linux/drivers/net/ethernet/natsemi/ns83820.c
<<
>>
Prefs
   1#define VERSION "0.23"
   2/* ns83820.c by Benjamin LaHaise with contributions.
   3 *
   4 * Questions/comments/discussion to linux-ns83820@kvack.org.
   5 *
   6 * $Revision: 1.34.2.23 $
   7 *
   8 * Copyright 2001 Benjamin LaHaise.
   9 * Copyright 2001, 2002 Red Hat.
  10 *
  11 * Mmmm, chocolate vanilla mocha...
  12 *
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License
  25 * along with this program; if not, write to the Free Software
  26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  27 *
  28 *
  29 * ChangeLog
  30 * =========
  31 *      20010414        0.1 - created
  32 *      20010622        0.2 - basic rx and tx.
  33 *      20010711        0.3 - added duplex and link state detection support.
  34 *      20010713        0.4 - zero copy, no hangs.
  35 *                      0.5 - 64 bit dma support (davem will hate me for this)
  36 *                          - disable jumbo frames to avoid tx hangs
  37 *                          - work around tx deadlocks on my 1.02 card via
  38 *                            fiddling with TXCFG
  39 *      20010810        0.6 - use pci dma api for ringbuffers, work on ia64
  40 *      20010816        0.7 - misc cleanups
  41 *      20010826        0.8 - fix critical zero copy bugs
  42 *                      0.9 - internal experiment
  43 *      20010827        0.10 - fix ia64 unaligned access.
  44 *      20010906        0.11 - accept all packets with checksum errors as
  45 *                             otherwise fragments get lost
  46 *                           - fix >> 32 bugs
  47 *                      0.12 - add statistics counters
  48 *                           - add allmulti/promisc support
  49 *      20011009        0.13 - hotplug support, other smaller pci api cleanups
  50 *      20011204        0.13a - optical transceiver support added
  51 *                              by Michael Clark <michael@metaparadigm.com>
  52 *      20011205        0.13b - call register_netdev earlier in initialization
  53 *                              suppress duplicate link status messages
  54 *      20011117        0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55 *      20011204        0.15    get ppc (big endian) working
  56 *      20011218        0.16    various cleanups
  57 *      20020310        0.17    speedups
  58 *      20020610        0.18 -  actually use the pci dma api for highmem
  59 *                           -  remove pci latency register fiddling
  60 *                      0.19 -  better bist support
  61 *                           -  add ihr and reset_phy parameters
  62 *                           -  gmii bus probing
  63 *                           -  fix missed txok introduced during performance
  64 *                              tuning
  65 *                      0.20 -  fix stupid RFEN thinko.  i am such a smurf.
  66 *      20040828        0.21 -  add hardware vlan accleration
  67 *                              by Neil Horman <nhorman@redhat.com>
  68 *      20050406        0.22 -  improved DAC ifdefs from Andi Kleen
  69 *                           -  removal of dead code from Adrian Bunk
  70 *                           -  fix half duplex collision behaviour
  71 * Driver Overview
  72 * ===============
  73 *
  74 * This driver was originally written for the National Semiconductor
  75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  76 * this code will turn out to be a) clean, b) correct, and c) fast.
  77 * With that in mind, I'm aiming to split the code up as much as
  78 * reasonably possible.  At present there are X major sections that
  79 * break down into a) packet receive, b) packet transmit, c) link
  80 * management, d) initialization and configuration.  Where possible,
  81 * these code paths are designed to run in parallel.
  82 *
  83 * This driver has been tested and found to work with the following
  84 * cards (in no particular order):
  85 *
  86 *      Cameo           SOHO-GA2000T    SOHO-GA2500T
  87 *      D-Link          DGE-500T
  88 *      PureData        PDP8023Z-TG
  89 *      SMC             SMC9452TX       SMC9462TX
  90 *      Netgear         GA621
  91 *
  92 * Special thanks to SMC for providing hardware to test this driver on.
  93 *
  94 * Reports of success or failure would be greatly appreciated.
  95 */
  96//#define dprintk               printk
  97#define dprintk(x...)           do { } while (0)
  98
  99#include <linux/module.h>
 100#include <linux/moduleparam.h>
 101#include <linux/types.h>
 102#include <linux/pci.h>
 103#include <linux/dma-mapping.h>
 104#include <linux/netdevice.h>
 105#include <linux/etherdevice.h>
 106#include <linux/delay.h>
 107#include <linux/workqueue.h>
 108#include <linux/init.h>
 109#include <linux/interrupt.h>
 110#include <linux/ip.h>   /* for iph */
 111#include <linux/in.h>   /* for IPPROTO_... */
 112#include <linux/compiler.h>
 113#include <linux/prefetch.h>
 114#include <linux/ethtool.h>
 115#include <linux/sched.h>
 116#include <linux/timer.h>
 117#include <linux/if_vlan.h>
 118#include <linux/rtnetlink.h>
 119#include <linux/jiffies.h>
 120#include <linux/slab.h>
 121
 122#include <asm/io.h>
 123#include <asm/uaccess.h>
 124
 125#define DRV_NAME "ns83820"
 126
 127/* Global parameters.  See module_param near the bottom. */
 128static int ihr = 2;
 129static int reset_phy = 0;
 130static int lnksts = 0;          /* CFG_LNKSTS bit polarity */
 131
 132/* Dprintk is used for more interesting debug events */
 133#undef Dprintk
 134#define Dprintk                 dprintk
 135
 136/* tunables */
 137#define RX_BUF_SIZE     1500    /* 8192 */
 138#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 139#define NS83820_VLAN_ACCEL_SUPPORT
 140#endif
 141
 142/* Must not exceed ~65000. */
 143#define NR_RX_DESC      64
 144#define NR_TX_DESC      128
 145
 146/* not tunable */
 147#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)     /* rx/tx mac addr + type */
 148
 149#define MIN_TX_DESC_FREE        8
 150
 151/* register defines */
 152#define CFGCS           0x04
 153
 154#define CR_TXE          0x00000001
 155#define CR_TXD          0x00000002
 156/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 157 * The Receive engine skips one descriptor and moves
 158 * onto the next one!! */
 159#define CR_RXE          0x00000004
 160#define CR_RXD          0x00000008
 161#define CR_TXR          0x00000010
 162#define CR_RXR          0x00000020
 163#define CR_SWI          0x00000080
 164#define CR_RST          0x00000100
 165
 166#define PTSCR_EEBIST_FAIL       0x00000001
 167#define PTSCR_EEBIST_EN         0x00000002
 168#define PTSCR_EELOAD_EN         0x00000004
 169#define PTSCR_RBIST_FAIL        0x000001b8
 170#define PTSCR_RBIST_DONE        0x00000200
 171#define PTSCR_RBIST_EN          0x00000400
 172#define PTSCR_RBIST_RST         0x00002000
 173
 174#define MEAR_EEDI               0x00000001
 175#define MEAR_EEDO               0x00000002
 176#define MEAR_EECLK              0x00000004
 177#define MEAR_EESEL              0x00000008
 178#define MEAR_MDIO               0x00000010
 179#define MEAR_MDDIR              0x00000020
 180#define MEAR_MDC                0x00000040
 181
 182#define ISR_TXDESC3     0x40000000
 183#define ISR_TXDESC2     0x20000000
 184#define ISR_TXDESC1     0x10000000
 185#define ISR_TXDESC0     0x08000000
 186#define ISR_RXDESC3     0x04000000
 187#define ISR_RXDESC2     0x02000000
 188#define ISR_RXDESC1     0x01000000
 189#define ISR_RXDESC0     0x00800000
 190#define ISR_TXRCMP      0x00400000
 191#define ISR_RXRCMP      0x00200000
 192#define ISR_DPERR       0x00100000
 193#define ISR_SSERR       0x00080000
 194#define ISR_RMABT       0x00040000
 195#define ISR_RTABT       0x00020000
 196#define ISR_RXSOVR      0x00010000
 197#define ISR_HIBINT      0x00008000
 198#define ISR_PHY         0x00004000
 199#define ISR_PME         0x00002000
 200#define ISR_SWI         0x00001000
 201#define ISR_MIB         0x00000800
 202#define ISR_TXURN       0x00000400
 203#define ISR_TXIDLE      0x00000200
 204#define ISR_TXERR       0x00000100
 205#define ISR_TXDESC      0x00000080
 206#define ISR_TXOK        0x00000040
 207#define ISR_RXORN       0x00000020
 208#define ISR_RXIDLE      0x00000010
 209#define ISR_RXEARLY     0x00000008
 210#define ISR_RXERR       0x00000004
 211#define ISR_RXDESC      0x00000002
 212#define ISR_RXOK        0x00000001
 213
 214#define TXCFG_CSI       0x80000000
 215#define TXCFG_HBI       0x40000000
 216#define TXCFG_MLB       0x20000000
 217#define TXCFG_ATP       0x10000000
 218#define TXCFG_ECRETRY   0x00800000
 219#define TXCFG_BRST_DIS  0x00080000
 220#define TXCFG_MXDMA1024 0x00000000
 221#define TXCFG_MXDMA512  0x00700000
 222#define TXCFG_MXDMA256  0x00600000
 223#define TXCFG_MXDMA128  0x00500000
 224#define TXCFG_MXDMA64   0x00400000
 225#define TXCFG_MXDMA32   0x00300000
 226#define TXCFG_MXDMA16   0x00200000
 227#define TXCFG_MXDMA8    0x00100000
 228
 229#define CFG_LNKSTS      0x80000000
 230#define CFG_SPDSTS      0x60000000
 231#define CFG_SPDSTS1     0x40000000
 232#define CFG_SPDSTS0     0x20000000
 233#define CFG_DUPSTS      0x10000000
 234#define CFG_TBI_EN      0x01000000
 235#define CFG_MODE_1000   0x00400000
