#else
 861        dsc->dscr_a = virt_to_phys(sb_new->data) |
 862                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 863                M_DMA_DSCRA_INTERRUPT;
 864#endif
 865
 866        /* receiving: no options */
 867        dsc->dscr_b = 0;
 868
 869        /*
 870         * fill in the context
 871         */
 872
 873        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 874
 875        /*
 876         * point at next packet
 877         */
 878
 879        d->sbdma_addptr = nextdsc;
 880
 881        /*
 882         * Give the buffer to the DMA engine.
 883         */
 884
 885        __raw_writeq(1, d->sbdma_dscrcnt);
 886
 887        return 0;                                       /* we did it */
 888}
 889
 890/**********************************************************************
 891 *  SBDMA_ADD_TXBUFFER(d,sb)
 892 *
 893 *  Add a transmit buffer to the specified DMA channel, causing a
 894 *  transmit to start.
 895 *
 896 *  Input parameters:
 897 *         d - DMA channel descriptor
 898 *         sb - sk_buff to add
 899 *
 900 *  Return value:
 901 *         0 transmit queued successfully
 902 *         otherwise error code
 903 ********************************************************************* */
 904
 905
 906static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 907{
 908        struct sbdmadscr *dsc;
 909        struct sbdmadscr *nextdsc;
 910        uint64_t phys;
 911        uint64_t ncb;
 912        int length;
 913
 914        /* get pointer to our current place in the ring */
 915
 916        dsc = d->sbdma_addptr;
 917        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 918
 919        /*
 920         * figure out if the ring is full - if the next descriptor
 921         * is the same as the one that we're going to remove from
 922         * the ring, the ring is full
 923         */
 924
 925        if (nextdsc == d->sbdma_remptr) {
 926                return -ENOSPC;
 927        }
 928
 929        /*
 930         * Under Linux, it's not necessary to copy/coalesce buffers
 931         * like it is on NetBSD.  We think they're all contiguous,
 932         * but that may not be true for GBE.
 933         */
 934
 935        length = sb->len;
 936
 937        /*
 938         * fill in the descriptor.  Note that the number of cache
 939         * blocks in the descriptor is the number of blocks
 940         * *spanned*, so we need to add in the offset (if any)
 941         * while doing the calculation.
 942         */
 943
 944        phys = virt_to_phys(sb->data);
 945        ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 946
 947        dsc->dscr_a = phys |
 948                V_DMA_DSCRA_A_SIZE(ncb) |
 949#ifndef CONFIG_SBMAC_COALESCE
 950                M_DMA_DSCRA_INTERRUPT |
 951#endif
 952                M_DMA_ETHTX_SOP;
 953
 954        /* transmitting: set outbound options and length */
 955
 956        dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 957                V_DMA_DSCRB_PKT_SIZE(length);
 958
 959        /*
 960         * fill in the context
 961         */
 962
 963        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 964
 965        /*
 966         * point at next packet
 967         */
 968
 969        d->sbdma_addptr = nextdsc;
 970
 971        /*
 972         * Give the buffer to the DMA engine.
 973         */
 974
 975        __raw_writeq(1, d->sbdma_dscrcnt);
 976
 977        return 0;                                       /* we did it */
 978}
 979
 980
 981
 982
 983/**********************************************************************
 984 *  SBDMA_EMPTYRING(d)
 985 *
 986 *  Free all allocated sk_buffs on the specified DMA channel;
 987 *
 988 *  Input parameters:
 989 *         d  - DMA channel
 990 *
 991 *  Return value:
 992 *         nothing
 993 ********************************************************************* */
 994
 995static void sbdma_emptyring(struct sbmacdma *d)
 996{
 997        int idx;
 998        struct sk_buff *sb;
 999
1000        for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1001                sb = d->sbdma_ctxtable[idx];
1002                if (sb) {
1003                        dev_kfree_skb(sb);
1004                        d->sbdma_ctxtable[idx] = NULL;
1005                }
1006        }
1007}
1008
1009
1010/**********************************************************************
1011 *  SBDMA_FILLRING(d)
1012 *
1013 *  Fill the specified DMA channel (must be receive channel)
1014 *  with sk_buffs
1015 *
1016 *  Input parameters:
1017 *         sc - softc structure
1018 *          d - DMA channel
1019 *
1020 *  Return value:
1021 *         nothing
1022 ********************************************************************* */
1023
1024static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1025{
1026        int idx;
1027
1028        for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1029                if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1030                        break;
1031        }
1032}
1033
1034#ifdef CONFIG_NET_POLL_CONTROLLER
1035static void sbmac_netpoll(struct net_device *netdev)
1036{
1037        struct sbmac_softc *sc = netdev_priv(netdev);
1038        int irq = sc->sbm_dev->irq;
1039
1040        __raw_writeq(0, sc->sbm_imr);
1041
1042        sbmac_intr(irq, netdev);
1043
1044#ifdef CONFIG_SBMAC_COALESCE
1045        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1046        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1047        sc->sbm_imr);
1048#else
1049        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1050        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1051#endif
1052}
1053#endif
1054
1055/**********************************************************************
1056 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1057 *
1058 *  Process "completed" receive buffers on the specified DMA channel.
1059 *
1060 *  Input parameters:
1061 *            sc - softc structure
1062 *             d - DMA channel context
1063 *    work_to_do - no. of packets to process before enabling interrupt
1064 *                 again (for NAPI)
1065 *          poll - 1: using polling (for NAPI)
1066 *
1067 *  Return value:
1068 *         nothing
1069 ********************************************************************* */
1070
1071static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1072                            int work_to_do, int poll)
1073{
1074        struct net_device *dev = sc->sbm_dev;
1075        int curidx;
1076        int hwidx;
1077        struct sbdmadscr *dsc;
1078        struct sk_buff *sb;
1079        int len;
1080        int work_done = 0;
1081        int dropped = 0;
1082
1083        prefetch(d);
1084
1085again:
1086        /* Check if the HW dropped any frames */
1087        dev->stats.rx_fifo_errors
1088            += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1089        __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1090
1091        while (work_to_do-- > 0) {
1092                /*
1093                 * figure out where we are (as an index) and where
1094                 * the hardware is (also as an index)
1095                 *
1096                 * This could be done faster if (for example) the
1097                 * descriptor table was page-aligned and contiguous in
1098                 * both virtual and physical memory -- you could then
1099                 * just compare the low-order bits of the virtual address
1100                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1101                 */
1102
1103                dsc = d->sbdma_remptr;
1104                curidx = dsc - d->sbdma_dscrtable;
1105
1106                prefetch(dsc);
1107                prefetch(&d->sbdma_ctxtable[curidx]);
1108
1109                hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1110                         d->sbdma_dscrtable_phys) /
1111                        sizeof(*d->sbdma_dscrtable);
1112
1113                /*
1114                 * If they're the same, that means we've processed all
1115                 * of the descriptors up to (but not including) the one that
1116                 * the hardware is working on right now.
