1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33
34#include "e1000_mac.h"
35
36#include "igb.h"
37
38static s32 igb_set_default_fc(struct e1000_hw *hw);
39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40
41
42
43
44
45
46
47
48
49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50{
51 struct e1000_bus_info *bus = &hw->bus;
52 s32 ret_val;
53 u32 reg;
54 u16 pcie_link_status;
55
56 bus->type = e1000_bus_type_pci_express;
57
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCI_EXP_LNKSTA,
60 &pcie_link_status);
61 if (ret_val) {
62 bus->width = e1000_bus_width_unknown;
63 bus->speed = e1000_bus_speed_unknown;
64 } else {
65 switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66 case PCI_EXP_LNKSTA_CLS_2_5GB:
67 bus->speed = e1000_bus_speed_2500;
68 break;
69 case PCI_EXP_LNKSTA_CLS_5_0GB:
70 bus->speed = e1000_bus_speed_5000;
71 break;
72 default:
73 bus->speed = e1000_bus_speed_unknown;
74 break;
75 }
76
77 bus->width = (enum e1000_bus_width)((pcie_link_status &
78 PCI_EXP_LNKSTA_NLW) >>
79 PCI_EXP_LNKSTA_NLW_SHIFT);
80 }
81
82 reg = rd32(E1000_STATUS);
83 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84
85 return 0;
86}
87
88
89
90
91
92
93
94
95void igb_clear_vfta(struct e1000_hw *hw)
96{
97 u32 offset;
98
99 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100 array_wr32(E1000_VFTA, offset, 0);
101 wrfl();
102 }
103}
104
105
106
107
108
109
110
111
112
113
114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115{
116 array_wr32(E1000_VFTA, offset, value);
117 wrfl();
118}
119
120
121
122
123
124
125
126
127
128
129
130
131
132void igb_clear_vfta_i350(struct e1000_hw *hw)
133{
134 u32 offset;
135 int i;
136
137 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138 for (i = 0; i < 10; i++)
139 array_wr32(E1000_VFTA, offset, 0);
140
141 wrfl();
142 }
143}
144
145
146
147
148
149
150
151
152
153
154static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
155{
156 int i;
157
158 for (i = 0; i < 10; i++)
159 array_wr32(E1000_VFTA, offset, value);
160
161 wrfl();
162}
163
164
165
166
167
168
169
170
171
172
173void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
174{
175 u32 i;
176 u8 mac_addr[ETH_ALEN] = {0};
177
178
179 hw_dbg("Programming MAC Address into RAR[0]\n");
180
181 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182
183
184 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185 for (i = 1; i < rar_count; i++)
186 hw->mac.ops.rar_set(hw, mac_addr, i);
187}
188
189
190
191
192
193
194
195
196
197
198s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
199{
200 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
201 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
202 u32 vfta;
203 struct igb_adapter *adapter = hw->back;
204 s32 ret_val = 0;
205
206 vfta = adapter->shadow_vfta[index];
207
208
209 if ((!!(vfta & mask)) == add) {
210 ret_val = -E1000_ERR_CONFIG;
211 } else {
212 if (add)
213 vfta |= mask;
214 else
215 vfta &= ~mask;
216 }
217 if (hw->mac.type == e1000_i350)
218 igb_write_vfta_i350(hw, index, vfta);
219 else
220 igb_write_vfta(hw, index, vfta);
221 adapter->shadow_vfta[index] = vfta;
222
223 return ret_val;
224}
225
226
227
228
229
230
231
232
233
234
235
236
237s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
238{
239 u32 i;
240 s32 ret_val = 0;
241 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242 u8 alt_mac_addr[ETH_ALEN];
243
244
245
246
247
248 if (hw->mac.type >= e1000_82580)
249 goto out;
250
251 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
252 &nvm_alt_mac_addr_offset);
253 if (ret_val) {
254 hw_dbg("NVM Read Error\n");
255 goto out;