 236/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 237 * Read the Phy response and then configure the MAC accordingly */
 238#define CFG_AUTO_1000   0x00200000
 239#define CFG_PINT_CTL    0x001c0000
 240#define CFG_PINT_DUPSTS 0x00100000
 241#define CFG_PINT_LNKSTS 0x00080000
 242#define CFG_PINT_SPDSTS 0x00040000
 243#define CFG_TMRTEST     0x00020000
 244#define CFG_MRM_DIS     0x00010000
 245#define CFG_MWI_DIS     0x00008000
 246#define CFG_T64ADDR     0x00004000
 247#define CFG_PCI64_DET   0x00002000
 248#define CFG_DATA64_EN   0x00001000
 249#define CFG_M64ADDR     0x00000800
 250#define CFG_PHY_RST     0x00000400
 251#define CFG_PHY_DIS     0x00000200
 252#define CFG_EXTSTS_EN   0x00000100
 253#define CFG_REQALG      0x00000080
 254#define CFG_SB          0x00000040
 255#define CFG_POW         0x00000020
 256#define CFG_EXD         0x00000010
 257#define CFG_PESEL       0x00000008
 258#define CFG_BROM_DIS    0x00000004
 259#define CFG_EXT_125     0x00000002
 260#define CFG_BEM         0x00000001
 261
 262#define EXTSTS_UDPPKT   0x00200000
 263#define EXTSTS_TCPPKT   0x00080000
 264#define EXTSTS_IPPKT    0x00020000
 265#define EXTSTS_VPKT     0x00010000
 266#define EXTSTS_VTG_MASK 0x0000ffff
 267
 268#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 269
 270#define MIBC_MIBS       0x00000008
 271#define MIBC_ACLR       0x00000004
 272#define MIBC_FRZ        0x00000002
 273#define MIBC_WRN        0x00000001
 274
 275#define PCR_PSEN        (1 << 31)
 276#define PCR_PS_MCAST    (1 << 30)
 277#define PCR_PS_DA       (1 << 29)
 278#define PCR_STHI_8      (3 << 23)
 279#define PCR_STLO_4      (1 << 23)
 280#define PCR_FFHI_8K     (3 << 21)
 281#define PCR_FFLO_4K     (1 << 21)
 282#define PCR_PAUSE_CNT   0xFFFE
 283
 284#define RXCFG_AEP       0x80000000
 285#define RXCFG_ARP       0x40000000
 286#define RXCFG_STRIPCRC  0x20000000
 287#define RXCFG_RX_FD     0x10000000
 288#define RXCFG_ALP       0x08000000
 289#define RXCFG_AIRL      0x04000000
 290#define RXCFG_MXDMA512  0x00700000
 291#define RXCFG_DRTH      0x0000003e
 292#define RXCFG_DRTH0     0x00000002
 293
 294#define RFCR_RFEN       0x80000000
 295#define RFCR_AAB        0x40000000
 296#define RFCR_AAM        0x20000000
 297#define RFCR_AAU        0x10000000
 298#define RFCR_APM        0x08000000
 299#define RFCR_APAT       0x07800000
 300#define RFCR_APAT3      0x04000000
 301#define RFCR_APAT2      0x02000000
 302#define RFCR_APAT1      0x01000000
 303#define RFCR_APAT0      0x00800000
 304#define RFCR_AARP       0x00400000
 305#define RFCR_MHEN       0x00200000
 306#define RFCR_UHEN       0x00100000
 307#define RFCR_ULM        0x00080000
 308
 309#define VRCR_RUDPE      0x00000080
 310#define VRCR_RTCPE      0x00000040
 311#define VRCR_RIPE       0x00000020
 312#define VRCR_IPEN       0x00000010
 313#define VRCR_DUTF       0x00000008
 314#define VRCR_DVTF       0x00000004
 315#define VRCR_VTREN      0x00000002
 316#define VRCR_VTDEN      0x00000001
 317
 318#define VTCR_PPCHK      0x00000008
 319#define VTCR_GCHK       0x00000004
 320#define VTCR_VPPTI      0x00000002
 321#define VTCR_VGTI       0x00000001
 322
 323#define CR              0x00
 324#define CFG             0x04
 325#define MEAR            0x08
 326#define PTSCR           0x0c
 327#define ISR             0x10
 328#define IMR             0x14
 329#define IER             0x18
 330#define IHR             0x1c
 331#define TXDP            0x20
 332#define TXDP_HI         0x24
 333#define TXCFG           0x28
 334#define GPIOR           0x2c
 335#define RXDP            0x30
 336#define RXDP_HI         0x34
 337#define RXCFG           0x38
 338#define PQCR            0x3c
 339#define WCSR            0x40
 340#define PCR             0x44
 341#define RFCR            0x48
 342#define RFDR            0x4c
 343
 344#define SRR             0x58
 345
 346#define VRCR            0xbc
 347#define VTCR            0xc0
 348#define VDR             0xc4
 349#define CCSR            0xcc
 350
 351#define TBICR           0xe0
 352#define TBISR           0xe4
 353#define TANAR           0xe8
 354#define TANLPAR         0xec
 355#define TANER           0xf0
 356#define TESR            0xf4
 357
 358#define TBICR_MR_AN_ENABLE      0x00001000
 359#define TBICR_MR_RESTART_AN     0x00000200
 360
 361#define TBISR_MR_LINK_STATUS    0x00000020
 362#define TBISR_MR_AN_COMPLETE    0x00000004
 363
 364#define TANAR_PS2               0x00000100
 365#define TANAR_PS1               0x00000080
 366#define TANAR_HALF_DUP          0x00000040
 367#define TANAR_FULL_DUP          0x00000020
 368
 369#define GPIOR_GP5_OE            0x00000200
 370#define GPIOR_GP4_OE            0x00000100
 371#define GPIOR_GP3_OE            0x00000080
 372#define GPIOR_GP2_OE            0x00000040
 373#define GPIOR_GP1_OE            0x00000020
 374#define GPIOR_GP3_OUT           0x00000004
 375#define GPIOR_GP1_OUT           0x00000001
 376
 377#define LINK_AUTONEGOTIATE      0x01
 378#define LINK_DOWN               0x02
 379#define LINK_UP                 0x04
 380
 381#define HW_ADDR_LEN     sizeof(dma_addr_t)
 382#define desc_addr_set(desc, addr)                               \
 383        do {                                                    \
 384                ((desc)[0] = cpu_to_le32(addr));                \
 385                if (HW_ADDR_LEN == 8)                           \
 386                        (desc)[1] = cpu_to_le32(((u64)addr) >> 32);     \
 387        } while(0)
 388#define desc_addr_get(desc)                                     \
 389        (le32_to_cpu((desc)[0]) | \
 390        (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 391
 392#define DESC_LINK               0
 393#define DESC_BUFPTR             (DESC_LINK + HW_ADDR_LEN/4)
 394#define DESC_CMDSTS             (DESC_BUFPTR + HW_ADDR_LEN/4)
 395#define DESC_EXTSTS             (DESC_CMDSTS + 4/4)
 396
 397#define CMDSTS_OWN      0x80000000
 398#define CMDSTS_MORE     0x40000000
 399#define CMDSTS_INTR     0x20000000
 400#define CMDSTS_ERR      0x10000000
 401#define CMDSTS_OK       0x08000000
 402#define CMDSTS_RUNT     0x00200000
 403#define CMDSTS_LEN_MASK 0x0000ffff
 404
 405#define CMDSTS_DEST_MASK        0x01800000
 406#define CMDSTS_DEST_SELF        0x00800000
 407#define CMDSTS_DEST_MULTI       0x01000000
 408
 409#define DESC_SIZE       8               /* Should be cache line sized */
 410
 411struct rx_info {
 412        spinlock_t      lock;
 413        int             up;
 414        unsigned long   idle;
 415
 416        struct sk_buff  *skbs[NR_RX_DESC];
 417
 418        __le32          *next_rx_desc;
 419        u16             next_rx, next_empty;
 420
 421        __le32          *descs;
 422        dma_addr_t      phy_descs;
 423};
 424
 425
 426struct ns83820 {
 427        u8                      __iomem *base;
 428
 429        struct pci_dev          *pci_dev;
 430        struct net_device       *ndev;
 431
 432        struct rx_info          rx_info;
 433        struct tasklet_struct   rx_tasklet;
 434
 435        unsigned                ihr;
 436        struct work_struct      tq_refill;
 437
 438        /* protects everything below.  irqsave when using. */
 439        spinlock_t              misc_lock;
 440
 441        u32                     CFG_cache;
 442
 443        u32                     MEAR_cache;
 444        u32                     IMR_cache;
 445
 446        unsigned                linkstate;
 447
 448        spinlock_t      tx_lock;
 449
 450        u16             tx_done_idx;
 451        u16             tx_idx;
 452        volatile u16    tx_free_idx;    /* idx of free desc chain */
 453        u16             tx_intr_idx;
 454
 455        atomic_t        nr_tx_skbs;
 456        struct sk_buff  *tx_skbs[NR_TX_DESC];
 457
 458        char            pad[16] __attribute__((aligned(16)));
 459        __le32          *tx_descs;
 460        dma_addr_t      tx_phy_descs;
 461
 462        struct timer_list       tx_watchdog;
 463};
 464
 465static inline struct ns83820 *PRIV(struct net_device *dev)
 466{
 467        return netdev_priv(dev);
 468}
 469
 470#define __kick_rx(dev)  writel(CR_RXE, dev->base + CR)
 471
 472static inline void kick_rx(struct net_device *ndev)
 473{
 474        struct ns83820 *dev = PRIV(ndev);
 475        dprintk("kick_rx: maybe kicking\n");
 476        if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 477                dprintk("actually kicking\n");
 478                writel(dev->rx_info.phy_descs +
 479                        (4 * DESC_SIZE * dev->rx_info.next_rx),
 480                       dev->base + RXDP);
 481                if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 482                        printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 483                                ndev->name);
 484                __kick_rx(dev);
 485        }
 486}
 487
 488//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 489#define start_tx_okay(dev)      \
 490        (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 491
 492/* Packet Receiver
 493 *
 494 * The hardware supports linked lists of receive descriptors for
 495 * which ownership is transferred back and forth by means of an
 496 * ownership bit.  While the hardware does support the use of a
 497 * ring for receive descriptors, we only make use of a chain in
 498 * an attempt to reduce bus traffic under heavy load scenarios.