1117                 */
1118
1119                if (curidx == hwidx)
1120                        goto done;
1121
1122                /*
1123                 * Otherwise, get the packet's sk_buff ptr back
1124                 */
1125
1126                sb = d->sbdma_ctxtable[curidx];
1127                d->sbdma_ctxtable[curidx] = NULL;
1128
1129                len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1130
1131                /*
1132                 * Check packet status.  If good, process it.
1133                 * If not, silently drop it and put it back on the
1134                 * receive ring.
1135                 */
1136
1137                if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1138
1139                        /*
1140                         * Add a new buffer to replace the old one.  If we fail
1141                         * to allocate a buffer, we're going to drop this
1142                         * packet and put it right back on the receive ring.
1143                         */
1144
1145                        if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1146                                     -ENOBUFS)) {
1147                                dev->stats.rx_dropped++;
1148                                /* Re-add old buffer */
1149                                sbdma_add_rcvbuffer(sc, d, sb);
1150                                /* No point in continuing at the moment */
1151                                printk(KERN_ERR "dropped packet (1)\n");
1152                                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1153                                goto done;
1154                        } else {
1155                                /*
1156                                 * Set length into the packet
1157                                 */
1158                                skb_put(sb,len);
1159
1160                                /*
1161                                 * Buffer has been replaced on the
1162                                 * receive ring.  Pass the buffer to
1163                                 * the kernel
1164                                 */
1165                                sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1166                                /* Check hw IPv4/TCP checksum if supported */
1167                                if (sc->rx_hw_checksum == ENABLE) {
1168                                        if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1169                                            !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1170                                                sb->ip_summed = CHECKSUM_UNNECESSARY;
1171                                                /* don't need to set sb->csum */
1172                                        } else {
1173                                                skb_checksum_none_assert(sb);
1174                                        }
1175                                }
1176                                prefetch(sb->data);
1177                                prefetch((const void *)(((char *)sb->data)+32));
1178                                if (poll)
1179                                        dropped = netif_receive_skb(sb);
1180                                else
1181                                        dropped = netif_rx(sb);
1182
1183                                if (dropped == NET_RX_DROP) {
1184                                        dev->stats.rx_dropped++;
1185                                        d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1186                                        goto done;
1187                                }
1188                                else {
1189                                        dev->stats.rx_bytes += len;
1190                                        dev->stats.rx_packets++;
1191                                }
1192                        }
1193                } else {
1194                        /*
1195                         * Packet was mangled somehow.  Just drop it and
1196                         * put it back on the receive ring.
1197                         */
1198                        dev->stats.rx_errors++;
1199                        sbdma_add_rcvbuffer(sc, d, sb);
1200                }
1201
1202
1203                /*
1204                 * .. and advance to the next buffer.
1205                 */
1206
1207                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1208                work_done++;
1209        }
1210        if (!poll) {
1211                work_to_do = 32;
1212                goto again; /* collect fifo drop statistics again */
1213        }
1214done:
1215        return work_done;
1216}
1217
1218/**********************************************************************
1219 *  SBDMA_TX_PROCESS(sc,d)
1220 *
1221 *  Process "completed" transmit buffers on the specified DMA channel.
1222 *  This is normally called within the interrupt service routine.
1223 *  Note that this isn't really ideal for priority channels, since
1224 *  it processes all of the packets on a given channel before
1225 *  returning.
1226 *
1227 *  Input parameters:
1228 *      sc - softc structure
1229 *       d - DMA channel context
1230 *    poll - 1: using polling (for NAPI)
1231 *
1232 *  Return value:
1233 *         nothing
1234 ********************************************************************* */
1235
1236static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1237                             int poll)
1238{
1239        struct net_device *dev = sc->sbm_dev;
1240        int curidx;
1241        int hwidx;
1242        struct sbdmadscr *dsc;
1243        struct sk_buff *sb;
1244        unsigned long flags;
1245        int packets_handled = 0;
1246
1247        spin_lock_irqsave(&(sc->sbm_lock), flags);
1248
1249        if (d->sbdma_remptr == d->sbdma_addptr)
1250          goto end_unlock;
1251
1252        hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1253                 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1254
1255        for (;;) {
1256                /*
1257                 * figure out where we are (as an index) and where
1258                 * the hardware is (also as an index)
1259                 *
1260                 * This could be done faster if (for example) the
1261                 * descriptor table was page-aligned and contiguous in
1262                 * both virtual and physical memory -- you could then
1263                 * just compare the low-order bits of the virtual address
1264                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1265                 */
1266
1267                curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1268
1269                /*
1270                 * If they're the same, that means we've processed all
1271                 * of the descriptors up to (but not including) the one that
1272                 * the hardware is working on right now.
1273                 */
1274
1275                if (curidx == hwidx)
1276                        break;
1277
1278                /*
1279                 * Otherwise, get the packet's sk_buff ptr back
1280                 */
1281
1282                dsc = &(d->sbdma_dscrtable[curidx]);
1283                sb = d->sbdma_ctxtable[curidx];
1284                d->sbdma_ctxtable[curidx] = NULL;
1285
1286                /*
1287                 * Stats
1288                 */
1289
1290                dev->stats.tx_bytes += sb->len;
1291                dev->stats.tx_packets++;
1292
1293                /*
1294                 * for transmits, we just free buffers.
1295                 */
1296
1297                dev_kfree_skb_irq(sb);
1298
1299                /*
1300                 * .. and advance to the next buffer.
1301                 */
1302
1303                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1304
1305                packets_handled++;
1306
1307        }
1308
1309        /*
1310         * Decide if we should wake up the protocol or not.
1311         * Other drivers seem to do this when we reach a low
1312         * watermark on the transmit queue.