256 }
257
258 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
259 (nvm_alt_mac_addr_offset == 0x0000))
260
261 goto out;
262
263 if (hw->bus.func == E1000_FUNC_1)
264 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
265 if (hw->bus.func == E1000_FUNC_2)
266 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
267
268 if (hw->bus.func == E1000_FUNC_3)
269 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
270 for (i = 0; i < ETH_ALEN; i += 2) {
271 offset = nvm_alt_mac_addr_offset + (i >> 1);
272 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
273 if (ret_val) {
274 hw_dbg("NVM Read Error\n");
275 goto out;
276 }
277
278 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
279 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
280 }
281
282
283 if (is_multicast_ether_addr(alt_mac_addr)) {
284 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
285 goto out;
286 }
287
288
289
290
291
292
293 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
294
295out:
296 return ret_val;
297}
298
299
300
301
302
303
304
305
306
307
308void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
309{
310 u32 rar_low, rar_high;
311
312
313
314
315
316 rar_low = ((u32) addr[0] |
317 ((u32) addr[1] << 8) |
318 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
319
320 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
321
322
323 if (rar_low || rar_high)
324 rar_high |= E1000_RAH_AV;
325
326
327
328
329
330
331 wr32(E1000_RAL(index), rar_low);
332 wrfl();
333 wr32(E1000_RAH(index), rar_high);
334 wrfl();
335}
336
337
338
339
340
341
342
343
344
345
346
347void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
348{
349 u32 hash_bit, hash_reg, mta;
350
351
352
353
354
355
356
357
358
359
360
361 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
362 hash_bit = hash_value & 0x1F;
363
364 mta = array_rd32(E1000_MTA, hash_reg);
365
366 mta |= (1 << hash_bit);
367
368 array_wr32(E1000_MTA, hash_reg, mta);
369 wrfl();
370}
371
372
373
374
375
376
377
378
379
380
381static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
382{
383 u32 hash_value, hash_mask;
384 u8 bit_shift = 0;
385
386
387 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
388
389
390
391
392
393 while (hash_mask >> bit_shift != 0xFF)
394 bit_shift++;
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422 switch (hw->mac.mc_filter_type) {
423 default:
424 case 0:
425 break;
426 case 1:
427 bit_shift += 1;
428 break;
429 case 2:
430 bit_shift += 2;
431 break;
432 case 3:
433 bit_shift += 4;
434 break;
435 }
436
437 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
438 (((u16) mc_addr[5]) << bit_shift)));
439
440 return hash_value;
441}
442
443
444
445
446
447
448
449
450
451
452void igb_update_mc_addr_list(struct e1000_hw *hw,
453 u8 *mc_addr_list, u32 mc_addr_count)
454{
455 u32 hash_value, hash_bit, hash_reg;
456 int i;
457
458
459 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
460
461
462 for (i = 0; (u32) i < mc_addr_count; i++) {
463 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
464
465 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
466 hash_bit = hash_value & 0x1F;
467
468 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
469 mc_addr_list += (ETH_ALEN);
470 }
471
472
473 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
474 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
475 wrfl();
476}
477
478
479
480
481
482
483
484void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
485{
486 rd32(E1000_CRCERRS);
487 rd32(E1000_SYMERRS);
488 rd32(E1000_MPC);
489 rd32(E1000_SCC);
490 rd32(E1000_ECOL);
491 rd32(E1000_MCC);