 499 * This will also make bugs a bit more obvious.  The current code
 500 * only makes use of a single rx chain; I hope to implement
 501 * priority based rx for version 1.0.  Goal: even under overload
 502 * conditions, still route realtime traffic with as low jitter as
 503 * possible.
 504 */
 505static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 506{
 507        desc_addr_set(desc + DESC_LINK, link);
 508        desc_addr_set(desc + DESC_BUFPTR, buf);
 509        desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 510        mb();
 511        desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 512}
 513
 514#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 515static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 516{
 517        unsigned next_empty;
 518        u32 cmdsts;
 519        __le32 *sg;
 520        dma_addr_t buf;
 521
 522        next_empty = dev->rx_info.next_empty;
 523
 524        /* don't overrun last rx marker */
 525        if (unlikely(nr_rx_empty(dev) <= 2)) {
 526                kfree_skb(skb);
 527                return 1;
 528        }
 529
 530#if 0
 531        dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 532                dev->rx_info.next_empty,
 533                dev->rx_info.nr_used,
 534                dev->rx_info.next_rx
 535                );
 536#endif
 537
 538        sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 539        BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 540        dev->rx_info.skbs[next_empty] = skb;
 541
 542        dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 543        cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 544        buf = pci_map_single(dev->pci_dev, skb->data,
 545                             REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 546        build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 547        /* update link of previous rx */
 548        if (likely(next_empty != dev->rx_info.next_rx))
 549                dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 550
 551        return 0;
 552}
 553
 554static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 555{
 556        struct ns83820 *dev = PRIV(ndev);
 557        unsigned i;
 558        unsigned long flags = 0;
 559
 560        if (unlikely(nr_rx_empty(dev) <= 2))
 561                return 0;
 562
 563        dprintk("rx_refill(%p)\n", ndev);
 564        if (gfp == GFP_ATOMIC)
 565                spin_lock_irqsave(&dev->rx_info.lock, flags);
 566        for (i=0; i<NR_RX_DESC; i++) {
 567                struct sk_buff *skb;
 568                long res;
 569
 570                /* extra 16 bytes for alignment */
 571                skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
 572                if (unlikely(!skb))
 573                        break;
 574
 575                skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
 576                if (gfp != GFP_ATOMIC)
 577                        spin_lock_irqsave(&dev->rx_info.lock, flags);
 578                res = ns83820_add_rx_skb(dev, skb);
 579                if (gfp != GFP_ATOMIC)
 580                        spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 581                if (res) {
 582                        i = 1;
 583                        break;
 584                }
 585        }
 586        if (gfp == GFP_ATOMIC)
 587                spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 588
 589        return i ? 0 : -ENOMEM;
 590}
 591
 592static void rx_refill_atomic(struct net_device *ndev)
 593{
 594        rx_refill(ndev, GFP_ATOMIC);
 595}
 596
 597/* REFILL */
 598static inline void queue_refill(struct work_struct *work)
 599{
 600        struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 601        struct net_device *ndev = dev->ndev;
 602
 603        rx_refill(ndev, GFP_KERNEL);
 604        if (dev->rx_info.up)
 605                kick_rx(ndev);
 606}
 607
 608static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 609{
 610        build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 611}
 612
 613static void phy_intr(struct net_device *ndev)
 614{
 615        struct ns83820 *dev = PRIV(ndev);
 616        static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 617        u32 cfg, new_cfg;
 618        u32 tbisr, tanar, tanlpar;
 619        int speed, fullduplex, newlinkstate;
 620
 621        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 622
 623        if (dev->CFG_cache & CFG_TBI_EN) {
 624                /* we have an optical transceiver */
 625                tbisr = readl(dev->base + TBISR);
 626                tanar = readl(dev->base + TANAR);
 627                tanlpar = readl(dev->base + TANLPAR);
 628                dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 629                        tbisr, tanar, tanlpar);
 630
 631                if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
 632                      (tanar & TANAR_FULL_DUP)) ) {
 633
 634                        /* both of us are full duplex */
 635                        writel(readl(dev->base + TXCFG)
 636                               | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 637                               dev->base + TXCFG);
 638                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 639                               dev->base + RXCFG);
 640                        /* Light up full duplex LED */
 641                        writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 642                               dev->base + GPIOR);
 643
 644                } else if (((tanlpar & TANAR_HALF_DUP) &&
 645                            (tanar & TANAR_HALF_DUP)) ||
 646                           ((tanlpar & TANAR_FULL_DUP) &&
 647                            (tanar & TANAR_HALF_DUP)) ||
 648                           ((tanlpar & TANAR_HALF_DUP) &&
 649                            (tanar & TANAR_FULL_DUP))) {
 650
 651                        /* one or both of us are half duplex */
 652                        writel((readl(dev->base + TXCFG)
 653                                & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 654                               dev->base + TXCFG);
 655                        writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 656                               dev->base + RXCFG);
 657                        /* Turn off full duplex LED */
 658                        writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 659                               dev->base + GPIOR);
 660                }
 661
 662                speed = 4; /* 1000F */
 663
 664        } else {
 665                /* we have a copper transceiver */
 666                new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 667
 668                if (cfg & CFG_SPDSTS1)
 669                        new_cfg |= CFG_MODE_1000;
 670                else
 671                        new_cfg &= ~CFG_MODE_1000;
 672
 673                speed = ((cfg / CFG_SPDSTS0) & 3);
 674                fullduplex = (cfg & CFG_DUPSTS);
 675
 676                if (fullduplex) {
 677                        new_cfg |= CFG_SB;
 678                        writel(readl(dev->base + TXCFG)
 679                                        | TXCFG_CSI | TXCFG_HBI,
 680                               dev->base + TXCFG);
 681                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 682                               dev->base + RXCFG);
 683                } else {
 684                        writel(readl(dev->base + TXCFG)
 685                                        & ~(TXCFG_CSI | TXCFG_HBI),
 686                               dev->base + TXCFG);
 687                        writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 688                               dev->base + RXCFG);
 689                }
 690
 691                if ((cfg & CFG_LNKSTS) &&
 692                    ((new_cfg ^ dev->CFG_cache) != 0)) {
 693                        writel(new_cfg, dev->base + CFG);
 694                        dev->CFG_cache = new_cfg;
 695                }
 696
 697                dev->CFG_cache &= ~CFG_SPDSTS;
 698                dev->CFG_cache |= cfg & CFG_SPDSTS;
 699        }
 700
 701        newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 702
 703        if (newlinkstate & LINK_UP &&
 704            dev->linkstate != newlinkstate) {
 705                netif_start_queue(ndev);
 706                netif_wake_queue(ndev);
 707                printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 708                        ndev->name,
 709                        speeds[speed],
 710                        fullduplex ? "full" : "half");
 711        } else if (newlinkstate & LINK_DOWN &&
 712                   dev->linkstate != newlinkstate) {
 713                netif_stop_queue(ndev);
 714                printk(KERN_INFO "%s: link now down.\n", ndev->name);
 715        }
 716
 717        dev->linkstate = newlinkstate;
 718}
 719
 720static int ns83820_setup_rx(struct net_device *ndev)
 721{
 722        struct ns83820 *dev = PRIV(ndev);
 723        unsigned i;
 724        int ret;
 725
 726        dprintk("ns83820_setup_rx(%p)\n", ndev);
 727
 728        dev->rx_info.idle = 1;
 729        dev->rx_info.next_rx = 0;
 730        dev->rx_info.next_rx_desc = dev->rx_info.descs;
 731        dev->rx_info.next_empty = 0;
 732
 733        for (i=0; i<NR_RX_DESC; i++)
 734                clear_rx_desc(dev, i);
 735
 736        writel(0, dev->base + RXDP_HI);
 737        writel(dev->rx_info.phy_descs, dev->base + RXDP);
 738
 739        ret = rx_refill(ndev, GFP_KERNEL);
 740        if (!ret) {
 741                dprintk("starting receiver\n");
 742                /* prevent the interrupt handler from stomping on us */
 743                spin_lock_irq(&dev->rx_info.lock);
 744
 745                writel(0x0001, dev->base + CCSR);
 746                writel(0, dev->base + RFCR);
 747                writel(0x7fc00000, dev->base + RFCR);
 748                writel(0xffc00000, dev->base + RFCR);
 749
 750                dev->rx_info.up = 1;
 751
 752                phy_intr(ndev);
 753
 754                /* Okay, let it rip */
 755                spin_lock(&dev->misc_lock);
 756                dev->IMR_cache |= ISR_PHY;
 757                dev->IMR_cache |= ISR_RXRCMP;
 758                //dev->IMR_cache |= ISR_RXERR;
 759                //dev->IMR_cache |= ISR_RXOK;
 760                dev->IMR_cache |= ISR_RXORN;
 761                dev->IMR_cache |= ISR_RXSOVR;
 762                dev->IMR_cache |= ISR_RXDESC;
 763                dev->IMR_cache |= ISR_RXIDLE;
 764                dev->IMR_cache |= ISR_TXDESC;
 765                dev->IMR_cache |= ISR_TXIDLE;
 766
 767                writel(dev->IMR_cache, dev->base + IMR);
 768                writel(1, dev->base + IER);
 769                spin_unlock(&dev->misc_lock);
 770
 771                kick_rx(ndev);
 772
 773                spin_unlock_irq(&dev->rx_info.lock);
 774        }
 775        return ret;
 776}
 777
 778static void ns83820_cleanup_rx(struct ns83820 *dev)
 779{
 780        unsigned i;
 781        unsigned long flags;
 782
 783        dprintk("ns83820_cleanup_rx(%p)\n", dev);