1313         */
1314
1315        if (packets_handled)
1316                netif_wake_queue(d->sbdma_eth->sbm_dev);
1317
1318end_unlock:
1319        spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1320
1321}
1322
1323
1324
1325/**********************************************************************
1326 *  SBMAC_INITCTX(s)
1327 *
1328 *  Initialize an Ethernet context structure - this is called
1329 *  once per MAC on the 1250.  Memory is allocated here, so don't
1330 *  call it again from inside the ioctl routines that bring the
1331 *  interface up/down
1332 *
1333 *  Input parameters:
1334 *         s - sbmac context structure
1335 *
1336 *  Return value:
1337 *         0
1338 ********************************************************************* */
1339
1340static int sbmac_initctx(struct sbmac_softc *s)
1341{
1342
1343        /*
1344         * figure out the addresses of some ports
1345         */
1346
1347        s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1348        s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1349        s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1350        s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1351        s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1352        s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1353        s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1354        s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1355
1356        /*
1357         * Initialize the DMA channels.  Right now, only one per MAC is used
1358         * Note: Only do this _once_, as it allocates memory from the kernel!
1359         */
1360
1361        sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1362        sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1363
1364        /*
1365         * initial state is OFF
1366         */
1367
1368        s->sbm_state = sbmac_state_off;
1369
1370        return 0;
1371}
1372
1373
1374static void sbdma_uninitctx(struct sbmacdma *d)
1375{
1376        if (d->sbdma_dscrtable_unaligned) {
1377                kfree(d->sbdma_dscrtable_unaligned);
1378                d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1379        }
1380
1381        if (d->sbdma_ctxtable) {
1382                kfree(d->sbdma_ctxtable);
1383                d->sbdma_ctxtable = NULL;
1384        }
1385}
1386
1387
1388static void sbmac_uninitctx(struct sbmac_softc *sc)
1389{
1390        sbdma_uninitctx(&(sc->sbm_txdma));
1391        sbdma_uninitctx(&(sc->sbm_rxdma));
1392}
1393
1394
1395/**********************************************************************
1396 *  SBMAC_CHANNEL_START(s)
1397 *
1398 *  Start packet processing on this MAC.
1399 *
1400 *  Input parameters:
1401 *         s - sbmac structure
1402 *
1403 *  Return value:
1404 *         nothing
1405 ********************************************************************* */
1406
1407static void sbmac_channel_start(struct sbmac_softc *s)
1408{
1409        uint64_t reg;
1410        void __iomem *port;
1411        uint64_t cfg,fifo,framecfg;
1412        int idx, th_value;
1413
1414        /*
1415         * Don't do this if running
1416         */
1417
1418        if (s->sbm_state == sbmac_state_on)
1419                return;
1420
1421        /*
1422         * Bring the controller out of reset, but leave it off.
1423         */
1424
1425        __raw_writeq(0, s->sbm_macenable);
1426
1427        /*
1428         * Ignore all received packets
1429         */
1430
1431        __raw_writeq(0, s->sbm_rxfilter);
1432
1433        /*
1434         * Calculate values for various control registers.
1435         */
1436
1437        cfg = M_MAC_RETRY_EN |
1438                M_MAC_TX_HOLD_SOP_EN |
1439                V_MAC_TX_PAUSE_CNT_16K |
1440                M_MAC_AP_STAT_EN |
1441                M_MAC_FAST_SYNC |
1442                M_MAC_SS_EN |
1443                0;
1444
1445        /*
1446         * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1447         * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1448         * Use a larger RD_THRSH for gigabit
1449         */
1450        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1451                th_value = 28;
1452        else
1453                th_value = 64;
1454
1455        fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1456                ((s->sbm_speed == sbmac_speed_1000)
1457                 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1458                V_MAC_TX_RL_THRSH(4) |
1459                V_MAC_RX_PL_THRSH(4) |
1460                V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1461                V_MAC_RX_RL_THRSH(8) |
1462                0;
1463
1464        framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1465                V_MAC_MAX_FRAMESZ_DEFAULT |
1466                V_MAC_BACKOFF_SEL(1);
1467
1468        /*
1469         * Clear out the hash address map
1470         */
1471
1472        port = s->sbm_base + R_MAC_HASH_BASE;
1473        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1474                __raw_writeq(0, port);
1475                port += sizeof(uint64_t);
1476        }
1477
1478        /*
1479         * Clear out the exact-match table
1480         */
1481
1482        port = s->sbm_base + R_MAC_ADDR_BASE;
1483        for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1484                __raw_writeq(0, port);
1485                port += sizeof(uint64_t);
1486        }
1487
1488        /*
1489         * Clear out the DMA Channel mapping table registers
1490         */
1491
1492        port = s->sbm_base + R_MAC_CHUP0_BASE;
1493        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1494                __raw_writeq(0, port);
1495                port += sizeof(uint64_t);
1496        }
1497
1498
1499        port = s->sbm_base + R_MAC_CHLO0_BASE;
1500        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1501                __raw_writeq(0, port);
1502                port += sizeof(uint64_t);
1503        }
1504
1505        /*
1506         * Program the hardware address.  It goes into the hardware-address
1507         * register as well as the first filter register.
1508         */
1509
1510        reg = sbmac_addr2reg(s->sbm_hwaddr);
1511
1512        port = s->sbm_base + R_MAC_ADDR_BASE;
1513        __raw_writeq(reg, port);
1514        port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1515
1516#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1517        /*
1518         * Pass1 SOCs do not receive packets addressed to the
1519         * destination address in the R_MAC_ETHERNET_ADDR register.
1520         * Set the value to zero.
1521         */
1522        __raw_writeq(0, port);
1523#else
1524        __raw_writeq(reg, port);
1525#endif
1526
1527        /*
1528         * Set the receive filter for no packets, and write values
1529         * to the various config registers
1530         */
1531
1532        __raw_writeq(0, s->sbm_rxfilter);
1533        __raw_writeq(0, s->sbm_imr);
1534        __raw_writeq(framecfg, s->sbm_framecfg);
1535        __raw_writeq(fifo, s->sbm_fifocfg);
1536        __raw_writeq(cfg, s->sbm_maccfg);
1537
1538        /*
1539         * Initialize DMA channels (rings should be ok now)
1540         */
1541
1542        sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1543        sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1544
1545        /*
1546         * Configure the speed, duplex, and flow control
1547         */
1548
1549        sbmac_set_speed(s,s->sbm_speed);
1550        sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1551
1552        /*
1553         * Fill the receive ring
1554         */
1555
1556        sbdma_fillring(s, &(s->sbm_rxdma));
1557
1558        /*
1559         * Turn on the rest of the bits in the enable register
1560         */
1561
1562#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1563        __raw_writeq(M_MAC_RXDMA_EN0 |
1564                       M_MAC_TXDMA_EN0, s->sbm_macenable);
1565#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1566        __raw_writeq(M_MAC_RXDMA_EN0 |
1567                       M_MAC_TXDMA_EN0 |
1568                       M_MAC_RX_ENABLE |
1569                       M_MAC_TX_ENABLE, s->sbm_macenable);
1570#else
1571#error invalid SiByte MAC configuration
1572#endif
1573
1574#ifdef CONFIG_SBMAC_COALESCE
1575        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1576                       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1577#else
1578        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1579                       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1580#endif
1581
1582        /*
1583         * Enable receiving unicasts and broadcasts
1584         */
1585
1586        __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1587
1588        /*
1589         * we're running now.