492 rd32(E1000_LATECOL);
493 rd32(E1000_COLC);
494 rd32(E1000_DC);
495 rd32(E1000_SEC);
496 rd32(E1000_RLEC);
497 rd32(E1000_XONRXC);
498 rd32(E1000_XONTXC);
499 rd32(E1000_XOFFRXC);
500 rd32(E1000_XOFFTXC);
501 rd32(E1000_FCRUC);
502 rd32(E1000_GPRC);
503 rd32(E1000_BPRC);
504 rd32(E1000_MPRC);
505 rd32(E1000_GPTC);
506 rd32(E1000_GORCL);
507 rd32(E1000_GORCH);
508 rd32(E1000_GOTCL);
509 rd32(E1000_GOTCH);
510 rd32(E1000_RNBC);
511 rd32(E1000_RUC);
512 rd32(E1000_RFC);
513 rd32(E1000_ROC);
514 rd32(E1000_RJC);
515 rd32(E1000_TORL);
516 rd32(E1000_TORH);
517 rd32(E1000_TOTL);
518 rd32(E1000_TOTH);
519 rd32(E1000_TPR);
520 rd32(E1000_TPT);
521 rd32(E1000_MPTC);
522 rd32(E1000_BPTC);
523}
524
525
526
527
528
529
530
531
532
533s32 igb_check_for_copper_link(struct e1000_hw *hw)
534{
535 struct e1000_mac_info *mac = &hw->mac;
536 s32 ret_val;
537 bool link;
538
539
540
541
542
543
544
545 if (!mac->get_link_status) {
546 ret_val = 0;
547 goto out;
548 }
549
550
551
552
553
554
555 ret_val = igb_phy_has_link(hw, 1, 0, &link);
556 if (ret_val)
557 goto out;
558
559 if (!link)
560 goto out;
561
562 mac->get_link_status = false;
563
564
565
566
567
568 igb_check_downshift(hw);
569
570
571
572
573
574 if (!mac->autoneg) {
575 ret_val = -E1000_ERR_CONFIG;
576 goto out;
577 }
578
579
580
581
582
583
584 igb_config_collision_dist(hw);
585
586
587
588
589
590
591
592 ret_val = igb_config_fc_after_link_up(hw);
593 if (ret_val)
594 hw_dbg("Error configuring flow control\n");
595
596out:
597 return ret_val;
598}
599
600
601
602
603
604
605
606
607
608
609
610s32 igb_setup_link(struct e1000_hw *hw)
611{
612 s32 ret_val = 0;
613
614
615
616
617
618 if (igb_check_reset_block(hw))
619 goto out;
620
621
622
623
624
625 if (hw->fc.requested_mode == e1000_fc_default) {
626 ret_val = igb_set_default_fc(hw);
627 if (ret_val)
628 goto out;
629 }
630
631
632
633
634
635
636 hw->fc.current_mode = hw->fc.requested_mode;
637
638 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
639
640
641 ret_val = hw->mac.ops.setup_physical_interface(hw);
642 if (ret_val)
643 goto out;
644
645
646
647
648
649
650
651 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
652 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
653 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
654 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
655
656 wr32(E1000_FCTTV, hw->fc.pause_time);
657
658 ret_val = igb_set_fc_watermarks(hw);
659
660out:
661
662 return ret_val;
663}
664
665
666
667
668
669
670
671
672
673void igb_config_collision_dist(struct e1000_hw *hw)
674{
675 u32 tctl;
676
677 tctl = rd32(E1000_TCTL);
678
679 tctl &= ~E1000_TCTL_COLD;
680 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
681
682 wr32(E1000_TCTL, tctl);
683 wrfl();
684}
685
686
687
688
689
690
691
692
693
694static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
695{
696 s32 ret_val = 0;
697 u32 fcrtl = 0, fcrth = 0;
698
699
700
701
702
703
704
705
706 if (hw->fc.current_mode & e1000_fc_tx_pause) {
707
708
709
710
711
712 fcrtl = hw->fc.low_water;
713 if (hw->fc.send_xon)
714 fcrtl |= E1000_FCRTL_XONE;
715
716 fcrth = hw->fc.high_water;
717 }
718 wr32(E1000_FCRTL, fcrtl);
719 wr32(E1000_FCRTH, fcrth);
720
721 return ret_val;
722}
723
724
725
726
727
728
729
730
731static s32 igb_set_default_fc(struct e1000_hw *hw)
732{
733 s32 ret_val = 0;
734 u16 nvm_data;
735
736
737
738
739
740
741
742
743
744
745 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
746
747 if (ret_val) {
748 hw_dbg("NVM Read Error\n");
749 goto out;
750 }
751
752 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
753 hw->fc.requested_mode = e1000_fc_none;