 784
 785        /* disable receive interrupts */
 786        spin_lock_irqsave(&dev->misc_lock, flags);
 787        dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 788        writel(dev->IMR_cache, dev->base + IMR);
 789        spin_unlock_irqrestore(&dev->misc_lock, flags);
 790
 791        /* synchronize with the interrupt handler and kill it */
 792        dev->rx_info.up = 0;
 793        synchronize_irq(dev->pci_dev->irq);
 794
 795        /* touch the pci bus... */
 796        readl(dev->base + IMR);
 797
 798        /* assumes the transmitter is already disabled and reset */
 799        writel(0, dev->base + RXDP_HI);
 800        writel(0, dev->base + RXDP);
 801
 802        for (i=0; i<NR_RX_DESC; i++) {
 803                struct sk_buff *skb = dev->rx_info.skbs[i];
 804                dev->rx_info.skbs[i] = NULL;
 805                clear_rx_desc(dev, i);
 806                kfree_skb(skb);
 807        }
 808}
 809
 810static void ns83820_rx_kick(struct net_device *ndev)
 811{
 812        struct ns83820 *dev = PRIV(ndev);
 813        /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 814                if (dev->rx_info.up) {
 815                        rx_refill_atomic(ndev);
 816                        kick_rx(ndev);
 817                }
 818        }
 819
 820        if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 821                schedule_work(&dev->tq_refill);
 822        else
 823                kick_rx(ndev);
 824        if (dev->rx_info.idle)
 825                printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 826}
 827
 828/* rx_irq
 829 *
 830 */
 831static void rx_irq(struct net_device *ndev)
 832{
 833        struct ns83820 *dev = PRIV(ndev);
 834        struct rx_info *info = &dev->rx_info;
 835        unsigned next_rx;
 836        int rx_rc, len;
 837        u32 cmdsts;
 838        __le32 *desc;
 839        unsigned long flags;
 840        int nr = 0;
 841
 842        dprintk("rx_irq(%p)\n", ndev);
 843        dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 844                readl(dev->base + RXDP),
 845                (long)(dev->rx_info.phy_descs),
 846                (int)dev->rx_info.next_rx,
 847                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 848                (int)dev->rx_info.next_empty,
 849                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 850                );
 851
 852        spin_lock_irqsave(&info->lock, flags);
 853        if (!info->up)
 854                goto out;
 855
 856        dprintk("walking descs\n");
 857        next_rx = info->next_rx;
 858        desc = info->next_rx_desc;
 859        while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 860               (cmdsts != CMDSTS_OWN)) {
 861                struct sk_buff *skb;
 862                u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 863                dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 864
 865                dprintk("cmdsts: %08x\n", cmdsts);
 866                dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 867                dprintk("extsts: %08x\n", extsts);
 868
 869                skb = info->skbs[next_rx];
 870                info->skbs[next_rx] = NULL;
 871                info->next_rx = (next_rx + 1) % NR_RX_DESC;
 872
 873                mb();
 874                clear_rx_desc(dev, next_rx);
 875
 876                pci_unmap_single(dev->pci_dev, bufptr,
 877                                 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 878                len = cmdsts & CMDSTS_LEN_MASK;
 879#ifdef NS83820_VLAN_ACCEL_SUPPORT
 880                /* NH: As was mentioned below, this chip is kinda
 881                 * brain dead about vlan tag stripping.  Frames
 882                 * that are 64 bytes with a vlan header appended
 883                 * like arp frames, or pings, are flagged as Runts
 884                 * when the tag is stripped and hardware.  This
 885                 * also means that the OK bit in the descriptor
 886                 * is cleared when the frame comes in so we have
 887                 * to do a specific length check here to make sure
 888                 * the frame would have been ok, had we not stripped
 889                 * the tag.
 890                 */
 891                if (likely((CMDSTS_OK & cmdsts) ||
 892                        ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 893#else
 894                if (likely(CMDSTS_OK & cmdsts)) {
 895#endif
 896                        skb_put(skb, len);
 897                        if (unlikely(!skb))
 898                                goto netdev_mangle_me_harder_failed;
 899                        if (cmdsts & CMDSTS_DEST_MULTI)
 900                                ndev->stats.multicast++;
 901                        ndev->stats.rx_packets++;
 902                        ndev->stats.rx_bytes += len;
 903                        if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 904                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 905                        } else {
 906                                skb_checksum_none_assert(skb);
 907                        }
 908                        skb->protocol = eth_type_trans(skb, ndev);
 909#ifdef NS83820_VLAN_ACCEL_SUPPORT
 910                        if(extsts & EXTSTS_VPKT) {
 911                                unsigned short tag;
 912
 913                                tag = ntohs(extsts & EXTSTS_VTG_MASK);
 914                                __vlan_hwaccel_put_tag(skb, tag);
 915                        }
 916#endif
 917                        rx_rc = netif_rx(skb);
 918                        if (NET_RX_DROP == rx_rc) {
 919netdev_mangle_me_harder_failed:
 920                                ndev->stats.rx_dropped++;
 921                        }
 922                } else {
 923                        kfree_skb(skb);
 924                }
 925
 926                nr++;
 927                next_rx = info->next_rx;
 928                desc = info->descs + (DESC_SIZE * next_rx);
 929        }
 930        info->next_rx = next_rx;
 931        info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 932
 933out:
 934        if (0 && !nr) {
 935                Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 936        }
 937
 938        spin_unlock_irqrestore(&info->lock, flags);
 939}
 940
 941static void rx_action(unsigned long _dev)
 942{
 943        struct net_device *ndev = (void *)_dev;
 944        struct ns83820 *dev = PRIV(ndev);
 945        rx_irq(ndev);
 946        writel(ihr, dev->base + IHR);
 947
 948        spin_lock_irq(&dev->misc_lock);
 949        dev->IMR_cache |= ISR_RXDESC;
 950        writel(dev->IMR_cache, dev->base + IMR);
 951        spin_unlock_irq(&dev->misc_lock);
 952
 953        rx_irq(ndev);
 954        ns83820_rx_kick(ndev);
 955}
 956
 957/* Packet Transmit code
 958 */
 959static inline void kick_tx(struct ns83820 *dev)
 960{
 961        dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 962                dev, dev->tx_idx, dev->tx_free_idx);
 963        writel(CR_TXE, dev->base + CR);
 964}
 965
 966/* No spinlock needed on the transmit irq path as the interrupt handler is
 967 * serialized.
 968 */
 969static void do_tx_done(struct net_device *ndev)
 970{
 971        struct ns83820 *dev = PRIV(ndev);
 972        u32 cmdsts, tx_done_idx;
 973        __le32 *desc;
 974
 975        dprintk("do_tx_done(%p)\n", ndev);
 976        tx_done_idx = dev->tx_done_idx;
 977        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
 978
 979        dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 980                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
 981        while ((tx_done_idx != dev->tx_free_idx) &&
 982               !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
 983                struct sk_buff *skb;
 984                unsigned len;
 985                dma_addr_t addr;
 986
 987                if (cmdsts & CMDSTS_ERR)
 988                        ndev->stats.tx_errors++;
 989                if (cmdsts & CMDSTS_OK)
 990                        ndev->stats.tx_packets++;
 991                if (cmdsts & CMDSTS_OK)
 992                        ndev->stats.tx_bytes += cmdsts & 0xffff;
 993
 994                dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 995                        tx_done_idx, dev->tx_free_idx, cmdsts);
 996                skb = dev->tx_skbs[tx_done_idx];
 997                dev->tx_skbs[tx_done_idx] = NULL;
 998                dprintk("done(%p)\n", skb);
 999
1000                len = cmdsts & CMDSTS_LEN_MASK;
1001                addr = desc_addr_get(desc + DESC_BUFPTR);
1002                if (skb) {
1003                        pci_unmap_single(dev->pci_dev,
1004                                        addr,
1005                                        len,
1006                                        PCI_DMA_TODEVICE);
1007                        dev_kfree_skb_irq(skb);
1008                        atomic_dec(&dev->nr_tx_skbs);
1009                } else
1010                        pci_unmap_page(dev->pci_dev,
1011                                        addr,
1012                                        len,
1013                                        PCI_DMA_TODEVICE);
1014
1015                tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1016                dev->tx_done_idx = tx_done_idx;
1017                desc[DESC_CMDSTS] = cpu_to_le32(0);
1018                mb();
1019                desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1020        }
1021
1022        /* Allow network stack to resume queueing packets after we've
1023         * finished transmitting at least 1/4 of the packets in the queue.
1024         */
1025        if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1026                dprintk("start_queue(%p)\n", ndev);
1027                netif_start_queue(ndev);
1028                netif_wake_queue(ndev);
1029        }
1030}
1031
1032static void ns83820_cleanup_tx(struct ns83820 *dev)
1033{
1034        unsigned i;
1035
1036        for (i=0; i<NR_TX_DESC; i++) {
1037                struct sk_buff *skb = dev->tx_skbs[i];
1038                dev->tx_skbs[i] = NULL;
1039                if (skb) {
1040                        __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1041                        pci_unmap_single(dev->pci_dev,
1042                                        desc_addr_get(desc + DESC_BUFPTR),
1043                                        le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1044                                        PCI_DMA_TODEVICE);
1045                        dev_kfree_skb_irq(skb);
1046                        atomic_dec(&dev->nr_tx_skbs);
1047                }
1048        }
1049
1050        memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1051}
1052
1053/* transmit routine.  This code relies on the network layer serializing
1054 * its calls in, but will run happily in parallel with the interrupt
1055 * handler.  This code currently has provisions for fragmenting tx buffers
1056 * while trying to track down a bug in either the zero copy code or
1057 * the tx fifo (hence the MAX_FRAG_LEN).