1590         */
1591
1592        s->sbm_state = sbmac_state_on;
1593
1594        /*
1595         * Program multicast addresses
1596         */
1597
1598        sbmac_setmulti(s);
1599
1600        /*
1601         * If channel was in promiscuous mode before, turn that on
1602         */
1603
1604        if (s->sbm_devflags & IFF_PROMISC) {
1605                sbmac_promiscuous_mode(s,1);
1606        }
1607
1608}
1609
1610
1611/**********************************************************************
1612 *  SBMAC_CHANNEL_STOP(s)
1613 *
1614 *  Stop packet processing on this MAC.
1615 *
1616 *  Input parameters:
1617 *         s - sbmac structure
1618 *
1619 *  Return value:
1620 *         nothing
1621 ********************************************************************* */
1622
1623static void sbmac_channel_stop(struct sbmac_softc *s)
1624{
1625        /* don't do this if already stopped */
1626
1627        if (s->sbm_state == sbmac_state_off)
1628                return;
1629
1630        /* don't accept any packets, disable all interrupts */
1631
1632        __raw_writeq(0, s->sbm_rxfilter);
1633        __raw_writeq(0, s->sbm_imr);
1634
1635        /* Turn off ticker */
1636
1637        /* XXX */
1638
1639        /* turn off receiver and transmitter */
1640
1641        __raw_writeq(0, s->sbm_macenable);
1642
1643        /* We're stopped now. */
1644
1645        s->sbm_state = sbmac_state_off;
1646
1647        /*
1648         * Stop DMA channels (rings should be ok now)
1649         */
1650
1651        sbdma_channel_stop(&(s->sbm_rxdma));
1652        sbdma_channel_stop(&(s->sbm_txdma));
1653
1654        /* Empty the receive and transmit rings */
1655
1656        sbdma_emptyring(&(s->sbm_rxdma));
1657        sbdma_emptyring(&(s->sbm_txdma));
1658
1659}
1660
1661/**********************************************************************
1662 *  SBMAC_SET_CHANNEL_STATE(state)
1663 *
1664 *  Set the channel's state ON or OFF
1665 *
1666 *  Input parameters:
1667 *         state - new state
1668 *
1669 *  Return value:
1670 *         old state
1671 ********************************************************************* */
1672static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1673                                                enum sbmac_state state)
1674{
1675        enum sbmac_state oldstate = sc->sbm_state;
1676
1677        /*
1678         * If same as previous state, return
1679         */
1680
1681        if (state == oldstate) {
1682                return oldstate;
1683        }
1684
1685        /*
1686         * If new state is ON, turn channel on
1687         */
1688
1689        if (state == sbmac_state_on) {
1690                sbmac_channel_start(sc);
1691        }
1692        else {
1693                sbmac_channel_stop(sc);
1694        }
1695
1696        /*
1697         * Return previous state
1698         */
1699
1700        return oldstate;
1701}
1702
1703
1704/**********************************************************************
1705 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1706 *
1707 *  Turn on or off promiscuous mode
1708 *
1709 *  Input parameters:
1710 *         sc - softc
1711 *      onoff - 1 to turn on, 0 to turn off
1712 *
1713 *  Return value:
1714 *         nothing
1715 ********************************************************************* */
1716
1717static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1718{
1719        uint64_t reg;
1720
1721        if (sc->sbm_state != sbmac_state_on)
1722                return;
1723
1724        if (onoff) {
1725                reg = __raw_readq(sc->sbm_rxfilter);
1726                reg |= M_MAC_ALLPKT_EN;
1727                __raw_writeq(reg, sc->sbm_rxfilter);
1728        }
1729        else {
1730                reg = __raw_readq(sc->sbm_rxfilter);
1731                reg &= ~M_MAC_ALLPKT_EN;
1732                __raw_writeq(reg, sc->sbm_rxfilter);
1733        }
1734}
1735
1736/**********************************************************************
1737 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1738 *
1739 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1740 *
1741 *  Input parameters:
1742 *         sc - softc
1743 *
1744 *  Return value:
1745 *         nothing
1746 ********************************************************************* */
1747
1748static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1749{
1750        uint64_t reg;
1751
1752        /* Hard code the off set to 15 for now */
1753        reg = __raw_readq(sc->sbm_rxfilter);
1754        reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1755        __raw_writeq(reg, sc->sbm_rxfilter);
1756
1757        /* BCM1250 pass1 didn't have hardware checksum.  Everything
1758           later does.  */
1759        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1760                sc->rx_hw_checksum = DISABLE;
1761        } else {
1762                sc->rx_hw_checksum = ENABLE;
1763        }
1764}
1765
1766
1767/**********************************************************************
1768 *  SBMAC_ADDR2REG(ptr)
1769 *
1770 *  Convert six bytes into the 64-bit register value that
1771 *  we typically write into the SBMAC's address/mcast registers
1772 *
1773 *  Input parameters:
1774 *         ptr - pointer to 6 bytes
1775 *
1776 *  Return value:
1777 *         register value
1778 ********************************************************************* */
1779
1780static uint64_t sbmac_addr2reg(unsigned char *ptr)
1781{
1782        uint64_t reg = 0;
1783
1784        ptr += 6;
1785
1786        reg |= (uint64_t) *(--ptr);
1787        reg <<= 8;
1788        reg |= (uint64_t) *(--ptr);
1789        reg <<= 8;
1790        reg |= (uint64_t) *(--ptr);
1791        reg <<= 8;
1792        reg |= (uint64_t) *(--ptr);
1793        reg <<= 8;
1794        reg |= (uint64_t) *(--ptr);
1795        reg <<= 8;
1796        reg |= (uint64_t) *(--ptr);
1797
1798        return reg;
1799}
1800
1801
1802/**********************************************************************
1803 *  SBMAC_SET_SPEED(s,speed)
1804 *
1805 *  Configure LAN speed for the specified MAC.