754 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
755 NVM_WORD0F_ASM_DIR)
756 hw->fc.requested_mode = e1000_fc_tx_pause;
757 else
758 hw->fc.requested_mode = e1000_fc_full;
759
760out:
761 return ret_val;
762}
763
764
765
766
767
768
769
770
771
772
773
774s32 igb_force_mac_fc(struct e1000_hw *hw)
775{
776 u32 ctrl;
777 s32 ret_val = 0;
778
779 ctrl = rd32(E1000_CTRL);
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
800
801 switch (hw->fc.current_mode) {
802 case e1000_fc_none:
803 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
804 break;
805 case e1000_fc_rx_pause:
806 ctrl &= (~E1000_CTRL_TFCE);
807 ctrl |= E1000_CTRL_RFCE;
808 break;
809 case e1000_fc_tx_pause:
810 ctrl &= (~E1000_CTRL_RFCE);
811 ctrl |= E1000_CTRL_TFCE;
812 break;
813 case e1000_fc_full:
814 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
815 break;
816 default:
817 hw_dbg("Flow control param set incorrectly\n");
818 ret_val = -E1000_ERR_CONFIG;
819 goto out;
820 }
821
822 wr32(E1000_CTRL, ctrl);
823
824out:
825 return ret_val;
826}
827
828
829
830
831
832
833
834
835
836
837
838s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
839{
840 struct e1000_mac_info *mac = &hw->mac;
841 s32 ret_val = 0;
842 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
843 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
844 u16 speed, duplex;
845
846
847
848
849
850
851 if (mac->autoneg_failed) {
852 if (hw->phy.media_type == e1000_media_type_internal_serdes)
853 ret_val = igb_force_mac_fc(hw);
854 } else {
855 if (hw->phy.media_type == e1000_media_type_copper)
856 ret_val = igb_force_mac_fc(hw);
857 }
858
859 if (ret_val) {
860 hw_dbg("Error forcing flow control settings\n");
861 goto out;
862 }
863
864
865
866
867
868
869
870 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
871
872
873
874
875
876 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
877 &mii_status_reg);
878 if (ret_val)
879 goto out;
880 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
881 &mii_status_reg);
882 if (ret_val)
883 goto out;
884
885 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
886 hw_dbg("Copper PHY and Auto Neg "
887 "has not completed.\n");
888 goto out;
889 }
890
891
892
893
894
895
896
897
898 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
899 &mii_nway_adv_reg);
900 if (ret_val)
901 goto out;
902 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
903 &mii_nway_lp_ability_reg);
904 if (ret_val)
905 goto out;
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
942 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
943
944
945
946
947
948
949
950 if (hw->fc.requested_mode == e1000_fc_full) {
951 hw->fc.current_mode = e1000_fc_full;
952 hw_dbg("Flow Control = FULL.\r\n");
953 } else {
954 hw->fc.current_mode = e1000_fc_rx_pause;
955 hw_dbg("Flow Control = "
956 "RX PAUSE frames only.\r\n");
957 }
958 }
959
960
961
962
963
964
965
966
967 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
968 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
969 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
970 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
971 hw->fc.current_mode = e1000_fc_tx_pause;
972 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
973 }
974
975
976
977
978
979
980
981
982 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
983 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
984 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
985 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
986 hw->fc.current_mode = e1000_fc_rx_pause;
987 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