1058 */
1059static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1060                                           struct net_device *ndev)
1061{
1062        struct ns83820 *dev = PRIV(ndev);
1063        u32 free_idx, cmdsts, extsts;
1064        int nr_free, nr_frags;
1065        unsigned tx_done_idx, last_idx;
1066        dma_addr_t buf;
1067        unsigned len;
1068        skb_frag_t *frag;
1069        int stopped = 0;
1070        int do_intr = 0;
1071        volatile __le32 *first_desc;
1072
1073        dprintk("ns83820_hard_start_xmit\n");
1074
1075        nr_frags =  skb_shinfo(skb)->nr_frags;
1076again:
1077        if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1078                netif_stop_queue(ndev);
1079                if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1080                        return NETDEV_TX_BUSY;
1081                netif_start_queue(ndev);
1082        }
1083
1084        last_idx = free_idx = dev->tx_free_idx;
1085        tx_done_idx = dev->tx_done_idx;
1086        nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1087        nr_free -= 1;
1088        if (nr_free <= nr_frags) {
1089                dprintk("stop_queue - not enough(%p)\n", ndev);
1090                netif_stop_queue(ndev);
1091
1092                /* Check again: we may have raced with a tx done irq */
1093                if (dev->tx_done_idx != tx_done_idx) {
1094                        dprintk("restart queue(%p)\n", ndev);
1095                        netif_start_queue(ndev);
1096                        goto again;
1097                }
1098                return NETDEV_TX_BUSY;
1099        }
1100
1101        if (free_idx == dev->tx_intr_idx) {
1102                do_intr = 1;
1103                dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1104        }
1105
1106        nr_free -= nr_frags;
1107        if (nr_free < MIN_TX_DESC_FREE) {
1108                dprintk("stop_queue - last entry(%p)\n", ndev);
1109                netif_stop_queue(ndev);
1110                stopped = 1;
1111        }
1112
1113        frag = skb_shinfo(skb)->frags;
1114        if (!nr_frags)
1115                frag = NULL;
1116        extsts = 0;
1117        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1118                extsts |= EXTSTS_IPPKT;
1119                if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1120                        extsts |= EXTSTS_TCPPKT;
1121                else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1122                        extsts |= EXTSTS_UDPPKT;
1123        }
1124
1125#ifdef NS83820_VLAN_ACCEL_SUPPORT
1126        if(vlan_tx_tag_present(skb)) {
1127                /* fetch the vlan tag info out of the
1128                 * ancillary data if the vlan code
1129                 * is using hw vlan acceleration
1130                 */
1131                short tag = vlan_tx_tag_get(skb);
1132                extsts |= (EXTSTS_VPKT | htons(tag));
1133        }
1134#endif
1135
1136        len = skb->len;
1137        if (nr_frags)
1138                len -= skb->data_len;
1139        buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1140
1141        first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1142
1143        for (;;) {
1144                volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1145
1146                dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1147                        (unsigned long long)buf);
1148                last_idx = free_idx;
1149                free_idx = (free_idx + 1) % NR_TX_DESC;
1150                desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1151                desc_addr_set(desc + DESC_BUFPTR, buf);
1152                desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1153
1154                cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1155                cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1156                cmdsts |= len;
1157                desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1158
1159                if (!nr_frags)
1160                        break;
1161
1162                buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1163                                       skb_frag_size(frag), DMA_TO_DEVICE);
1164                dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1165                        (long long)buf, (long) page_to_pfn(frag->page),
1166                        frag->page_offset);
1167                len = skb_frag_size(frag);
1168                frag++;
1169                nr_frags--;
1170        }
1171        dprintk("done pkt\n");
1172
1173        spin_lock_irq(&dev->tx_lock);
1174        dev->tx_skbs[last_idx] = skb;
1175        first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1176        dev->tx_free_idx = free_idx;
1177        atomic_inc(&dev->nr_tx_skbs);
1178        spin_unlock_irq(&dev->tx_lock);
1179
1180        kick_tx(dev);
1181
1182        /* Check again: we may have raced with a tx done irq */
1183        if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1184                netif_start_queue(ndev);
1185
1186        return NETDEV_TX_OK;
1187}
1188
1189static void ns83820_update_stats(struct ns83820 *dev)
1190{
1191        struct net_device *ndev = dev->ndev;
1192        u8 __iomem *base = dev->base;
1193
1194        /* the DP83820 will freeze counters, so we need to read all of them */
1195        ndev->stats.rx_errors           += readl(base + 0x60) & 0xffff;
1196        ndev->stats.rx_crc_errors       += readl(base + 0x64) & 0xffff;
1197        ndev->stats.rx_missed_errors    += readl(base + 0x68) & 0xffff;
1198        ndev->stats.rx_frame_errors     += readl(base + 0x6c) & 0xffff;
1199        /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1200        ndev->stats.rx_length_errors    += readl(base + 0x74) & 0xffff;
1201        ndev->stats.rx_length_errors    += readl(base + 0x78) & 0xffff;
1202        /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1203        /*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1204        /*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1205        ndev->stats.tx_carrier_errors   += readl(base + 0x88) & 0xff;
1206}
1207
1208static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1209{
1210        struct ns83820 *dev = PRIV(ndev);
1211
1212        /* somewhat overkill */
1213        spin_lock_irq(&dev->misc_lock);
1214        ns83820_update_stats(dev);
1215        spin_unlock_irq(&dev->misc_lock);
1216
1217        return &ndev->stats;
1218}
1219
1220/* Let ethtool retrieve info */
1221static int ns83820_get_settings(struct net_device *ndev,
1222                                struct ethtool_cmd *cmd)
1223{
1224        struct ns83820 *dev = PRIV(ndev);
1225        u32 cfg, tanar, tbicr;
1226        int fullduplex   = 0;
1227
1228        /*
1229         * Here's the list of available ethtool commands from other drivers:
1230         *      cmd->advertising =
1231         *      ethtool_cmd_speed_set(cmd, ...)
1232         *      cmd->duplex =
1233         *      cmd->port = 0;
1234         *      cmd->phy_address =
1235         *      cmd->transceiver = 0;
1236         *      cmd->autoneg =
1237         *      cmd->maxtxpkt = 0;
1238         *      cmd->maxrxpkt = 0;
1239         */
1240
1241        /* read current configuration */
1242        cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1243        tanar = readl(dev->base + TANAR);
1244        tbicr = readl(dev->base + TBICR);
1245
1246        fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1247
1248        cmd->supported = SUPPORTED_Autoneg;
1249
1250        if (dev->CFG_cache & CFG_TBI_EN) {
1251                /* we have optical interface */
1252                cmd->supported |= SUPPORTED_1000baseT_Half |
1253                                        SUPPORTED_1000baseT_Full |
1254                                        SUPPORTED_FIBRE;
1255                cmd->port       = PORT_FIBRE;
1256        } else {
1257                /* we have copper */
1258                cmd->supported |= SUPPORTED_10baseT_Half |
1259                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1260                        SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1261                        SUPPORTED_1000baseT_Full |
1262                        SUPPORTED_MII;
1263                cmd->port = PORT_MII;
1264        }
1265
1266        cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1267        switch (cfg / CFG_SPDSTS0 & 3) {
1268        case 2:
1269                ethtool_cmd_speed_set(cmd, SPEED_1000);
1270                break;
1271        case 1:
1272                ethtool_cmd_speed_set(cmd, SPEED_100);
1273                break;
1274        default:
1275                ethtool_cmd_speed_set(cmd, SPEED_10);
1276                break;
1277        }
1278        cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1279                ? AUTONEG_ENABLE : AUTONEG_DISABLE;
1280        return 0;
1281}
1282
1283/* Let ethool change settings*/
1284static int ns83820_set_settings(struct net_device *ndev,
1285                                struct ethtool_cmd *cmd)
1286{
1287        struct ns83820 *dev = PRIV(ndev);
1288        u32 cfg, tanar;
1289        int have_optical = 0;
1290        int fullduplex   = 0;
1291
1292        /* read current configuration */
1293        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1294        tanar = readl(dev->base + TANAR);
1295
1296        if (dev->CFG_cache & CFG_TBI_EN) {
1297                /* we have optical */
1298                have_optical = 1;
1299                fullduplex   = (tanar & TANAR_FULL_DUP);
1300
1301        } else {
1302                /* we have copper */
1303                fullduplex = cfg & CFG_DUPSTS;
1304        }
1305
1306        spin_lock_irq(&dev->misc_lock);
1307        spin_lock(&dev->tx_lock);
1308
1309        /* Set duplex */
1310        if (cmd->duplex != fullduplex) {
1311                if (have_optical) {
1312                        /*set full duplex*/
1313                        if (cmd->duplex == DUPLEX_FULL) {
1314                                /* force full duplex */
1315                                writel(readl(dev->base + TXCFG)
1316                                        | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1317                                        dev->base + TXCFG);
1318                                writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1319                                        dev->base + RXCFG);
1320                                /* Light up full duplex LED */
1321                                writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1322                                        dev->base + GPIOR);
1323                        } else {
1324                                /*TODO: set half duplex */
1325                        }
1326
1327                } else {
1328                        /*we have copper*/
1329                        /* TODO: Set duplex for copper cards */
1330                }
1331                printk(KERN_INFO "%s: Duplex set via ethtool\n",
1332                ndev->name);
1333        }
1334
1335        /* Set autonegotiation */
1336        if (1) {
1337                if (cmd->autoneg == AUTONEG_ENABLE) {
1338                        /* restart auto negotiation */
1339                        writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1340                                dev->base + TBICR);
1341                        writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1342                                dev->linkstate = LINK_AUTONEGOTIATE;
1343
1344                        printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1345                                ndev->name);