1806 *  Warning: must be called when MAC is off!
1807 *
1808 *  Input parameters:
1809 *         s - sbmac structure
1810 *         speed - speed to set MAC to (see enum sbmac_speed)
1811 *
1812 *  Return value:
1813 *         1 if successful
1814 *      0 indicates invalid parameters
1815 ********************************************************************* */
1816
1817static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1818{
1819        uint64_t cfg;
1820        uint64_t framecfg;
1821
1822        /*
1823         * Save new current values
1824         */
1825
1826        s->sbm_speed = speed;
1827
1828        if (s->sbm_state == sbmac_state_on)
1829                return 0;       /* save for next restart */
1830
1831        /*
1832         * Read current register values
1833         */
1834
1835        cfg = __raw_readq(s->sbm_maccfg);
1836        framecfg = __raw_readq(s->sbm_framecfg);
1837
1838        /*
1839         * Mask out the stuff we want to change
1840         */
1841
1842        cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1843        framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1844                      M_MAC_SLOT_SIZE);
1845
1846        /*
1847         * Now add in the new bits
1848         */
1849
1850        switch (speed) {
1851        case sbmac_speed_10:
1852                framecfg |= V_MAC_IFG_RX_10 |
1853                        V_MAC_IFG_TX_10 |
1854                        K_MAC_IFG_THRSH_10 |
1855                        V_MAC_SLOT_SIZE_10;
1856                cfg |= V_MAC_SPEED_SEL_10MBPS;
1857                break;
1858
1859        case sbmac_speed_100:
1860                framecfg |= V_MAC_IFG_RX_100 |
1861                        V_MAC_IFG_TX_100 |
1862                        V_MAC_IFG_THRSH_100 |
1863                        V_MAC_SLOT_SIZE_100;
1864                cfg |= V_MAC_SPEED_SEL_100MBPS ;
1865                break;
1866
1867        case sbmac_speed_1000:
1868                framecfg |= V_MAC_IFG_RX_1000 |
1869                        V_MAC_IFG_TX_1000 |
1870                        V_MAC_IFG_THRSH_1000 |
1871                        V_MAC_SLOT_SIZE_1000;
1872                cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1873                break;
1874
1875        default:
1876                return 0;
1877        }
1878
1879        /*
1880         * Send the bits back to the hardware
1881         */
1882
1883        __raw_writeq(framecfg, s->sbm_framecfg);
1884        __raw_writeq(cfg, s->sbm_maccfg);
1885
1886        return 1;
1887}
1888
1889/**********************************************************************
1890 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1891 *
1892 *  Set Ethernet duplex and flow control options for this MAC
1893 *  Warning: must be called when MAC is off!
1894 *
1895 *  Input parameters:
1896 *         s - sbmac structure
1897 *         duplex - duplex setting (see enum sbmac_duplex)
1898 *         fc - flow control setting (see enum sbmac_fc)
1899 *
1900 *  Return value:
1901 *         1 if ok
1902 *         0 if an invalid parameter combination was specified
1903 ********************************************************************* */
1904
1905static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1906                            enum sbmac_fc fc)
1907{
1908        uint64_t cfg;
1909
1910        /*
1911         * Save new current values
1912         */
1913
1914        s->sbm_duplex = duplex;
1915        s->sbm_fc = fc;
1916
1917        if (s->sbm_state == sbmac_state_on)
1918                return 0;       /* save for next restart */
1919
1920        /*
1921         * Read current register values
1922         */
1923
1924        cfg = __raw_readq(s->sbm_maccfg);
1925
1926        /*
1927         * Mask off the stuff we're about to change
1928         */
1929
1930        cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1931
1932
1933        switch (duplex) {
1934        case sbmac_duplex_half:
1935                switch (fc) {
1936                case sbmac_fc_disabled:
1937                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1938                        break;
1939
1940                case sbmac_fc_collision:
1941                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1942                        break;
1943
1944                case sbmac_fc_carrier:
1945                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1946                        break;
1947
1948                case sbmac_fc_frame:            /* not valid in half duplex */
1949                default:                        /* invalid selection */
1950                        return 0;
1951                }
1952                break;
1953
1954        case sbmac_duplex_full:
1955                switch (fc) {
1956                case sbmac_fc_disabled:
1957                        cfg |= V_MAC_FC_CMD_DISABLED;
1958                        break;
1959
1960                case sbmac_fc_frame:
1961                        cfg |= V_MAC_FC_CMD_ENABLED;
1962                        break;
1963
1964                case sbmac_fc_collision:        /* not valid in full duplex */
1965                case sbmac_fc_carrier:          /* not valid in full duplex */
1966                default:
1967                        return 0;
1968                }
1969                break;
1970        default:
1971                return 0;
1972        }
1973
1974        /*
1975         * Send the bits back to the hardware
1976         */
1977
1978        __raw_writeq(cfg, s->sbm_maccfg);
1979
1980        return 1;
1981}
1982
1983
1984
1985
1986/**********************************************************************
1987 *  SBMAC_INTR()
1988 *
1989 *  Interrupt handler for MAC interrupts
1990 *
1991 *  Input parameters:
1992 *         MAC structure
1993 *
1994 *  Return value:
1995 *         nothing
1996 ********************************************************************* */
1997static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1998{
1999        struct net_device *dev = (struct net_device *) dev_instance;
2000        struct sbmac_softc *sc = netdev_priv(dev);
2001        uint64_t isr;
2002        int handled = 0;
2003
2004        /*
2005         * Read the ISR (this clears the bits in the real
2006         * register, except for counter addr)
2007         */
2008
2009        isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2010
2011        if (isr == 0)
2012                return IRQ_RETVAL(0);
2013        handled = 1;
2014
2015        /*
2016         * Transmits on channel 0
2017         */
2018
2019        if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2020                sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2021
2022        if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2023                if (napi_schedule_prep(&sc->napi)) {
2024                        __raw_writeq(0, sc->sbm_imr);
2025                        __napi_schedule(&sc->napi);
2026                        /* Depend on the exit from poll to reenable intr */
2027                }
2028                else {
2029                        /* may leave some packets behind */
2030                        sbdma_rx_process(sc,&(sc->sbm_rxdma),
2031                                         SBMAC_MAX_RXDESCR * 2, 0);
2032                }
2033        }
2034        return IRQ_RETVAL(handled);
2035}
2036
2037/**********************************************************************
2038 *  SBMAC_START_TX(skb,dev)
2039 *
2040 *  Start output on the specified interface.  Basically, we
2041 *  queue as many buffers as we can until the ring fills up, or
2042 *  we run off the end of the queue, whichever comes first.