988 }
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010 else if ((hw->fc.requested_mode == e1000_fc_none ||
1011 hw->fc.requested_mode == e1000_fc_tx_pause) ||
1012 hw->fc.strict_ieee) {
1013 hw->fc.current_mode = e1000_fc_none;
1014 hw_dbg("Flow Control = NONE.\r\n");
1015 } else {
1016 hw->fc.current_mode = e1000_fc_rx_pause;
1017 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
1018 }
1019
1020
1021
1022
1023
1024
1025 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1026 if (ret_val) {
1027 hw_dbg("Error getting link speed and duplex\n");
1028 goto out;
1029 }
1030
1031 if (duplex == HALF_DUPLEX)
1032 hw->fc.current_mode = e1000_fc_none;
1033
1034
1035
1036
1037
1038 ret_val = igb_force_mac_fc(hw);
1039 if (ret_val) {
1040 hw_dbg("Error forcing flow control settings\n");
1041 goto out;
1042 }
1043 }
1044
1045
1046
1047
1048
1049 if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1050 && mac->autoneg) {
1051
1052
1053
1054 pcs_status_reg = rd32(E1000_PCS_LSTAT);
1055
1056 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1057 hw_dbg("PCS Auto Neg has not completed.\n");
1058 return ret_val;
1059 }
1060
1061
1062
1063
1064
1065
1066
1067 pcs_adv_reg = rd32(E1000_PCS_ANADV);
1068 pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1104 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1105
1106
1107
1108
1109
1110
1111 if (hw->fc.requested_mode == e1000_fc_full) {
1112 hw->fc.current_mode = e1000_fc_full;
1113 hw_dbg("Flow Control = FULL.\n");
1114 } else {
1115 hw->fc.current_mode = e1000_fc_rx_pause;
1116 hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1117 }
1118 }
1119
1120
1121
1122
1123
1124
1125
1126 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1127 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1128 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1129 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1130 hw->fc.current_mode = e1000_fc_tx_pause;
1131 hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1132 }
1133
1134
1135
1136
1137
1138
1139
1140 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1141 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1142 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1143 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1144 hw->fc.current_mode = e1000_fc_rx_pause;
1145 hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1146 } else {
1147
1148
1149
1150 hw->fc.current_mode = e1000_fc_none;
1151 hw_dbg("Flow Control = NONE.\n");
1152 }
1153
1154
1155
1156
1157 pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1158 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1159 wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1160
1161 ret_val = igb_force_mac_fc(hw);
1162 if (ret_val) {
1163 hw_dbg("Error forcing flow control settings\n");
1164 return ret_val;
1165 }
1166 }
1167
1168out:
1169 return ret_val;
1170}
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1182 u16 *duplex)
1183{
1184 u32 status;
1185
1186 status = rd32(E1000_STATUS);
1187 if (status & E1000_STATUS_SPEED_1000) {
1188 *speed = SPEED_1000;
1189 hw_dbg("1000 Mbs, ");
1190 } else if (status & E1000_STATUS_SPEED_100) {
1191 *speed = SPEED_100;
1192 hw_dbg("100 Mbs, ");
1193 } else {
1194 *speed = SPEED_10;
1195 hw_dbg("10 Mbs, ");
1196 }
1197
1198 if (status & E1000_STATUS_FD) {
1199 *duplex = FULL_DUPLEX;
1200 hw_dbg("Full Duplex\n");
1201 } else {
1202 *duplex = HALF_DUPLEX;
1203 hw_dbg("Half Duplex\n");
1204 }
1205
1206 return 0;
1207}
1208
1209
1210
1211
1212
1213
1214
1215s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1216{
1217 u32 swsm;