1346                } else {
1347                        /* disable auto negotiation */
1348                        writel(0x00000000, dev->base + TBICR);
1349                }
1350
1351                printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1352                                cmd->autoneg ? "ENABLED" : "DISABLED");
1353        }
1354
1355        phy_intr(ndev);
1356        spin_unlock(&dev->tx_lock);
1357        spin_unlock_irq(&dev->misc_lock);
1358
1359        return 0;
1360}
1361/* end ethtool get/set support -df */
1362
1363static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1364{
1365        struct ns83820 *dev = PRIV(ndev);
1366        strlcpy(info->driver, "ns83820", sizeof(info->driver));
1367        strlcpy(info->version, VERSION, sizeof(info->version));
1368        strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1369}
1370
1371static u32 ns83820_get_link(struct net_device *ndev)
1372{
1373        struct ns83820 *dev = PRIV(ndev);
1374        u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1375        return cfg & CFG_LNKSTS ? 1 : 0;
1376}
1377
1378static const struct ethtool_ops ops = {
1379        .get_settings    = ns83820_get_settings,
1380        .set_settings    = ns83820_set_settings,
1381        .get_drvinfo     = ns83820_get_drvinfo,
1382        .get_link        = ns83820_get_link
1383};
1384
1385static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1386{
1387        writel(0, dev->base + IMR);
1388        writel(0, dev->base + IER);
1389        readl(dev->base + IER);
1390}
1391
1392/* this function is called in irq context from the ISR */
1393static void ns83820_mib_isr(struct ns83820 *dev)
1394{
1395        unsigned long flags;
1396        spin_lock_irqsave(&dev->misc_lock, flags);
1397        ns83820_update_stats(dev);
1398        spin_unlock_irqrestore(&dev->misc_lock, flags);
1399}
1400
1401static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1402static irqreturn_t ns83820_irq(int foo, void *data)
1403{
1404        struct net_device *ndev = data;
1405        struct ns83820 *dev = PRIV(ndev);
1406        u32 isr;
1407        dprintk("ns83820_irq(%p)\n", ndev);
1408
1409        dev->ihr = 0;
1410
1411        isr = readl(dev->base + ISR);
1412        dprintk("irq: %08x\n", isr);
1413        ns83820_do_isr(ndev, isr);
1414        return IRQ_HANDLED;
1415}
1416
1417static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1418{
1419        struct ns83820 *dev = PRIV(ndev);
1420        unsigned long flags;
1421
1422#ifdef DEBUG
1423        if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1424                Dprintk("odd isr? 0x%08x\n", isr);
1425#endif
1426
1427        if (ISR_RXIDLE & isr) {
1428                dev->rx_info.idle = 1;
1429                Dprintk("oh dear, we are idle\n");
1430                ns83820_rx_kick(ndev);
1431        }
1432
1433        if ((ISR_RXDESC | ISR_RXOK) & isr) {
1434                prefetch(dev->rx_info.next_rx_desc);
1435
1436                spin_lock_irqsave(&dev->misc_lock, flags);
1437                dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1438                writel(dev->IMR_cache, dev->base + IMR);
1439                spin_unlock_irqrestore(&dev->misc_lock, flags);
1440
1441                tasklet_schedule(&dev->rx_tasklet);
1442                //rx_irq(ndev);
1443                //writel(4, dev->base + IHR);
1444        }
1445
1446        if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1447                ns83820_rx_kick(ndev);
1448
1449        if (unlikely(ISR_RXSOVR & isr)) {
1450                //printk("overrun: rxsovr\n");
1451                ndev->stats.rx_fifo_errors++;
1452        }
1453
1454        if (unlikely(ISR_RXORN & isr)) {
1455                //printk("overrun: rxorn\n");
1456                ndev->stats.rx_fifo_errors++;
1457        }
1458
1459        if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1460                writel(CR_RXE, dev->base + CR);
1461
1462        if (ISR_TXIDLE & isr) {
1463                u32 txdp;
1464                txdp = readl(dev->base + TXDP);
1465                dprintk("txdp: %08x\n", txdp);
1466                txdp -= dev->tx_phy_descs;
1467                dev->tx_idx = txdp / (DESC_SIZE * 4);
1468                if (dev->tx_idx >= NR_TX_DESC) {
1469                        printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1470                        dev->tx_idx = 0;
1471                }
1472                /* The may have been a race between a pci originated read
1473                 * and the descriptor update from the cpu.  Just in case,
1474                 * kick the transmitter if the hardware thinks it is on a
1475                 * different descriptor than we are.
1476                 */
1477                if (dev->tx_idx != dev->tx_free_idx)
1478                        kick_tx(dev);
1479        }
1480
1481        /* Defer tx ring processing until more than a minimum amount of
1482         * work has accumulated
1483         */
1484        if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1485                spin_lock_irqsave(&dev->tx_lock, flags);
1486                do_tx_done(ndev);
1487                spin_unlock_irqrestore(&dev->tx_lock, flags);
1488
1489                /* Disable TxOk if there are no outstanding tx packets.
1490                 */
1491                if ((dev->tx_done_idx == dev->tx_free_idx) &&
1492                    (dev->IMR_cache & ISR_TXOK)) {
1493                        spin_lock_irqsave(&dev->misc_lock, flags);
1494                        dev->IMR_cache &= ~ISR_TXOK;
1495                        writel(dev->IMR_cache, dev->base + IMR);
1496                        spin_unlock_irqrestore(&dev->misc_lock, flags);
1497                }
1498        }
1499
1500        /* The TxIdle interrupt can come in before the transmit has
1501         * completed.  Normally we reap packets off of the combination
1502         * of TxDesc and TxIdle and leave TxOk disabled (since it
1503         * occurs on every packet), but when no further irqs of this
1504         * nature are expected, we must enable TxOk.
1505         */
1506        if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1507                spin_lock_irqsave(&dev->misc_lock, flags);
1508                dev->IMR_cache |= ISR_TXOK;
1509                writel(dev->IMR_cache, dev->base + IMR);
1510                spin_unlock_irqrestore(&dev->misc_lock, flags);
1511        }
1512
1513        /* MIB interrupt: one of the statistics counters is about to overflow */
1514        if (unlikely(ISR_MIB & isr))
1515                ns83820_mib_isr(dev);
1516
1517        /* PHY: Link up/down/negotiation state change */
1518        if (unlikely(ISR_PHY & isr))
1519                phy_intr(ndev);
1520
1521#if 0   /* Still working on the interrupt mitigation strategy */
1522        if (dev->ihr)
1523                writel(dev->ihr, dev->base + IHR);
1524#endif
1525}
1526
1527static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1528{
1529        Dprintk("resetting chip...\n");
1530        writel(which, dev->base + CR);
1531        do {
1532                schedule();
1533        } while (readl(dev->base + CR) & which);
1534        Dprintk("okay!\n");
1535}
1536
1537static int ns83820_stop(struct net_device *ndev)
1538{
1539        struct ns83820 *dev = PRIV(ndev);
1540
1541        /* FIXME: protect against interrupt handler? */
1542        del_timer_sync(&dev->tx_watchdog);
1543
1544        ns83820_disable_interrupts(dev);
1545
1546        dev->rx_info.up = 0;
1547        synchronize_irq(dev->pci_dev->irq);
1548
1549        ns83820_do_reset(dev, CR_RST);
1550
1551        synchronize_irq(dev->pci_dev->irq);
1552
1553        spin_lock_irq(&dev->misc_lock);
1554        dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1555        spin_unlock_irq(&dev->misc_lock);
1556
1557        ns83820_cleanup_rx(dev);
1558        ns83820_cleanup_tx(dev);
1559
1560        return 0;
1561}
1562
1563static void ns83820_tx_timeout(struct net_device *ndev)
1564{
1565        struct ns83820 *dev = PRIV(ndev);
1566        u32 tx_done_idx;
1567        __le32 *desc;
1568        unsigned long flags;
1569
1570        spin_lock_irqsave(&dev->tx_lock, flags);
1571
1572        tx_done_idx = dev->tx_done_idx;
1573        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1574
1575        printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1576                ndev->name,
1577                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1578
1579#if defined(DEBUG)
1580        {
1581                u32 isr;
1582                isr = readl(dev->base + ISR);
1583                printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1584                ns83820_do_isr(ndev, isr);
1585        }
1586#endif
1587
1588        do_tx_done(ndev);
1589
1590        tx_done_idx = dev->tx_done_idx;
1591        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1592
1593        printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1594                ndev->name,
1595                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1596
1597        spin_unlock_irqrestore(&dev->tx_lock, flags);
1598}
1599
1600static void ns83820_tx_watch(unsigned long data)
1601{
1602        struct net_device *ndev = (void *)data;
1603        struct ns83820 *dev = PRIV(ndev);
1604
1605#if defined(DEBUG)
1606        printk("ns83820_tx_watch: %u %u %d\n",
1607                dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1608                );
1609#endif
1610
1611        if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1612            dev->tx_done_idx != dev->tx_free_idx) {
1613                printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1614                        ndev->name,
1615                        dev->tx_done_idx, dev->tx_free_idx,
1616                        atomic_read(&dev->nr_tx_skbs));
1617                ns83820_tx_timeout(ndev);
1618        }
1619
1620        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1621}
1622
1623static int ns83820_open(struct net_device *ndev)
1624{
1625        struct ns83820 *dev = PRIV(ndev);
1626        unsigned i;
1627        u32 desc;
1628        int ret;
1629
1630        dprintk("ns83820_open\n");
1631
1632        writel(0, dev->base + PQCR);
1633
1634        ret = ns83820_setup_rx(ndev);
1635        if (ret)
1636                goto failed;
1637
1638        memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1639        for (i=0; i<NR_TX_DESC; i++) {
1640                dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1641                                = cpu_to_le32(
1642                                  dev->tx_phy_descs
1643                                  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1644        }
1645
1646        dev->tx_idx = 0;
1647        dev->tx_done_idx = 0;
1648        desc = dev->tx_phy_descs;
1649        writel(0, dev->base + TXDP_HI);
1650        writel(desc, dev->base + TXDP);
1651
1652        init_timer(&dev->tx_watchdog);
1653        dev->tx_watchdog.data = (unsigned long)ndev;
1654        dev->tx_watchdog.function = ns83820_tx_watch;
1655        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1656
1657        netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1658
1659        return 0;
1660
1661failed:
1662        ns83820_stop(ndev);
1663        return ret;
1664}
1665
1666static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1667{
1668        unsigned i;
1669        for (i=0; i<3; i++) {
1670                u32 data;
1671
1672                /* Read from the perfect match memory: this is loaded by
1673                 * the chip from the EEPROM via the EELOAD self test.