2043 *
2044 *  Input parameters:
2045 *
2046 *
2047 *  Return value:
2048 *         nothing
2049 ********************************************************************* */
2050static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2051{
2052        struct sbmac_softc *sc = netdev_priv(dev);
2053        unsigned long flags;
2054
2055        /* lock eth irq */
2056        spin_lock_irqsave(&sc->sbm_lock, flags);
2057
2058        /*
2059         * Put the buffer on the transmit ring.  If we
2060         * don't have room, stop the queue.
2061         */
2062
2063        if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2064                /* XXX save skb that we could not send */
2065                netif_stop_queue(dev);
2066                spin_unlock_irqrestore(&sc->sbm_lock, flags);
2067
2068                return NETDEV_TX_BUSY;
2069        }
2070
2071        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2072
2073        return NETDEV_TX_OK;
2074}
2075
2076/**********************************************************************
2077 *  SBMAC_SETMULTI(sc)
2078 *
2079 *  Reprogram the multicast table into the hardware, given
2080 *  the list of multicasts associated with the interface
2081 *  structure.
2082 *
2083 *  Input parameters:
2084 *         sc - softc
2085 *
2086 *  Return value:
2087 *         nothing
2088 ********************************************************************* */
2089
2090static void sbmac_setmulti(struct sbmac_softc *sc)
2091{
2092        uint64_t reg;
2093        void __iomem *port;
2094        int idx;
2095        struct netdev_hw_addr *ha;
2096        struct net_device *dev = sc->sbm_dev;
2097
2098        /*
2099         * Clear out entire multicast table.  We do this by nuking
2100         * the entire hash table and all the direct matches except
2101         * the first one, which is used for our station address
2102         */
2103
2104        for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2105                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2106                __raw_writeq(0, port);
2107        }
2108
2109        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2110                port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2111                __raw_writeq(0, port);
2112        }
2113
2114        /*
2115         * Clear the filter to say we don't want any multicasts.
2116         */
2117
2118        reg = __raw_readq(sc->sbm_rxfilter);
2119        reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2120        __raw_writeq(reg, sc->sbm_rxfilter);
2121
2122        if (dev->flags & IFF_ALLMULTI) {
2123                /*
2124                 * Enable ALL multicasts.  Do this by inverting the
2125                 * multicast enable bit.
2126                 */
2127                reg = __raw_readq(sc->sbm_rxfilter);
2128                reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2129                __raw_writeq(reg, sc->sbm_rxfilter);
2130                return;
2131        }
2132
2133
2134        /*
2135         * Progam new multicast entries.  For now, only use the
2136         * perfect filter.  In the future we'll need to use the
2137         * hash filter if the perfect filter overflows
2138         */
2139
2140        /* XXX only using perfect filter for now, need to use hash
2141         * XXX if the table overflows */
2142
2143        idx = 1;                /* skip station address */
2144        netdev_for_each_mc_addr(ha, dev) {
2145                if (idx == MAC_ADDR_COUNT)
2146                        break;
2147                reg = sbmac_addr2reg(ha->addr);
2148                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2149                __raw_writeq(reg, port);
2150                idx++;
2151        }
2152
2153        /*
2154         * Enable the "accept multicast bits" if we programmed at least one
2155         * multicast.
2156         */
2157
2158        if (idx > 1) {
2159                reg = __raw_readq(sc->sbm_rxfilter);
2160                reg |= M_MAC_MCAST_EN;
2161                __raw_writeq(reg, sc->sbm_rxfilter);
2162        }
2163}
2164
2165static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2166{
2167        if (new_mtu >  ENET_PACKET_SIZE)
2168                return -EINVAL;
2169        _dev->mtu = new_mtu;
2170        pr_info("changing the mtu to %d\n", new_mtu);
2171        return 0;
2172}
2173
2174static const struct net_device_ops sbmac_netdev_ops = {
2175        .ndo_open               = sbmac_open,
2176        .ndo_stop               = sbmac_close,
2177        .ndo_start_xmit         = sbmac_start_tx,
2178        .ndo_set_rx_mode        = sbmac_set_rx_mode,
2179        .ndo_tx_timeout         = sbmac_tx_timeout,
2180        .ndo_do_ioctl           = sbmac_mii_ioctl,
2181        .ndo_change_mtu         = sb1250_change_mtu,
2182        .ndo_validate_addr      = eth_validate_addr,
2183        .ndo_set_mac_address    = eth_mac_addr,
2184#ifdef CONFIG_NET_POLL_CONTROLLER
2185        .ndo_poll_controller    = sbmac_netpoll,
2186#endif
2187};
2188
2189/**********************************************************************
2190 *  SBMAC_INIT(dev)
2191 *
2192 *  Attach routine - init hardware and hook ourselves into linux
2193 *
2194 *  Input parameters:
2195 *         dev - net_device structure
2196 *
2197 *  Return value:
2198 *         status
2199 ********************************************************************* */
2200
2201static int sbmac_init(struct platform_device *pldev, long long base)
2202{
2203        struct net_device *dev = dev_get_drvdata(&pldev->dev);
2204        int idx = pldev->id;
2205        struct sbmac_softc *sc = netdev_priv(dev);
2206        unsigned char *eaddr;
2207        uint64_t ea_reg;
2208        int i;
2209        int err;
2210
2211        sc->sbm_dev = dev;
2212        sc->sbe_idx = idx;
2213
2214        eaddr = sc->sbm_hwaddr;
2215
2216        /*
2217         * Read the ethernet address.  The firmware left this programmed
2218         * for us in the ethernet address register for each mac.
2219         */
2220
2221        ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2222        __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223        for (i = 0; i < 6; i++) {
2224                eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2225                ea_reg >>= 8;
2226        }
2227
2228        for (i = 0; i < 6; i++) {
2229                dev->dev_addr[i] = eaddr[i];
2230        }
2231
2232        /*
2233         * Initialize context (get pointers to registers and stuff), then
2234         * allocate the memory for the descriptor tables.