1218 s32 ret_val = 0;
1219 s32 timeout = hw->nvm.word_size + 1;
1220 s32 i = 0;
1221
1222
1223 while (i < timeout) {
1224 swsm = rd32(E1000_SWSM);
1225 if (!(swsm & E1000_SWSM_SMBI))
1226 break;
1227
1228 udelay(50);
1229 i++;
1230 }
1231
1232 if (i == timeout) {
1233 hw_dbg("Driver can't access device - SMBI bit is set.\n");
1234 ret_val = -E1000_ERR_NVM;
1235 goto out;
1236 }
1237
1238
1239 for (i = 0; i < timeout; i++) {
1240 swsm = rd32(E1000_SWSM);
1241 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1242
1243
1244 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1245 break;
1246
1247 udelay(50);
1248 }
1249
1250 if (i == timeout) {
1251
1252 igb_put_hw_semaphore(hw);
1253 hw_dbg("Driver can't access the NVM\n");
1254 ret_val = -E1000_ERR_NVM;
1255 goto out;
1256 }
1257
1258out:
1259 return ret_val;
1260}
1261
1262
1263
1264
1265
1266
1267
1268void igb_put_hw_semaphore(struct e1000_hw *hw)
1269{
1270 u32 swsm;
1271
1272 swsm = rd32(E1000_SWSM);
1273
1274 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1275
1276 wr32(E1000_SWSM, swsm);
1277}
1278
1279
1280
1281
1282
1283
1284
1285s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1286{
1287 s32 i = 0;
1288 s32 ret_val = 0;
1289
1290
1291 while (i < AUTO_READ_DONE_TIMEOUT) {
1292 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1293 break;
1294 msleep(1);
1295 i++;
1296 }
1297
1298 if (i == AUTO_READ_DONE_TIMEOUT) {
1299 hw_dbg("Auto read by HW from NVM has not completed.\n");
1300 ret_val = -E1000_ERR_RESET;
1301 goto out;
1302 }
1303
1304out:
1305 return ret_val;
1306}
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1317{
1318 s32 ret_val;
1319
1320 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1321 if (ret_val) {
1322 hw_dbg("NVM Read Error\n");
1323 goto out;
1324 }
1325
1326 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1327 switch(hw->phy.media_type) {
1328 case e1000_media_type_internal_serdes:
1329 *data = ID_LED_DEFAULT_82575_SERDES;
1330 break;
1331 case e1000_media_type_copper:
1332 default:
1333 *data = ID_LED_DEFAULT;
1334 break;
1335 }
1336 }
1337out:
1338 return ret_val;
1339}
1340
1341
1342
1343
1344
1345
1346s32 igb_id_led_init(struct e1000_hw *hw)
1347{
1348 struct e1000_mac_info *mac = &hw->mac;
1349 s32 ret_val;
1350 const u32 ledctl_mask = 0x000000FF;
1351 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1352 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1353 u16 data, i, temp;
1354 const u16 led_mask = 0x0F;
1355
1356 ret_val = igb_valid_led_default(hw, &data);
1357 if (ret_val)
1358 goto out;
1359
1360 mac->ledctl_default = rd32(E1000_LEDCTL);
1361 mac->ledctl_mode1 = mac->ledctl_default;
1362 mac->ledctl_mode2 = mac->ledctl_default;
1363
1364 for (i = 0; i < 4; i++) {
1365 temp = (data >> (i << 2)) & led_mask;
1366 switch (temp) {
1367 case ID_LED_ON1_DEF2:
1368 case ID_LED_ON1_ON2:
1369 case ID_LED_ON1_OFF2:
1370 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1371 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1372 break;
1373 case ID_LED_OFF1_DEF2:
1374 case ID_LED_OFF1_ON2:
1375 case ID_LED_OFF1_OFF2:
1376 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1377 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1378 break;
1379 default:
1380
1381 break;
1382 }
1383 switch (temp) {
1384 case ID_LED_DEF1_ON2:
1385 case ID_LED_ON1_ON2:
1386 case ID_LED_OFF1_ON2:
1387 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1388 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1389 break;
1390 case ID_LED_DEF1_OFF2:
1391 case ID_LED_ON1_OFF2:
1392 case ID_LED_OFF1_OFF2:
1393 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1394 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1395 break;
1396 default:
1397
1398 break;
1399 }
1400 }
1401
1402out:
1403 return ret_val;
1404}
1405
1406
1407
1408
1409
1410
1411
1412
1413s32 igb_cleanup_led(struct e1000_hw *hw)
1414{
1415 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1416 return 0;
1417}
1418
1419
1420
1421
1422
1423
1424
1425s32 igb_blink_led(struct e1000_hw *hw)
1426{
1427 u32 ledctl_blink = 0;
1428 u32 i;
1429
1430
1431
1432
1433
1434 ledctl_blink = hw->mac.ledctl_mode2;
1435 for (i = 0; i < 4; i++)
1436 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1437 E1000_LEDCTL_MODE_LED_ON)
1438 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1439 (i * 8));
1440
1441 wr32(E1000_LEDCTL, ledctl_blink);
1442
1443 return 0;
1444}
1445
1446
1447
1448
1449
1450
1451
1452s32 igb_led_off(struct e1000_hw *hw)
1453{
1454 switch (hw->phy.media_type) {
1455 case e1000_media_type_copper:
1456 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1457 break;
1458 default:
1459 break;
1460 }
1461
1462 return 0;
1463}
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476s32 igb_disable_pcie_master(struct e1000_hw *hw)
1477{
1478 u32 ctrl;
1479 s32 timeout = MASTER_DISABLE_TIMEOUT;
1480 s32 ret_val = 0;
1481
1482 if (hw->bus.type != e1000_bus_type_pci_express)
1483 goto out;
1484
1485 ctrl = rd32(E1000_CTRL);
1486 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1487 wr32(E1000_CTRL, ctrl);
1488
1489 while (timeout) {
1490 if (!(rd32(E1000_STATUS) &
1491 E1000_STATUS_GIO_MASTER_ENABLE))
1492 break;
1493 udelay(100);
1494 timeout--;
1495 }
1496
1497 if (!timeout) {
1498 hw_dbg("Master requests are pending.\n");
1499 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1500 goto out;
1501 }
1502
1503out:
1504 return ret_val;
1505}
1506
1507
1508
1509
1510
1511
1512
1513
1514s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1515{
1516 s32 ret_val = 0;
1517
1518
1519 if (hw->mac.type >= e1000_82580)
1520 goto out;
1521
1522 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1523 hw_dbg("Invalid MDI setting detected\n");
1524 hw->phy.mdix = 1;
1525 ret_val = -E1000_ERR_CONFIG;
1526 goto out;
1527 }
1528
1529out:
1530 return ret_val;
1531}
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1545 u32 offset, u8 data)
1546{
1547 u32 i, regvalue = 0;
1548 s32 ret_val = 0;
1549
1550
1551 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1552 wr32(reg, regvalue);
1553
1554
1555 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1556 udelay(5);
1557 regvalue = rd32(reg);
1558 if (regvalue & E1000_GEN_CTL_READY)
1559 break;
1560 }
1561 if (!(regvalue & E1000_GEN_CTL_READY)) {
1562 hw_dbg("Reg %08x did not indicate ready\n", reg);
1563 ret_val = -E1000_ERR_PHY;
1564 goto out;
1565 }
1566
1567out:
1568 return ret_val;
1569}
1570
1571
1572
1573
1574
1575
1576
1577
1578bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1579{
1580 u32 manc;
1581 u32 fwsm, factps;
1582 bool ret_val = false;
1583
1584 if (!hw->mac.asf_firmware_present)
1585 goto out;
1586
1587 manc = rd32(E1000_MANC);
1588
1589 if (!(manc & E1000_MANC_RCV_TCO_EN))
1590 goto out;
1591
1592 if (hw->mac.arc_subsystem_valid) {
1593 fwsm = rd32(E1000_FWSM);
1594 factps = rd32(E1000_FACTPS);
1595
1596 if (!(factps & E1000_FACTPS_MNGCG) &&
1597 ((fwsm & E1000_FWSM_MODE_MASK) ==
1598 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1599 ret_val = true;
1600 goto out;
1601 }
1602 } else {
1603 if ((manc & E1000_MANC_SMBUS_EN) &&
1604 !(manc & E1000_MANC_ASF_EN)) {
1605 ret_val = true;
1606 goto out;
1607 }
1608 }
1609
1610out:
1611 return ret_val;
1612}
1613