1674                 */
1675                writel(i*2, dev->base + RFCR);
1676                data = readl(dev->base + RFDR);
1677
1678                *mac++ = data;
1679                *mac++ = data >> 8;
1680        }
1681}
1682
1683static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1684{
1685        if (new_mtu > RX_BUF_SIZE)
1686                return -EINVAL;
1687        ndev->mtu = new_mtu;
1688        return 0;
1689}
1690
1691static void ns83820_set_multicast(struct net_device *ndev)
1692{
1693        struct ns83820 *dev = PRIV(ndev);
1694        u8 __iomem *rfcr = dev->base + RFCR;
1695        u32 and_mask = 0xffffffff;
1696        u32 or_mask = 0;
1697        u32 val;
1698
1699        if (ndev->flags & IFF_PROMISC)
1700                or_mask |= RFCR_AAU | RFCR_AAM;
1701        else
1702                and_mask &= ~(RFCR_AAU | RFCR_AAM);
1703
1704        if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1705                or_mask |= RFCR_AAM;
1706        else
1707                and_mask &= ~RFCR_AAM;
1708
1709        spin_lock_irq(&dev->misc_lock);
1710        val = (readl(rfcr) & and_mask) | or_mask;
1711        /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1712        writel(val & ~RFCR_RFEN, rfcr);
1713        writel(val, rfcr);
1714        spin_unlock_irq(&dev->misc_lock);
1715}
1716
1717static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1718{
1719        struct ns83820 *dev = PRIV(ndev);
1720        int timed_out = 0;
1721        unsigned long start;
1722        u32 status;
1723        int loops = 0;
1724
1725        dprintk("%s: start %s\n", ndev->name, name);
1726
1727        start = jiffies;
1728
1729        writel(enable, dev->base + PTSCR);
1730        for (;;) {
1731                loops++;
1732                status = readl(dev->base + PTSCR);
1733                if (!(status & enable))
1734                        break;
1735                if (status & done)
1736                        break;
1737                if (status & fail)
1738                        break;
1739                if (time_after_eq(jiffies, start + HZ)) {
1740                        timed_out = 1;
1741                        break;
1742                }
1743                schedule_timeout_uninterruptible(1);
1744        }
1745
1746        if (status & fail)
1747                printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1748                        ndev->name, name, status, fail);
1749        else if (timed_out)
1750                printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1751                        ndev->name, name, status);
1752
1753        dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1754}
1755
1756#ifdef PHY_CODE_IS_FINISHED
1757static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1758{
1759        /* drive MDC low */
1760        dev->MEAR_cache &= ~MEAR_MDC;
1761        writel(dev->MEAR_cache, dev->base + MEAR);
1762        readl(dev->base + MEAR);
1763
1764        /* enable output, set bit */
1765        dev->MEAR_cache |= MEAR_MDDIR;
1766        if (bit)
1767                dev->MEAR_cache |= MEAR_MDIO;
1768        else
1769                dev->MEAR_cache &= ~MEAR_MDIO;
1770
1771        /* set the output bit */
1772        writel(dev->MEAR_cache, dev->base + MEAR);
1773        readl(dev->base + MEAR);
1774
1775        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1776        udelay(1);
1777
1778        /* drive MDC high causing the data bit to be latched */
1779        dev->MEAR_cache |= MEAR_MDC;
1780        writel(dev->MEAR_cache, dev->base + MEAR);
1781        readl(dev->base + MEAR);
1782
1783        /* Wait again... */
1784        udelay(1);
1785}
1786
1787static int ns83820_mii_read_bit(struct ns83820 *dev)
1788{
1789        int bit;
1790
1791        /* drive MDC low, disable output */
1792        dev->MEAR_cache &= ~MEAR_MDC;
1793        dev->MEAR_cache &= ~MEAR_MDDIR;
1794        writel(dev->MEAR_cache, dev->base + MEAR);
1795        readl(dev->base + MEAR);
1796
1797        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1798        udelay(1);
1799
1800        /* drive MDC high causing the data bit to be latched */
1801        bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1802        dev->MEAR_cache |= MEAR_MDC;
1803        writel(dev->MEAR_cache, dev->base + MEAR);
1804
1805        /* Wait again... */
1806        udelay(1);
1807
1808        return bit;
1809}
1810
1811static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1812{
1813        unsigned data = 0;
1814        int i;
1815
1816        /* read some garbage so that we eventually sync up */
1817        for (i=0; i<64; i++)
1818                ns83820_mii_read_bit(dev);
1819
1820        ns83820_mii_write_bit(dev, 0);  /* start */
1821        ns83820_mii_write_bit(dev, 1);
1822        ns83820_mii_write_bit(dev, 1);  /* opcode read */
1823        ns83820_mii_write_bit(dev, 0);
1824
1825        /* write out the phy address: 5 bits, msb first */
1826        for (i=0; i<5; i++)
1827                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1828
1829        /* write out the register address, 5 bits, msb first */
1830        for (i=0; i<5; i++)
1831                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1832
1833        ns83820_mii_read_bit(dev);      /* turn around cycles */
1834        ns83820_mii_read_bit(dev);
1835
1836        /* read in the register data, 16 bits msb first */
1837        for (i=0; i<16; i++) {
1838                data <<= 1;
1839                data |= ns83820_mii_read_bit(dev);
1840        }
1841
1842        return data;
1843}
1844
1845static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1846{
1847        int i;
1848
1849        /* read some garbage so that we eventually sync up */
1850        for (i=0; i<64; i++)
1851                ns83820_mii_read_bit(dev);
1852
1853        ns83820_mii_write_bit(dev, 0);  /* start */
1854        ns83820_mii_write_bit(dev, 1);
1855        ns83820_mii_write_bit(dev, 0);  /* opcode read */
1856        ns83820_mii_write_bit(dev, 1);
1857
1858        /* write out the phy address: 5 bits, msb first */
1859        for (i=0; i<5; i++)
1860                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1861
1862        /* write out the register address, 5 bits, msb first */
1863        for (i=0; i<5; i++)
1864                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1865
1866        ns83820_mii_read_bit(dev);      /* turn around cycles */
1867        ns83820_mii_read_bit(dev);
1868
1869        /* read in the register data, 16 bits msb first */
1870        for (i=0; i<16; i++)
1871                ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1872
1873        return data;
1874}
1875
1876static void ns83820_probe_phy(struct net_device *ndev)
1877{
1878        struct ns83820 *dev = PRIV(ndev);
1879        static int first;
1880        int i;
1881#define MII_PHYIDR1     0x02
1882#define MII_PHYIDR2     0x03
1883
1884#if 0
1885        if (!first) {
1886                unsigned tmp;
1887                ns83820_mii_read_reg(dev, 1, 0x09);
1888                ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1889
1890                tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1891                ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1892                udelay(1300);
1893                ns83820_mii_read_reg(dev, 1, 0x09);
1894        }
1895#endif
1896        first = 1;
1897
1898        for (i=1; i<2; i++) {
1899                int j;
1900                unsigned a, b;
1901                a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1902                b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1903
1904                //printk("%s: phy %d: 0x%04x 0x%04x\n",
1905                //      ndev->name, i, a, b);
1906
1907                for (j=0; j<0x16; j+=4) {
1908                        dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1909                                ndev->name, j,
1910                                ns83820_mii_read_reg(dev, i, 0 + j),
1911                                ns83820_mii_read_reg(dev, i, 1 + j),
1912                                ns83820_mii_read_reg(dev, i, 2 + j),
1913                                ns83820_mii_read_reg(dev, i, 3 + j)
1914                                );
1915                }
1916        }
1917        {
1918                unsigned a, b;
1919                /* read firmware version: memory addr is 0x8402 and 0x8403 */
1920                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1921                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1922                a = ns83820_mii_read_reg(dev, 1, 0x1d);
1923
1924                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1925                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1926                b = ns83820_mii_read_reg(dev, 1, 0x1d);
1927                dprintk("version: 0x%04x 0x%04x\n", a, b);
1928        }
1929}
1930#endif
1931
1932static const struct net_device_ops netdev_ops = {
1933        .ndo_open               = ns83820_open,
1934        .ndo_stop               = ns83820_stop,
1935        .ndo_start_xmit         = ns83820_hard_start_xmit,
1936        .ndo_get_stats          = ns83820_get_stats,
1937        .ndo_change_mtu         = ns83820_change_mtu,
1938        .ndo_set_rx_mode        = ns83820_set_multicast,
1939        .ndo_validate_addr      = eth_validate_addr,
1940        .ndo_set_mac_address    = eth_mac_addr,
1941        .ndo_tx_timeout         = ns83820_tx_timeout,
1942};
1943
1944static int ns83820_init_one(struct pci_dev *pci_dev,
1945                            const struct pci_device_id *id)
1946{
1947        struct net_device *ndev;
1948        struct ns83820 *dev;
1949        long addr;
1950        int err;
1951        int using_dac = 0;
1952
1953        /* See if we can set the dma mask early on; failure is fatal. */
1954        if (sizeof(dma_addr_t) == 8 &&
1955                !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1956                using_dac = 1;
1957        } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1958                using_dac = 0;
1959        } else {
1960                dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1961                return -ENODEV;
1962        }
1963
1964        ndev = alloc_etherdev(sizeof(struct ns83820));
1965        err = -ENOMEM;
1966        if (!ndev)
1967                goto out;
1968
1969        dev = PRIV(ndev);
1970        dev->ndev = ndev;
1971
1972        spin_lock_init(&dev->rx_info.lock);
1973        spin_lock_init(&dev->tx_lock);
1974        spin_lock_init(&dev->misc_lock);
1975        dev->pci_dev = pci_dev;
1976
1977        SET_NETDEV_DEV(ndev, &pci_dev->dev);
1978
1979        INIT_WORK(&dev->tq_refill, queue_refill);
1980        tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1981
1982        err = pci_enable_device(pci_dev);
1983        if (err) {
1984                dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1985                goto out_free;
1986        }
1987
1988        pci_set_master(pci_dev);
1989        addr = pci_resource_start(pci_dev, 1);
1990        dev->base = ioremap_nocache(addr, PAGE_SIZE);
1991        dev->tx_descs = pci_alloc_consistent(pci_dev,
1992                        4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1993        dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1994                        4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1995        err = -ENOMEM;
1996        if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1997                goto out_disable;
1998
1999        dprintk("%p: %08lx  %p: %08lx\n",
2000                dev->tx_descs, (long)dev->tx_phy_descs,
2001                dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2002
2003        ns83820_disable_interrupts(dev);
2004
2005        dev->IMR_cache = 0;
2006
2007        err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2008                          DRV_NAME, ndev);
2009        if (err) {
2010                dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2011                        pci_dev->irq, err);
2012                goto out_disable;
2013        }
2014
2015        /*
2016         * FIXME: we are holding rtnl_lock() over obscenely long area only
2017         * because some of the setup code uses dev->name.  It's Wrong(tm) -
2018         * we should be using driver-specific names for all that stuff.