2235         */
2236
2237        sbmac_initctx(sc);
2238
2239        /*
2240         * Set up Linux device callins
2241         */
2242
2243        spin_lock_init(&(sc->sbm_lock));
2244
2245        dev->netdev_ops = &sbmac_netdev_ops;
2246        dev->watchdog_timeo = TX_TIMEOUT;
2247
2248        netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2249
2250        dev->irq                = UNIT_INT(idx);
2251
2252        /* This is needed for PASS2 for Rx H/W checksum feature */
2253        sbmac_set_iphdr_offset(sc);
2254
2255        sc->mii_bus = mdiobus_alloc();
2256        if (sc->mii_bus == NULL) {
2257                err = -ENOMEM;
2258                goto uninit_ctx;
2259        }
2260
2261        sc->mii_bus->name = sbmac_mdio_string;
2262        snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2263                pldev->name, idx);
2264        sc->mii_bus->priv = sc;
2265        sc->mii_bus->read = sbmac_mii_read;
2266        sc->mii_bus->write = sbmac_mii_write;
2267        sc->mii_bus->irq = sc->phy_irq;
2268        for (i = 0; i < PHY_MAX_ADDR; ++i)
2269                sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2270
2271        sc->mii_bus->parent = &pldev->dev;
2272        /*
2273         * Probe PHY address
2274         */
2275        err = mdiobus_register(sc->mii_bus);
2276        if (err) {
2277                printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278                       dev->name);
2279                goto free_mdio;
2280        }
2281        dev_set_drvdata(&pldev->dev, sc->mii_bus);
2282
2283        err = register_netdev(dev);
2284        if (err) {
2285                printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286                       sbmac_string, idx);
2287                goto unreg_mdio;
2288        }
2289
2290        pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2291
2292        if (sc->rx_hw_checksum == ENABLE)
2293                pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2294
2295        /*
2296         * Display Ethernet address (this is called during the config
2297         * process so we need to finish off the config message that
2298         * was being displayed)
2299         */
2300        pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301               dev->name, base, eaddr);
2302
2303        return 0;
2304unreg_mdio:
2305        mdiobus_unregister(sc->mii_bus);
2306        dev_set_drvdata(&pldev->dev, NULL);
2307free_mdio:
2308        mdiobus_free(sc->mii_bus);
2309uninit_ctx:
2310        sbmac_uninitctx(sc);
2311        return err;
2312}
2313
2314
2315static int sbmac_open(struct net_device *dev)
2316{
2317        struct sbmac_softc *sc = netdev_priv(dev);
2318        int err;
2319
2320        if (debug > 1)
2321                pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2322
2323        /*
2324         * map/route interrupt (clear status first, in case something
2325         * weird is pending; we haven't initialized the mac registers
2326         * yet)
2327         */
2328
2329        __raw_readq(sc->sbm_isr);
2330        err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331        if (err) {
2332                printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333                       dev->irq);
2334                goto out_err;
2335        }
2336
2337        sc->sbm_speed = sbmac_speed_none;
2338        sc->sbm_duplex = sbmac_duplex_none;
2339        sc->sbm_fc = sbmac_fc_none;
2340        sc->sbm_pause = -1;
2341        sc->sbm_link = 0;
2342
2343        /*
2344         * Attach to the PHY
2345         */
2346        err = sbmac_mii_probe(dev);
2347        if (err)
2348                goto out_unregister;
2349
2350        /*
2351         * Turn on the channel
2352         */
2353
2354        sbmac_set_channel_state(sc,sbmac_state_on);
2355
2356        netif_start_queue(dev);
2357
2358        sbmac_set_rx_mode(dev);
2359
2360        phy_start(sc->phy_dev);
2361
2362        napi_enable(&sc->napi);
2363
2364        return 0;
2365
2366out_unregister:
2367        free_irq(dev->irq, dev);
2368out_err:
2369        return err;
2370}
2371
2372static int sbmac_mii_probe(struct net_device *dev)
2373{
2374        struct sbmac_softc *sc = netdev_priv(dev);
2375        struct phy_device *phy_dev;
2376        int i;
2377
2378        for (i = 0; i < PHY_MAX_ADDR; i++) {
2379                phy_dev = sc->mii_bus->phy_map[i];
2380                if (phy_dev)
2381                        break;
2382        }
2383        if (!phy_dev) {
2384                printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385                return -ENXIO;
2386        }
2387
2388        phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll,
2389                              PHY_INTERFACE_MODE_GMII);
2390        if (IS_ERR(phy_dev)) {
2391                printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392                return PTR_ERR(phy_dev);
2393        }
2394
2395        /* Remove any features not supported by the controller */
2396        phy_dev->supported &= SUPPORTED_10baseT_Half |
2397                              SUPPORTED_10baseT_Full |
2398                              SUPPORTED_100baseT_Half |
2399                              SUPPORTED_100baseT_Full |
2400                              SUPPORTED_1000baseT_Half |
2401                              SUPPORTED_1000baseT_Full |
2402                              SUPPORTED_Autoneg |
2403                              SUPPORTED_MII |
2404                              SUPPORTED_Pause |
2405                              SUPPORTED_Asym_Pause;
2406        phy_dev->advertising = phy_dev->supported;
2407
2408        pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409                dev->name, phy_dev->drv->name,
2410                dev_name(&phy_dev->dev), phy_dev->irq);
2411
2412        sc->phy_dev = phy_dev;
2413
2414        return 0;
2415}
2416
2417
2418static void sbmac_mii_poll(struct net_device *dev)
2419{
2420        struct sbmac_softc *sc = netdev_priv(dev);
2421        struct phy_device *phy_dev = sc->phy_dev;
2422        unsigned long flags;
2423        enum sbmac_fc fc;
2424        int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2425
2426        link_chg = (sc->sbm_link != phy_dev->link);
2427        speed_chg = (sc->sbm_speed != phy_dev->speed);
2428        duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429        pause_chg = (sc->sbm_pause != phy_dev->pause);
2430
2431        if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432                return;                                 /* Hmmm... */
2433
2434        if (!phy_dev->link) {
2435                if (link_chg) {
2436                        sc->sbm_link = phy_dev->link;
2437                        sc->sbm_speed = sbmac_speed_none;
2438                        sc->sbm_duplex = sbmac_duplex_none;
2439                        sc->sbm_fc = sbmac_fc_disabled;
2440                        sc->sbm_pause = -1;
2441                        pr_info("%s: link unavailable\n", dev->name);
2442                }
2443                return;
2444        }
2445
2446        if (phy_dev->duplex == DUPLEX_FULL) {
2447                if (phy_dev->pause)
2448                        fc = sbmac_fc_frame;
2449                else
2450                        fc = sbmac_fc_disabled;
2451        } else
2452                fc = sbmac_fc_collision;
2453        fc_chg = (sc->sbm_fc != fc);
2454
2455        pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456                phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2457
2458        spin_lock_irqsave(&sc->sbm_lock, flags);
2459
2460        sc->sbm_speed = phy_dev->speed;
2461        sc->sbm_duplex = phy_dev->duplex;
2462        sc->sbm_fc = fc;
2463        sc->sbm_pause = phy_dev->pause;
2464        sc->sbm_link = phy_dev->link;
2465
2466        if ((speed_chg || duplex_chg || fc_chg) &&
2467            sc->sbm_state != sbmac_state_off) {
2468                /*
2469                 * something changed, restart the channel
2470                 */
2471                if (debug > 1)
2472                        pr_debug("%s: restarting channel "
2473                                 "because PHY state changed\n", dev->name);
2474                sbmac_channel_stop(sc);
2475                sbmac_channel_start(sc);
2476        }
2477
2478        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479}
2480
2481
2482static void sbmac_tx_timeout (struct net_device *dev)
2483{
2484        struct sbmac_softc *sc = netdev_priv(dev);
2485        unsigned long flags;
2486
2487        spin_lock_irqsave(&sc->sbm_lock, flags);
2488
2489
2490        dev->trans_start = jiffies; /* prevent tx timeout */
2491        dev->stats.tx_errors++;
2492
2493        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2494
2495        printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2496}
2497
2498
2499
2500
2501static void sbmac_set_rx_mode(struct net_device *dev)
2502{
2503        unsigned long flags;
2504        struct sbmac_softc *sc = netdev_priv(dev);
2505
2506        spin_lock_irqsave(&sc->sbm_lock, flags);
2507        if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2508                /*
2509                 * Promiscuous changed.
2510                 */
2511
2512                if (dev->flags & IFF_PROMISC) {
2513                        sbmac_promiscuous_mode(sc,1);
2514                }
2515                else {
2516                        sbmac_promiscuous_mode(sc,0);
2517                }
2518        }
2519        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2520
2521        /*
2522         * Program the multicasts.  Do this every time.
2523         */
2524
2525        sbmac_setmulti(sc);
2526
2527}
2528
2529static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2530{
2531        struct sbmac_softc *sc = netdev_priv(dev);
2532
2533        if (!netif_running(dev) || !sc->phy_dev)
2534                return -EINVAL;
2535
2536        return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2537}
2538
2539static int sbmac_close(struct net_device *dev)
2540{
2541        struct sbmac_softc *sc = netdev_priv(dev);
2542
2543        napi_disable(&sc->napi);
2544
2545        phy_stop(sc->phy_dev);
2546
2547        sbmac_set_channel_state(sc, sbmac_state_off);
2548
2549        netif_stop_queue(dev);
2550
2551        if (debug > 1)
2552                pr_debug("%s: Shutting down ethercard\n", dev->name);
2553
2554        phy_disconnect(sc->phy_dev);
2555        sc->phy_dev = NULL;
2556        free_irq(dev->irq, dev);
2557
2558        sbdma_emptyring(&(sc->sbm_txdma));
2559        sbdma_emptyring(&(sc->sbm_rxdma));
2560
2561        return 0;
2562}
2563
2564static int sbmac_poll(struct napi_struct *napi, int budget)
2565{
2566        struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567        int work_done;
2568
2569        work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570        sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2571
2572        if (work_done < budget) {
2573                napi_complete(napi);
2574
2575#ifdef CONFIG_SBMAC_COALESCE
2576                __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2577                             ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2578                             sc->sbm_imr);
2579#else
2580                __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2581                             (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2582#endif
2583        }
2584
2585        return work_done;
2586}
2587
2588
2589static int sbmac_probe(struct platform_device *pldev)
2590{
2591        struct net_device *dev;
2592        struct sbmac_softc *sc;
2593        void __iomem *sbm_base;
2594        struct resource *res;
2595        u64 sbmac_orig_hwaddr;
2596        int err;
2597
2598        res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599        BUG_ON(!res);
2600        sbm_base = ioremap_nocache(res->start, resource_size(res));
2601        if (!sbm_base) {
2602                printk(KERN_ERR "%s: unable to map device registers\n",
2603                       dev_name(&pldev->dev));
2604                err = -ENOMEM;
2605                goto out_out;
2606        }
2607
2608        /*
2609         * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610         * value for us by the firmware if we're going to use this MAC.
2611         * If we find a zero, skip this MAC.
2612         */
2613        sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614        pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615                 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616        if (sbmac_orig_hwaddr == 0) {
2617                err = 0;
2618                goto out_unmap;
2619        }
2620
2621        /*
2622         * Okay, cool.  Initialize this MAC.
2623         */
2624        dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625        if (!dev) {
2626                err = -ENOMEM;
2627                goto out_unmap;
2628        }
2629
2630        dev_set_drvdata(&pldev->dev, dev);
2631        SET_NETDEV_DEV(dev, &pldev->dev);
2632
2633        sc = netdev_priv(dev);
2634        sc->sbm_base = sbm_base;
2635
2636        err = sbmac_init(pldev, res->start);
2637        if (err)
2638                goto out_kfree;
2639
2640        return 0;
2641
2642out_kfree:
2643        free_netdev(dev);
2644        __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2645
2646out_unmap:
2647        iounmap(sbm_base);
2648
2649out_out:
2650        return err;
2651}
2652
2653static int __exit sbmac_remove(struct platform_device *pldev)
2654{
2655        struct net_device *dev = dev_get_drvdata(&pldev->dev);
2656        struct sbmac_softc *sc = netdev_priv(dev);
2657
2658        unregister_netdev(dev);
2659        sbmac_uninitctx(sc);
2660        mdiobus_unregister(sc->mii_bus);
2661        mdiobus_free(sc->mii_bus);
2662        iounmap(sc->sbm_base);
2663        free_netdev(dev);
2664
2665        return 0;
2666}
2667
2668static struct platform_driver sbmac_driver = {
2669        .probe = sbmac_probe,
2670        .remove = __exit_p(sbmac_remove),
2671        .driver = {
2672                .name = sbmac_string,
2673                .owner  = THIS_MODULE,
2674        },
2675};
2676
2677module_platform_driver(sbmac_driver);
2678