2019         * For now that will do, but we really need to come back and kill
2020         * most of the dev_alloc_name() users later.
2021         */
2022        rtnl_lock();
2023        err = dev_alloc_name(ndev, ndev->name);
2024        if (err < 0) {
2025                dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2026                goto out_free_irq;
2027        }
2028
2029        printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2030                ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2031                pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2032
2033        ndev->netdev_ops = &netdev_ops;
2034        SET_ETHTOOL_OPS(ndev, &ops);
2035        ndev->watchdog_timeo = 5 * HZ;
2036        pci_set_drvdata(pci_dev, ndev);
2037
2038        ns83820_do_reset(dev, CR_RST);
2039
2040        /* Must reset the ram bist before running it */
2041        writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2042        ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2043                         PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2044        ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2045                         PTSCR_EEBIST_FAIL);
2046        ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2047
2048        /* I love config registers */
2049        dev->CFG_cache = readl(dev->base + CFG);
2050
2051        if ((dev->CFG_cache & CFG_PCI64_DET)) {
2052                printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2053                        ndev->name);
2054                /*dev->CFG_cache |= CFG_DATA64_EN;*/
2055                if (!(dev->CFG_cache & CFG_DATA64_EN))
2056                        printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2057                                ndev->name);
2058        } else
2059                dev->CFG_cache &= ~(CFG_DATA64_EN);
2060
2061        dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2062                           CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2063                           CFG_M64ADDR);
2064        dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2065                          CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2066        dev->CFG_cache |= CFG_REQALG;
2067        dev->CFG_cache |= CFG_POW;
2068        dev->CFG_cache |= CFG_TMRTEST;
2069
2070        /* When compiled with 64 bit addressing, we must always enable
2071         * the 64 bit descriptor format.
2072         */
2073        if (sizeof(dma_addr_t) == 8)
2074                dev->CFG_cache |= CFG_M64ADDR;
2075        if (using_dac)
2076                dev->CFG_cache |= CFG_T64ADDR;
2077
2078        /* Big endian mode does not seem to do what the docs suggest */
2079        dev->CFG_cache &= ~CFG_BEM;
2080
2081        /* setup optical transceiver if we have one */
2082        if (dev->CFG_cache & CFG_TBI_EN) {
2083                printk(KERN_INFO "%s: enabling optical transceiver\n",
2084                        ndev->name);
2085                writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2086
2087                /* setup auto negotiation feature advertisement */
2088                writel(readl(dev->base + TANAR)
2089                       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2090                       dev->base + TANAR);
2091
2092                /* start auto negotiation */
2093                writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2094                       dev->base + TBICR);
2095                writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2096                dev->linkstate = LINK_AUTONEGOTIATE;
2097
2098                dev->CFG_cache |= CFG_MODE_1000;
2099        }
2100
2101        writel(dev->CFG_cache, dev->base + CFG);
2102        dprintk("CFG: %08x\n", dev->CFG_cache);
2103
2104        if (reset_phy) {
2105                printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2106                writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2107                msleep(10);
2108                writel(dev->CFG_cache, dev->base + CFG);
2109        }
2110
2111#if 0   /* Huh?  This sets the PCI latency register.  Should be done via
2112         * the PCI layer.  FIXME.
2113         */
2114        if (readl(dev->base + SRR))
2115                writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2116#endif
2117
2118        /* Note!  The DMA burst size interacts with packet
2119         * transmission, such that the largest packet that
2120         * can be transmitted is 8192 - FLTH - burst size.
2121         * If only the transmit fifo was larger...
2122         */
2123        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2124         * some DELL and COMPAQ SMP systems */
2125        writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2126                | ((1600 / 32) * 0x100),
2127                dev->base + TXCFG);
2128
2129        /* Flush the interrupt holdoff timer */
2130        writel(0x000, dev->base + IHR);
2131        writel(0x100, dev->base + IHR);
2132        writel(0x000, dev->base + IHR);
2133
2134        /* Set Rx to full duplex, don't accept runt, errored, long or length
2135         * range errored packets.  Use 512 byte DMA.
2136         */
2137        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2138         * some DELL and COMPAQ SMP systems
2139         * Turn on ALP, only we are accpeting Jumbo Packets */
2140        writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2141                | RXCFG_STRIPCRC
2142                //| RXCFG_ALP
2143                | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2144
2145        /* Disable priority queueing */
2146        writel(0, dev->base + PQCR);
2147
2148        /* Enable IP checksum validation and detetion of VLAN headers.
2149         * Note: do not set the reject options as at least the 0x102
2150         * revision of the chip does not properly accept IP fragments
2151         * at least for UDP.
2152         */
2153        /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2154         * the MAC it calculates the packetsize AFTER stripping the VLAN
2155         * header, and if a VLAN Tagged packet of 64 bytes is received (like
2156         * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2157         * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2158         * it discrards it!.  These guys......
2159         * also turn on tag stripping if hardware acceleration is enabled
2160         */
2161#ifdef NS83820_VLAN_ACCEL_SUPPORT
2162#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2163#else
2164#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2165#endif
2166        writel(VRCR_INIT_VALUE, dev->base + VRCR);
2167
2168        /* Enable per-packet TCP/UDP/IP checksumming
2169         * and per packet vlan tag insertion if
2170         * vlan hardware acceleration is enabled
2171         */
2172#ifdef NS83820_VLAN_ACCEL_SUPPORT
2173#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2174#else
2175#define VTCR_INIT_VALUE VTCR_PPCHK
2176#endif
2177        writel(VTCR_INIT_VALUE, dev->base + VTCR);
2178
2179        /* Ramit : Enable async and sync pause frames */
2180        /* writel(0, dev->base + PCR); */
2181        writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2182                PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2183                dev->base + PCR);
2184
2185        /* Disable Wake On Lan */
2186        writel(0, dev->base + WCSR);
2187
2188        ns83820_getmac(dev, ndev->dev_addr);
2189
2190        /* Yes, we support dumb IP checksum on transmit */
2191        ndev->features |= NETIF_F_SG;
2192        ndev->features |= NETIF_F_IP_CSUM;
2193
2194#ifdef NS83820_VLAN_ACCEL_SUPPORT
2195        /* We also support hardware vlan acceleration */
2196        ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2197#endif
2198
2199        if (using_dac) {
2200                printk(KERN_INFO "%s: using 64 bit addressing.\n",
2201                        ndev->name);
2202                ndev->features |= NETIF_F_HIGHDMA;
2203        }
2204
2205        printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2206                ndev->name,
2207                (unsigned)readl(dev->base + SRR) >> 8,
2208                (unsigned)readl(dev->base + SRR) & 0xff,
2209                ndev->dev_addr, addr, pci_dev->irq,
2210                (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2211                );
2212
2213#ifdef PHY_CODE_IS_FINISHED
2214        ns83820_probe_phy(ndev);
2215#endif
2216
2217        err = register_netdevice(ndev);
2218        if (err) {
2219                printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2220                goto out_cleanup;
2221        }
2222        rtnl_unlock();
2223
2224        return 0;
2225
2226out_cleanup:
2227        ns83820_disable_interrupts(dev); /* paranoia */
2228out_free_irq:
2229        rtnl_unlock();
2230        free_irq(pci_dev->irq, ndev);
2231out_disable:
2232        if (dev->base)
2233                iounmap(dev->base);
2234        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2235        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2236        pci_disable_device(pci_dev);
2237out_free:
2238        free_netdev(ndev);
2239        pci_set_drvdata(pci_dev, NULL);
2240out:
2241        return err;
2242}
2243
2244static void ns83820_remove_one(struct pci_dev *pci_dev)
2245{
2246        struct net_device *ndev = pci_get_drvdata(pci_dev);
2247        struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2248
2249        if (!ndev)                      /* paranoia */
2250                return;
2251
2252        ns83820_disable_interrupts(dev); /* paranoia */
2253
2254        unregister_netdev(ndev);
2255        free_irq(dev->pci_dev->irq, ndev);
2256        iounmap(dev->base);
2257        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2258                        dev->tx_descs, dev->tx_phy_descs);
2259        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2260                        dev->rx_info.descs, dev->rx_info.phy_descs);
2261        pci_disable_device(dev->pci_dev);
2262        free_netdev(ndev);
2263        pci_set_drvdata(pci_dev, NULL);
2264}
2265
2266static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2267        { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2268        { 0, },
2269};
2270
2271static struct pci_driver driver = {
2272        .name           = "ns83820",
2273        .id_table       = ns83820_pci_tbl,
2274        .probe          = ns83820_init_one,
2275        .remove         = ns83820_remove_one,
2276#if 0   /* FIXME: implement */
2277        .suspend        = ,
2278        .resume         = ,
2279#endif
2280};
2281
2282
2283static int __init ns83820_init(void)
2284{
2285        printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2286        return pci_register_driver(&driver);
2287}
2288
2289static void __exit ns83820_exit(void)
2290{
2291        pci_unregister_driver(&driver);
2292}
2293
2294MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2295MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2296MODULE_LICENSE("GPL");
2297
2298MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2299
2300module_param(lnksts, int, 0);
2301MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2302
2303module_param(ihr, int, 0);
2304MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2305
2306module_param(reset_phy, int, 0);
2307MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2308
2309module_init(ns83820_init);
2310module_exit(ns83820_exit);
2311